Changeset 902
- Timestamp:
- May 10, 2013 3:07:50 PM (10 years ago)
- Location:
- trunk
- Files:
-
- 5 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/Exercises/single crystal/IB3.EXP
r889 r902 11 11 HSTRY 9 EXPEDT Win32 Jan 30 15:32:30 2013 L O 12 12 HSTRY 10 GENLES Win32 Jan 30 15:32:35 2013 13 HSTRY 11 GENLES Win32 Apr 18 15:20:59 2013 14 HSTRY 12 EXPEDT Win32 May 02 11:05:24 2013 L L 13 15 DSGL CDAT1 DRAD ARAD NOFO 14 16 FOUR CDAT1 PTSN X 1 NOPR 0.00 999.99 … … 126 128 INST 1PHIR -1. 127 129 ZZZZZZZZZZZZ Last EXP file record 128 HSTRY 1 1 GENLES Win32 Apr 18 15:20:592013130 HSTRY 13 GENLES Win32 May 02 11:05:28 2013 -
trunk/Exercises/single crystal/Ib3.hkl
r837 r902 1 2 0 0 27122. 308. 2 2 1 1 49. 3. 3 2 2 0 28848. 352. 4 2 2 2 15498. 169. 5 3 1 2 36. 3. 6 3 2 1 1466. 20. 7 3 3 2 3000. 36. 8 4 0 0 6407. 69. 9 4 0 2 8588. 95. 10 4 1 1 1631. 22. 11 4 1 3 231. 5. 12 4 2 0 6556. 73. 13 4 2 2 21029. 223. 14 4 3 1 1285. 20. 15 4 3 3 242. 6. 16 4 4 0 21018. 230. 17 4 4 2 14827. 158. 18 4 4 4 14423. 173. 19 5 1 2 54. 4. 20 5 1 4 306. 7. 21 5 2 1 322. 6. 22 5 2 3 138. 6. 23 5 3 2 260. 7. 24 5 3 4 59. 6. 25 5 4 1 495. 10. 26 5 4 3 339. 8. 27 5 5 2 99. 6. 28 5 5 4 209. 8. 29 6 0 0 6565. 73. 30 6 0 2 16337. 176. 31 6 0 4 12853. 145. 32 6 1 1 453. 8. 33 6 1 3 43. 6. 34 6 1 5 215. 7. 35 6 2 0 12028. 135. 36 6 2 2 10473. 117. 37 6 2 4 12778. 142. 38 6 3 1 196. 7. 39 6 3 3 153. 7. 40 6 3 5 64. 6. 41 6 4 0 8797. 106. 42 6 4 2 10687. 121. 43 6 4 4 5125. 63. 44 6 5 1 747. 14. 45 6 5 3 167. 7. 46 6 5 5 130. 7. 47 6 6 0 7277. 88. 48 6 6 2 5031. 65. 49 6 6 4 6183. 76. 50 6 6 6 5581. 96. 51 7 1 2 605. 13. 52 7 1 4 188. 8. 53 7 1 6 396. 12. 54 7 2 1 296. 9. 55 7 2 3 947. 20. 56 7 2 5 268. 10. 57 7 3 2 57. 9. 58 7 3 4 74. 9. 59 7 3 6 82. 11. 60 7 4 1 5. 9. 61 7 4 3 35. 8. 62 7 4 5 39. 10. 63 7 5 2 66. 8. 64 7 5 4 10. 9. 65 7 5 6 56. 11. 66 7 6 1 99. 8. 67 7 6 3 375. 12. 68 7 6 5 89. 9. 69 7 7 2 68. 12. 70 7 7 4 76. 13. 71 7 7 6 104. 14. 72 8 0 0 10512. 121. 73 8 0 2 7939. 98. 74 8 0 4 8360. 104. 75 8 0 6 5167. 72. 76 8 1 1 117. 7. 77 8 1 3 11. 10. 78 8 1 5 1. 11. 79 8 1 7 15. 17. 80 8 2 0 9074. 107. 81 8 2 2 9085. 109. 82 8 2 4 4727. 66. 83 8 2 6 5783. 80. 84 8 3 1 499. 12. 85 8 3 3 43. 9. 86 8 3 5 9. 9. 87 8 3 7 13. 13. 88 8 4 0 8505. 107. 89 8 4 2 4897. 70. 90 8 4 4 4946. 72. 91 8 4 6 4093. 65. 92 8 5 1 139. 9. 93 8 5 3 49. 10. 94 8 5 5 3. 14. 95 8 5 7 108. 15. 96 8 6 0 2942. 51. 97 8 6 2 4861. 72. 98 8 6 4 4545. 68. 99 8 6 6 4676. 