Changeset 5257 for trunk/help/gsasII-phase.html
- Timestamp:
- Apr 1, 2022 8:14:22 AM (3 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
TabularUnified trunk/help/gsasII-phase.html ¶
r5250 r5257 25 25 <o:Author>Von Dreele</o:Author> 26 26 <o:LastAuthor>Von Dreele, Robert B.</o:LastAuthor> 27 <o:Revision>4 3</o:Revision>28 <o:TotalTime>72 09</o:TotalTime>27 <o:Revision>48</o:Revision> 28 <o:TotalTime>7295</o:TotalTime> 29 29 <o:Created>2021-06-20T02:30:00Z</o:Created> 30 <o:LastSaved>2022-03- 24T14:35:00Z</o:LastSaved>30 <o:LastSaved>2022-03-31T21:35:00Z</o:LastSaved> 31 31 <o:Pages>1</o:Pages> 32 <o:Words>103 13</o:Words>33 <o:Characters>58 786</o:Characters>32 <o:Words>10342</o:Words> 33 <o:Characters>58951</o:Characters> 34 34 <o:Company>Argonne National Laboratory</o:Company> 35 <o:Lines>4 89</o:Lines>36 <o:Paragraphs>13 7</o:Paragraphs>37 <o:CharactersWithSpaces>6 8962</o:CharactersWithSpaces>35 <o:Lines>491</o:Lines> 36 <o:Paragraphs>138</o:Paragraphs> 37 <o:CharactersWithSpaces>69155</o:CharactersWithSpaces> 38 38 <o:Version>16.00</o:Version> 39 39 </o:DocumentProperties> … … 49 49 <w:WordDocument> 50 50 <w:Zoom>148</w:Zoom> 51 <w:SpellingState>Clean</w:SpellingState>52 <w:GrammarState>Clean</w:GrammarState>53 51 <w:TrackMoves>false</w:TrackMoves> 54 52 <w:TrackFormatting/> … … 953 951 mso-font-kerning:14.0pt;} 954 952 a:link, span.MsoHyperlink 955 {mso-style-priority:99; 953 {mso-style-noshow:yes; 954 mso-style-priority:99; 956 955 color:blue; 957 956 text-decoration:underline; … … 1307 1306 font-family:"Times New Roman",serif; 1308 1307 mso-fareast-font-family:"Times New Roman";} 1309 span.SpellE1310 {mso-style-name:"";1311 mso-spl-e:yes;}1312 span.GramE1313 {mso-style-name:"";1314 mso-gram-e:yes;}1315 1308 .MsoChpDefault 1316 1309 {mso-style-type:export-only; … … 1876 1869 1877 1870 <p class=MsoNormal><span style='mso-fareast-font-family:"Times New Roman"'>This 1878 is where to find help on the Phase Tree items in GSAS-II. Note that the window 1879 displayed for this page has multiple tabs. The help information is broken down 1880 by tabsection. <o:p></o:p></span></p>1871 is where to find help on the Phase Tree items in GSAS-II. Note that the window displayed 1872 for this page has multiple tabs. The help information is broken down by tab 1873 section. <o:p></o:p></span></p> 1881 1874 1882 1875 <h2 style='tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><a … … 1902 1895 phase. It also has the controls for Pawley intensity extraction and for 1903 1896 computing Fourier maps for this phase. It can also has the controls for Monte 1904 Carlo/Simulated Annealing for solving structures with flexible rigid molecular <span1905 class=GramE>bodies..</span> <span class=MsoHyperlink><span style='color:windowtext; 1906 text-decoration:none;text-underline:none'><o:p></o:p></span></span></span></p>1897 Carlo/Simulated Annealing for solving structures with flexible rigid molecular 1898 bodies.. <span class=MsoHyperlink><span style='color:windowtext;text-decoration: 1899 none;text-underline:none'><o:p></o:p></span></span></span></p> 1907 1900 1908 1901 <h5 style='margin-left:.5in'>What can I do here?</h5> … … 1943 1936 style='mso-fareast-font-family:"Times New Roman"'>This performs a charge 1944 1937 flipping <i style='mso-bidi-font-style:normal'>ab initio</i> structure solution 1945 using the method of <span class=SpellE>Oszlanyi</span> & <span 1946 class=SpellE>Suto</span> (Acta <span class=SpellE>Cryst</span>. A60, 134-141, 1947 2004). You will need to select a source for the reflection set and perhaps 1948 select an element for normalization by its form factor, a resolution limit 1949 (usually 0.5</span><span style='font-family:"Calibri",sans-serif;mso-fareast-font-family: 1950 "Times New Roman"'>Å</span><span style='mso-fareast-font-family:"Times New Roman"'>) 1951 and a charge flip threshold (usually 0.1); these are found near the bottom of 1952 the <b style='mso-bidi-font-weight:normal'>General</b> window. There are also 1953 Test HKLs to show the progress in phasing with charge flipping cycles. They 1954 show the generally chaotic phase behavior before a solution is found; after 1955 that the phases are essentially fixed. No use is made of this information; it 1956 is just for your edification. A progress bar showing the charge flip residual 1957 is shown while the charge flip is in operation. When the residual is no longer 1958 decreasing (be patient – it doesn’t necessarily fall continuously), press the <b 1959 style='mso-bidi-font-weight:normal'>Cancel</b> button to stop the charge 1960 flipping, otherwise it will stop at 10000 cycles. The resulting map will be 1961 positioned to properly place symmetry operators (NB: depends on the quality of 1962 the resulting phases; the map could be still offset by a few steps), searched 1963 for peaks and the display shifts to <b style='mso-bidi-font-weight:normal'>Map 1964 peaks</b> to show them.<b><o:p></o:p></b></span></p> 1938 using the method of Oszlanyi & Suto (Acta Cryst. A60, 134-141, 2004). You 1939 will need to select a source for the reflection set and perhaps select an 1940 element for normalization by its form factor, a resolution limit (usually 0.5</span><span 1941 style='font-family:"Calibri",sans-serif;mso-fareast-font-family:"Times New Roman"'>Å</span><span 1942 style='mso-fareast-font-family:"Times New Roman"'>) and a charge flip threshold 1943 (usually 0.1); these are found near the bottom of the <b style='mso-bidi-font-weight: 1944 normal'>General</b> window. There are also Test HKLs to show the progress in 1945 phasing with charge flipping cycles. They show the generally chaotic phase 1946 behavior before a solution is found; after that the phases are essentially 1947 fixed. No use is made of this information; it is just for your edification. A 1948 progress bar showing the charge flip residual is shown while the charge flip is 1949 in operation. When the residual is no longer decreasing (be patient – it 1950 doesn’t necessarily fall continuously), press the <b style='mso-bidi-font-weight: 1951 normal'>Cancel</b> button to stop the charge flipping, otherwise it will stop 1952 at 10000 cycles. The resulting map will be positioned to properly place 1953 symmetry operators (NB: depends on the quality of the resulting phases; the map 1954 could be still offset by a few steps), searched for peaks and the display 1955 shifts to <b style='mso-bidi-font-weight:normal'>Map peaks</b> to show them.<b><o:p></o:p></b></span></p> 1965 1956 1966 1957 <p class=MsoListParagraphCxSpMiddle style='margin-left:121.5pt;mso-add-space: … … 2004 1995 style='mso-fareast-font-family:"Times New Roman"'>Transform </span></b><span 2005 1996 style='mso-fareast-font-family:"Times New Roman"'>- This allows for a change in 2006 axes, <span class=GramE>symmetry</span> or unit cell. It is also used to create 2007 a magnetic phase from a chemical (nuclear) phase. One important transformation 2008 that can be done here is for Origin 1 settings to Origin 2 (<a 2009 href="#_Origin_1_->">described below</a>).<b><o:p></o:p></b></span></p> 1997 axes, symmetry or unit cell. It is also used to create a magnetic phase from a 1998 chemical (nuclear) phase. One important transformation that can be done here is 1999 for Origin 1 settings to Origin 2 (<a href="#_Origin_1_->">described below</a>).<b><o:p></o:p></b></span></p> 2010 2000 2011 2001 <p class=MsoListParagraphCxSpMiddle style='margin-left:121.5pt;mso-add-space: … … 2015 2005 </span></span></span><![endif]><b><span style='mso-fareast-font-family:"Times New Roman"'>Compare 2016 2006 – </span></b><span style='mso-fareast-font-family:"Times New Roman"'>Compares 2017 idealized <span class=SpellE>polyhedra</span> (tetrahedron & octahedron) to2018 those obtained from aReverse Monte Carlo run in RMCProfile.<b><o:p></o:p></b></span></p>2007 idealized polyhedra (tetrahedron & octahedron) to those obtained from a 2008 Reverse Monte Carlo run in RMCProfile.<b><o:p></o:p></b></span></p> 2019 2009 2020 2010 <p class=MsoListParagraphCxSpMiddle style='margin-left:121.5pt;mso-add-space: … … 2036 2026 style='mso-fareast-font-family:"Times New Roman"'>Protein quality</span></b><span 2037 2027 style='mso-fareast-font-family:"Times New Roman"'> – evaluate protein quality 2038 by python versions of <span class=SpellE>errat</span> & errat2 codes by <span 2039 class=SpellE>Colovos</span>, C. & <span class=SpellE>Yeates</span>, T.O. Protein 2040 Science 2, 1511-1519 (1991).<b><o:p></o:p></b></span></p> 2028 by python versions of errat & errat2 codes by Colovos, C. & Yeates, 2029 T.O. Protein Science 2, 1511-1519 (1991).<b><o:p></o:p></b></span></p> 2041 2030 2042 2031 <p class=MsoNormal style='tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><span … … 2062 2051 </span></span></span></span><![endif]><b style='mso-bidi-font-weight:normal'><span 2063 2052 style='mso-fareast-font-family:"Times New Roman"'>Phase name</span></b><span 2064 style='mso-fareast-font-family:"Times New Roman"'> – this is the name assigned 2065 t o this phase. It can be changed at any time.<span class=MsoHyperlink><span2053 style='mso-fareast-font-family:"Times New Roman"'> – this is the name assigned to 2054 this phase. It can be changed at any time.<span class=MsoHyperlink><span 2066 2055 style='color:windowtext'><o:p></o:p></span></span></span></p> 2067 2056 … … 2087 2076 the phase is initialized; it can be changed later. Be careful about the impact 2088 2077 on Atom site symmetry and multiplicity if you do. GSAS-II will recognize any 2089 legal space group symbol using the short Hermann-<span class=SpellE>Mauguin</span> 2090 forms; put a space between the axial fields (<span class=GramE>e.g.</span> ‘F d 2091 3 m’ not ‘Fd3m’; ‘F d 3 m’ is understood as well as ‘F d -3 m’). For space 2092 groups with a choice of origin (<span class=GramE>e.g.</span> F d 3 m), GSAS-II 2093 always uses the 2<sup>nd</sup> setting where the center of inversion is located 2094 at the origin. The choice of space group will set the available unit cell 2095 parameters.<span class=MsoHyperlink><span style='color:windowtext'><o:p></o:p></span></span></span></p> 2078 legal space group symbol using the short Hermann-Mauguin forms; put a space 2079 between the axial fields (e.g. ‘F d 3 m’ not ‘Fd3m’; ‘F d 3 m’ is understood as 2080 well as ‘F d -3 m’). For space groups with a choice of origin (e.g. F d 3 m), 2081 GSAS-II always uses the 2<sup>nd</sup> setting where the center of inversion is 2082 located at the origin. The choice of space group will set the available unit 2083 cell parameters.<span class=MsoHyperlink><span style='color:windowtext'><o:p></o:p></span></span></span></p> 2096 2084 2097 2085 <p class=MsoListParagraphCxSpMiddle style='margin-left:121.5pt;mso-add-space: … … 2198 2186 <v:imagedata src="gsasII-phase_files/image001.png" o:title="" chromakey="white"/> 2199 2187 </v:shape><![endif]--><![if !vml]><img width=335 height=19 2200 src="gsasII-phase_files/image0 49.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]><br>2188 src="gsasII-phase_files/image002.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]><br> 2201 2189 <span style='font-family:"Cambria Math",serif;mso-fareast-font-family:"Times New Roman"; 2202 2190 mso-bidi-font-style:italic'>A0-A5 correspond to the reciprocal metric tensor … … 2224 2212 table is shown next on the General page; you may select the isotope (only 2225 2213 relevant for neutron diffraction experiments). The density (just above the 2226 Elements) is computed depending on this choice, the unit cell volume and the 2227 atomfractions/site multiplicities in the entries on the Atoms page.<span2214 Elements) is computed depending on this choice, the unit cell volume and the atom 2215 fractions/site multiplicities in the entries on the Atoms page.<span 2228 2216 class=MsoHyperlink><span style='color:windowtext'><o:p></o:p></span></span></span></p> 2229 2217 … … 2257 2245 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 2258 2246 style='mso-bidi-font-weight:normal'><span style='mso-fareast-font-family:"Times New Roman"'>Pawley 2259 <span class=SpellE>dmin</span></span></b><span style='mso-fareast-font-family: 2260 "Times New Roman"'> – This is the minimum d-spacing to be used in a Pawley 2261 refinement. <b style='mso-bidi-font-weight:normal'>NB:</b> be sure to set this 2262 to match theminimum d-spacing indicated by the powder pattern limits (see <b2247 dmin</span></b><span style='mso-fareast-font-family:"Times New Roman"'> – This 2248 is the minimum d-spacing to be used in a Pawley refinement. <b 2249 style='mso-bidi-font-weight:normal'>NB:</b> be sure to set this to match the 2250 minimum d-spacing indicated by the powder pattern limits (see <b 2263 2251 style='mso-bidi-font-weight:normal'>Limits</b> for the powder data set).</span></p> 2264 2252 … … 2269 2257 style='mso-list:Ignore'>c.<span style='font:7.0pt "Times New Roman"'> 2270 2258 </span></span></span></span><![endif]><b style='mso-bidi-font-weight:normal'><span 2271 style='mso-fareast-font-family:"Times New Roman"'>Pawley <span class=SpellE>dmax</span></span></b><span2259 style='mso-fareast-font-family:"Times New Roman"'>Pawley dmax</span></b><span 2272 2260 style='mso-fareast-font-family:"Times New Roman";mso-bidi-font-weight:bold'> – 2273 2261 This is the maximum d-spacing for reflections in a Pawley refinement. It is … … 2284 2272 style='mso-fareast-font-family:"Times New Roman"'>Pawley neg. wt.</span></b><span 2285 2273 style='mso-fareast-font-family:"Times New Roman"'> – This is the weight for a 2286 penalty function applied during a Pawley refinement on resulting negative intensities.2287 Use with caution; initially try very small values (<span class=GramE>e.g.</span> 2288 .01). Avalue of zero means no penalty is applied.<span class=MsoHyperlink><span2274 penalty function applied during a Pawley refinement on resulting negative 2275 intensities. Use with caution; initially try very small values (e.g. .01). A 2276 value of zero means no penalty is applied.<span class=MsoHyperlink><span 2289 2277 style='color:windowtext;text-decoration:none;text-underline:none'><o:p></o:p></span></span></span></p> 2290 2278 … … 2295 2283 style='mso-list:Ignore'>5.<span style='font:7.0pt "Times New Roman"'> 2296 2284 </span></span></span></span><![endif]><span style='mso-fareast-font-family: 2297 "Times New Roman"'>Fourier map controls are shown next on the General page. 2298 Single crystal data or a completed Rietveld or Pawley refinement is required 2299 before a Fourier map can be computed. Select the desired type of map,the2300 source of the reflection set and the map resolution desired. The peak cutoff is 2301 defined as a percentage of the maximum and defines the lowest level considered 2302 in the peaksearch.<span class=MsoHyperlink><span style='color:windowtext'><o:p></o:p></span></span></span></p>2285 "Times New Roman"'>Fourier map controls are shown next on the General page. Single 2286 crystal data or a completed Rietveld or Pawley refinement is required before a 2287 Fourier map can be computed. Select the desired type of map, the source of the 2288 reflection set and the map resolution desired. The peak cutoff is defined as a 2289 percentage of the maximum and defines the lowest level considered in the peak 2290 search.<span class=MsoHyperlink><span style='color:windowtext'><o:p></o:p></span></span></span></p> 2303 2291 2304 2292 <p class=MsoListParagraphCxSpMiddle style='margin-left:73.2pt;mso-add-space: … … 2319 2307 </span></span></span></span><![endif]><b style='mso-bidi-font-weight:normal'><span 2320 2308 style='mso-fareast-font-family:"Times New Roman"'>Reflection sets </span></b><span 2321 style='mso-fareast-font-family:"Times New Roman"'>– This is the source of structure 2322 factors to be used in a charge flip calculation. These may be either a single 2323 crystal data set, or structure factors extracted from a powder pattern via a 2324 Pawley or LeBail refinement or a Rietveld refinement.<span class=MsoHyperlink><span 2325 style='color:windowtext;text-decoration:none;text-underline:none'><o:p></o:p></span></span></span></p> 2309 style='mso-fareast-font-family:"Times New Roman"'>– This is the source of 2310 structure factors to be used in a charge flip calculation. These may be either 2311 a single crystal data set, or structure factors extracted from a powder pattern 2312 via a Pawley or LeBail refinement or a Rietveld refinement.<span 2313 class=MsoHyperlink><span style='color:windowtext;text-decoration:none; 2314 text-underline:none'><o:p></o:p></span></span></span></p> 2326 2315 2327 2316 <p class=MsoListParagraphCxSpMiddle style='margin-left:121.5pt;mso-add-space: … … 2332 2321 </span></span></span></span><![endif]><b style='mso-bidi-font-weight:normal'><span 2333 2322 style='mso-fareast-font-family:"Times New Roman"'>Normalizing element </span></b><span 2334 style='mso-fareast-font-family:"Times New Roman"'>– This is an element form 2335 factorchosen to normalize the structure factors before charge flipping. <b2323 style='mso-fareast-font-family:"Times New Roman"'>– This is an element form factor 2324 chosen to normalize the structure factors before charge flipping. <b 2336 2325 style='mso-bidi-font-weight:normal'>None</b> (the default) can be selected from 2337 2326 the lower right of the Periodic Table display shown when this is selected.<span … … 2379 2368 style='mso-fareast-font-family:"Times New Roman"'>Test HKLs</span></b><span 2380 2369 style='mso-fareast-font-family:"Times New Roman";mso-bidi-font-weight:bold'> – 2381 plot of phases for selected <span class=SpellE>hkls</span> are shown at end of 2382 charge flipping run. Just for you to look at.</span><span style='mso-fareast-font-family: 2383 "Times New Roman"'><o:p></o:p></span></p> 2370 plot of phases for selected hkls are shown at end of charge flipping run. Just 2371 for you to look at.</span><span style='mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span></p> 2384 2372 2385 2373 <p class=MsoListParagraphCxSpMiddle style='margin-left:73.2pt;mso-add-space: … … 2398 2386 This is the source of structure factors to be used in a charge flip 2399 2387 calculation. These may be either a single crystal data set, or structure 2400 factors extracted from a powder pattern via a Pawley or <span class=SpellE>Lebail</span>2401 refinement or aRietveld refinement.<o:p></o:p></span></p>2388 factors extracted from a powder pattern via a Pawley or Lebail refinement or a 2389 Rietveld refinement.