SPECpy Documentation

Release 1

Lakhsmipriya Sukumar and Brian Toby

October 05, 2012

1 Module spec: SPEC-like emulation

2 Module spec: Global variables

3 Module spec: All Functions

4 Module macros: SPEC-like emulation
5 Module macros: All Functions

Index

CONTENTS

11
13

15

CHAPTER
ONE

MODULE SPEC: SPEC-LIKE
EMULATION

Python functions listed below are designed to emulate similar commands/macros in SPEC.

Motor interface routines.

Description Relative | Absolute
move motor mvr () mv ()
move motor with wait | umvr () umv ()
where is this motor? wm ()
where are all motors? wa ()

Scaler routines

description command

start and readout scaler after completion | ct ()

start scaler and return count_em{()
wait for scaler to complete wait_count ()
read scaler get_counts ()

SPECpy Documentation, Release 1

2 Chapter 1. Module spec: SPEC-like emulation

CHAPTER
TWO

MODULE SPEC: GLOBAL VARIABLES

COUNT defines the default counting time (sec) when ct is called without an argument. Defaults to 1 sec.

MAX_RETRIES Number of times to retry an EPICS operation (that are nominally expected to work on
the first try) before generating an exception.

DEBUG Set to True for code development/testing use only. Causes lots of print statements to be exe-
cuted.

ENABLE Initialized as False, which indicates that indicates that EPICS PV access should be simulated
(also allows module to be imported for documentation generation, etc. without importing PyEpics).
Use function EnableEPICS() to set ENABLE to True.

SPECpy Documentation, Release 1

4 Chapter 2. Module spec: Global variables

CHAPTER
THREE

MODULE SPEC: ALL FUNCTIONS

The functions available in this module are listed below.

spec.DefineMtr (symbol, prefix, comment="")
Define a motor for use in this module. Adds a motor to the motor table.

Parameters

» symbol (string) — a symbolic name for the motor. A global variable is defined in this mod-
ule’s name space with this name, This must be unique; exception specException is raised if
a name is reused.

o prefix (string) — the prefix for the motor PV (ioc:mnnn). Omit the motor record field name
(.VAL, etc.).

* comment (string) — a human-readable text field that describes the motor. Suggestion: in-
clude units and define the motion direction.

Returns value of entry created in motor table (str).

If you will use the ‘‘ from <module> import * ‘‘ python command to import these routines into the current
module’s name space, it is necessary to repeat this command after DefineScaler () to import the globals
defined within in the top namespace:

Example (recommended for interactive use):

>>> from spec import =«
>>> EnableEPICS ()
>>> DefineMtr ('mtrXX1l’,’iocl:mtr98’,’ Example motor #1')
>>> DefineMtr ('mtrXX2’,’iocl:mtr99’,’ Example motor #2')
>>> from spec import =«
>>> mv (mtrXX1l, 0.123)
Note that if the second from ... import * command is not used, the variables mrXX1 and mtrXX2

cannot be accessed and the final command will fail.

Alternate example (this is a cleaner way to code scripts, since namespaces are not mixed):

>>>
>>>
>>>
>>>
>>>

import spec

spec
spec
spec
spec

.EnableEPICS ()

.DefineMtr ('mtrXX1l’,’iocl:mtr98’,’Example motor #1')
.DefineMtr ('mtrXX2’,”iocl:mtr99’,’Example motor #2')
.mv (spec.mtrXX1l, 0.123)

It is also possible to mix the two styles:

SPECpy Documentation, Release 1

>>> import spec

>>> spec.EnableEPICS ()

>>> gspec.DefineMtr ('mtrXX1l’,’iocl:mtr98’,’Example motor #1')
>>> gpec.DefineMtr ('mtrXX2’,’iocl:mtr99’,’Example motor #2')
>>> from spec import =«

>>> mv(mtrXXl, 0.123)

spec.DefineScaler (prefix, channels=8, index=0)
Defines a scaler to be used for this module

Parameters

* prefix (string) — the prefix for the scaler PV (ioc:mnnn). Omit the scaler record field name
(.CNT, etc.)