72. 100 8 7 1 -5. 18. 101 8 7 3 6. 17. 102 8 7 5 61. 14. 103 8 8 0 3757. 79. 104 8 8 2 3620. 78. 105 8 8 4 4630. 91. 106 8 8 6 2443. 58. 107 9 1 2 105. 8. 108 9 1 4 70. 9. 109 9 1 6 99. 11. 110 9 1 8 17. 20. 111 9 2 1 168. 9. 112 9 2 3 188. 9. 113 9 2 5 113. 10. 114 9 2 7 151. 15. 115 9 3 2 87. 10. 116 9 3 4 78. 9. 117 9 3 6 93. 10. 118 9 3 8 24. 24. 119 9 4 1 54. 8. 120 9 4 3 10. 12. 121 9 4 5 108. 11. 122 9 4 7 18. 15. 123 9 5 2 135. 10. 124 9 5 4 144. 11. 125 9 5 6 120. 11. 126 9 5 8 28. 24. 127 9 6 1 11. 13. 128 9 6 3 30. 10. 129 9 6 5 78. 10. 130 9 6 7 -23. 24. 131 9 7 2 91. 14. 132 9 7 4 118. 15. 133 9 7 6 45. 24. 134 9 8 1 23. 20. 135 9 8 3 17. 22. 136 9 8 5 22. 21. 137 9 9 2 43. 15. 138 9 9 4 91. 15. 139 9 9 6 33. 27. 140 10 0 0 3482. 53. 141 10 0 2 3848. 59. 142 10 0 4 3323. 54. 143 10 0 6 5699. 104. 144 10 0 8 2845. 72. 145 10 1 1 78. 7. 146 10 1 3 1. 11. 147 10 1 5 32. 13. 148 10 1 7 -9. 22. 149 10 1 9 -43. 23. 150 10 2 0 6152. 82. 151 10 2 2 3673. 57. 152 10 2 4 3481. 57. 153 10 2 6 3733. 81. 154 10 2 8 3388. 81. 155 10 3 1 81. 9. 156 10 3 3 42. 8. 157 10 3 5 6. 13. 158 10 3 7 8. 22. 159 10 3 9 10. 22. 160 10 4 0 5847. 82. 161 10 4 2 5341. 77. 162 10 4 4 2829. 52. 163 10 4 6 2881. 71. 164 10 4 8 1912. 48. 165 10 5 1 22. 14. 166 10 5 3 28. 11. 167 10 5 5 95. 11. 168 10 5 7 26. 21. 169 10 5 9 -1. 23. 170 10 6 0 3385. 59. 171 10 6 2 3426. 60. 172 10 6 4 4193. 70. 173 10 6 6 1910. 52. 174 10 6 8 1567. 39. 175 10 7 1 27. 23. 176 10 7 3 14. 25. 177 10 7 5 16. 17. 178 10 8 0 1721. 47. 179 10 8 2 2941. 76. 180 10 8 4 2478. 62. 181 10 9 1 48. 16. 182 10 9 3 -1. 24. 183 10 9 5 45. 26. 184 10 10 0 1657. 47. 185 10 10 2 1450. 38. 186 10 10 4 1529. 42. 187 11 1 2 178. 10. 188 11 1 4 78. 9. 189 11 1 6 28. 22. 190 11 1 8 86. 16. 191 11 1 10 92. 17. 192 11 2 1 -2. 11. 193 11 2 3 5. 13. 194 11 2 5 148. 11. 195 11 2 7 58. 16. 196 11 2 9 2. 25. 197 11 3 2 71. 11. 198 11 3 4 22. 14. 199 11 3 6 -23. 25. 200 11 3 8 66. 17. 201 11 3 10 49. 25. 202 11 4 1 21. 12. 203 11 4 3 12. 11. 204 11 4 5 40. 12. 205 11 4 7 26. 24. 206 11 4 9 25. 17. 207 11 5 2 73. 12. 208 11 5 4 68. 13. 209 11 5 6 24. 22. 210 11 5 8 6. 25. 211 11 5 10 -15. 26. 212 11 6 1 12. 12. 213 11 6 3 1. 15. 214 11 6 5 23. 16. 215 11 6 7 31. 16. 216 11 6 9 27. 27. 217 11 7 2 91. 19. 218 11 7 4 124. 20. 219 11 8 1 -23. 27. 220 11 8 3 30. 25. 221 11 8 5 36. 26. 222 11 9 2 36. 18. 223 11 9 4 88. 17. 224 11 10 1 -17. 26. 225 11 10 3 36. 24. 226 11 10 5 -39. 28. 