<o:p></o:p></span></p> 2402 2390 2403 2391 <p class=MsoListParagraphCxSpMiddle style='margin-left:121.5pt;mso-add-space: … … 2469 2457 point in the structure does not contain a center of symmetry. Origin 1 places 2470 2458 the origin at the highest symmetry setting while Origin 2 places the origin at 2471 a center of symmetry (creating a - <span class=GramE>x,-</span>y,-z symmetry2472 operator, which means that reflection phases can only be 0 or π.) GSAS-II 2473 requires use of the Origin 2 settings because computations are much faster and 2474 simpler without complex structure factors. Alas, the literature contains <span2475 class=GramE>a number of</span> structures reported in Origin 1, where the 2476 origin choice may not be clearly communicated. (The CIF standard does not 2477 require that origin choice be indicated.) When a structure is imported that 2478 uses any of the space groups where an origin choice is possible, a message is 2479 shown in GSAS-II notifying the user that they must confirm that the origin 2480 choice is correct and then provides the opportunity to changeorigins. <o:p></o:p></span></p>2459 a center of symmetry (creating a -x,-y,-z symmetry operator, which means that 2460 reflection phases can only be 0 or π.) GSAS-II requires use of the Origin 2 2461 settings because computations are much faster and simpler without complex structure 2462 factors. Alas, the literature contains a number of structures reported in 2463 Origin 1, where the origin choice may not be clearly communicated. (The CIF 2464 standard does not require that origin choice be indicated.) When a structure is 2465 imported that uses any of the space groups where an origin choice is possible, 2466 a message is shown in GSAS-II notifying the user that they must confirm that 2467 the origin choice is correct and then provides the opportunity to change 2468 origins. <o:p></o:p></span></p> 2481 2469 2482 2470 <p class=MsoNormal style='margin-left:1.0in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><b><span … … 2506 2494 <tr style='mso-yfti-irow:2'> 2507 2495 <td style='padding:.75pt .75pt .75pt .75pt'> 2508 <p class=MsoNormal><span class=SpellE><span style='mso-fareast-font-family: 2509 "Times New Roman"'>Ti</span></span><span style='mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span></p> 2496 <p class=MsoNormal><span style='mso-fareast-font-family:"Times New Roman"'>Ti<o:p></o:p></span></p> 2510 2497 </td> 2511 2498 <td style='padding:.75pt .75pt .75pt .75pt'> … … 2560 2547 <tr style='mso-yfti-irow:2'> 2561 2548 <td style='padding:.75pt .75pt .75pt .75pt'> 2562 <p class=MsoNormal><span class=SpellE><span style='mso-fareast-font-family: 2563 "Times New Roman"'>Ti</span></span><span style='mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span></p> 2549 <p class=MsoNormal><span style='mso-fareast-font-family:"Times New Roman"'>Ti<o:p></o:p></span></p> 2564 2550 </td> 2565 2551 <td style='padding:.75pt .75pt .75pt .75pt'> … … 2591 2577 <p class=MsoNormal style='margin-left:1.0in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><span 2592 2578 style='mso-fareast-font-family:"Times New Roman";color:white;mso-color-alt: 2593 windowtext'>where the origin is shifted by (0,1/</span><span class=GramE><span 2594 style='mso-fareast-font-family:"Times New Roman"'>4,-</span></span><span 2595 style='mso-fareast-font-family:"Times New Roman"'>1/8). <o:p></o:p></span></p> 2579 windowtext'>where the origin is shifted by (0,1/4,-1/8). </span><span 2580 style='mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span></p> 2596 2581 2597 2582 <p class=MsoNormal style='margin-left:1.0in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><!--[if gte vml 1]><v:shape … … 2609 2594 </v:shape><![endif]--><![if !vml]><img width=322 height=190 2610 2595 src="gsasII_files/wrong.png" align=right v:shapes="Picture_x0020_3"><![endif]><span 2611 style='mso-fareast-font-family:"Times New Roman"'>GSAS-II always uses the symmetry 2612 operators for Origin 2; if the structure is input incorrectly with the 2613 coordinates set for Origin 1, there are several <span class=GramE>fairly 2614 obvious</span> signs of problems: (1) the site symmetries and multiplicities 2615 are wrong, often giving an incorrect chemical formula, (2) the interatomic 2616 distances are incorrect, and (3) a plot of the structure is improbable. In this 2617 case incorrect multiplicities gives rise to a density of 7.9 g/cc, double the 2618 correct value. Impossible interatomic distances of 1.88Å for <span 2619 class=SpellE><span class=GramE>Ti-Ti</span></span>, and 1.39Å for <span 2620 class=SpellE>Ti</span>-O are seen. The unit cell contents with the wrong space 2621 group operators <span class=GramE>is</span> shown to the right. <o:p></o:p></span></p> 2596 style='mso-fareast-font-family:"Times New Roman"'>GSAS-II always uses the 2597 symmetry operators for Origin 2; if the structure is input incorrectly with the 2598 coordinates set for Origin 1, there are several fairly obvious signs of 2599 problems: (1) the site symmetries and multiplicities are wrong, often giving an 2600 incorrect chemical formula, (2) the interatomic distances are incorrect, and 2601 (3) a plot of the structure is improbable. In this case incorrect 2602 multiplicities gives rise to a density of 7.9 g/cc, double the correct value. 2603 Impossible interatomic distances of 1.88Å for Ti-Ti, and 1.39Å for Ti-O are 2604 seen. The unit cell contents with the wrong space group operators is shown to 2605 the right. <o:p></o:p></span></p> 2622 2606 2623 2607 <p class=MsoNormal style='margin-left:1.0in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><span 2624 2608 style='mso-fareast-font-family:"Times New Roman"'>With coordinates that match 2625 the space group operations, the correct <span class=SpellE>Ti</span>-O 2626 distances are 1.92Å and 1.97Å and the shortest <span class=SpellE>Ti-Ti</span> 2627 distance is 3.0Å. (Note that interatomic distances can be computed in GSAS-II 2628 using the Phase Atoms tab and the Compute/"Show Distances & 2629 Angles" menu item.) <o:p></o:p></span></p> 2609 the space group operations, the correct Ti-O distances are 1.92Å and 1.97Å and 2610 the shortest Ti-Ti distance is 3.0Å. (Note that interatomic distances can be 2611 computed in GSAS-II using the Phase Atoms tab and the Compute/"Show 2612 Distances & Angles" menu item.) <o:p></o:p></span></p> 2630 2613 2631 2614 <p class=MsoNormal style='margin-left:1.0in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><!--[if gte vml 1]><v:shape … … 2672 2655 <p class=MsoNormal style='margin-left:.5in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'>The 2673 2656 HAP parameters include: the phase fraction; the sample contributions to peak 2674 broadening: <span class=SpellE>microstrain</span> and crystallite size; a 2675 LeBail intensity extraction flag; hydrostatic/elastic strain shifts to lattice 2676 parameters; corrections to peak intensities due to experimental effects 2677 (preferred orientation, <span class=GramE>extinction</span> and disordered 2678 solvents).</p> 2657 broadening: microstrain and crystallite size; a LeBail intensity extraction 2658 flag; hydrostatic/elastic strain shifts to lattice parameters; corrections to 2659 peak intensities due to experimental effects (preferred orientation, extinction 2660 and disordered solvents).</p> 2679 2661 2680 2662 <p class=MsoNormal style='margin-left:.5in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'>For 2681 single crystal data, the only parameters are scale, <span class=GramE>extinction</span>2682 and disorderedsolvent. There is no Sample Parameters histogram scale factor.</p>2663 single crystal data, the only parameters are scale, extinction and disordered 2664 solvent. There is no Sample Parameters histogram scale factor.</p> 2683 2665 2684 2666 <p class=MsoNormal style='margin-left:.5in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><b><span … … 2722 2704 2723 2705 <p class=MsoNormal style='margin-left:.5in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><span 2724 style='mso-fareast-font-family:"Times New Roman"'>Used for single crystal <span2725 class=GramE>data:</span>relates F<sup>2</sup><sub>obs</sub> to F<sup>2</sup><sub>calc</sub>.<o:p></o:p></span></p>2706 style='mso-fareast-font-family:"Times New Roman"'>Used for single crystal data: 2707 relates F<sup>2</sup><sub>obs</sub> to F<sup>2</sup><sub>calc</sub>.<o:p></o:p></span></p> 2726 2708 2727 2709 <p class=MsoNormal style='margin-left:.5in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><b><span … … 2731 2713 <p class=MsoNormal style='margin-left:.5in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><span 2732 2714 style='mso-fareast-font-family:"Times New Roman"'>is computed from size 2733 factor(s) in microns (<span class=SpellE>μm</span> = 10<sup>-6</sup> m), with 2734 the Scherrer constant assumed as unity. Sizes can be computed in three ways: 2735 isotropic, <span class=GramE>uniaxial</span> and ellipsoidal. In isotropic 2736 broadening, crystallites are assumed to average as uniform in all directions 2737 and a single size value is supplied; with uniaxial broadening, a preferred 2738 direction (as a crystallographic axis, such as 0,0,1 is supplied) -- note that 2739 for most crystal systems only one axis makes sense -- and two size parameters 2740 are defined, one for along the axis and one for in the perpendicular plane; 2741 with ellipsoidal, six terms are used to define a broadening tensor that has 2742 arbitrary orientation -- this model may require constraints and is seldom 2743 needed. Note that size broadening is usually Lorentzian, which corresponds to a 2744 <span class=SpellE>LGmix</span> value of 1.0; if this value is between 0. and 2745 1., both Gaussian and Lorentz size broadening is modeled and a value of 0.0 is 2746 pure Gaussian. Values less than 0. or greater than 1. make no physical sense. 2747 Typical sensitivity is to no more than 4 <span class=SpellE>μm</span>; beyond 2748 that the particles are effectively infinite for a diffraction experiment.<o:p></o:p></span></p> 2749 2750 <p class=MsoNormal style='margin-left:.5in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><span 2751 class=SpellE><b><span style='mso-fareast-font-family:"Times New Roman"'>Microstrain</span></b></span><b><span 2752 style='mso-fareast-font-family:"Times New Roman"'> peak broadening </span></b><span 2715 factor(s) in microns (μm = 10<sup>-6</sup> m), with the Scherrer constant 2716 assumed as unity. Sizes can be computed in three ways: isotropic, uniaxial and 2717 ellipsoidal. In isotropic broadening, crystallites are assumed to average as 2718 uniform in all directions and a single size value is supplied; with uniaxial 2719 broadening, a preferred direction (as a crystallographic axis, such as 0,0,1 is 2720 supplied) -- note that for most crystal systems only one axis makes sense -- 2721 and two size parameters are defined, one for along the axis and one for in the 2722 perpendicular plane; with ellipsoidal, six terms are used to define a 2723 broadening tensor that has arbitrary orientation -- this model may require 2724 constraints and is seldom needed. Note that size broadening is usually 2725 Lorentzian, which corresponds to a LGmix value of 1.0; if this value is between 2726 0. and 1., both Gaussian and Lorentz size broadening is modeled and a value of 2727 0.0 is pure Gaussian. Values less than 0. or greater than 1. make no physical sense. 2728 Typical sensitivity is to no more than 4 μm; beyond that the particles are 2729 effectively infinite for a diffraction experiment.<o:p></o:p></span></p> 2730 2731 <p class=MsoNormal style='margin-left:.5in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><b><span 2732 style='mso-fareast-font-family:"Times New Roman"'>Microstrain peak broadening </span></b><span 2753 2733 style='mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span></p> 2754 2734 2755 2735 <p class=MsoNormal style='margin-left:.5in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><span 2756 2736 style='mso-fareast-font-family:"Times New Roman"'>is computed as unitless 2757 fraction of <span class=SpellE>Δd</span>/d (or equivalently ΔQ/Q) times 10<sup>6</sup>. 2758 <span class=SpellE>Microstrain</span> can be represented in three ways: 2759 isotropic, <span class=GramE>uniaxial</span> and generalized. In isotropic 2760 broadening, <span class=SpellE>microstrain</span> broadening assumed to be the 2761 same in all crystallographic directions and a single value is supplied; with 2762 uniaxial broadening, a preferred direction (as a crystallographic axis, such as 2763 0,0,1) is supplied -- note that for most crystal systems only one axis makes 2764 sense -- and two <span class=SpellE>microstrain</span> parameters are defined, 2765 one for along the axis and one for in the perpendicular plane; with 2766 generalized, the Nicole Popa/Peter Stephens second-order expansion model is 2767 used and the number of terms will depend on the crystal system. It is typically 2768 possible to refine all terms when significant anisotropic strain broadening is 2769 present. Note that <span class=SpellE>microstrain</span> broadening is usually 2770 Lorentzian, which corresponds to a <span class=SpellE>LGmix</span> value of 2771 1.0; if this value is between 0. and 1., both Gaussian and Lorentz broadening 2772 is modeled and a value of 0.0 is pure Gaussian. Values less than 0. or greater 2773 than 1. make no physical sense. Typical <span class=SpellE>microstrain</span> 2774 is ~1000.<o:p></o:p></span></p> 2737 fraction of Δd/d (or equivalently ΔQ/Q) times 10<sup>6</sup>. Microstrain can 2738 be represented in three ways: isotropic, uniaxial and generalized. In isotropic 2739 broadening, microstrain broadening assumed to be the same in all 2740 crystallographic directions and a single value is supplied; with uniaxial 2741 broadening, a preferred direction (as a crystallographic axis, such as 0,0,1) 2742 is supplied -- note that for most crystal systems only one axis makes sense -- 2743 and two microstrain parameters are defined, one for along the axis and one for 2744 in the perpendicular plane; with generalized, the Nicole Popa/Peter Stephens 2745 second-order expansion model is used and the number of terms will depend on the 2746 crystal system. It is typically possible to refine all terms when significant 2747 anisotropic strain broadening is present. Note that microstrain broadening is usually 2748 Lorentzian, which corresponds to a LGmix value of 1.0; if this value is between 2749 0. and 1., both Gaussian and Lorentz broadening is modeled and a value of 0.0 2750 is pure Gaussian. Values less than 0. or greater than 1. make no physical 2751 sense. Typical microstrain is ~1000.<o:p></o:p></span></p> 2775 2752 2776 2753 <p class=MsoNormal style='margin-left:.5in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><b><span … … 2798 2775 model is possible with the "<u><span style='color:blue'><a href="#Texture">Texture</a></span></u>" 2799 2776 tab (which usually requires multiple histograms at different sample 2800 orientations or detector settings). The approaches available here are March-<span2801 class=SpellE>Dollase</span>, which requires a definition of a unique axis (in2777 orientations or detector settings). The approaches available here are 2778 March-Dollase, which requires a definition of a unique axis (in 2802 2779 crystallographic coordinates) and the relative amount of excess or depletion of 2803 2780 crystallites in that direction; or Spherical Harmonics, where the selection of … … 2819 2796 2820 2797 <p class=MsoNormal style='margin-left:.5in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><b><span 2821 style='mso-fareast-font-family:"Times New Roman"'>Disordered solvent – <span 2822 class=SpellE>Babinet</span> A & B</span></b><span style='mso-fareast-font-family: 2823 "Times New Roman"'><o:p></o:p></span></p> 2798 style='mso-fareast-font-family:"Times New Roman"'>Disordered solvent – Babinet 2799 A & B</span></b><span style='mso-fareast-font-family:"Times New Roman"'><o:p></o:p></span></p> 2824 2800 2825 2801 <p class=MsoNormal style='margin-left:.5in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><span 2826 style='mso-fareast-font-family:"Times New Roman"'>This correction, using the <span2827 class=SpellE>Babinet</span> model, is typically used to treat scattering from 2828 solvent that is not well-ordered in protein structures. It probably makes no 2829 sense in most anyother application. <o:p></o:p></span></p>2802 style='mso-fareast-font-family:"Times New Roman"'>This correction, using the 2803 Babinet model, is typically used to treat scattering from solvent that is not 2804 well-ordered in protein structures. It probably makes no sense in most any 2805 other application. <o:p></o:p></span></p> 2830 2806 2831 2807 <p class=MsoNormal style='margin-left:.5in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><b><span … … 2853 2829 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>2.<span 2854 2830 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><span 2855 style='mso-fareast-font-family:"Times New Roman"'>The plot selection items allow2856 for three dimensional representations of the <span class=SpellE>microstrain</span> 2857 or crystallite size distributions (which are spheres for isotropic treatments); 2858 preferred orientation can be plotted as a Psi scan (a plot of relative2859 crystallite abundance for a particular reflection as a function of azimuthal 2860 angle) or as an inverse pole figure (which shows a stereographic projection of 2861 the probability distribution for different reciprocal lattice directions as 2862 viewed down the sample cylinder axis). For no texture/preferred orientation 2863 this figure wouldbe flat = 1.0.<o:p></o:p></span></p>2831 style='mso-fareast-font-family:"Times New Roman"'>The plot selection items 2832 allow for three dimensional representations of the microstrain or crystallite 2833 size distributions (which are spheres for isotropic treatments); preferred 2834 orientation can be plotted as a Psi scan (a plot of relative crystallite abundance 2835 for a particular reflection as a function of azimuthal angle) or as an inverse 2836 pole figure (which shows a stereographic projection of the probability 2837 distribution for different reciprocal lattice directions as viewed down the 2838 sample cylinder axis). For no texture/preferred orientation this figure would 2839 be flat = 1.0.<o:p></o:p></span></p> 2864 2840 2865 2841 <h4 style='margin-left:.25in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><a … … 2942 2918 style='mso-list:Ignore'>2.<span style='font:7.0pt "Times New Roman"'> 2943 2919 </span></span></span></span><![endif]><b style='mso-bidi-font-weight:normal'>Double 2944 left <span class=GramE>click</span> a Type column heading</b>: a dialog box is2945 s hown that allows you to select all atoms with that type.<span2946 class=MsoHyperlink><span style='mso-fareast-font-family:"Times New Roman"; 2947 color:windowtext;text-decoration:none;text-underline:none'><o:p></o:p></span></span></p>2920 left click a Type column heading</b>: a dialog box is shown that allows you to 2921 select all atoms with that type. <span class=MsoHyperlink><span 2922 style='mso-fareast-font-family:"Times New Roman";color:windowtext;text-decoration: 2923 none;text-underline:none'><o:p></o:p></span></span></p> 2948 2924 2949 2925 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.0in;mso-add-space: … … 2968 2944 the mouse (<b style='mso-bidi-font-weight:normal'>Alt</b> ignored, <b 2969 2945 style='mso-bidi-font-weight:normal'>Shift</b> & <b style='mso-bidi-font-weight: 2970 normal'>Ctrl</b> allow selection of multiple <span class=GramE>cells</span> but 2971 no use is made of them). An individual data item can be cut/pasted anywhere 2972 including from/to another document. Bad entries are rejected (yellow 2973 background). If any entry is changed, press <b style='mso-bidi-font-weight: 2974 normal'>Enter</b> key or select another atom entry to apply the change.