¢ channels (int) — the number of channels associated with the scaler. Defaults to 8.

* index (int) — an index for the scaler, if more than one will be defined. The default (0) is used
to define the scaler that will be used when ct () is called with one or no arguments.

Example (recommended for interactive use):

>>> from spec import =«

>>> EnableEPICS ()

>>> DefineScaler (’idl:scalerl’,16)

>>> DefineScaler (’idl:scaler2’,index=1)

>>> ct ()

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

Alternate example (preferred for use in code):

>>> import spec as ct

>>> ct.EnableEPICS ()

>>> ct.DefineScaler (’iocl:3820:scalerl’,16)

>>> ct.DefineScaler (’iocl:3820:scaler2’,index=1)

>>> ct.ct ()

(., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
>>> ct.ct (index=1)

(1, 2, 3, 4, 5, 6, 7, 8]

spec.EnableEPICS (state=True)
Call to enable communication with EPICS.

If not called then the module will function in simulation mode only. If the PyEpics module cannot be loaded,
then simulation will also be used.

Parameters state (bool) — if False is specified, then simulation mode is used (default value, True)

spec.ExplainMtr (mitr)
Show the description for a motor, as defined in DefineMtr ()

Parameters mtr (various) — symbolic name for the motor, can take two forms.

Type | Description
str interpreted as a global symbol
int value references an entry in mtrDB

Returns motor description (str) or ‘?’ if not defined

6 Chapter 3. Module spec: All Functions

SPECpy Documentation, Release 1

spec.GetDet (index=0)

Return the main detector channel for the scaler or none if not defined. (See SetDet ()) This is used for
ASCAN, etc.

Parameters index (inf) — an index for the scaler, if more than one will be defined (see
DefineScaler ()). The default (0) is used if not specified.

Returns the channel number of the Detector

spec.GetMon (index=0)
Return the monitor channel for the scaler or none if not defined. (See SetMon ()) This is used for counting on
the Monitor.

Parameters index (inf) — an index for the scaler, if more than one will be defined (see
DefineScaler ()). The default (0) is used if not specified.

Returns the channel number of the Monitor

spec.GetMtrInfo (mitr)
Return a dictionary with motor information.

Parameters mtr (inf) — a value corresponding to an entry in the motor table. If the value does not
correspond to a motor entry, an exception is raised.

Returns motor position (float).

spec.ListMtrs ()
Returns a list of the variables defined as motor symbols.

Returns a python list of defined motor symbols (list of str values).

spec.PositionMtr (mtr, pos, wait=True)
Move a motor

Position a motor associated with mtr to position pos, wait for the move to complete if wait is True, or else return
immediately. The function attempts to verify the move command has been acted upon.

Parameters

* mtr (int) — a value corresponding to an entry in the motor table, as defined in
DefineMtr (). If the value does not correspond to a motor entry, an exception is raised.

* pos (float) — a value to position the motor. If the value is invalid or outside the limits an
exception occurs (todo: are hard limits checked?).

* wait (bool) — a flag that specifies if the move should be completed before the function
returns. If False, the function returns immediately.

spec.ReadMtr (mir)
Return the motor position associated with the passed motor value.

Parameters mtr (inf) — a value corresponding to an entry in the motor table. If the value does not
correspond to a motor entry, an exception is raised.

Returns motor position (float).

spec.SetDet (Detector=None, index=0)
Set the main detector channel for the scaler. The default is to restore this to the initial setting, where this is
undefined. This is used for ASCAN, etc.

Parameters

* Monitor (int) — channel number. If omitted the Monitor is set as undefined. The valid range
for this parameter is 1 through the number of channels.

SPECpy Documentation, Release 1

e index (inf) — an index for the scaler, if more than one will be defined (see
DefineScaler ()). The default (0) is used if not specified.

spec.SetMon (Monitor=None, index=0)
Set the monitor channel for the scaler. The default is to restore this to the initial setting, where this is undefined.
This is needed for counting on the Monitor.