227 11 11 2 31. 26. 228 11 11 4 -23. 28. 229 12 0 0 2474. 47. 230 12 0 2 2389. 46. 231 12 0 4 2915. 54. 232 12 0 6 2421. 62. 233 12 0 8 1806. 51. 234 12 0 10 1015. 34. 235 12 1 1 -5. 13. 236 12 1 3 8. 13. 237 12 1 5 13. 14. 238 12 1 7 3. 25. 239 12 1 9 37. 24. 240 12 1 11 24. 25. 241 12 2 0 2509. 47. 242 12 2 2 2796. 51. 243 12 2 4 2174. 41. 244 12 2 6 2542. 64. 245 12 2 8 1433. 42. 246 12 2 10 1208. 38. 247 12 3 1 26. 11. 248 12 3 3 25. 14. 249 12 3 5 11. 18. 250 12 3 7 -60. 27. 251 12 3 9 55. 18. 252 12 4 0 2957. 55. 253 12 4 2 2363. 44. 254 12 4 4 2325. 44. 255 12 4 6 1550. 41. 256 12 4 8 1472. 43. 257 12 4 10 914. 33. 258 12 5 1 9. 14. 259 12 5 3 119. 11. 260 12 5 5 56. 11. 261 12 5 7 -11. 25. 262 12 5 9 9. 24. 263 12 6 0 1744. 36. 264 12 6 2 2292. 44. 265 12 6 4 1789. 36. 266 12 6 6 1589. 43. 267 12 6 8 1078. 35. 268 12 7 1 55. 30. 269 12 7 3 43. 32. 270 12 7 5 44. 20. 271 12 8 0 1899. 56. 272 12 8 2 1612. 44. 273 12 8 4 1642. 47. 274 12 9 1 109. 22. 275 12 9 3 43. 28. 276 12 9 5 4. 28. 277 12 10 0 1213. 39. 278 12 10 2 1211. 39. 279 12 10 4 893. 33. 280 12 11 1 13. 29. 281 13 1 2 127. 12. 282 13 1 4 82. 11. 283 13 1 6 23. 25. 284 13 1 8 45. 25. 285 13 2 1 14. 14. 286 13 2 3 -14. 14. 287 13 2 5 10. 16. 288 13 2 7 32. 23. 289 13 2 9 -23. 26. 290 13 3 2 47. 12. 291 13 3 4 59. 13. 292 13 3 6 -35. 24. 293 13 3 8 -2. 27. 294 13 4 1 6. 14. 295 13 4 3 -10. 15. 296 13 4 5 14. 13. 297 13 4 7 -7. 27. 298 13 4 9 38. 29. 299 13 5 2 55. 13. 300 13 5 4 32. 17. 301 13 5 6 41. 23. 302 13 5 8 24. 28. 303 13 6 1 5. 16. 304 13 6 3 -11. 17. 305 13 6 5 -3. 18. 306 13 6 7 31. 28. 307 13 7 2 92. 18. 308 13 7 4 75. 20. 309 13 8 1 15. 29. 310 13 8 3 22. 28. 311 13 8 5 -32. 31. 312 13 9 2 17. 21. 313 13 9 4 79. 19. 314 14 0 0 1631. 33. 315 14 0 2 2128. 42. 316 14 0 4 1481. 30. 317 14 0 6 1094. 36. 318 14 0 8 641. 30. 319 14 1 1 11. 14. 320 14 1 3 11. 16. 321 14 1 5 -9. 16. 322 14 1 7 2. 25. 323 14 2 0 1534. 31. 324 14 2 2 1441. 29. 325 14 2 4 1573. 33. 326 14 2 6 1003. 35. 327 14 2 8 937. 36. 328 14 3 1 11. 15. 329 14 3 3 37. 15. 330 14 3 5 -5. 17. 331 14 3 7 29. 27. 332 14 4 0 935. 22. 333 14 4 2 1233. 27. 334 14 4 4 1237. 27. 335 14 4 6 1399. 39. 336 14 5 1 -35. 17. 337 14 5 3 10. 18. 338 14 5 5 35. 18. 339 14 6 0 1257. 28. 340 14 6 2 993. 25. 341 14 6 4 1170. 27. 342 14 6 6 1009. 35. 343 14 7 1 27. 19. 344 14 7 3 45. 26. 345 14 8 0 1407. 42. 346 14 8 2 1238. 41. 347 15 1 2 52. 13. 348 15 1 4 28. 13. 349 15 1 6 42. 27. 350 15 2 1 17. 14. 