<span 2975 class=MsoHyperlink><span style='color:windowtext;text-decoration:none; 2976 text-underline:none'><o:p></o:p></span></span></span></p> 2946 normal'>Ctrl</b> allow selection of multiple cells but no use is made of them). 2947 An individual data item can be cut/pasted anywhere including from/to another 2948 document. Bad entries are rejected (yellow background). If any entry is 2949 changed, press <b style='mso-bidi-font-weight:normal'>Enter</b> key or select 2950 another atom entry to apply the change.<span class=MsoHyperlink><span 2951 style='color:windowtext;text-decoration:none;text-underline:none'><o:p></o:p></span></span></span></p> 2977 2952 2978 2953 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: … … 3016 2991 color:windowtext;text-decoration:none;text-underline:none'><span 3017 2992 style='mso-list:Ignore'>d.<span style='font:7.0pt "Times New Roman"'> 3018 </span></span></span></span><![endif]><span class=SpellE><span class=GramE><b 3019 style='mso-bidi-font-weight:normal'><span style='mso-fareast-font-family:"Times New Roman"'>x,y</span></b></span><b 3020 style='mso-bidi-font-weight:normal'><span style='mso-fareast-font-family:"Times New Roman"'>,z</span></b></span><span 2993 </span></span></span></span><![endif]><b style='mso-bidi-font-weight:normal'><span 2994 style='mso-fareast-font-family:"Times New Roman"'>x,y,z</span></b><span 3021 2995 style='mso-fareast-font-family:"Times New Roman"'> – change atom coordinate. 3022 Fractions (<span class=GramE>e.g.</span> 1/3, 1/4) are allowed.<span 3023 class=MsoHyperlink><span style='color:windowtext;text-decoration:none; 3024 text-underline:none'><o:p></o:p></span></span></span></p> 2996 Fractions (e.g. 1/3, 1/4) are allowed.<span class=MsoHyperlink><span 2997 style='color:windowtext;text-decoration:none;text-underline:none'><o:p></o:p></span></span></span></p> 3025 2998 3026 2999 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: … … 3029 3002 color:windowtext;text-decoration:none;text-underline:none'><span 3030 3003 style='mso-list:Ignore'>e.<span style='font:7.0pt "Times New Roman"'> 3031 </span></span></span></span><![endif]><span class=SpellE><span class=GramE><b 3032 style='mso-bidi-font-weight:normal'><span style='mso-fareast-font-family:"Times New Roman"'>frac,Uiso</span></b></span><b 3033 style='mso-bidi-font-weight:normal'><span style='mso-fareast-font-family:"Times New Roman"'>,Uij</span></b></span><span 3034 style='mso-fareast-font-family:"Times New Roman"'> – change these values; 3035 fractions (e.g. 1/3, 1/4) are allowed.<span class=MsoHyperlink><span 3036 style='color:windowtext;text-decoration:none;text-underline:none'><o:p></o:p></span></span></span></p> 3004 </span></span></span></span><![endif]><b style='mso-bidi-font-weight:normal'><span 3005 style='mso-fareast-font-family:"Times New Roman"'>frac,Uiso,Uij</span></b><span 3006 style='mso-fareast-font-family:"Times New Roman"'> – change these values; fractions 3007 (e.g. 1/3, 1/4) are allowed.<span class=MsoHyperlink><span style='color:windowtext; 3008 text-decoration:none;text-underline:none'><o:p></o:p></span></span></span></p> 3037 3009 3038 3010 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: … … 3044 3016 style='mso-fareast-font-family:"Times New Roman"'>I/A</span></b><span 3045 3017 style='mso-fareast-font-family:"Times New Roman"'> – select one of <b 3046 style='mso-bidi-font-weight:normal'>I</b>(<span class=SpellE>sotropic</span>) 3047 or <b style='mso-bidi-font-weight:normal'>A</b>(<span class=SpellE>nisotropic</span>); 3048 the <span class=SpellE><b style='mso-bidi-font-weight:normal'>Uiso</b></span><b 3049 style='mso-bidi-font-weight:normal'>/<span class=SpellE>Uij</span></b> entries 3050 will change appropriately. <span class=MsoHyperlink><span style='color:windowtext; 3051 text-decoration:none;text-underline:none'><o:p></o:p></span></span></span></p> 3018 style='mso-bidi-font-weight:normal'>I</b>(sotropic) or <b style='mso-bidi-font-weight: 3019 normal'>A</b>(nisotropic); the <b style='mso-bidi-font-weight:normal'>Uiso/Uij</b> 3020 entries will change appropriately. <span class=MsoHyperlink><span 3021 style='color:windowtext;text-decoration:none;text-underline:none'><o:p></o:p></span></span></span></p> 3052 3022 3053 3023 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.0in;mso-add-space: … … 3079 3049 appears with a list of atom parameter names; select one to apply to all 3080 3050 selected atoms. <b style='mso-bidi-font-weight:normal'>Name</b> will rename 3081 selected atoms according to position in table (e.g. <span class=GramE>Na(</span>1) 3082 for Na atom as 1<sup>st</sup> atom in list in row ‘0’). <b style='mso-bidi-font-weight: 3083 normal'>Type</b> will give periodic table popup; selected element valence will 3084 be used for all selected atoms and atoms names will be changed. <b 3085 style='mso-bidi-font-weight:normal'>I/A</b> will give popup with choices to be 3086 used for all selected atoms. <span class=SpellE><span class=GramE><b 3087 style='mso-bidi-font-weight:normal'>x,y</b></span><b style='mso-bidi-font-weight: 3088 normal'>,z</b></span> will give popup for shift to be applied to the parameter 3089 for all selected atoms. <span class=SpellE><b style='mso-bidi-font-weight:normal'>Uiso</b></span> 3090 and <b style='mso-bidi-font-weight:normal'>frac</b> will give popup for new value 3091 to be used for all selected atoms. </p> 3051 selected atoms according to position in table (e.g. Na(1) for Na atom as 1<sup>st</sup> 3052 atom in list in row ‘0’). <b style='mso-bidi-font-weight:normal'>Type</b> will 3053 give periodic table popup; selected element valence will be used for all 3054 selected atoms and atoms names will be changed. <b style='mso-bidi-font-weight: 3055 normal'>I/A</b> will give popup with choices to be used for all selected atoms. 3056 <b style='mso-bidi-font-weight:normal'>x,y,z</b> will give popup for shift to 3057 be applied to the parameter for all selected atoms. <b style='mso-bidi-font-weight: 3058 normal'>Uiso</b> and <b style='mso-bidi-font-weight:normal'>frac</b> will give 3059 popup for new value to be used for all selected atoms. </p> 3092 3060 3093 3061 <p class=MsoListParagraphCxSpMiddle style='margin-left:2.0in;mso-add-space: … … 3108 3076 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>5.<span 3109 3077 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 3110 style='mso-bidi-font-weight:normal'>Insert atom</b> – insert an H atom (name= <span3111 class=SpellE>Unk</span>) at 0,0,0 before the selected atom, it is also drawn as 3112 an H atom in thestructure plot (small white ball).</p>3078 style='mso-bidi-font-weight:normal'>Insert atom</b> – insert an H atom (name= 3079 Unk) at 0,0,0 before the selected atom, it is also drawn as an H atom in the 3080 structure plot (small white ball).</p> 3113 3081 3114 3082 <p class=MsoListParagraphCxSpMiddle style='margin-left:2.0in;mso-add-space: … … 3117 3085 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 3118 3086 style='mso-bidi-font-weight:normal'>Insert viewpoint</b> – insert an H atom 3119 (name= <span class=SpellE>Unk</span>) before the selected atom with coordinates 3120 matching the location of the viewpoint, it is also drawn as an H atom in the 3121 structure plot.</p> 3087 (name= Unk) before the selected atom with coordinates matching the location of 3088 the viewpoint, it is also drawn as an H atom in the structure plot.</p> 3122 3089 3123 3090 <p class=MsoListParagraphCxSpMiddle style='margin-left:2.0in;mso-add-space: … … 3165 3132 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>b.<span 3166 3133 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 3167 style='mso-bidi-font-weight:normal'>Append atom</b> – add an H atom (name= <span3168 class=SpellE>Unk</span>) at 0,0,0 to the end of the atom table, it is also 3169 drawn as an H atom in thestructure plot.</p>3134 style='mso-bidi-font-weight:normal'>Append atom</b> – add an H atom (name= Unk) 3135 at 0,0,0 to the end of the atom table, it is also drawn as an H atom in the 3136 structure plot.</p> 3170 3137 3171 3138 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: … … 3174 3141 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 3175 3142 style='mso-bidi-font-weight:normal'>Append viewpoint</b> – add an H atom (name= 3176 <span class=SpellE>Unk</span>) to the end of the atom table with coordinates 3177 matching the location of the viewpoint, it is drawn as an H atom in the 3178 structure plot.</p> 3143 Unk) to the end of the atom table with coordinates matching the location of the 3144 viewpoint, it is drawn as an H atom in the structure plot.</p> 3179 3145 3180 3146 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: … … 3212 3178 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 3213 3179 style='mso-bidi-font-weight:normal'>Reimport atoms </b>– from any importable 3214 phase file (<span class=GramE>e.g.</span> <span class=SpellE>cif</span>, <span 3215 class=SpellE>gpx</span>)</p> 3180 phase file (e.g. cif, gpx)</p> 3216 3181 3217 3182 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.0in;mso-add-space: … … 3226 3191 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 3227 3192 style='mso-bidi-font-weight:normal'>Show Distances & Angles – </b>compute 3228 distances and angles with <span class=SpellE>esds</span> (if possible) for 3229 selected atoms. A popup dialog box will appear with distance angle controls. 3230 NB: if atoms have been added or their type changed, you may need to do a <b 3231 style='mso-bidi-font-weight:normal'>Reset</b> of this dialog box before 3232 proceeding.</p> 3193 distances and angles with esds (if possible) for selected atoms. A popup dialog 3194 box will appear with distance angle controls. NB: if atoms have been added or 3195 their type changed, you may need to do a <b style='mso-bidi-font-weight:normal'>Reset</b> 3196 of this dialog box before proceeding.</p> 3233 3197 3234 3198 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: … … 3236 3200 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>b.<span 3237 3201 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 3238 style='mso-bidi-font-weight:normal'>Save Distances & Angles –</b> same as 3239 a. but reports result to a file with extension <span class=GramE>“.<span 3240 class=SpellE>disagl</span></span>”.</p> 3202 style='mso-bidi-font-weight:normal'>Save Distances & Angles –</b> same as a. 3203 but reports result to a file with extension “.disagl”.</p> 3241 3204 3242 3205 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: … … 3311 3274 in/out) <o:p></o:p></span></p> 3312 3275 3313 <p class=MsoNormal style='margin-left:1.25in'><span class=SpellE><b><span 3314 style='mso-fareast-font-family:"Times New Roman"'>Shift+Left</span></b></span><b><span 3315 style='mso-fareast-font-family:"Times New Roman"'> Click</span></b><span 3316 style='mso-fareast-font-family:"Times New Roman"'>: <o:p></o:p></span></p> 3276 <p class=MsoNormal style='margin-left:1.25in'><b><span style='mso-fareast-font-family: 3277 "Times New Roman"'>Shift+Left Click</span></b><span style='mso-fareast-font-family: 3278 "Times New Roman"'>: <o:p></o:p></span></p> 3317 3279 3318 3280 <p class=MsoNormal style='margin-left:.5in'><span style='mso-fareast-font-family: … … 3324 3286 this way. <o:p></o:p></span></p> 3325 3287 3326 <p class=MsoNormal style='margin-left:1.25in'><span class=SpellE><b><span 3327 style='mso-fareast-font-family:"Times New Roman"'>Shift+Right</span></b></span><b><span 3328 style='mso-fareast-font-family:"Times New Roman"'> click</span></b><span 3329 style='mso-fareast-font-family:"Times New Roman"'>: <o:p></o:p></span></p> 3288 <p class=MsoNormal style='margin-left:1.25in'><b><span style='mso-fareast-font-family: 3289 "Times New Roman"'>Shift+Right click</span></b><span style='mso-fareast-font-family: 3290 "Times New Roman"'>: <o:p></o:p></span></p> 3330 3291 3331 3292 <p class=MsoNormal style='margin-left:.5in'><span style='mso-fareast-font-family: 3332 3293 "Times New Roman"'>Holding down the shift key while clicking on an atom with 3333 3294 the right mouse button causes the atom to be selected if previously unselected 3334 and unselected if previously selected. Any previously selected atoms will be <span3335 c lass=GramE>continue</span> to be selected so shift-right click can be used to3336 add atoms to the selection list. If two atoms are overlapped in the current 3337 view, then the top-most atom will usually be selected. Only atoms in the 3338 asymmetric unit can be selected from the plot in this way. (On a Mac, <span3339 class=SpellE>control+mouse</span> click is analternate way to do this.) <o:p></o:p></span></p>3295 and unselected if previously selected. Any previously selected atoms will be 3296 continue to be selected so shift-right click can be used to add atoms to the 3297 selection list. If two atoms are overlapped in the current view, then the 3298 top-most atom will usually be selected. Only atoms in the asymmetric unit can 3299 be selected from the plot in this way. (On a Mac, control+mouse click is an 3300 alternate way to do this.) <o:p></o:p></span></p> 3340 3301 3341 3302 <p class=MsoNormal style='margin-left:1.25in'><b><span style='mso-fareast-font-family: … … 3376 3337 <p class=MsoNormal style='margin-left:.5in'><span style='mso-fareast-font-family: 3377 3338 "Times New Roman"'>Pressing the “k” key cycles through the possible slice 3378 contouring options (none, lines, colors, <span class=SpellE>lines+colors</span>)<o:p></o:p></span></p>3339 contouring options (none, lines, colors, lines+colors)<o:p></o:p></span></p> 3379 3340 3380 3341 <p class=MsoNormal style='margin-left:1.25in'><b><span style='mso-fareast-font-family: … … 3391 3352 3392 3353 <p class=MsoNormal style='margin-left:.5in'><span style='mso-fareast-font-family: 3393 "Times New Roman"'>Pressing the “<span class=GramE>-“ key</span> steps the 3394 viewpoint in negative drawing z-direction (toward from viewer). If structure is 3395 incommensurate, “-” steps the structure and map through the 4<sup>th</sup> 3396 dimension (-tau).<o:p></o:p></span></p> 3354 "Times New Roman"'>Pressing the “-“ key steps the viewpoint in negative drawing 3355 z-direction (toward from viewer). If structure is incommensurate, “-” steps the 3356 structure and map through the 4<sup>th</sup> dimension (-tau).<o:p></o:p></span></p> 3397 3357 3398 3358 <h4 style='margin-left:.25in'><a name="Phase-Draw_Options"><u>Draw Options</u></a></h4> … … 3401 3361 3402 3362 <p class=MsoNormal style='margin-left:.75in'>The Draw Options window provides 3403 access to <span class=GramE>a number of</span> items that control how the 3404 structure is displayed. If a map is available (Fourier of charge flipping), one 3405 can display a 10<span style='font-family:"Calibri",sans-serif'>Å</span>x10<span 3406 style='font-family:"Calibri",sans-serif'>Å</span> contoured slice centered at 3407 the viewpoint. Contouring done as lines, colors or lines & colors combined. 3408 3-D contouring is also available as green (red for negative density) map grid 3409 points. One can also draw individual or stack of <span class=SpellE>hkl</span> 3410 planes across unit cell.</p> 3363 access to a number of items that control how the structure is displayed. If a 3364 map is available (Fourier of charge flipping), one can display a 10<span 3365 style='font-family:"Calibri",sans-serif'>Å</span>x10<span style='font-family: 3366 "Calibri",sans-serif'>Å</span> contoured slice centered at the viewpoint. 3367 Contouring done as lines, colors or lines & colors combined. 3-D contouring 3368 is also available as green (red for negative density) map grid points. One can 3369 also draw individual or stack of hkl planes across unit cell.</p> 3411 3370 3412 3371 <h5 style='margin-left:.5in'>What is drawn here?</h5> … … 3428 3387 <p class=MsoNormal style='margin-left:.5in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'>This 3429 3388 gives a list of the atoms and bonds that are to be rendered as lines, van der 3430 Waals radii balls, sticks, balls & sticks, ellipsoids & sticks or <span3431 class=SpellE>polyhedra</span>. There are four menus for this tab; Edit allows 3432 modification of the list of atoms to be rendered, Compute gives some options 3433 for geometric characterization of selected atoms, Restraints allows definition 3434 of 4 different types of restraints on the structure and Rigid body allows 3435 selection of atoms that forma previously defined rigid body.</p>3389 Waals radii balls, sticks, balls & sticks, ellipsoids & sticks or 3390 polyhedra. There are four menus for this tab; Edit allows modification of the 3391 list of atoms to be rendered, Compute gives some options for geometric characterization 3392 of selected atoms, Restraints allows definition of 4 different types of 3393 restraints on the structure and Rigid body allows selection of atoms that form 3394 a previously defined rigid body.</p> 3436 3395 3437 3396 <h5 style='margin-left:.5in'>What can I do here?</h5> … … 3468 3427 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>3.<span 3469 3428 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 3470 style='mso-bidi-font-weight:normal'>Double left <span class=GramE>click</span> 3471 a Name, Type and <span class=SpellE>Sym</span> Op column heading</b>: a dialog 3472 box is shown that allows you to select all atoms with that characteristic. For 3473 example, selecting the Type column will show all the atom types; your choice 3474 will then cause all those atoms to be selected.</p> 3429 style='mso-bidi-font-weight:normal'>Double left click a Name, Type and Sym Op 3430 column heading</b>: a dialog box is shown that allows you to select all atoms 3431 with that characteristic. For example, selecting the Type column will show all 3432 the atom types; your choice will then cause all those atoms to be selected.</p> 3475 3433 3476 3434 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.0in;mso-add-space: … … 3478 3436 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>4.<span 3479 3437 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 3480 style='mso-bidi-font-weight:normal'>Double left <span class=GramE>click</span> 3481 a Style, Label or Color column</b>: a dialog box is shown that allows you to 3482 select a rendering option for all the atoms. For Color a color choice dialog is 3483 displayed that covers the entire color spectrum. Choose a color by any of the 3484 means available, press the “Add to Custom Colors”, select that color in the 3485 Custom colors display and then press OK. <b style='mso-bidi-font-weight:normal'>NB</b>: 3486 selecting Color will make all atoms have the same color and for Style “blank” 3487 means the atoms aren’t rendered and thus the drawing will not show any atoms or 3488 bonds!