Parameters

* Monitor (int) — channel number. If omitted the Monitor is set as undefined. The valid range
for this parameter is 1 through the number of channels.

e index (inf) — an index for the scaler, if more than one will be defined (see
DefineScaler ()). The default (0) is used if not specified.

spec.count_em (count=None, index=0)
Cause scaler to start counting for specified period.

Counting is on time if count is O or positive; Counting is on monitor if count < 0
Parameters
* count-time (float) — time (sec) to count, if omitted COUNT is used

e index (inf) — an index for the scaler, if more than one will be defined (see
DefineScaler ()). The default (0) is used if not specified.

Returns None

Example:

>>> count_em()

>>> # do other commands
>>> walt_count ()

>>> get_counts ()

spec.ct (count=None, index=0)
Cause scaler to count for specified period or to a specified number of counts on a prespecified channel (see
SetMon ())

Counting is on time if count is O or positive; Counting is on monitor if count < 0
Global variables are set after count is done: S (list) is set to the count values for the n channels (set in
DefineScaler ()) Time (float) is set to the counting time
Parameters
* count-time (float) — time (sec) to count, if omitted COUNT is used

* index (int) — an index for the scaler, if more than one is defined (see DefineScaler ()).
The default (0) is used if not specified.

Returns count values for the channels (see DefineScaler ())

Example:

>>> ct ()

[10000000.0, 505219.0, 359.0, 499.0, 389.0, 356.0, 114.0, 53.0]
>>> SetMon (4)

>>> ¢t (-1000)

[20085739.0, 1011505.0, 719.0, 1000.0, 781.0, 715.0, 226.0, 105.0]

8 Chapter 3. Module spec: All Functions

SPECpy Documentation, Release 1

spec.get_counts (wait=False)
Read scaler with optional delay, must follow count_em

reads count values for the channels (see DefineScaler ())

Parameters wait (bool) — True causes the routine to wait for the scaler to complete; False (default)
will read the scaler instananeously

Returns a list of channels values

Example:

>>> get_counts ()
(1, 2, 3, 4, 5, 6, 7, 8]

spec.mv (mtr, pos)
Move motor without wait

If the move cannot be made, an exception is raised.
Parameters

e mtr (int) — a value corresponding to an entry in the motor table, as defined in
DefineMtr (). If the value does not correspond to a motor entry, an exception is raised.

* pos (float) — a value to position the motor. If the value is invalid or outside the limits, an
exception occurs.
Example:

>>> mv (samX, 0.1)

spec.mvr (mtr, delta)
Move motor relative to current position without wait.

If the move cannot be made, an exception is raised.
Parameters

e mtr (int) — a value corresponding to an entry in the motor table, as defined in
DefineMtr (). If the value does not correspond to a motor entry, an exception is raised.

* delta (float) — a value to offset the motor. If the resulting value is invalid or outside the
limits, an exception occurs.
Example:

>>> mvr (samX, 0.1)

spec.umv (mtr, pos)
Move motor with wait.

If the move cannot be completed, an exception is raised.
Parameters

e mtr (int) — a value corresponding to an entry in the motor table, as defined in
DefineMtr (). If the value does not correspond to a motor entry, an exception is raised.

* pos (float) — a value to position the motor. If the value is invalid or outside the limits, an
exception occurs.

SPECpy Documentation, Release 1

Example:

>>> umv (samX, 0.1)

spec.umvr (mtr, delta)
Move motor relative to current position with wait.

If the move cannot be completed, an exception is raised.
Parameters

e mtr (int) — a value corresponding to an entry in the motor table, as defined in
DefineMtr (). If the value does not correspond to a motor entry, an exception is raised.

* delta (floar) — a value to offset the motor. If the resulting value is invalid or outside the
limits, an exception occurs.
Example:

>>> umvr (samX, 0.1)

spec.wa (label=False)
Print positions of all motors defined using DefineMtr ().