351 15 2 3 -5. 16. 352 15 2 5 27. 13. 353 15 3 2 46. 12. 354 15 3 4 50. 13. 355 15 4 1 -9. 15. 356 15 4 3 7. 13. 357 15 4 5 -2. 24. 358 15 5 2 2. 18. 359 15 5 4 -11. 20. 360 15 6 1 22. 16. 361 16 0 0 930. 24. 362 16 0 2 855. 22. 363 16 1 1 28. 13. 364 16 1 3 18. 16. 365 16 2 0 711. 21. 366 16 2 2 859. 23. 367 16 3 1 41. 17. 368 0 0 0 0. 0. 1 2 0 0 2.7121949E+04 3.0822229E+02 2 2 1 1 4.9317593E+01 2.6211131E+00 3 2 2 0 2.8847758E+04 3.5249432E+02 4 2 2 2 1.5497776E+04 1.6936633E+02 5 3 1 2 3.6289627E+01 3.3222270E+00 6 3 2 1 1.4658661E+03 2.0175362E+01 7 3 3 2 3.0003376E+03 3.6305267E+01 8 4 0 0 6.4070518E+03 6.8860909E+01 9 4 0 2 8.5881631E+03 9.4974556E+01 10 4 1 1 1.6310632E+03 2.2029886E+01 11 4 1 3 2.3072946E+02 5.3697643E+00 12 4 2 0 6.5560679E+03 7.3443268E+01 13 4 2 2 2.1028824E+04 2.2317854E+02 14 4 3 1 1.2849993E+03 1.9863707E+01 15 4 3 3 2.4226476E+02 6.1932755E+00 16 4 4 0 2.1017967E+04 2.3038803E+02 17 4 4 2 1.4826683E+04 1.5796191E+02 18 4 4 4 1.4423469E+04 1.7314207E+02 19 5 1 2 5.4463314E+01 4.2724576E+00 20 5 1 4 3.0603024E+02 7.2567844E+00 21 5 2 1 3.2191000E+02 6.4044366E+00 22 5 2 3 1.3781905E+02 5.9291306E+00 23 5 3 2 2.5985880E+02 7.0459385E+00 24 5 3 4 5.8711216E+01 6.4500489E+00 25 5 4 1 4.9477771E+02 9.6135836E+00 26 5 4 3 3.3870740E+02 8.3022337E+00 27 5 5 2 9.9317039E+01 5.9958701E+00 28 5 5 4 2.0927051E+02 7.7788410E+00 29 6 0 0 6.5646367E+03 7.2986481E+01 30 6 0 2 1.6336994E+04 1.7583315E+02 31 6 0 4 1.2852802E+04 1.4489189E+02 32 6 1 1 4.5314856E+02 8.3674650E+00 33 6 1 3 4.3002472E+01 5.5000892E+00 34 6 1 5 2.1459210E+02 7.4138145E+00 35 6 2 0 1.2028123E+04 1.3491237E+02 36 6 2 2 1.0472623E+04 1.1711599E+02 37 6 2 4 1.2777625E+04 1.4167549E+02 38 6 3 1 1.9580228E+02 6.6175914E+00 39 6 3 3 1.5281873E+02 6.6493282E+00 40 6 3 5 6.3834923E+01 6.1485162E+00 41 6 4 0 8.7969707E+03 1.0569109E+02 42 6 4 2 1.0686698E+04 1.2108913E+02 43 6 4 4 5.1250732E+03 6.3210876E+01 44 6 5 1 7.4653790E+02 1.3782561E+01 45 6 5 3 1.6683049E+02 7.4227324E+00 46 6 5 5 1.3003526E+02 7.4974966E+00 47 6 6 0 7.2765396E+03 8.7603844E+01 48 6 6 2 5.0305410E+03 6.4505821E+01 49 6 6 4 6.1826548E+03 7.5582222E+01 50 6 6 6 5.5814902E+03 9.5954880E+01 51 7 1 2 6.0483221E+02 1.2774470E+01 52 7 1 4 1.8779329E+02 8.4055824E+00 53 7 1 6 3.9579297E+02 1.1618416E+01 54 7 2 1 2.9555484E+02 9.1925097E+00 55 7 2 3 9.4709460E+02 1.9681351E+01 56 7 2 5 2.6811108E+02 1.0400242E+01 57 7 3 2 5.6951832E+01 8.5794897E+00 58 7 3 4 