</p> 3438 style='mso-bidi-font-weight:normal'>Double left click a Style, Label or Color 3439 column</b>: a dialog box is shown that allows you to select a rendering option 3440 for all the atoms. For Color a color choice dialog is displayed that covers the 3441 entire color spectrum. Choose a color by any of the means available, press the 3442 “Add to Custom Colors”, select that color in the Custom colors display and then 3443 press OK. <b style='mso-bidi-font-weight:normal'>NB</b>: selecting Color will 3444 make all atoms have the same color and for Style “blank” means the atoms aren’t 3445 rendered and thus the drawing will not show any atoms or bonds!</p> 3489 3446 3490 3447 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.0in;mso-add-space: … … 3495 3452 operations that can be performed on your selected atoms. You must select one or 3496 3453 more atoms before using any of the menu items. Most of these items can also be 3497 accessed by selecting one or more atoms and <span class=GramE>right-clicking</span> 3498 the mouse.</p> 3454 accessed by selecting one or more atoms and right-clicking the mouse.</p> 3499 3455 3500 3456 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: … … 3510 3466 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 3511 3467 style='mso-bidi-font-weight:normal'>Atom label</b> – select the item to be 3512 shown as a label for each atom in selection. The choices <span class=GramE>are:</span>3513 none, type, nameor number. (NB: atom labelling slows drawing response time).</p>3468 shown as a label for each atom in selection. The choices are: none, type, name 3469 or number. (NB: atom labelling slows drawing response time).</p> 3514 3470 3515 3471 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: … … 3540 3496 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>f.<span 3541 3497 style='font:7.0pt "Times New Roman"'> 3542 </span></span></span><![endif]><span class=GramE><b style='mso-bidi-font-weight: 3543 normal'>View point</b></span> – position the plot view point to the first atom 3544 in the selection.</p> 3498 </span></span></span><![endif]><b style='mso-bidi-font-weight:normal'>View 3499 point</b> – position the plot view point to the first atom in the selection.</p> 3545 3500 3546 3501 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: … … 3559 3514 symmetry operator and unit cell translation selected via a dialog display. 3560 3515 Duplicate atom positions are not retained. Any anisotropic thermal displacement 3561 parameters ( <span class=SpellE>Uij</span>) will be transformed as appropriate.</p>3516 parameters (Uij) will be transformed as appropriate.</p> 3562 3517 3563 3518 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: … … 3576 3531 draw atoms</b> – apply a symmetry operator and unit cell translation to the set 3577 3532 of selected atoms; they will be changed in place. Any anisotropic thermal 3578 displacement parameters (<span class=SpellE>Uij</span>) will be transformed as 3579 appropriate.</p> 3533 displacement parameters (Uij) will be transformed as appropriate.</p> 3580 3534 3581 3535 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: … … 3612 3566 style='mso-bidi-font-weight:normal'>Create void map </b>– by using a grid of 3613 3567 probe positions, locate points outside of normal contact distances within a 3614 structure. Result is a mesh of small blue points in structural voids ( <span3615 class=GramE>e.g.</span>possible locations of missing water molecules).</p>3568 structure. Result is a mesh of small blue points in structural voids (e.g. 3569 possible locations of missing water molecules).</p> 3616 3570 3617 3571 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: … … 3621 3575 style='mso-bidi-font-weight:normal'>Delete atoms</b> – clear the entire draw 3622 3576 atom table; it is then refilled from the Atoms table. You should do this 3623 operation after any changes in the Atoms table, <span class=GramE>e.g.</span> 3624 by a structure refinement.</p> 3577 operation after any changes in the Atoms table, e.g. by a structure refinement.</p> 3625 3578 3626 3579 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: … … 3654 3607 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 3655 3608 style='mso-bidi-font-weight:normal'>View pt. dist.</b> - this calculates 3656 distance from <span class=GramE>view-point</span> to all selected draw atoms;3657 result is given on theconsole window.</p>3609 distance from view-point to all selected draw atoms; result is given on the 3610 console window.</p> 3658 3611 3659 3612 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: … … 3668 3621 for the calculated value if a current variance-covariance matrix is available. 3669 3622 The result is shown on the console window; it may be cut & pasted to 3670 another application ( <span class=GramE>e.g.</span>Microsoft Word).</p>3623 another application (e.g. Microsoft Word).</p> 3671 3624 3672 3625 <p class=MsoListParagraphCxSpLast style='margin-left:1.5in;mso-add-space:auto; … … 3676 3629 style='mso-bidi-font-weight:normal'>Best plane</b> – when 4 or more atoms are 3677 3630 selected, a best plane is determined for them. The result is shown on the 3678 console window; it may be cut & pasted to another application (<span 3679 class=GramE>e.g.</span> Microsoft Word). Shown are the atom coordinates 3680 transformed to Cartesian best plane coordinates where the largest range is over 3681 the X-axis and the smallest is over the Z-axis with the origin at the 3682 unweighted center of the selection. Root mean square displacements along each 3683 axis for the best plane are also listed. The Z-axis RMS value indicates the 3684 flatness of the proposed plane. <b style='mso-bidi-font-weight:normal'>NB</b>: 3685 if you select (<span class=GramE>e.g.</span> all) atoms then Best plane will 3686 give Cartesian coordinates for these atoms with respect to a coordinate system 3687 where the X-axis is along the longest axis of the atom grouping and the Z-axis 3688 is along the shortest distance. The origin is at the unweighted center of the 3689 selected atoms.</p> 3631 console window; it may be cut & pasted to another application (e.g. 3632 Microsoft Word). Shown are the atom coordinates transformed to Cartesian best 3633 plane coordinates where the largest range is over the X-axis and the smallest 3634 is over the Z-axis with the origin at the unweighted center of the selection. 3635 Root mean square displacements along each axis for the best plane are also 3636 listed. The Z-axis RMS value indicates the flatness of the proposed plane. <b 3637 style='mso-bidi-font-weight:normal'>NB</b>: if you select (e.g. all) atoms then 3638 Best plane will give Cartesian coordinates for these atoms with respect to a 3639 coordinate system where the X-axis is along the longest axis of the atom grouping 3640 and the Z-axis is along the shortest distance. The origin is at the unweighted 3641 center of the selected atoms.</p> 3690 3642 3691 3643 <p class=MsoNormal style='margin-left:58.5pt'>7. Menu ‘<b>Restraints’</b> – … … 3696 3648 restraint</b> – for selected atom pair (A-B).</p> 3697 3649 3698 <p class=MsoNormal style='margin-left:1.5in;text-indent:-.25in'><span 3699 class=SpellE>b.</span> <b>Add angle restraint</b> – for selected atom triple 3700 (A-B-C)</p> 3650 <p class=MsoNormal style='margin-left:1.5in;text-indent:-.25in'>b. <b>Add angle 3651 restraint</b> – for selected atom triple (A-B-C)</p> 3701 3652 3702 3653 <p class=MsoNormal style='margin-left:1.5in;text-indent:-.25in'>c. <b>Add plane … … 3757 3708 in/out) <o:p></o:p></span></p> 3758 3709 3759 <p class=MsoNormal style='margin-left:1.25in'><span class=SpellE><b><span 3760 style='mso-fareast-font-family:"Times New Roman"'>Shift+Left</span></b></span><b><span 3761 style='mso-fareast-font-family:"Times New Roman"'> Click</span></b><span 3762 style='mso-fareast-font-family:"Times New Roman"'>: <o:p></o:p></span></p> 3710 <p class=MsoNormal style='margin-left:1.25in'><b><span style='mso-fareast-font-family: 3711 "Times New Roman"'>Shift+Left Click</span></b><span style='mso-fareast-font-family: 3712 "Times New Roman"'>: <o:p></o:p></span></p> 3763 3713 3764 3714 <p class=MsoNormal style='margin-left:.5in'><span style='mso-fareast-font-family: … … 3770 3720 this way. <o:p></o:p></span></p> 3771 3721 3772 <p class=MsoNormal style='margin-left:1.25in'><span class=SpellE><b><span 3773 style='mso-fareast-font-family:"Times New Roman"'>Shift+Right</span></b></span><b><span 3774 style='mso-fareast-font-family:"Times New Roman"'> click</span></b><span 3775 style='mso-fareast-font-family:"Times New Roman"'>: <o:p></o:p></span></p> 3722 <p class=MsoNormal style='margin-left:1.25in'><b><span style='mso-fareast-font-family: 3723 "Times New Roman"'>Shift+Right click</span></b><span style='mso-fareast-font-family: 3724 "Times New Roman"'>: <o:p></o:p></span></p> 3776 3725 3777 3726 <p class=MsoNormal style='margin-left:.5in'><span style='mso-fareast-font-family: 3778 3727 "Times New Roman"'>Holding down the shift key while clicking on an atom with 3779 3728 the right mouse button causes the atom to be selected if previously unselected 3780 and unselected if previously selected. Any previously selected atoms will be <span3781 c lass=GramE>continue</span> to be selected so shift-right click can be used to3782 add atoms to the selection list. If two atoms are overlapped in the current 3783 view, then the top-most atom will usually be selected. Only atoms in the 3784 asymmetric unit can be selected from the plot in this way. (On a Mac, <span3785 class=SpellE>control+mouse</span> click is analternate way to do this.) <o:p></o:p></span></p>3729 and unselected if previously selected. Any previously selected atoms will be 3730 continue to be selected so shift-right click can be used to add atoms to the 3731 selection list. If two atoms are overlapped in the current view, then the 3732 top-most atom will usually be selected. Only atoms in the asymmetric unit can 3733 be selected from the plot in this way. (On a Mac, control+mouse click is an 3734 alternate way to do this.) <o:p></o:p></span></p> 3786 3735 3787 3736 <p class=MsoNormal style='margin-left:1.25in'><b><span style='mso-fareast-font-family: … … 3814 3763 <p class=MsoNormal style='margin-left:.5in'><span style='mso-fareast-font-family: 3815 3764 "Times New Roman"'>Pressing the “s” key brings up a (large) selection of color 3816 schemes for the slice contours. Default – “</span><span class=SpellE>RdYlGn</span><span 3817 style='mso-fareast-font-family:"Times New Roman"'>” (Green – positive, red – 3818 negative & yellow – zero).<o:p></o:p></span></p> 3765 schemes for the slice contours. Default – “</span>RdYlGn<span style='mso-fareast-font-family: 3766 "Times New Roman"'>” (Green – positive, red – negative & yellow – zero).<o:p></o:p></span></p> 3819 3767 3820 3768 <p class=MsoNormal style='margin-left:1.25in'><b><span style='mso-fareast-font-family: … … 3823 3771 <p class=MsoNormal style='margin-left:.5in'><span style='mso-fareast-font-family: 3824 3772 "Times New Roman"'>Pressing the “k” key cycles through the possible slice 3825 contouring options (none, lines, colors, <span class=SpellE>lines+colors</span>)<o:p></o:p></span></p>3773 contouring options (none, lines, colors, lines+colors)<o:p></o:p></span></p> 3826 3774 3827 3775 <p class=MsoNormal style='margin-left:1.25in'><b><span style='mso-fareast-font-family: … … 3832 3780 a movie file of the change in the structure along the 4<sup>th</sup> dimension 3833 3781 (tau). Movie controls are found in the GSAS-II <a href="#Preferences">Configuration 3834 Variables</a>. Requires the <span class=SpellE>imageio</span> python package be 3835 available for import – it is not normally available in the GSAS-II version of 3836 python.<o:p></o:p></span></p> 3782 Variables</a>. Requires the imageio python package be available for import – it 3783 is not normally available in the GSAS-II version of python.<o:p></o:p></span></p> 3837 3784 3838 3785 <p class=MsoNormal style='margin-left:1.25in'><b><span style='mso-fareast-font-family: … … 3848 3795 3849 3796 <p class=MsoNormal style='margin-left:.5in'><span style='mso-fareast-font-family: 3850 "Times New Roman"'>Pressing the “<span class=GramE>-“ key</span> steps the 3851 viewpoint in negative drawing z-direction (away from viewer). If structure is 3852 incommensurate, “-” steps the structure and map through the 4<sup>th</sup> 3853 dimension (-tau).<o:p></o:p></span></p> 3797 "Times New Roman"'>Pressing the “-“ key steps the viewpoint in negative drawing 3798 z-direction (away from viewer). If structure is incommensurate, “-” steps the 3799 structure and map through the 4<sup>th</sup> dimension (-tau).<o:p></o:p></span></p> 3854 3800 3855 3801 <h4 style='margin-left:.25in'><a name="Phase-RB_Models">RB Models</a></h4> … … 3900 3846 in/out) <o:p></o:p></span></p> 3901 3847 3902 <p style='margin-left:1.0in'>When a rigid body is being inserted into a structure, 3903 both the rigid body and the crystal structure are displayed. It is useful to 3904 plan for this by preselecting the atoms in the Draw Atoms list and to have 3905 atoms displayed as "Sticks" or "Ball-and-Sticks." The rigid 3906 body will be displayed as "Ball-and-Sticks<span class=GramE>"</span> 3907 but bonds will be in green. Use of the Alt key causes the above mouse movements 3908 to reposition the rigid body rather than change the view of the crystal 3909 structure:</p> 3910 3911 <p class=MsoNormal style='margin-left:1.25in'><span class=SpellE><b><span 3912 style='mso-fareast-font-family:"Times New Roman"'>Alt+Left</span></b></span><b><span 3913 style='mso-fareast-font-family:"Times New Roman"'> drag</span></b><span 3914 style='mso-fareast-font-family:"Times New Roman"'>: <o:p></o:p></span></p> 3848 <p style='margin-left:1.0in'>When a rigid body is being inserted into a 3849 structure, both the rigid body and the crystal structure are displayed. It is 3850 useful to plan for this by preselecting the atoms in the Draw Atoms list and to 3851 have atoms displayed as "Sticks" or "Ball-and-Sticks." The 3852 rigid body will be displayed as "Ball-and-Sticks" but bonds will be 3853 in green. Use of the Alt key causes the above mouse movements to reposition the 3854 rigid body rather than change the view of the crystal structure:</p> 3855 3856 <p class=MsoNormal style='margin-left:1.25in'><b><span style='mso-fareast-font-family: 3857 "Times New Roman"'>Alt+Left drag</span></b><span style='mso-fareast-font-family: 3858 "Times New Roman"'>: <o:p></o:p></span></p> 3915 3859 3916 3860 <p class=MsoNormal style='margin-left:.5in'><span style='mso-fareast-font-family: … … 3918 3862 down rotates the rigid body around screen x & y axes <o:p></o:p></span></p> 3919 3863 3920 <p class=MsoNormal style='margin-left:1.25in'><span class=SpellE><b><span 3921 style='mso-fareast-font-family:"Times New Roman"'>Alt+Middle</span></b></span><b><span 3922 style='mso-fareast-font-family:"Times New Roman"'> drag</span></b><span 3923 style='mso-fareast-font-family:"Times New Roman"'>: <o:p></o:p></span></p> 3864 <p class=MsoNormal style='margin-left:1.25in'><b><span style='mso-fareast-font-family: 3865 "Times New Roman"'>Alt+Middle drag</span></b><span style='mso-fareast-font-family: 3866 "Times New Roman"'>: <o:p></o:p></span></p> 3924 3867 3925 3868 <p class=MsoNormal style='margin-left:.5in'><span style='mso-fareast-font-family: … … 3927 3870 down rotates the rigid body around screen z axis (out of screen) <o:p></o:p></span></p> 3928 3871 3929 <p class=MsoNormal style='margin-left:1.25in'><span class=SpellE><b><span 3930 style='mso-fareast-font-family:"Times New Roman"'>Alt+Right</span></b></span><b><span 3931 style='mso-fareast-font-family:"Times New Roman"'> drag</span></b><span 3932 style='mso-fareast-font-family:"Times New Roman"'>: <o:p></o:p></span></p> 3872 <p class=MsoNormal style='margin-left:1.25in'><b><span style='mso-fareast-font-family: 3873 "Times New Roman"'>Alt+Right drag</span></b><span style='mso-fareast-font-family: 3874 "Times New Roman"'>: <o:p></o:p></span></p> 3933 3875 3934 3876 <p class=MsoNormal style='margin-left:.5in'><span style='mso-fareast-font-family: 3935 "Times New Roman"'>Holding Alt while dragging the mouse with the right button 3936 down translates the rigid body in the screen x & y directions (rotate the 3937 plotto see and move in the rigid body in the third direction.) Pressing the3877 "Times New Roman"'>Holding Alt while dragging the mouse with the right button down 3878 translates the rigid body in the screen x & y directions (rotate the plot 3879 to see and move in the rigid body in the third direction.) Pressing the 3938 3880 "Lock" checkbox next to the origin location prevents the origin from 3939 3881 being changed in this way. <o:p></o:p></span></p> … … 3952 3894 the <a href="#Data">"Data" tab</a>) in a structural study. The sample 3953 3895 orientation relative to the detector axes is specified here and the detector 3954 orientation is specified for each histogram as goniometer omega, chi, <span 3955 class=GramE>phi</span> and azimuth values (details below). These values must be 3956 specified. </p> 3896 orientation is specified for each histogram as goniometer omega, chi, phi and 3897 azimuth values (details below). These values must be specified. </p> 3957 3898 3958 3899 <p class=MsoNormal style='margin-left:.5in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><o:p> </o:p></p> … … 3960 3901 <p class=MsoNormal style='margin-top:0in;margin-right:0in;margin-bottom:12.0pt; 3961 3902 margin-left:.5in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'>Texture 3962 analysis using GSAS-II employs spherical harmonics modeling, as described by 3963 Bunge, "Texture Analysis in Materials Science" (1982), and 3964 implemented by Von Dreele, J. Appl. <span class=SpellE>Cryst</span>., <b 3965 style='mso-bidi-font-weight:normal'>30</b>, 517-525 (1997) in GSAS. The even 3966 part of the orientation distribution function (ODF) via the general axis 3967 equation</p> 3903 analysis using GSAS-II employs spherical harmonics modeling, as described by Bunge, 3904 "Texture Analysis in Materials Science" (1982), and implemented by 3905 Von Dreele, J. Appl. Cryst., <b style='mso-bidi-font-weight:normal'>30</b>, 3906 517-525 (1997) in GSAS. The even part of the orientation distribution function 3907 (ODF) via the general axis equation</p> 3968 3908 3969 3909 <p class=MsoNormal style='margin-top:0in;margin-right:0in;margin-bottom:12.0pt; … … 3998 3938 mso-ascii-font-family:"Cambria Math";mso-hansi-font-family:"Cambria Math"; 3999 3939 font-style:italic;mso-bidi-font-style:normal'><m:ctrlPr></m:ctrlPr></span></m:naryPr><m:sub><i 4000 style='mso-bidi-font-style:normal'><span style='font-family:"Cambria Math",serif'><m:r>n</m:r><m:r>= -</m:r><m:r>L</m:r></span></i></m:sub><m:sup><i3940 style='mso-bidi-font-style:normal'><span style='font-family:"Cambria Math",serif'><m:r>n</m:r><m:r>=</m:r><m:r>-</m:r><m:r>L</m:r></span></i></m:sub><m:sup><i 4001 3941 style='mso-bidi-font-style:normal'><span style='font-family:"Cambria Math",serif'><m:r>L</m:r></span></i></m:sup><m:e><m:sSubSup><m:sSubSupPr><span 4002 3942 style='font-family:"Cambria Math",serif;mso-ascii-font-family:"Cambria Math"; … … 4026 3966 <v:imagedata src="gsasII-phase_files/image003.png" o:title="" chromakey="white"/> 4027 3967 </v:shape><![endif]--><![if !vml]><img width=357 height=56 4028 src="gsasII-phase_files/image0 50.