Parameters label (bool) — a flag that specifies if the list should include the motor descriptions. If
omitted or False, the descriptions are not included.

Example:
>>> wa ()
samX 1.0
samz 0.0
>>> wa (True)
samX 1.0 sample X position (mm) + outboard
sam?z 0.0 sample Z position (mm) + up

spec.wait_count ()
Wait for scaler to finish, must follow count_em

Returns None

Example:

>>> walt_count ()

spec.wm (*mtrs)
Read out specified motor(s).

Arguments one or more motor table entries that are defined in DefineMtr ().
Returns a single float if a single argument is passed to wm. Returns a list of floats if more than one
argument is passed.
Example:

>>> wm(samX, samZ)
[1.0, 0.0]

10 Chapter 3. Module spec: All Functions

CHAPTER
FOUR

MODULE MACROS: SPEC-LIKE
EMULATION

Python functions listed below are designed to emulate similar macros in SPEC.

macro Description
beep_dac () Causes a beep to sound
specdate () Returns the date/time formated like Spec

add_logging_PV ()

Adds a PV to the list of items to be reported

add_logging_Global ()

Adds a Global variable to the list of items to be reported

add_logging_PVobij ()

Adds a PV object to the list of items to be reported

add_logging_motor ()

Adds a motor reference to the list of items to be reported

write_logging_header ()

Writes a header line with labels for each logged item

write_logging_parameters ()

Write the current value of each logged variable

Cclose ()

Close 11D fast shutter in B hutch

Copen ()

Open 11D fast shutter in B hutch

shutter_sweep ()

Set 11D fast shutter to external control

shutter_manual ()

Set 11D fast shutter to manually control

Sopen ()

Open 11D Safety shutter to bring beam into 1-ID-C

check_beam_shutterA ()

Open 11D Safety shutter to bring beam into 1-ID-A

11

SPECpy Documentation, Release 1

12 Chapter 4. Module macros: SPEC-like emulation

CHAPTER
FIVE

MODULE MACROS: ALL FUNCTIONS

The functions available in this module are listed below.

macros .Cclose ()
Close 11D fast shutter in B hutch

macros .Copen ()
Open 11D fast shutter in B hutch

macros.MakeMtrDefaults (file="/home/beams/S1IDUSER/specpy/1ID/11D_stages.csv’)
Development routine to create an initialization file from a spreadsheet describing the 1ID beamline motor as-
signments

opens file /home/beams/S1IDUSER/specpy/11D/11D_stages.csv
writes file /home/beams/S 1 IDUSER/specpy/11D/mtrsetup.py.new
The output file is renamed before use to mtrsetup.py

macros.Sopen ()
Open 11D Safety shutter to bring beam into 1-ID-C

macros.add_logging_Global (ixt, var)
Define a global variable to be recorded when write_logging_parameters () is called

Parameters

e txt (str) - defines a text string, preferably short, to be used when
write_logging_header () is called as a header for the item to be logged.

e var (str) — defines a Python variable that will be logged each time
write_logging_parameters () is called. Note that this is read inside the
macros module so the variable must be defined inside that module or must be prefixed by a
reference to a module referenced in that module, e.g. spec.S[0]

macros.add_logging PV (&xt, PV, as_string=False)
Define a PV to be recorded when write_logging_parameters () is called.

Parameters

e txt (str) - defines a text string, preferably short, to be used when
write_logging_header () is called as a header for the item to be logged.

* PV (str) — defines an EPICS Process Variable that will be read and logged each time
write_logging_parameters () is called.

* as_string (bool) — if True, the PV will be translated to a string. When False (default) the
native data type will be used. Use of True is of greatest for waveform records that are used
to store character strings as a series of integers.

13

SPECpy Documentation, Release 1

macros.add_logging_ PVobj (&xt, PVobj, as_string=False)
Define a PVobj to be recorded when write_logging_parameters () is called

Parameters

e txt (str) - defines a text string, preferably short, to be used when
write_logging_header () is called as a header for the item to be logged.