7.3849670E+01 8.5732727E+00 59 7 3 6 8.1928719E+01 1.1320983E+01 60 7 4 1 5.4621210E+00 8.7722673E+00 61 7 4 3 3.5108143E+01 7.9357419E+00 62 7 4 5 3.8592377E+01 9.9421797E+00 63 7 5 2 6.6119324E+01 7.5340967E+00 64 7 5 4 1.0212636E+01 9.0182028E+00 65 7 5 6 5.6440632E+01 1.0995992E+01 66 7 6 1 9.9139923E+01 8.2071695E+00 67 7 6 3 3.7476904E+02 1.1773300E+01 68 7 6 5 8.8534424E+01 9.2877474E+00 69 7 7 2 6.8090019E+01 1.2432984E+01 70 7 7 4 7.6331352E+01 1.2569618E+01 71 7 7 6 1.0360219E+02 1.4087581E+01 72 8 0 0 1.0512373E+04 1.2082922E+02 73 8 0 2 7.9394272E+03 9.7813774E+01 74 8 0 4 8.3604990E+03 1.0445655E+02 75 8 0 6 5.1670098E+03 7.2118080E+01 76 8 1 1 1.1686567E+02 7.3574128E+00 77 8 1 3 1.1308165E+01 1.0380780E+01 78 8 1 5 1.3029640E+00 1.0961017E+01 79 8 1 7 1.4546692E+01 1.7325029E+01 80 8 2 0 9.0743545E+03 1.0723550E+02 81 8 2 2 9.0854854E+03 1.0879749E+02 82 8 2 4 4.7274414E+03 6.6466331E+01 83 8 2 6 5.7831216E+03 7.9740540E+01 84 8 3 1 4.9946542E+02 1.2361934E+01 85 8 3 3 4.3289829E+01 8.6072330E+00 86 8 3 5 8.6637020E+00 8.9831648E+00 87 8 3 7 1.3141375E+01 1.2745420E+01 88 8 4 0 8.5054746E+03 1.0656744E+02 89 8 4 2 4.8968896E+03 7.0293976E+01 90 8 4 4 4.9463257E+03 7.1848701E+01 91 8 4 6 4.0932651E+03 6.4511307E+01 92 8 5 1 1.3927199E+02 8.8924780E+00 93 8 5 3 4.8815407E+01 1.0171098E+01 94 8 5 5 2.9043770E+00 1.3632262E+01 95 8 5 7 1.0812471E+02 1.4973615E+01 96 8 6 0 2.9418616E+03 5.1135643E+01 97 8 6 2 4.8608989E+03 7.1702515E+01 98 8 6 4 4.5454736E+03 6.7662361E+01 99 8 6 6 4.6758892E+03 7.1581429E+01 100 8 7 1 -5.4093294E+00 1.7611584E+01 101 8 7 3 6.3710494E+00 1.7447954E+01 102 8 7 5 6.1342915E+01 1.4169829E+01 103 8 8 0 3.7572046E+03 7.9093781E+01 104 8 8 2 3.6201833E+03 7.7947266E+01 105 8 8 4 4.6299751E+03 9.0746780E+01 106 8 8 6 2.4427693E+03 5.8276630E+01 107 9 1 2 1.0484268E+02 8.0234184E+00 108 9 1 4 6.9681229E+01 9.1193066E+00 109 9 1 6 9.8733559E+01 1.0636352E+01 110 9 1 8 1.7209953E+01 2.0049730E+01 111 9 2 1 1.6834695E+02 8.7162552E+00 112 9 2 3 1.8808154E+02 9.3070164E+00 113 9 2 5 1.1347279E+02 9.5253134E+00 114 9 2 7 1.5051671E+02 1.4833106E+01 115 9 3 2 8.6926270E+01 9.7928009E+00 116 9 3 4 7.8041725E+01 8.5235691E+00 117 9 3 6 9.2799774E+01 9.8119087E+00 118 9 3 8 2.3582346E+01 2.4164270E+01 119 9 4 1 5.3945595E+01 8.1682758E+00 120 9 4 3 1.0235255E+01 1.2129930E+01 121 9 4 5 1.0821153E+02 1.0771105E+01 122 9 4 7 1.7677940E+01 1.4780512E+01 123 9 5 2 1.3465601E+02 1.0075761E+01 124 9 