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]></p>3968 src="gsasII-phase_files/image004.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]></p> 4029 3969 4030 3970 <p class=gsastext style='margin-top:0in;margin-right:0in;margin-bottom:12.0pt; … … 4048 3988 <v:imagedata src="gsasII-phase_files/image005.png" o:title="" chromakey="white"/> 4049 3989 </v:shape><![endif]--><![if !vml]><img width=44 height=35 4050 src="gsasII-phase_files/image0 51.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]><span3990 src="gsasII-phase_files/image006.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]><span 4051 3991 style='mso-spacerun:yes'> </span>and <!--[if gte msEquation 12]><m:oMath><m:sSubSup><m:sSubSupPr><span 4052 3992 style='font-family:"Cambria Math",serif;mso-ascii-font-family:"Cambria Math"; … … 4064 4004 <v:imagedata src="gsasII-phase_files/image007.png" o:title="" chromakey="white"/> 4065 4005 </v:shape><![endif]--><![if !vml]><img width=40 height=35 4066 src="gsasII-phase_files/image0 52.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]>,4006 src="gsasII-phase_files/image008.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]>, 4067 4007 take on values according to the sample and crystal symmetries, respectively, 4068 4008 and thus the two inner summations are over only the resulting unique, nonzero … … 4090 4030 <v:imagedata src="gsasII-phase_files/image007.png" o:title="" chromakey="white"/> 4091 4031 </v:shape><![endif]--><![if !vml]><img width=40 height=35 4092 src="gsasII-phase_files/image0 52.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]>,4032 src="gsasII-phase_files/image008.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]>, 4093 4033 is defined for each reflection, h, <i>via</i> polar and azimuthal coordinates (<span 4094 4034 style='font-family:Symbol'>f</span>, <span style='font-family:Symbol'>b</span>) 4095 4035 of a unit vector coincident with h relative to the reciprocal lattice. For most 4096 4036 crystal symmetries, <span style='font-family:Symbol'>f</span> is the angle 4097 between h and the n- <span class=SpellE>th</span> order major rotation axis of4098 the space group (usually the c-axis) and <span style='font-family:Symbol'>b</span>4099 is the angle between the projections of h and any secondary axis (usuallythe4100 a-axis) onto the normal plane.<span style='mso-spacerun:yes'> </span>In a 4101 s imilar way the sample harmonic factor, <!--[if gte msEquation 12]><m:oMath><m:sSubSup><m:sSubSupPr><span4037 between h and the n-th order major rotation axis of the space group (usually 4038 the c-axis) and <span style='font-family:Symbol'>b</span> is the angle between 4039 the projections of h and any secondary axis (usually the a-axis) onto the 4040 normal plane.<span style='mso-spacerun:yes'> </span>In a similar way the 4041 sample harmonic factor, <!--[if gte msEquation 12]><m:oMath><m:sSubSup><m:sSubSupPr><span 4102 4042 style='font-family:"Cambria Math",serif;mso-ascii-font-family:"Cambria Math"; 4103 4043 mso-hansi-font-family:"Cambria Math";font-style:italic;mso-bidi-font-style: … … 4114 4054 <v:imagedata src="gsasII-phase_files/image009.png" o:title="" chromakey="white"/> 4115 4055 </v:shape><![endif]--><![if !vml]><img width=44 height=35 4116 src="gsasII-phase_files/image0 53.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]>,4056 src="gsasII-phase_files/image010.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]>, 4117 4057 is defined according to polar and azimuthal coordinates (<span 4118 4058 style='font-family:Symbol'>y</span>, <span style='font-family:Symbol'>g</span>) … … 4188 4128 <v:imagedata src="gsasII-phase_files/image011.png" o:title="" chromakey="white"/> 4189 4129 </v:shape><![endif]--><![if !vml]><img width=428 height=56 4190 src="gsasII-phase_files/image0 54.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]><br>4130 src="gsasII-phase_files/image012.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]><br> 4191 4131 Note that this version of the general axis equation differs from that shown in 4192 4132 Von Dreele (1997) in that the assignment of m and n are reversed. </p> … … 4196 4136 a diffraction experiment the crystal reflection coordinates (<span 4197 4137 style='font-family:Symbol'>f</span>, <span style='font-family:Symbol'>b</span>) 4198 are determined by the choice of reflection index ( <span class=SpellE>hkl</span>)4199 while the sample coordinates (<span style='font-family:Symbol'>y</span>, <span 4200 style='font-family:Symbol'>g</span>) are determined by the sample orientation 4201 on the diffractometer. To define the sample coordinates (<span 4202 style='font-family:Symbol'>y</span>, <span style='font-family:Symbol'>g</span>), 4203 we have defined an instrument coordinate system (I, J, K) such that K is normal 4204 to thediffraction plane and J is coincident with the direction of the incident4138 are determined by the choice of reflection index (hkl) while the sample 4139 coordinates (<span style='font-family:Symbol'>y</span>, <span style='font-family: 4140 Symbol'>g</span>) are determined by the sample orientation on the 4141 diffractometer. To define the sample coordinates (<span style='font-family: 4142 Symbol'>y</span>, <span style='font-family:Symbol'>g</span>), we have defined 4143 an instrument coordinate system (I, J, K) such that K is normal to the 4144 diffraction plane and J is coincident with the direction of the incident 4205 4145 radiation beam toward the source. We further define a standard set of 4206 4146 right-handed eulerian goniometer angles (<span style='font-family:Symbol'>W</span>, … … 4236 4176 normal'><span style='font-family:Symbol'>F</span>+</b><b style='mso-bidi-font-weight: 4237 4177 normal'><span style='font-family:Symbol'>F</span><sub>s</sub>)</b><b 4238 style='mso-bidi-font-weight:normal'><span style='font-family:Symbol'>C</span><s pan4239 class=SpellE><sub>s</sub><span style='font-family:Symbol'>W</span><sub>s</sub></span><o:p></o:p></b></p>4178 style='mso-bidi-font-weight:normal'><span style='font-family:Symbol'>C</span><sub>s</sub></b><b 4179 style='mso-bidi-font-weight:normal'><span style='font-family:Symbol'>W</span><sub>s</sub><o:p></o:p></b></p> 4240 4180 4241 4181 <p class=gsastext style='margin-top:0in;margin-right:0in;margin-bottom:12.0pt; … … 4246 4186 4247 4187 <p class=gsastext style='margin-top:0in;margin-right:0in;margin-bottom:12.0pt; 4248 margin-left:.5in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'>< span4249 class=GramE><i>cos</i>(</span><spanstyle='font-family:Symbol'>y</span>) = <!--[if gte msEquation 12]><m:oMath><i4188 margin-left:.5in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><i>cos</i>(<span 4189 style='font-family:Symbol'>y</span>) = <!--[if gte msEquation 12]><m:oMath><i 4250 4190 style='mso-bidi-font-style:normal'><span style='font-family:"Cambria Math",serif'><m:r>M</m:r></span></i><m:d><m:dPr><span 4251 4191 style='font-family:"Cambria Math",serif;mso-ascii-font-family:"Cambria Math"; … … 4263 4203 top:15.0pt;mso-text-raise:-15.0pt;mso-ansi-language:EN-US;mso-fareast-language: 4264 4204 EN-US;mso-bidi-language:AR-SA'><!--[if gte vml 1]><v:shape id="_x0000_i1025" 4265 type="#_x0000_t75" style='width:33. 75pt;height:50.25pt'>4205 type="#_x0000_t75" style='width:33.95pt;height:50.2pt'> 4266 4206 <v:imagedata src="gsasII-phase_files/image013.png" o:title="" chromakey="white"/> 4267 4207 </v:shape><![endif]--><![if !vml]><img width=45 height=67 4268 src="gsasII-phase_files/image0 55.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]><span4208 src="gsasII-phase_files/image014.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]><span 4269 4209 style='mso-spacerun:yes'> </span>and<span style='mso-spacerun:yes'> </span><i>tan</i>(<span 4270 4210 style='font-family:Symbol'>g</span>) = <!--[if gte msEquation 12]><m:oMath><m:f><m:fPr><m:type … … 4298 4238 top:15.0pt;mso-text-raise:-15.0pt;mso-ansi-language:EN-US;mso-fareast-language: 4299 4239 EN-US;mso-bidi-language:AR-SA'><!--[if gte vml 1]><v:shape id="_x0000_i1025" 4300 type="#_x0000_t75" style='width:80. 25pt;height:50.25pt'>4240 type="#_x0000_t75" style='width:80.1pt;height:50.2pt'> 4301 4241 <v:imagedata src="gsasII-phase_files/image015.png" o:title="" chromakey="white"/> 4302 4242 </v:shape><![endif]--><![if !vml]><img width=107 height=67 4303 src="gsasII-phase_files/image0 56.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]></p>4243 src="gsasII-phase_files/image016.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]></p> 4304 4244 4305 4245 <p class=gsastext style='margin-top:0in;margin-right:0in;margin-bottom:12.0pt; … … 4320 4260 <v:imagedata src="gsasII-phase_files/image017.png" o:title="" chromakey="white"/> 4321 4261 </v:shape><![endif]--><![if !vml]><img width=61 height=35 4322 src="gsasII-phase_files/image0 57.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]><span4262 src="gsasII-phase_files/image018.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]><span 4323 4263 style='mso-spacerun:yes'> </span>and <!--[if gte msEquation 12]><m:oMath><m:sSubSup><m:sSubSupPr><span 4324 4264 style='font-family:"Cambria Math",serif;mso-ascii-font-family:"Cambria Math"; … … 4336 4276 <v:imagedata src="gsasII-phase_files/image019.png" o:title="" chromakey="white"/> 4337 4277 </v:shape><![endif]--><![if !vml]><img width=58 height=35 4338 src="gsasII-phase_files/image0 58.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]>,4278 src="gsasII-phase_files/image020.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]>, 4339 4279 are developed from (those for <!--[if gte msEquation 12]><m:oMath><m:sSubSup><m:sSubSupPr><span 4340 4280 style='font-family:"Cambria Math",serif;mso-ascii-font-family:"Cambria Math"; … … 4349 4289 top:3.0pt;mso-text-raise:-3.0pt;mso-ansi-language:EN-US;mso-fareast-language: 4350 4290 EN-US;mso-bidi-language:AR-SA'><!--[if gte vml 1]><v:shape id="_x0000_i1025" 4351 type="#_x0000_t75" style='width:45. 65pt;height:26.35pt'>4291 type="#_x0000_t75" style='width:45.75pt;height:26.25pt'> 4352 4292 <v:imagedata src="gsasII-phase_files/image017.png" o:title="" chromakey="white"/> 4353 4293 </v:shape><![endif]--><![if !vml]><img width=61 height=35 4354 src="gsasII-phase_files/image0 57.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]><span4294 src="gsasII-phase_files/image018.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]><span 4355 4295 style='mso-spacerun:yes'> </span>are similar)</p> 4356 4296 … … 4403 4343 "Times New Roman";mso-fareast-theme-font:minor-fareast;mso-ansi-language:EN-US; 4404 4344 mso-fareast-language:EN-US;mso-bidi-language:AR-SA'><!--[if gte vml 1]><v:shape 4405 id="_x0000_i1025" type="#_x0000_t75" style='width:158.2 pt;height:42.1pt'>4345 id="_x0000_i1025" type="#_x0000_t75" style='width:158.25pt;height:42pt'> 4406 4346 <v:imagedata src="gsasII-phase_files/image021.png" o:title="" chromakey="white"/> 4407 4347 </v:shape><![endif]--><![if !vml]><img width=211 height=56 4408 src="gsasII-phase_files/image0 59.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]></p>4348 src="gsasII-phase_files/image022.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]></p> 4409 4349 4410 4350 <p class=gsastext style='margin-top:0in;margin-right:0in;margin-bottom:12.0pt; … … 4425 4365 top:3.0pt;mso-text-raise:-3.0pt;mso-ansi-language:EN-US;mso-fareast-language: 4426 4366 EN-US;mso-bidi-language:AR-SA'><!--[if gte vml 1]><v:shape id="_x0000_i1025" 4427 type="#_x0000_t75" style='width:30. 95pt;height:26.35pt'>4367 type="#_x0000_t75" style='width:30.75pt;height:26.25pt'> 4428 4368 <v:imagedata src="gsasII-phase_files/image023.png" o:title="" chromakey="white"/> 4429 4369 </v:shape><![endif]--><![if !vml]><img width=41 height=35 4430 src="gsasII-phase_files/image0 60.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]>,4370 src="gsasII-phase_files/image024.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]>, 4431 4371 are defined via a Fourier expansion as</p> 4432 4372 … … 4478 4418 <v:imagedata src="gsasII-phase_files/image025.png" o:title="" chromakey="white"/> 4479 4419 </v:shape><![endif]--><![if !vml]><img width=199 height=70 4480 src="gsasII-phase_files/image0 61.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]></p>4420 src="gsasII-phase_files/image026.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]></p> 4481 4421 4482 4422 <p class=gsastext style='margin-top:0in;margin-right:0in;margin-bottom:12.0pt; … … 4531 4471 <v:imagedata src="gsasII-phase_files/image027.png" o:title="" chromakey="white"/> 4532 4472 </v:shape><![endif]--><![if !vml]><img width=205 height=70 4533 src="gsasII-phase_files/image0 62.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]></p>4473 src="gsasII-phase_files/image028.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]></p> 4534 4474 4535 4475 <p class=gsastext style='margin-top:0in;margin-right:0in;margin-bottom:12.0pt; 4536 4476 margin-left:.5in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'>for 4537 <span class=SpellE>n</span> odd.<span style='mso-spacerun:yes'> </span>Each sum 4538 is only over either the even or odd values of s, respectively, because of the 4539 properties of the Fouriercoefficients, <!--[if gte msEquation 12]><m:oMath><m:sSubSup><m:sSubSupPr><span4477 n odd.<span style='mso-spacerun:yes'> </span>Each sum is only over either the 4478 even or odd values of s, respectively, because of the properties of the Fourier 4479 coefficients, <!--[if gte msEquation 12]><m:oMath><m:sSubSup><m:sSubSupPr><span 4540 4480 style='font-family:"Cambria Math",serif;mso-ascii-font-family:"Cambria Math"; 4541 4481 mso-hansi-font-family:"Cambria Math";font-style:italic;mso-bidi-font-style: … … 4552 4492 <v:imagedata src="gsasII-phase_files/image029.png" o:title="" chromakey="white"/> 4553 4493 </v:shape><![endif]--><![if !vml]><img width=29 height=35 4554 src="gsasII-phase_files/image0 63.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]>.<span4494 src="gsasII-phase_files/image030.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]>.<span 4555 4495 style='mso-spacerun:yes'> </span>These Fourier coefficients are determined so 4556 4496 that the definition </p> … … 4674 4614 "Times New Roman";mso-fareast-theme-font:minor-fareast;mso-ansi-language:EN-US; 4675 4615 mso-fareast-language:EN-US;mso-bidi-language:AR-SA'><!--[if gte vml 1]><v:shape 4676 id="_x0000_i1025" type="#_x0000_t75" style='width:408.7pt;height:55. 25pt'>4616 id="_x0000_i1025" type="#_x0000_t75" style='width:408.7pt;height:55.5pt'> 4677 4617 <v:imagedata src="gsasII-phase_files/image031.png" o:title="" chromakey="white"/> 4678 4618 </v:shape><![endif]--><![if !vml]><img width=545 height=74 4679 src="gsasII-phase_files/image0 64.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]></p>4619 src="gsasII-phase_files/image032.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]></p> 4680 4620 4681 4621 <p class=gsastext style='margin-top:0in;margin-right:0in;margin-bottom:12.0pt; … … 4710 4650 top:3.0pt;mso-text-raise:-3.0pt;mso-ansi-language:EN-US;mso-fareast-language: 4711 4651 EN-US;mso-bidi-language:AR-SA'><!--[if gte vml 1]><v:shape id="_x0000_i1025" 4712 type="#_x0000_t75" style='width:10 1.9pt;height:26.35pt'>4652 type="#_x0000_t75" style='width:102pt;height:26.25pt'> 4713 4653 <v:imagedata src="gsasII-phase_files/image033.png" o:title="" chromakey="white"/> 4714 4654 </v:shape><![endif]--><![if !vml]><img width=136 height=35 4715 src="gsasII-phase_files/image0 65.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]><span4655 src="gsasII-phase_files/image034.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]><span 4716 4656 style='mso-spacerun:yes'> </span>and <!--[if gte msEquation 12]><m:oMath><m:func><m:funcPr><span 4717 4657 style='font-family:"Cambria Math",serif;mso-ascii-font-family:"Cambria Math"; … … 4743 4683 top:3.0pt;mso-text-raise:-3.0pt;mso-ansi-language:EN-US;mso-fareast-language: 4744 4684 EN-US;mso-bidi-language:AR-SA'><!--[if gte vml 1]><v:shape id="_x0000_i1025" 4745 type="#_x0000_t75" style='width:94. 3pt;height:26.35pt'>4685 type="#_x0000_t75" style='width:94.5pt;height:26.25pt'> 4746 4686 <v:imagedata src="gsasII-phase_files/image035.png" o:title="" chromakey="white"/> 4747 4687 </v:shape><![endif]--><![if !vml]><img width=126 height=35 4748 src="gsasII-phase_files/image0 66.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]><span4688 src="gsasII-phase_files/image036.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]><span 4749 4689 style='mso-spacerun:yes'> </span>are combined depending on the symmetry and the 4750 4690 value of n (or m) along with appropriate normalization coefficients to give the … … 4762 4702 top:3.0pt;mso-text-raise:-3.0pt;mso-ansi-language:EN-US;mso-fareast-language: 4763 4703 EN-US;mso-bidi-language:AR-SA'><!--[if gte vml 1]><v:shape id="_x0000_i1025" 4764 type="#_x0000_t75" style='width:45. 65pt;height:26.35pt'>4704 type="#_x0000_t75" style='width:45.75pt;height:26.25pt'> 4765 4705 <v:imagedata src="gsasII-phase_files/image037.png" o:title="" chromakey="white"/> 4766 4706 </v:shape><![endif]--><![if !vml]><img width=61 height=35 4767 src="gsasII-phase_files/image0 67.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]><span4707 src="gsasII-phase_files/image038.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]><span 4768 4708 style='mso-spacerun:yes'> </span>and <!--[if gte msEquation 12]><m:oMath><m:sSubSup><m:sSubSupPr><span 4769 4709 style='font-family:"Cambria Math",serif;mso-ascii-font-family:"Cambria Math"; … … 4782 4722 <v:imagedata src="gsasII-phase_files/image039.png" o:title="" chromakey="white"/> 4783 4723 </v:shape><![endif]--><![if !vml]><img width=63 height=35 4784 src="gsasII-phase_files/image0 68.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]>.<span4724 src="gsasII-phase_files/image040.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]>.<span 4785 4725 style='mso-spacerun:yes'> </span>For cubic crystal symmetry, the term <!--[if gte msEquation 12]><m:oMath><m:sSubSup><m:sSubSupPr><span 4786 4726 style='font-family:"Cambria Math",serif;mso-ascii-font-family:"Cambria Math"; … … 4799 4739 <v:imagedata src="gsasII-phase_files/image037.png" o:title="" chromakey="white"/> 4800 4740 </v:shape><![endif]--><![if !vml]><img width=61 height=35 4801 src="gsasII-phase_files/image0 67.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]><span4741 src="gsasII-phase_files/image038.