* PV (epics.PV) — defines a PyEpics PV object that is connected to an EPICS Process
Variable. The PV method .get() will be used to read that PV to log it each time
write_logging_parameters () is called.

* as_string (bool) — if True, the PV value will be translated to a string. When False (default)
the native data type will be used. Use of True is of greatest for waveform records that are
used to store character strings as a series of integers.

macros.add logging motor (mifr)
Define a motor object to be recorded when write_logging_parameters () is called. Note that the head-
ing text string is defined as the motor’s symbol (see spec.DefineMtr ()).

Parameters mtr (str) —a reference to a motor object, returned by spec.DefineMtr () or defined
in the motor symbol. The position of the motor will be read and logged each time

write_logging_parameters () is called.

macros .beep_dac (beeptime=1.0)
Set the 1-ID beeper on for a fixed period, which defaults to 1 second uses PV object beeper (defined as
1id:DAC1_8.VAL) makes sure that the beeper is actually turned on and off throws exception if beeper fails

Parameters beeptime (floar) — time to sound the beeper (sec), defaults to 1.0

macros.check _beam shutterA ()
Check if A shutter is open and if not, open it

macros.init_logging()
Initialize the list of data items to be logged

macros.shutter_manual ()
Set 1ID fast shutter so that it will not be controlled by the GE TTL signal and can be manually opened and
closed with Copen() and Cclose()

macros.shutter_sweep ()
Set 11D fast shutter so that it will be controlled by the GE TTL signal

macros.specdate ()
format current date/time as produced in Spec

Returns the current date/time as a string, formatted like “Thu Oct 04 18:24:14 2012”

macros.write_logging_header (filename="")
Write a header for parameters recorded when write_logging_parameters () is called.

Parameters filename (str) — a filename to be be used for output. If not specified, the output is sent
to the terminal window.

macros.write_logging_parameters (filename="")
Record the current value of all items tagged to be recorded in add_logging_ PV (),
add_logging_Global (),add_logging_PVobj (), or

add_logging_motor ()

Parameters filename (str) — a filename to be be used for output. If not specified, the output is sent
to the terminal window.

14 Chapter 5. Module macros: All Functions

A

add_logging_Global() (in module macros), 13
add_logging_motor() (in module macros), 14
add_logging_PV() (in module macros), 13

add_logging_PVobj() (in module macros), 13

B

beep_dac() (in module macros), 14

C

Cclose() (in module macros), 13
check_beam_shutterA() (in module macros), 14
Copen() (in module macros), 13

COUNT, 3

count_em() (in module spec), 8

ct() (in module spec), 8

D

DefineMtr() (in module spec), 5
DefineScaler() (in module spec), 6

E

EnableEPICS() (in module spec), 6
ExplainMtr() (in module spec), 6

G

get_counts() (in module spec), 8
GetDet() (in module spec), 6
GetMon() (in module spec), 7
GetMtrInfo() (in module spec), 7

init_logging() (in module macros), 14

L

ListMtrs() (in module spec), 7

M

MakeMtrDefaults() (in module macros), 13
MAX_RETRIES, 3

INDEX

mv() (in module spec), 9
mvr() (in module spec), 9

P

PositionMtr() (in module spec), 7

R

ReadMtr() (in module spec), 7

S

SetDet() (in module spec), 7

SetMon() (in module spec), 8
shutter_manual() (in module macros), 14
shutter_sweep() (in module macros), 14
Sopen() (in module macros), 13
specdate() (in module macros), 14

U

umv() (in module spec), 9
umvr() (in module spec), 10

W

wa() (in module spec), 10

wait_count() (in module spec), 10

wm() (in module spec), 10
write_logging_header() (in module macros), 14

write_logging_parameters() (in module macros), 14

15

	Module spec: SPEC-like emulation
	Module spec: Global variables
	Module spec: All Functions
	Module macros: SPEC-like emulation
	Module macros: All Functions
	Index