5 4 1.4411266E+02 1.0834639E+01 125 9 5 6 1.2023254E+02 1.1076150E+01 126 9 5 8 2.7676849E+01 2.3614555E+01 127 9 6 1 1.1451265E+01 1.3052294E+01 128 9 6 3 2.9710073E+01 1.0279522E+01 129 9 6 5 7.8001305E+01 9.8853159E+00 130 9 6 7 -2.2678812E+01 2.4490910E+01 131 9 7 2 9.0938713E+01 1.4182940E+01 132 9 7 4 1.1786874E+02 1.4703261E+01 133 9 7 6 4.4500961E+01 2.4494017E+01 134 9 8 1 2.2937550E+01 1.9988062E+01 135 9 8 3 1.7439445E+01 2.2283989E+01 136 9 8 5 2.2146114E+01 2.0640036E+01 137 9 9 2 4.3256325E+01 1.5000179E+01 138 9 9 4 9.1281151E+01 1.5177603E+01 139 9 9 6 3.3077816E+01 2.6559498E+01 140 10 0 0 3.4817065E+03 5.3158272E+01 141 10 0 2 3.8477017E+03 5.8519081E+01 142 10 0 4 3.3234106E+03 5.4332352E+01 143 10 0 6 5.6991987E+03 1.0420988E+02 144 10 0 8 2.8448433E+03 7.2341339E+01 145 10 1 1 7.8153496E+01 7.4437838E+00 146 10 1 3 9.3684012E-01 1.1299864E+01 147 10 1 5 3.1836075E+01 1.2573244E+01 148 10 1 7 -8.7990742E+00 2.2167797E+01 149 10 1 9 -4.2998718E+01 2.3026068E+01 150 10 2 0 6.1516929E+03 8.2109894E+01 151 10 2 2 3.6730813E+03 5.6597351E+01 152 10 2 4 3.4811809E+03 5.6598980E+01 153 10 2 6 3.7330313E+03 8.0647263E+01 154 10 2 8 3.3880378E+03 8.0961952E+01 155 10 3 1 8.1446541E+01 8.6137590E+00 156 10 3 3 4.1940441E+01 8.1433077E+00 157 10 3 5 6.2055268E+00 1.2837515E+01 158 10 3 7 7.7778864E+00 2.1999319E+01 159 10 3 9 1.0068817E+01 2.1767212E+01 160 10 4 0 5.8474404E+03 8.1799706E+01 161 10 4 2 5.3407622E+03 7.7044792E+01 162 10 4 4 2.8285540E+03 5.1506233E+01 163 10 4 6 2.8810713E+03 7.1148140E+01 164 10 4 8 1.9124695E+03 4.8445232E+01 165 10 5 1 2.2416632E+01 1.3643090E+01 166 10 5 3 2.8162888E+01 1.0937288E+01 167 10 5 5 9.4810097E+01 1.1099229E+01 168 10 5 7 2.6341276E+01 2.1254478E+01 169 10 5 9 -1.4959868E+00 2.3415903E+01 170 10 6 0 3.3853972E+03 5.8639729E+01 171 10 6 2 3.4258364E+03 6.0236614E+01 172 10 6 4 4.1933833E+03 6.9716042E+01 173 10 6 6 1.9097072E+03 5.2392548E+01 174 10 6 8 1.5672767E+03 3.9102886E+01 175 10 7 1 2.7497168E+01 2.3021072E+01 176 10 7 3 1.3941813E+01 2.4547493E+01 177 10 7 5 1.5932944E+01 1.6513279E+01 178 10 8 0 1.7205837E+03 4.6885090E+01 179 10 8 2 2.9413835E+03 7.5927277E+01 180 10 8 4 2.4780408E+03 6.1523808E+01 181 10 9 1 4.8242050E+01 1.6140705E+01 182 10 9 3 -1.4434519E+00 2.4453629E+01 183 10 9 5 4.4737438E+01 2.6090021E+01 184 10 10 0 1.6570437E+03 4.7143627E+01 185 10 10 2 1.4497009E+03 3.7939766E+01 186 10 10 4 1.5290170E+03 4.2415424E+01 187 11 1 2 