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]><span 4802 4742 style='mso-spacerun:yes'> </span>is obtained directly from the Fourier 4803 4743 expansion</p> … … 4858 4798 <v:imagedata src="gsasII-phase_files/image041.png" o:title="" chromakey="white"/> 4859 4799 </v:shape><![endif]--><![if !vml]><img width=248 height=72 4860 src="gsasII-phase_files/image0 69.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]></p>4800 src="gsasII-phase_files/image042.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]></p> 4861 4801 4862 4802 <p class=gsastext style='margin-top:0in;margin-right:0in;margin-bottom:12.0pt; … … 4876 4816 <v:imagedata src="gsasII-phase_files/image043.png" o:title="" chromakey="white"/> 4877 4817 </v:shape><![endif]--><![if !vml]><img width=25 height=39 4878 src="gsasII-phase_files/image0 70.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]>,4818 src="gsasII-phase_files/image044.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]>, 4879 4819 as tabulated by Bunge (1982). </p> 4880 4820 … … 4896 4836 <v:imagedata src="gsasII-phase_files/image045.png" o:title="" chromakey="white"/> 4897 4837 </v:shape><![endif]--><![if !vml]><img width=29 height=35 4898 src="gsasII-phase_files/image0 71.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]>,4838 src="gsasII-phase_files/image046.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]>, 4899 4839 and the three sample orientation angles, <span style='font-family:Symbol'>W</span><sub>s</sub>, 4900 4840 <span style='font-family:Symbol'>C</span><sub>s</sub>, <span style='font-family: … … 4912 4852 top:3.0pt;mso-text-raise:-3.0pt;mso-ansi-language:EN-US;mso-fareast-language: 4913 4853 EN-US;mso-bidi-language:AR-SA'><!--[if gte vml 1]><v:shape id="_x0000_i1025" 4914 type="#_x0000_t75" style='width:21. 8pt;height:26.35pt'>4854 type="#_x0000_t75" style='width:21.75pt;height:26.25pt'> 4915 4855 <v:imagedata src="gsasII-phase_files/image045.png" o:title="" chromakey="white"/> 4916 4856 </v:shape><![endif]--><![if !vml]><img width=29 height=35 4917 src="gsasII-phase_files/image0 71.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]><span4857 src="gsasII-phase_files/image046.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]><span 4918 4858 style='mso-spacerun:yes'> </span>and the sample orientation angles <span 4919 4859 style='font-family:Symbol'>W</span><sub>s</sub>, <span style='font-family:Symbol'>C</span><sub>s</sub>, … … 4968 4908 "Times New Roman";mso-fareast-theme-font:minor-fareast;mso-ansi-language:EN-US; 4969 4909 mso-fareast-language:EN-US;mso-bidi-language:AR-SA'><!--[if gte vml 1]><v:shape 4970 id="_x0000_i1025" type="#_x0000_t75" style='width:180. 5pt;height:54.25pt'>4910 id="_x0000_i1025" type="#_x0000_t75" style='width:180.75pt;height:54pt'> 4971 4911 <v:imagedata src="gsasII-phase_files/image047.png" o:title="" chromakey="white"/> 4972 4912 </v:shape><![endif]--><![if !vml]><img width=241 height=72 4973 src="gsasII-phase_files/image0 72.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]></p>4913 src="gsasII-phase_files/image048.png" v:shapes="_x0000_i1025"><![endif]></span><![endif]></p> 4974 4914 4975 4915 <p class=gsastext style='margin-top:0in;margin-right:0in;margin-bottom:12.0pt; … … 5019 4959 5020 4960 <p class=MsoNormal style='margin-left:.5in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'>The 5021 usual arrangement here is to have a capillary sample perpendicular to the diffraction5022 plane. The capillary may be spun about its cylinder axis for powder averaging 5023 a nd to impose cylindrical symmetry on the texture which is perpendicular to the5024 diffraction plane. Thus, <span style='font-family:Symbol'>W</span>, <span 5025 style='font-family:Symbol'>F = 0</span> and <span style='font-family:Symbol'>C 5026 =90.</span></p>4961 usual arrangement here is to have a capillary sample perpendicular to the 4962 diffraction plane. The capillary may be spun about its cylinder axis for powder 4963 averaging and to impose cylindrical symmetry on the texture which is 4964 perpendicular to the diffraction plane. Thus, <span style='font-family:Symbol'>W</span>, 4965 <span style='font-family:Symbol'>F = 0</span> and <span style='font-family: 4966 Symbol'>C =90.</span></p> 5027 4967 5028 4968 <p class=MsoNormal style='margin-left:.5in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'>3) … … 5047 4987 <p class=MsoNormal style='margin-left:.75in'>1. Menu ‘<b>Texture/Refine 5048 4988 texture’ </b>– refines the spherical harmonics texture model using the 5049 predetermined values of <span class=SpellE>Prfo</span> for all histogram5050 reflection sets as demonstratedin <a4989 predetermined values of Prfo for all histogram reflection sets as demonstrated 4990 in <a 5051 4991 href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/2DTexture/Texture%20analysis%20of%202D%20data%20in%20GSAS-II.htm">2DTexture</a> 5052 4992 tutorial.</p> … … 5075 5015 style='mso-list:Ignore'>·<span style='font:7.0pt "Times New Roman"'> 5076 5016 </span></span></span><![endif]><span style='mso-fareast-font-family:"Times New Roman"'>as 5077 an "Axial pole distribution" which simulates the intensity of a reflection5078 during a phi scan.<o:p></o:p></span></p>5017 an "Axial pole distribution" which simulates the intensity of a 5018 reflection during a phi scan.<o:p></o:p></span></p> 5079 5019 5080 5020 <p class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto; … … 5085 5025 </span></span></span><![endif]><span style='mso-fareast-font-family:"Times New Roman"'>as 5086 5026 a "pole figure," where a projection of the probability of finding a 5087 pole (<span class=SpellE>hkl</span>) is plotted as a function of sample 5088 orientation.<o:p></o:p></span></p> 5027 pole (hkl) is plotted as a function of sample orientation.<o:p></o:p></span></p> 5089 5028 5090 5029 <p class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto; … … 5095 5034 </span></span></span><![endif]><span style='mso-fareast-font-family:"Times New Roman"'>as 5096 5035 an "inverse pole figure," where a projection of the probability of 5097 finding all poles (<span class=SpellE>hkls</span>) is plotted for a selected 5098 sample orientation.<o:p></o:p></span></p> 5036 finding all poles (hkls) is plotted for a selected sample orientation.<o:p></o:p></span></p> 5099 5037 5100 5038 <p class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto; … … 5105 5043 </span></span></span><![endif]><span style='mso-fareast-font-family:"Times New Roman"'>or 5106 5044 as a "3D pole distribution" that shows the probability of finding a 5107 pole (<span class=SpellE>hkl</span>) is plotted as a function of sample 5108 orientation. <o:p></o:p></span></p> 5045 pole (hkl) is plotted as a function of sample orientation. <o:p></o:p></span></p> 5109 5046 5110 5047 <p class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto; 5111 5048 margin-left:1.0in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><span 5112 5049 style='mso-fareast-font-family:"Times New Roman"'>For Axial distribution, pole 5113 figure and 3D pole distribution one must next select the <span class=SpellE>hkl</span>5114 of the desired pole, for Inverse pole figure one must select a sample direction 5115 (typically 0 01).<o:p></o:p></span></p>5050 figure and 3D pole distribution one must next select the hkl of the desired 5051 pole, for Inverse pole figure one must select a sample direction (typically 0 0 5052 1).<o:p></o:p></span></p> 5116 5053 5117 5054 <p class=MsoNormal style='mso-margin-top-alt:auto;mso-margin-bottom-alt:auto; … … 5162 5099 5163 5100 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.0in;mso-add-space: 5164 auto;text-indent:-.25in;mso-list:l9 level1 lfo14;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'>< a5165 name=Phase-Pawley><![if !supportLists]><span style='mso-fareast-font-family: 5166 "Times New Roman"'><span style='mso-list:Ignore'>2.<span style='font:7.0pt "Times New Roman"'> 5167 </span></span></span><![endif]>Select the <b style='mso-bidi-font-weight:normal'>mag</b> 5168 column – the entries will be sorted with the largest at the top.</a></p>5101 auto;text-indent:-.25in;mso-list:l9 level1 lfo14;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><![if !supportLists]><span 5102 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>2.<span 5103 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]>Select 5104 the <b style='mso-bidi-font-weight:normal'>mag</b> column – the entries will be 5105 sorted with the largest at the top.</p> 5169 5106 5170 5107 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.0in;mso-add-space: 5171 auto;text-indent:-.25in;mso-list:l9 level1 lfo14;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><a 5172 name="Phase-Pawley_reflections"><![if !supportLists]><span style='mso-fareast-font-family:"Times New Roman"'><span 5173 style='mso-list:Ignore'>3.<span style='font:7.0pt "Times New Roman"'> 5174 </span></span></span><![endif]>Select the </a><span class=SpellE><span 5175 style='mso-bookmark:Pawley'><b style='mso-bidi-font-weight:normal'>dzero</b></span></span><span 5176 style='mso-bookmark:Pawley'> column – the entries will be sorted with the 5177 smallest (distance from origin) at the top.</span></p> 5108 auto;text-indent:-.25in;mso-list:l9 level1 lfo14;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><![if !supportLists]><span 5109 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>3.<span 5110 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]>Select 5111 the <b style='mso-bidi-font-weight:normal'>dzero</b> column – the entries will 5112 be sorted with the smallest (distance from origin) at the top.</p> 5178 5113 5179 5114 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.0in;mso-add-space: 5180 auto;text-indent:-.25in;mso-list:l9 level1 lfo14;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><span 5181 style='mso-bookmark:Pawley'><![if !supportLists]><span style='mso-fareast-font-family: 5182 "Times New Roman"'><span style='mso-list:Ignore'>4.<span style='font:7.0pt "Times New Roman"'> 5183 </span></span></span><![endif]>Select the <span class=SpellE><b>dcent</b></span> 5184 column – the entries will be sorted with the smallest distance from the unit 5185 cell center at the top.</span></p> 5115 auto;text-indent:-.25in;mso-list:l9 level1 lfo14;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><![if !supportLists]><span 5116 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>4.<span 5117 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]>Select 5118 the <b>dcent</b> column – the entries will be sorted with the smallest distance 5119 from the unit cell center at the top.</p> 5186 5120 5187 5121 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.0in;mso-add-space: 5188 auto;text-indent:-.25in;mso-list:l9 level1 lfo14;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><span 5189 style='mso-bookmark:Pawley'><![if !supportLists]><span style='mso-fareast-font-family: 5190 "Times New Roman"'><span style='mso-list:Ignore'>5.<span style='font:7.0pt "Times New Roman"'> 5191 </span></span></span><![endif]>Menu <b style='mso-bidi-font-weight:normal'>‘Map 5192 peaks<span class=GramE>’ <span style='font-weight:normal'><span 5193 style='mso-spacerun:yes'> </span>–</span></span></b></span></p> 5194 5195 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5196 auto;text-indent:-.25in;mso-list:l9 level2 lfo14;tab-stops:list 1.0in'><span 5197 style='mso-bookmark:Pawley'><![if !supportLists]><span style='mso-fareast-font-family: 5198 "Times New Roman"'><span style='mso-list:Ignore'>a.<span style='font:7.0pt "Times New Roman"'> 5199 </span></span></span><![endif]><b style='mso-bidi-font-weight:normal'>Move 5200 peaks</b> – this copies selected peaks to the </span><a href="#Phase-Atoms"><span 5201 style='mso-bookmark:Pawley'>Atoms</span><span style='mso-bookmark:Pawley'></span></a><span 5202 style='mso-bookmark:Pawley'> list and the </span><a href="#_Draw_Atoms"><span 5203 style='mso-bookmark:Pawley'>Draw Atoms</span><span style='mso-bookmark:Pawley'></span></a><span 5204 style='mso-bookmark:Pawley'> list. They will be appended to the end of each 5205 list each with the name ‘UNK’ and the atom type as ‘H’. They will also be drawn 5206 as small white spheres at their respective positions in the structure drawing. 5207 You should next go to the </span><a href="#Phase-Atoms"><span style='mso-bookmark: 5208 Pawley'>Atoms</span><span style='mso-bookmark:Pawley'></span></a><span 5209 style='mso-bookmark:Pawley'> page and change the atom type to whatever element 5210 you desire; it will be renamed automatically.</span></p> 5211 5212 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5213 auto;text-indent:-.25in;mso-list:l9 level2 lfo14;tab-stops:list 1.0in'><span 5214 style='mso-bookmark:Pawley'><![if !supportLists]><span style='mso-fareast-font-family: 5215 "Times New Roman"'><span style='mso-list:Ignore'>b.<span style='font:7.0pt "Times New Roman"'> 5216 </span></span></span><![endif]><span class=GramE><b style='mso-bidi-font-weight: 5217 normal'>View point</b></span><b style='mso-bidi-font-weight:normal'> </b>– this 5218 positions the viewpoint (large 3D RGB cross) at the 1<sup>st</sup> selected 5219 peak.</span></p> 5220 5221 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5222 auto;text-indent:-.25in;mso-list:l9 level2 lfo14;tab-stops:list 1.0in'><span 5223 style='mso-bookmark:Pawley'><![if !supportLists]><span style='mso-fareast-font-family: 5224 "Times New Roman"'><span style='mso-list:Ignore'>c.<span style='font:7.0pt "Times New Roman"'> 5225 </span></span></span><![endif]><b style='mso-bidi-font-weight:normal'>View pt</b>. 5226 <b style='mso-bidi-font-weight:normal'>dist</b>. – this calculates distance 5227 from viewpoint to all selected map peaks.</span></p> 5228 5229 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5230 auto;text-indent:-.25in;mso-list:l9 level2 lfo14;tab-stops:list 1.0in'><span 5231 style='mso-bookmark:Pawley'><![if !supportLists]><span style='mso-fareast-font-family: 5232 "Times New Roman"'><span style='mso-list:Ignore'>d.<span style='font:7.0pt "Times New Roman"'> 5233 </span></span></span><![endif]><b style='mso-bidi-font-weight:normal'>Hide/Show 5234 bonds </b>– toggle display of lines (bonds) between peaks</span></p> 5235 5236 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5237 auto;text-indent:-.25in;mso-list:l9 level2 lfo14;tab-stops:list 1.0in'><span 5238 style='mso-bookmark:Pawley'><![if !supportLists]><span style='mso-fareast-font-family: 5239 "Times New Roman"'><span style='mso-list:Ignore'>e.<span style='font:7.0pt "Times New Roman"'> 5240 </span></span></span><![endif]><b style='mso-bidi-font-weight:normal'>Calc <span 5241 class=SpellE>dist</span>/ang </b>– if 2 peaks are selected, this calculates the 5242 distance between them. If 3 peaks are selected this calculates the angle 5243 between them; NB: selection order matters. If selection is not 2 or 3 peaks 5244 this is ignored. Output is on the console window.</span></p> 5245 5246 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5247 auto;text-indent:-.25in;mso-list:l9 level2 lfo14;tab-stops:list 1.0in'><span 5248 style='mso-bookmark:Pawley'><![if !supportLists]><span style='mso-fareast-font-family: 5249 "Times New Roman"'><span style='mso-list:Ignore'>f.<span style='font:7.0pt "Times New Roman"'> 5122 auto;text-indent:-.25in;mso-list:l9 level1 lfo14;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><![if !supportLists]><span 5123 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>5.<span 5124 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]>Menu 5125 <b style='mso-bidi-font-weight:normal'>‘Map peaks’ </b><span 5126 style='mso-spacerun:yes'> </span>–</p> 5127 5128 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5129 auto;text-indent:-.25in;mso-list:l9 level2 lfo14;tab-stops:list 1.0in'><![if !supportLists]><span 5130 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>a.<span 5131 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 5132 style='mso-bidi-font-weight:normal'>Move peaks</b> – this copies selected peaks 5133 to the <a href="#Phase-Atoms">Atoms</a> list and the <a href="#_Draw_Atoms">Draw 5134 Atoms</a> list. They will be appended to the end of each list each with the 5135 name ‘UNK’ and the atom type as ‘H’. They will also be drawn as small white 5136 spheres at their respective positions in the structure drawing. You should next 5137 go to the <a href="#Phase-Atoms">Atoms</a> page and change the atom type to 5138 whatever element you desire; it will be renamed automatically.</p> 5139 5140 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5141 auto;text-indent:-.25in;mso-list:l9 level2 lfo14;tab-stops:list 1.0in'><![if !supportLists]><span 5142 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>b.<span 5143 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 5144 style='mso-bidi-font-weight:normal'>View point </b>– this positions the 5145 viewpoint (large 3D RGB cross) at the 1<sup>st</sup> selected peak.</p> 5146 5147 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5148 auto;text-indent:-.25in;mso-list:l9 level2 lfo14;tab-stops:list 1.0in'><![if !supportLists]><span 5149 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>c.<span 5150 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 5151 style='mso-bidi-font-weight:normal'>View pt</b>. <b style='mso-bidi-font-weight: 5152 normal'>dist</b>. – this calculates distance from viewpoint to all selected map 5153 peaks.</p> 5154 5155 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5156 auto;text-indent:-.25in;mso-list:l9 level2 lfo14;tab-stops:list 1.0in'><![if !supportLists]><span 5157 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>d.<span 5158 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 5159 style='mso-bidi-font-weight:normal'>Hide/Show bonds </b>– toggle display of 5160 lines (bonds) between peaks</p> 5161 5162 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5163 auto;text-indent:-.25in;mso-list:l9 level2 lfo14;tab-stops:list 1.0in'><![if !supportLists]><span 5164 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>e.<span 5165 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 5166 style='mso-bidi-font-weight:normal'>Calc dist/ang </b>– if 2 peaks are 5167 selected, this calculates the distance between them. If 3 peaks are selected 5168 this calculates the angle between them; NB: selection order matters. If 5169 selection is not 2 or 3 peaks this is ignored. Output is on the console window.</p> 5170 5171 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5172 auto;text-indent:-.25in;mso-list:l9 level2 lfo14;tab-stops:list 1.0in'><![if !supportLists]><span 5173 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>f.<span 5174 style='font:7.0pt "Times New Roman"'> 5250 5175 </span></span></span><![endif]><b style='mso-bidi-font-weight:normal'>Equivalent 5251 5176 peaks </b>– this selects all peaks related to selection by space group 5252 symmetry.</ span></p>5253 5254 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5255 auto;text-indent:-.25in;mso-list:l9 level2 lfo14;tab-stops:list 1.0in'>< span5256 style='mso- bookmark:Pawley'><![if !supportLists]><span style='mso-fareast-font-family:5257 "Times New Roman"'><span style='mso-list:Ignore'>g.<span style='font:7.0pt "Times New Roman"'> 5258 </span></span></span><![endif]><b style='mso-bidi-font-weight:normal'>Invert 5259 peak positions </b>– inversion through cell center of map and all positions.</span></p>5260 5261 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5262 auto;text-indent:-.25in;mso-list:l9 level2 lfo14;tab-stops:list 1.0in'>< span5263 style='mso- bookmark:Pawley'><![if !supportLists]><span style='mso-fareast-font-family:5264 "Times New Roman"'><span style='mso-list:Ignore'>h.<span style='font:7.0pt "Times New Roman"'> 5265 </span></span></span><![endif]><b style='mso-bidi-font-weight:normal'>Roll 5266 charge flip map </b>– popup allows shifting of the map & all peak positions 5267 by unit cell fractions; can be along combinations of axes.</span></p>5268 5269 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5270 auto;text-indent:-.25in;mso-list:l9 level2 lfo14;tab-stops:list 1.0in'>< span5271 style='mso- bookmark:Pawley'><![if !supportLists]><span style='mso-fareast-font-family:5272 "Times New Roman"'><span style='mso-list:Ignore'>i.<spanstyle='font:7.0pt "Times New Roman"'> 5177 symmetry.</p> 5178 5179 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5180 auto;text-indent:-.25in;mso-list:l9 level2 lfo14;tab-stops:list 1.0in'><![if !supportLists]><span 5181 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>g.<span 5182 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 5183 style='mso-bidi-font-weight:normal'>Invert peak positions </b>– inversion 5184 through cell center of map and all positions.</p> 5185 5186 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5187 auto;text-indent:-.25in;mso-list:l9 level2 lfo14;tab-stops:list 1.0in'><![if !supportLists]><span 5188 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>h.<span 5189 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 5190 style='mso-bidi-font-weight:normal'>Roll charge flip map </b>– popup allows 5191 shifting of the map & all peak positions by unit cell fractions; can be 5192 along combinations of axes.</p> 5193 5194 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5195 auto;text-indent:-.25in;mso-list:l9 level2 lfo14;tab-stops:list 1.0in'><![if !supportLists]><span 5196 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>i.<span 5197 style='font:7.0pt "Times New Roman"'> 5273 5198 </span></span></span><![endif]><b style='mso-bidi-font-weight:normal'>Unique 5274 5199 peaks </b>– this selects only the unique peak positions amongst those selected; 5275 5200 a popup allows selection of atom subset closest to x=0, y=0, z=0 origin or 5276 center.</ span></p>5277 5278 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5279 auto;text-indent:-.25in;mso-list:l9 level2 lfo14;tab-stops:list 1.0in'>< span5280 style='mso- bookmark:Pawley'><![if !supportLists]><span style='mso-fareast-font-family:5281 "Times New Roman"'><span style='mso-list:Ignore'>j.<spanstyle='font:7.0pt "Times New Roman"'> 5201 center.</p> 5202 5203 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5204 auto;text-indent:-.25in;mso-list:l9 level2 lfo14;tab-stops:list 1.0in'><![if !supportLists]><span 5205 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>j.<span 5206 style='font:7.0pt "Times New Roman"'> 5282 5207 </span></span></span><![endif]><b style='mso-bidi-font-weight:normal'>Save 5283 peaks </b>– saves the peak list as a csv file.</ span></p>5284 5285 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5286 auto;text-indent:-.25in;mso-list:l9 level2 lfo14;tab-stops:list 1.0in'>< span5287 style='mso- bookmark:Pawley'><![if !supportLists]><span style='mso-fareast-font-family:5288 "Times New Roman"'><span style='mso-list:Ignore'>k.<span style='font:7.0pt "Times New Roman"'> 5289 </span></span></span><![endif]><b style='mso-bidi-font-weight:normal'>Delete 5290 peaks </b>– this deletes selected peaks. The shading on the remaining peaks is5291 changed to reflect any change in the maximum after deletion.</span></p>5208 peaks </b>– saves the peak list as a csv file.</p> 5209 5210 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5211 auto;text-indent:-.25in;mso-list:l9 level2 lfo14;tab-stops:list 1.0in'><![if !supportLists]><span 5212 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>k.<span 5213 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 5214 style='mso-bidi-font-weight:normal'>Delete peaks </b>– this deletes selected 5215 peaks. The shading on the remaining peaks is changed to reflect any change in 5216 the maximum after deletion.</p> 5292 5217 5293 5218 <p class=MsoListParagraphCxSpLast style='margin-left:1.5in;mso-add-space:auto; 5294 text-indent:-.25in;mso-list:l9 level2 lfo14;tab-stops:list 1.0in'>< span5295 style='mso- bookmark:Pawley'><![if !supportLists]><span style='mso-fareast-font-family:5296 "Times New Roman"'><span style='mso-list:Ignore'>l.<spanstyle='font:7.0pt "Times New Roman"'> 5219 text-indent:-.25in;mso-list:l9 level2 lfo14;tab-stops:list 1.0in'><![if !supportLists]><span 5220 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>l.<span 5221 style='font:7.0pt "Times New Roman"'> 5297 5222 </span></span></span><![endif]><b style='mso-bidi-font-weight:normal'>Clear 5298 5223 peaks </b>– this deletes all the peaks in the map peak list; they are also 5299 removed from the crystal structure drawing plot.</span></p> 5300 5301 <h4 style='margin-left:.25in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><span 5302 style='mso-bookmark:Pawley'>Pawley reflections<span class=MsoHyperlink><span 5303 style='color:#5B9BD5;mso-themecolor:accent1'><o:p></o:p></span></span></span></h4> 5304 5305 <p class=MsoNormal style='margin-left:.5in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><span 5306 style='mso-bookmark:Pawley'>This gives the list of reflections used in a Pawley 5307 refinement and they can only be seen if the ‘Do Pawley refinement’ flag is set 5308 (see </span><a href="#_General_Phase_Parameters"><span style='mso-bookmark: 5309 Pawley'>General</span><span style='mso-bookmark:Pawley'></span></a><span 5310 style='mso-bookmark:Pawley'>).</span></p> 5311 5312 <h5 style='margin-left:.5in'><span style='mso-bookmark:Pawley'>What can I do 5313 here?</span></h5> 5224 removed from the crystal structure drawing plot.</p> 5225 5226 <p class=MsoNormal style='margin-left:.5in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><a 5227 name="_Pawley_reflections"></a><o:p> </o:p></p> 5228 5229 <h4>Pawley reflections</h4> 5230 5231 <p class=MsoNormal style='margin-left:.5in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'>This 5232 gives the list of reflections used in a Pawley refinement; for them to be used the 5233 ‘Do Pawley refinement’ flag must be set (see <a 5234 href="#_General_Phase_Parameters">General</a>), otherwise they are ignored.</p> 5235 5236 <h5 style='margin-left:.5in'>What can I do here?</h5> 5314 5237 5315 5238 <p class=MsoListParagraphCxSpFirst style='margin-left:1.0in;mso-add-space:auto; 5316 text-indent:-.25in;mso-list:l3 level1 lfo16;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><span 5317 style='mso-bookmark:Pawley'><![if !supportLists]><span style='mso-fareast-font-family: 5318 "Times New Roman"'><span style='mso-list:Ignore'>1.<span style='font:7.0pt "Times New Roman"'> 5319 </span></span></span><![endif]>Menu <b style='mso-bidi-font-weight:normal'>‘Operations’</b> 5320 –</span></p> 5321 5322 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5323 auto;text-indent:-.25in;mso-list:l7 level2 lfo18;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><span 5324 style='mso-bookmark:Pawley'><![if !supportLists]><span style='mso-fareast-font-family: 5325 "Times New Roman"'><span style='mso-list:Ignore'>a.<span style='font:7.0pt "Times New Roman"'> 5326 </span></span></span><![endif]><b style='mso-bidi-font-weight:normal'>Pawley settings 5327 </b>– allows setting of Pawley parameters as shown on the </span><a 5328 href="#_General_Phase_Parameters"><span style='mso-bookmark:Pawley'>General</span><span 5329 style='mso-bookmark:Pawley'></span></a><span style='mso-bookmark:Pawley'> tab.</span></p> 5330 5331 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5332 auto;text-indent:-.25in;mso-list:l7 level2 lfo18;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><span 5333 style='mso-bookmark:Pawley'><![if !supportLists]><span style='mso-fareast-font-family: 5334 "Times New Roman"'><span style='mso-list:Ignore'>b.<span style='font:7.0pt "Times New Roman"'> 5335 </span></span></span><![endif]><b style='mso-bidi-font-weight:normal'>Pawley 5336 create</b> – this creates a new set of Pawley reflections, over writing any 5337 preexisting Pawley set. They are generated with d-spacings larger than the 5338 limit set as ‘Pawley <span class=SpellE>dmin</span>’ in the General tab for 5339 this phase. By <span class=GramE>default</span> the refine flags are not set 5340 and the <span class=SpellE>Fsq</span>(<span class=SpellE>hkl</span>) = 100.0.</span></p> 5341 5342 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5343 auto;text-indent:-.25in;mso-list:l7 level2 lfo18;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><span 5344 style='mso-bookmark:Pawley'><![if !supportLists]><span style='mso-fareast-font-family: 5345 "Times New Roman"'><span style='mso-list:Ignore'>c.<span style='font:7.0pt "Times New Roman"'> 5346 </span></span></span><![endif]><b style='mso-bidi-font-weight:normal'>Pawley 5347 estimate</b> – this attempts an estimate of <span class=SpellE>Fsq</span>(<span 5348 class=SpellE>hkl</span>) from the peak heights of the reflection as seen in the 5349 1<sup>st</sup> powder pattern of those selected in the </span><a href="#_Data"><span 5350 style='mso-bookmark:Pawley'>Data</span><span style='mso-bookmark:Pawley'></span></a><span 5351 style='mso-bookmark:Pawley'> tab.</span></p> 5352 5353 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5354 auto;text-indent:-.25in;mso-list:l7 level2 lfo18;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><span 5355 style='mso-bookmark:Pawley'><![if !supportLists]><span style='mso-fareast-font-family: 5356 "Times New Roman"'><span style='mso-list:Ignore'>d.<span style='font:7.0pt "Times New Roman"'> 5357 </span></span></span><![endif]><b style='mso-bidi-font-weight:normal'>Pawley 5358 update </b>– process Pawley reflection set for negative intensities. These are 5359 set to ½ its absolute value for noncentrosymmetric space groups (0.3 5360 otherwise); the refine flag is turned off. One should repeat Pawley refinement 5361 and then do </span><span style='mso-bookmark:Pawley'><b><span style='font-family: 5239 text-indent:-.25in;mso-list:l3 level1 lfo16;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><![if !supportLists]><span 5240 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>1.<span 5241 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]>Menu 5242 <b style='mso-bidi-font-weight:normal'>‘Operations’</b> –</p> 5243 5244 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5245 auto;text-indent:-.25in;mso-list:l7 level2 lfo18;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><![if !supportLists]><span 5246 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>a.<span 5247 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 5248 style='mso-bidi-font-weight:normal'>Pawley settings </b>– allows setting of 5249 Pawley parameters as shown on the <a href="#_General_Phase_Parameters">General</a> 5250 tab.</p> 5251 5252 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5253 auto;text-indent:-.25in;mso-list:l7 level2 lfo18;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><![if !supportLists]><span 5254 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>b.<span 5255 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 5256 style='mso-bidi-font-weight:normal'>Pawley create</b> – this creates a new set 5257 of Pawley reflections, over writing any preexisting Pawley set. They are 5258 generated with d-spacings larger than the limit set as ‘Pawley dmin’ in the 5259 General tab for this phase. By default, the refine flags are not set and the 5260 Fsq(hkl) = 100.0.</p> 5261 5262 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5263 auto;text-indent:-.25in;mso-list:l7 level2 lfo18;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><![if !supportLists]><span 5264 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>c.<span 5265 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 5266 style='mso-bidi-font-weight:normal'>Pawley estimate</b> – this attempts an 5267 estimate of Fsq(hkl) from the peak heights of the reflection as seen in the 1<sup>st</sup> 5268 powder pattern of those shown as ‘<b>Use’</b> in the <a href="#_Data">Data</a> 5269 tab for this phase.</p> 5270 5271 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5272 auto;text-indent:-.25in;mso-list:l7 level2 lfo18;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><![if !supportLists]><span 5273 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>d.<span 5274 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 5275 style='mso-bidi-font-weight:normal'>Pawley update </b>– process Pawley 5276 reflection set for negative intensities. These are set to ½ its absolute value 5277 for noncentrosymmetric space groups (0.3 otherwise); the refine flag is turned 5278 off. One should repeat Pawley refinement and then do <b><span style='font-family: 5362 5279 "Calibri",sans-serif;mso-ascii-theme-font:minor-latin;mso-hansi-theme-font: 5363 5280 minor-latin;mso-bidi-theme-font:minor-latin'>Refine all</span></b> and an 5364 additional refinement. Repeat as needed to remove negative intensities. Set </span><span 5365 style='mso-bookmark:Pawley'><b><span style='font-family:"Calibri",sans-serif; 5281 additional refinement. Repeat as needed to remove negative intensities. Set <b><span 5282 style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin; 5283 mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:minor-latin'>Pawley neg. 5284 wt.</span></b> (see <b><span style='font-family:"Calibri",sans-serif; 5366 5285 mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-theme-font: 5367 minor-latin'>Pawley neg. wt.</span></b> (see </span><span style='mso-bookmark: 5368 Pawley'><b><span style='font-family:"Calibri",sans-serif;mso-ascii-theme-font: 5369 minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:minor-latin'>Pawley 5370 settings</span></b>) to further suppress negatives.</span></p> 5371 5372 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5373 auto;text-indent:-.25in;mso-list:l7 level2 lfo18;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><span 5374 style='mso-bookmark:Pawley'><![if !supportLists]><span style='mso-fareast-font-family: 5375 "Times New Roman"'><span style='mso-list:Ignore'>e.<span style='font:7.0pt "Times New Roman"'> 5286 minor-latin'>Pawley settings</span></b>) to further suppress negatives.</p> 5287 5288 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5289 auto;text-indent:-.25in;mso-list:l7 level2 lfo18;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><![if !supportLists]><span 5290 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>e.<span 5291 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 5292 style='mso-bidi-font-weight:normal'>Refine all </b>– sets all refine flags</p> 5293 5294 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5295 auto;text-indent:-.25in;mso-list:l7 level2 lfo18;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><![if !supportLists]><span 5296 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>f.<span 5297 style='font:7.0pt "Times New Roman"'> 5376 5298 </span></span></span><![endif]><b style='mso-bidi-font-weight:normal'>Refine 5377 all </b>– sets all refine flags</span></p> 5378 5379 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5380 auto;text-indent:-.25in;mso-list:l7 level2 lfo18;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><span 5381 style='mso-bookmark:Pawley'><![if !supportLists]><span style='mso-fareast-font-family: 5382 "Times New Roman"'><span style='mso-list:Ignore'>f.<span style='font:7.0pt "Times New Roman"'> 5383 </span></span></span><![endif]><b style='mso-bidi-font-weight:normal'>Refine 5384 none </b>– clears all refine flags</span></p> 5385 5386 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5387 auto;text-indent:-.25in;mso-list:l7 level2 lfo18;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><span 5388 style='mso-bookmark:Pawley'><![if !supportLists]><span style='mso-fareast-font-family: 5389 "Times New Roman"'><span style='mso-list:Ignore'>g.<span style='font:7.0pt "Times New Roman"'> 5390 </span></span></span><![endif]><b style='mso-bidi-font-weight:normal'>Toggle 5391 selection </b>– toggles all refine flags</span></p> 5299 none </b>– clears all refine flags</p> 5300 5301 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.5in;mso-add-space: 5302 auto;text-indent:-.25in;mso-list:l7 level2 lfo18;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><![if !supportLists]><span 5303 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>g.<span 5304 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 5305 style='mso-bidi-font-weight:normal'>Toggle selection </b>– toggles all refine 5306 flags</p> 5392 5307 5393 5308 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.0in;mso-add-space: 5394 auto;text-indent:-.25in;mso-list:l3 level1 lfo16;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><span 5395 style='mso-bookmark:Pawley'><![if !supportLists]><span style='mso-fareast-font-family: 5396 "Times New Roman"'><span style='mso-list:Ignore'>2.<span style='font:7.0pt "Times New Roman"'> 5397 </span></span></span><![endif]>You can change the refine flags either by 5398 clicking on the box or by selecting one and then selecting the column (a single 5399 click on the column heading). Then type ‘y’ to set the refine flags or ‘n’ to 5400 clear the flags. You should not refine those reflections that fall below the 5401 lower limit or above the upper limit of the powder pattern otherwise you may 5402 have a singular matrix error in your Pawley refinement.</span></p> 5309 auto;text-indent:-.25in;mso-list:l3 level1 lfo16;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><![if !supportLists]><span 5310 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>2.<span 5311 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]>You 5312 can change the refine flags either by clicking on the box or by selecting one 5313 and then selecting the column (a single click on the column heading). Then type 5314 ‘y’ to set the refine flags or ‘n’ to clear the flags. You should not refine 5315 those reflections that are below the lower limit or above the upper limit of 5316 the powder pattern otherwise you will have singular matrix errors in your 5317 Pawley refinement (adds to the refinement time as bad parameters are removed). 