1.7806166E+02 1.0156466E+01 188 11 1 4 7.8407021E+01 8.9100742E+00 189 11 1 6 2.8249372E+01 2.1982700E+01 190 11 1 8 8.5848145E+01 1.6292345E+01 191 11 1 10 9.1728493E+01 1.7105474E+01 192 11 2 1 -1.6050764E+00 1.1172175E+01 193 11 2 3 5.3215923E+00 1.2601842E+01 194 11 2 5 1.4768103E+02 1.0795611E+01 195 11 2 7 5.8027153E+01 1.6025570E+01 196 11 2 9 1.5410479E+00 2.5086449E+01 197 11 3 2 7.0681961E+01 1.0763594E+01 198 11 3 4 2.2375843E+01 1.4015886E+01 199 11 3 6 -2.3257442E+01 2.5115774E+01 200 11 3 8 6.6174156E+01 1.6605602E+01 201 11 3 10 4.9289173E+01 2.5137478E+01 202 11 4 1 2.1468729E+01 1.1753113E+01 203 11 4 3 1.2359240E+01 1.0991979E+01 204 11 4 5 4.0060238E+01 1.2418496E+01 205 11 4 7 2.6427406E+01 2.3856712E+01 206 11 4 9 2.4961983E+01 1.6623432E+01 207 11 5 2 7.2683464E+01 1.1868041E+01 208 11 5 4 6.8499031E+01 1.3205753E+01 209 11 5 6 2.3780207E+01 2.1896532E+01 210 11 5 8 6.2585001E+00 2.4738972E+01 211 11 5 10 -1.5096421E+01 2.6148203E+01 212 11 6 1 1.2155191E+01 1.1852881E+01 213 11 6 3 1.3097003E+00 1.5304759E+01 214 11 6 5 2.3024780E+01 1.6375530E+01 215 11 6 7 3.0881706E+01 1.5510190E+01 216 11 6 9 2.6763054E+01 2.7384434E+01 217 11 7 2 9.1403427E+01 1.8704762E+01 218 11 7 4 1.2426311E+02 1.9659157E+01 219 11 8 1 -2.3216574E+01 2.7451172E+01 220 11 8 3 3.0297144E+01 2.5062721E+01 221 11 8 5 3.5994373E+01 2.6236193E+01 222 11 9 2 3.6318291E+01 1.7506342E+01 223 11 9 4 8.7538834E+01 1.6572294E+01 224 11 10 1 -1.6964760E+01 2.5728889E+01 225 11 10 3 3.6248550E+01 2.4105930E+01 226 11 10 5 -3.8683479E+01 2.7994905E+01 227 11 11 2 3.1295332E+01 2.5906893E+01 228 11 11 4 -2.2685026E+01 2.8300083E+01 229 12 0 0 2.4744746E+03 4.6873173E+01 230 12 0 2 2.3892961E+03 4.6257381E+01 231 12 0 4 2.9153696E+03 5.3765961E+01 232 12 0 6 2.4213345E+03 6.2387585E+01 233 12 0 8 1.8064491E+03 5.0936153E+01 234 12 0 10 1.0150449E+03 3.4291737E+01 235 12 1 1 -4.7075939E+00 1.2995491E+01 236 12 1 3 7.9211369E+00 1.3084345E+01 237 12 1 5 1.3453573E+01 1.4314209E+01 238 12 1 7 3.0773160E+00 2.4522192E+01 239 12 1 9 3.6559902E+01 2.4312983E+01 240 12 1 11 2.4093300E+01 2.4518446E+01 241 12 2 0 2.5085073E+03 4.7060658E+01 242 12 2 2 2.7962058E+03 5.1255650E+01 243 12 2 4 2.1740195E+03 4.0634445E+01 244 12 2 6 2.5416658E+03 6.4020134E+01 245 12 2 8 1.4331095E+03 4.1627544E+01 246 12 2 10 1.2083638E+03 3.7619663E+01 247 12 3 1 2.5703411E+01 1.0630351E+01 248 12 3 3 2.5123262E+01 1.3859412E+01 249 12 3 5 1.0901785E+01 1.7930155E+01 