5318 Reflections that fall inside excluded regions may also result in refinement 5319 singularities.</p> 5403 5320 5404 5321 <p class=MsoListParagraphCxSpMiddle style='margin-left:1.0in;mso-add-space: … … 5408 5325 can delete an individual reflection from the Pawley set by selecting its row 5409 5326 (will be highlighted) and then pressing the Delete key (this is not reversable 5410 & only <span class=GramE>deletes</span>the 1<sup>st</sup> one selected).</p>5327 & only deletes the 1<sup>st</sup> one selected).</p> 5411 5328 5412 5329 <p class=MsoListParagraphCxSpLast style='margin-left:1.0in;mso-add-space:auto; … … 5414 5331 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>4.<span 5415 5332 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]>You 5416 can change the individual <span class=SpellE>Fsq</span>(<span class=SpellE>hkl</span>) 5417 values by selecting it, typing in the new <span class=GramE>value</span> and 5418 then pressing enter or selecting somewhere else in the table.</p> 5333 can change the individual Fsq(hkl) values by selecting it, typing in the new 5334 value and then pressing enter or selecting somewhere else in the table.</p> 5419 5335 5420 5336 <h4 style='margin-left:.25in;tab-stops:45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt'><a … … 5425 5341 <a 5426 5342 href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/StackingFaults-I/Stacking%20Faults-I.htm">Stacking 5427 Faults-I</a> tutorial. The computations are done by a modified version of <span 5428 class=SpellE>DIFFaX</span>. See M.M.J. Treacy, J.M. Newsam and M.W. Deem, Proc. 5429 Roy. Soc. <span class=SpellE>Lond</span>. 433A, 499-520 (1991) for more 5430 information on <span class=SpellE>DIFFaX</span> and please cite this if you use 5431 this section of GSAS-II.</p> 5343 Faults-I</a> tutorial. The computations are done by a modified version of 5344 DIFFaX. See M.M.J. Treacy, J.M. Newsam and M.W. Deem, Proc. Roy. Soc. Lond. 5345 433A, 499-520 (1991) for more information on DIFFaX and please cite this if you 5346 use this section of GSAS-II.</p> 5432 5347 5433 5348 <h5 style='margin-left:.5in'>What can I do here?</h5> … … 5443 5358 style='mso-fareast-font-family:"Times New Roman"'><span style='mso-list:Ignore'>a.<span 5444 5359 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 5445 style='mso-bidi-font-weight:normal'>Load from <span class=SpellE>DIFFaX</span> file 5446 – </b><span style='mso-bidi-font-weight:bold'>load parameters from a <span 5447 class=SpellE>DIFFaX</span> input file</span></p> 5360 style='mso-bidi-font-weight:normal'>Load from DIFFaX file – </b><span 5361 style='mso-bidi-font-weight:bold'>load parameters from a DIFFaX input file</span></p> 5448 5362 5449 5363 <p class=MsoListParagraphCxSpMiddle style='margin-left:99.8pt;mso-add-space: … … 5460 5374 style='mso-list:Ignore'>c.<span style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]><b 5461 5375 style='mso-bidi-font-weight:normal'>Simulate pattern – </b><span 5462 style='mso-bidi-font-weight:bold'>run <span class=SpellE>DIFFaX</span> to 5463 simulate selected pattern<o:p></o:p></span></p> 5376 style='mso-bidi-font-weight:bold'>run DIFFaX to simulate selected pattern<o:p></o:p></span></p> 5464 5377 5465 5378 <p class=MsoListParagraphCxSpMiddle style='margin-left:99.8pt;mso-add-space: … … 5515 5428 </span></span></span><![endif]><span style='mso-bidi-font-weight:bold'>Next are 5516 5429 descriptions of the layers to be used in the calculations. They can be created 5517 atom-by-atom or imported from another GSAS-II <span class=SpellE>gpx</span> 5518 file. If a layer is already present, then the new layer can be the same; give 5519 it a different name.<o:p></o:p></span></p> 5430 atom-by-atom or imported from another GSAS-II gpx file. If a layer is already 5431 present, then the new layer can be the same; give it a different name.<o:p></o:p></span></p> 5520 5432 5521 5433 <p class=MsoListParagraphCxSpMiddle style='margin-left:63.8pt;mso-add-space: … … 5551 5463 <p class=MsoNormal style='margin-left:.5in'>This tab displays the modulation 5552 5464 functions used for incommensurate structures; it will not appear if the 5553 structure is commensurate (<span class=GramE>i.e.</span> 3D). They include 5554 modulations on atom site fractions, <span class=GramE>positions</span> and 5555 thermal motion parameters. If the structure is magnetic, atom moment modulation 5556 parameters are also shown.</p> 5465 structure is commensurate (i.e. 3D). They include modulations on atom site 5466 fractions, positions and thermal motion parameters. If the structure is 5467 magnetic, atom moment modulation parameters are also shown.</p> 5557 5468 5558 5469 <h5 style='margin-left:.5in'>What can I do here?</h5> … … 5580 5491 <p class=MsoNormal style='margin-left:.5in'>This tab displays Monte 5581 5492 Carlo/Simulated Annealing model parameters and results. Each rigid body is 5582 described by a location (fractional <span class=SpellE><span class=GramE>x,y</span>,z</span>) 5583 and a quaternion description for the orientation (rotation angle & 3D 5584 vector) along with possible bond torsion angles on side chains. Each parameter 5585 has a defined range. The MC/SA controls on the General tab further limit the 5586 MC/SA run. Selection of a result shows a drawing of the structure with unit 5587 cell contents for visualization.</p> 5493 described by a location (fractional x,y,z) and a quaternion description for the 5494 orientation (rotation angle & 3D vector) along with possible bond torsion 5495 angles on side chains. Each parameter has a defined range. The MC/SA controls 5496 on the General tab further limit the MC/SA run. Selection of a result shows a 5497 drawing of the structure with unit cell contents for visualization.</p> 5588 5498 5589 5499 <h5 style='margin-left:.5in'>What can I do here?</h5> … … 5600 5510 5601 5511 <p class=MsoNormal style='margin-left:49.5pt;text-indent:-49.5pt'><span 5602 style='mso-tab-count:2'> </span> <span class=SpellE>b.</span>5603 <b>Add rigid body</b> – add a previously defined rigid body, which may have 5604 adjustable internaltorsion angles.</p>5512 style='mso-tab-count:2'> </span>b. <b>Add rigid body</b> 5513 – add a previously defined rigid body, which may have adjustable internal 5514 torsion angles.</p> 5605 5515 5606 5516 <p class=MsoNormal style='margin-left:49.5pt;text-indent:-49.5pt'><span … … 5616 5526 <p class=MsoNormal style='margin-left:.5in'>This displays 3 different setups 5617 5527 each for <a href="https://doi.org/10.1088/0953-8984/19/33/335218">RMCProfile</a>, 5618 <a href="https://doi.org/10.1002/jcc.24304"><span class=SpellE>fullrmc</span></a> 5619 and <a href="https://doi.org/10.1088/0953-8984/19/33/335219"><span 5620 class=SpellE>PDFfit</span></a> as selected by a radio button at the top of the 5621 window. RMCProfile and <span class=SpellE>fullrmc</span> are “big box” 5622 modelling routines and <span class=SpellE>PDFfit</span> is a “small box” 5623 modelling routine; all for fitting structural models to pair distribution 5624 functions (PDF). Tutorials for using RMCProfile and <span class=SpellE>PDFfit</span> 5625 can be found in the GSAS-II Help; <span class=SpellE>fullrmc</span> is 5528 <a href="https://doi.org/10.1002/jcc.24304">fullrmc</a> and <a 5529 href="https://doi.org/10.1088/0953-8984/19/33/335219">PDFfit</a> as selected by 5530 a radio button at the top of the window. RMCProfile and fullrmc are “big box” 5531 modelling routines and PDFfit is a “small box” modelling routine; all for 5532 fitting structural models to pair distribution functions (PDF). Tutorials for 5533 using RMCProfile and PDFfit can be found in the GSAS-II Help; fullrmc is 5626 5534 currently under construction. These routines all run as stand-alone 5627 5535 applications which are initiated by GSAS-II. When finished, GSAS-II processes … … 5629 5537 The two big box routines can have very long running times; they run as separate 5630 5538 console programs. GSAS-II is active while they are running and can 5631 “interrogate” them for intermediate results. <span class=SpellE>PDFfit</span>5632 has a short running time and GSAS-II is “locked out” until it finishes; its 5633 result can be examinedafter.</p>5539 “interrogate” them for intermediate results. PDFfit has a short running time 5540 and GSAS-II is “locked out” until it finishes; its result can be examined 5541 after.</p> 5634 5542 5635 5543 <h5 style='margin-left:.5in'>What can I do here?</h5> … … 5639 5547 5640 5548 <p class=MsoNormal style='margin-left:.75in;tab-stops:.75in'><span 5641 style='mso-tab-count:1'> </span>1. <b>Setup RMC</b> – this builds the input5642 files and python script (if needed) for running the selected RMC program.</p>5549 style='mso-tab-count:1'> </span>1. <b>Setup RMC</b> – this builds the 5550 input files and python script (if needed) for running the selected RMC program.</p> 5643 5551 5644 5552 <p class=MsoNormal style='margin-left:1.0in;tab-stops:1.0in'><span 5645 5553 style='mso-tab-count:1'> </span>2. <b>Execute</b> – this executes 5646 5554 the chosen RMC program in a new console which will vanish when finishes (after 5647 a “press any key” command). When finished, GSAS-II will extract results and 5648 placethem in appropriate places in the project.</p>5555 a “press any key” command). When finished, GSAS-II will extract results and place 5556 them in appropriate places in the project.</p> 5649 5557 5650 5558 <p class=MsoNormal style='margin-left:1.0in;tab-stops:1.0in'>3. <b>Stop run</b> 5651 – only valid for <span class=SpellE>fullrmc</span>; stops the RMC run &5652 saves progress so it can becontinued later.</p>5559 – only valid for fullrmc; stops the RMC run & saves progress so it can be 5560 continued later.</p> 5653 5561 5654 5562 <p class=MsoNormal style='margin-left:1.0in;tab-stops:1.0in'>4. <b>Plot</b> – 5655 5563 this displays the resulting graphical output from the RMC run. For RMCProfile 5656 and <span class=SpellE>fullrmc</span> this can be 5 or more plots, for <span 5657 class=SpellE>PDFfit</span> it is only the observed and calculated G(r) plot 5658 with a difference curve.</p> 5564 and fullrmc this can be 5 or more plots, for PDFfit it is only the observed and 5565 calculated G(r) plot with a difference curve.</p> 5659 5566 5660 5567 <p class=MsoNormal style='margin-left:1.0in;tab-stops:1.0in'><o:p> </o:p></p> … … 5663 5570 similar. There is a block for “metadata” items for your convenience; they have 5664 5571 no impact on the calculations. Next is timing controls for the big box programs 5665 (<span class=SpellE>PDFfit</span> has none). Then is structural information and 5666 finally the data section for the patterns to be fitted. The big box programs 5667 are for only single runs while <span class=SpellE>PDFfit</span> can be used to 5668 process a sequence of G(r) data collected as a function of, e.g., temperature 5669 (giving Sequential PDFfit2 results).</p> 5572 (PDFfit has none). Then is structural information and finally the data section 5573 for the patterns to be fitted. The big box programs are for only single runs 5574 while PDFfit can be used to process a sequence of G(r) data collected as a 5575 function of, e.g., temperature (giving Sequential PDFfit2 results).</p> 5670 5576 5671 5577 <h4 style='margin-left:.25in'><a name=Phase-ISODISTORT>ISODISTORT</a></h4> … … 5673 5579 <p class=MsoNormal style='margin-left:.5in'>This displays the setup for using 5674 5580 the web-based application, <a href="https://iso.byu.edu/iso/isodistort.php">ISODISTORT</a>, 5675 to identify the possible mode distortions of a parent structure. To use it you must5676 be connected to the internet. Two ISODISTORT Methods are supported in GSAS-II: 5677 Method-1 identifies all possible subgroups that result from simple mode5678 distortions that are associated with a single irreducible representation.5581 to identify the possible mode distortions of a parent structure. To use it you 5582 must be connected to the internet. Two ISODISTORT Methods are supported in 5583 GSAS-II: Method-1 identifies all possible subgroups that result from simple 5584 mode distortions that are associated with a single irreducible representation. 5679 5585 Method-4 is more useful in that it finds the mode decomposition of a parent 5680 5586 structure to give a specified distorted structure and is set up to find only 5681 5587 atom displacement modes. See help pages for <a 5682 5588 href="https://iso.byu.edu/iso/isodistort.php">ISODISTORT</a> for more 5683 information. The ultimate product of using ISODISTORT is a special <span5684 class=SpellE>cif</span> file with constraints describing the mode distortions; 5685 t his is imported into GSAS-II to form a new phase with these constraints.</p>5589 information. The ultimate product of using ISODISTORT is a special cif file 5590 with constraints describing the mode distortions; this is imported into GSAS-II 5591 to form a new phase with these constraints.</p> 5686 5592 5687 5593 <h5 style='margin-left:.5in'>What can I do here?</h5> 5688 5594 5689 5595 <p class=MsoNormal style='margin-left:.5in'>If this is a freshly created phase 5690 (not an imported ISODISTORT <span class=SpellE>cif</span>) then you can choose 5691 the Method (4 is default) and select parent structure and distorted child 5692 structure (for Method 4).</p> 5596 (not an imported ISODISTORT cif) then you can choose the Method (4 is default) 5597 and select parent structure and distorted child structure (for Method 4).</p> 5693 5598 5694 5599 <p class=MsoNormal style='margin-left:.5in'><o:p> </o:p></p> 5695 5600 5696 5601 <p class=MsoNormal style='margin-left:.5in'>If you chose Method 1 & run 5697 ISODISTORT, a table of possible substructures is displayed; a <span5698 class=SpellE>cif</span> file with mode distortion constraints can be produced 5699 from your selection. The table canbe filtered by crystal class.</p>5602 ISODISTORT, a table of possible substructures is displayed; a cif file with 5603 mode distortion constraints can be produced from your selection. The table can 5604 be filtered by crystal class.</p> 5700 5605 5701 5606 <p class=MsoNormal style='margin-left:.5in'><o:p> </o:p></p> 5702 5607 5703 5608 <p class=MsoNormal style='margin-left:.5in'>If this is a phase imported from an 5704 ISODISTORT <span class=SpellE>cif</span> file, the mode displacements are shown5705 with sliders to allow visualization of the displacements in a drawing of the5706 crystal structure (prepare this first before trying a slider). A structure 5707 refinement using this phase will employ the mode distortions as constraints on 5708 the atom coordinates; there should be as many as there are free variable5709 coordinates in thestructure. The values (in <span style='font-family:"Calibri",sans-serif'>Å</span>)5609 ISODISTORT cif file, the mode displacements are shown with sliders to allow 5610 visualization of the displacements in a drawing of the crystal structure 5611 (prepare this first before trying a slider). A structure refinement using this 5612 phase will employ the mode distortions as constraints on the atom coordinates; 5613 there should be as many as there are free variable coordinates in the 5614 structure. The values (in <span style='font-family:"Calibri",sans-serif'>Å</span>) 5710 5615 represent the largest atom shift associated with the mode; shown is a list of 5711 5616 atom coordinates affected by each mode.</p> … … 5718 5623 from the web site with the controls as shown.</p> 5719 5624 5720 <p class=MsoNormal style='margin-left:.5in'>2) <b>Make <span class=SpellE>cif</span> 5721 file</b> – active after table from Method 1 is displayed; generate <span 5722 class=SpellE>cif</span> file by ISODISTORT web site with mode distortion 5723 constraints.</p> 5724 5725 <p class=MsoNormal style='margin-left:.5in'>3) <b>Make <span class=SpellE>PDFfit</span> 5726 phase</b> – active when mode distortions are shown. Makes new phase specific 5727 for fitting PDF data via PDFfit2.</p> 5625 <p class=MsoNormal style='margin-left:.5in'>2) <b>Make cif file</b> – active 5626 after table from Method 1 is displayed; generate cif file by ISODISTORT web site 5627 with mode distortion constraints.</p> 5628 5629 <p class=MsoNormal style='margin-left:.5in'>3) <b>Make PDFfit phase</b> – 5630 active when mode distortions are shown. Makes new phase specific for fitting 5631 PDF data via PDFfit2.</p> 5728 5632 5729 5633 <p class=MsoNormal style='margin-left:.5in'>4) <b>Show modes</b> – active when … … 5736 5640 <h4 style='margin-left:.25in'><a name=Phase-Dysnomia>Dysnomia</a></h4> 5737 5641 5738 <p class=MsoNormal style='margin-left:.5in'>This is displayed if the <b>Use <span5739 class=SpellE>Dysnomia</span></b> box in the General tab is checked. <a5740 href="https://doi.org/10.1017/S088571561300002X"> <span class=SpellE>Dysnomia</span></a>5741 is a maximum entropy method for improving Fourier density maps. The <span 5742 c lass=SpellE>Dysnomia</span> tab gives controls for its operation.</p>5642 <p class=MsoNormal style='margin-left:.5in'>This is displayed if the <b>Use 5643 Dysnomia</b> box in the General tab is checked. <a 5644 href="https://doi.org/10.1017/S088571561300002X">Dysnomia</a> is a maximum 5645 entropy method for improving Fourier density maps. The Dysnomia tab gives 5646 controls for its operation.</p> 5743 5647 5744 5648 <h5 style='margin-left:.5in'>What can I do here?</h5> … … 5746 5650 <p class=MsoNormal style='margin-left:.5in'><b>Operations</b> menu – </p> 5747 5651 5748 <p class=MsoNormal style='margin-left:.5in'>1) <b>Load from <span class=SpellE>Dysnomia</span>5749 file</b> –as previously saved set of controls.</p>5750 5751 <p class=MsoNormal style='margin-left:.5in'>2) <b>Save <span class=SpellE>Dysnomia</span>5752 file</b> – saves data needed to run <span class=SpellE>Dysnomia</span></p>5753 5754 <p class=MsoNormal style='margin-left:.5in'>3) <b>Run <span class=SpellE>Dysnomia</span></b>5755 – execute the routine from GSAS-II (not a separate console). Replaces existing 5756 map withone improved by maximum entropy.</p>5652 <p class=MsoNormal style='margin-left:.5in'>1) <b>Load from Dysnomia file</b> – 5653 as previously saved set of controls.</p> 5654 5655 <p class=MsoNormal style='margin-left:.5in'>2) <b>Save Dysnomia file</b> – saves 5656 data needed to run Dysnomia</p> 5657 5658 <p class=MsoNormal style='margin-left:.5in'>3) <b>Run Dysnomia</b> – execute 5659 the routine from GSAS-II (not a separate console). Replaces existing map with 5660 one improved by maximum entropy.</p> 5757 5661 5758 5662 <p class=MsoNormal><o:p> </o:p></p> … … 5765 5669 </span></div> 5766 5670 5767 <p class=MsoNormal><span style='mso-fareast-font-family:"Times New Roman"'><!-- hhmts start -->Last modified: Thu Mar 24 16:28:36 CDT 2022 <!-- hhmts end --><o:p></o:p></span></p> 5671 <p class=MsoNormal><span style='mso-fareast-font-family:"Times New Roman"'><!-- hhmts start -->Last 5672 modified: Thu Mar 24 16:28:36 CDT 2022 <!-- hhmts end --><o:p></o:p></span></p> 5768 5673 5769 5674 </div>
Note: See TracChangeset
for help on using the changeset viewer.