250 12 3 7 -5.9681278E+01 2.6567286E+01 251 12 3 9 5.4631065E+01 1.7674702E+01 252 12 4 0 2.9571572E+03 5.5155567E+01 253 12 4 2 2.3632837E+03 4.3613277E+01 254 12 4 4 2.3253220E+03 4.4366947E+01 255 12 4 6 1.5497565E+03 4.1410599E+01 256 12 4 8 1.4716804E+03 4.2526138E+01 257 12 4 10 9.1416284E+02 3.3076599E+01 258 12 5 1 9.2299194E+00 1.4339781E+01 259 12 5 3 1.1853804E+02 1.1094133E+01 260 12 5 5 5.5797440E+01 1.1359659E+01 261 12 5 7 -1.1253596E+01 2.5164059E+01 262 12 5 9 8.7171974E+00 2.4470491E+01 263 12 6 0 1.7439115E+03 3.5988777E+01 264 12 6 2 2.2924465E+03 4.4420357E+01 265 12 6 4 1.7885682E+03 3.6456131E+01 266 12 6 6 1.5892458E+03 4.3102798E+01 267 12 6 8 1.0775040E+03 3.5102516E+01 268 12 7 1 5.4732948E+01 2.9720842E+01 269 12 7 3 4.3276634E+01 3.1781086E+01 270 12 7 5 4.4443188E+01 1.9750189E+01 271 12 8 0 1.8989716E+03 5.5736336E+01 272 12 8 2 1.6115640E+03 4.4030342E+01 273 12 8 4 1.6419030E+03 4.7128979E+01 274 12 9 1 1.0938628E+02 2.1847807E+01 275 12 9 3 4.3218788E+01 2.7900955E+01 276 12 9 5 3.5100639E+00 2.8299057E+01 277 12 10 0 1.2126301E+03 3.9182236E+01 278 12 10 2 1.2110930E+03 3.9172070E+01 279 12 10 4 8.9339105E+02 3.2873932E+01 280 12 11 1 1.3340547E+01 2.9215549E+01 281 13 1 2 1.2693610E+02 1.1621221E+01 282 13 1 4 8.1548874E+01 1.0574420E+01 283 13 1 6 2.2920914E+01 2.4830553E+01 284 13 1 8 4.5188473E+01 2.5309956E+01 285 13 2 1 1.3732601E+01 1.3802245E+01 286 13 2 3 -1.4380673E+01 1.4454301E+01 287 13 2 5 9.6239252E+00 1.5570432E+01 288 13 2 7 3.2347706E+01 2.3283731E+01 289 13 2 9 -2.3357315E+01 2.6346069E+01 290 13 3 2 4.7056587E+01 1.1732238E+01 291 13 3 4 5.9047680E+01 1.2613751E+01 292 13 3 6 -3.5402527E+01 2.4407379E+01 293 13 3 8 -1.7613511E+00 2.7229834E+01 294 13 4 1 5.8976378E+00 1.3984036E+01 295 13 4 3 -1.0344723E+01 1.4772388E+01 296 13 4 5 1.4493404E+01 1.3423840E+01 297 13 4 7 -6.8359714E+00 2.6585775E+01 298 13 4 9 3.8458622E+01 2.8550711E+01 299 13 5 2 5.4873631E+01 1.3499822E+01 300 13 5 4 3.2411396E+01 1.7056669E+01 301 13 5 6 4.0609028E+01 2.2570000E+01 302 13 5 8 2.3635149E+01 2.7513687E+01 303 13 6 1 4.7648311E+00 1.6372171E+01 304 13 6 3 -1.1079378E+01 1.7452044E+01 305 13 6 5 -2.7963729E+00 1.7711916E+01 306 13 6 7 3.1326899E+01 2.7956448E+01 307 13 7 2 9.1999901E+01 1.8340054E+01 308 13 7 4 7.5129875E+01 2.0036581E+01 309 13 8 1 1.5408628E+01 2.9210831E+01 310 13 8 3 2.1914742E+01 2.8386028E+01 311 13 8 5 -3.1563318E+01 3.1067831E+01 312 13 9 2 1.6511925E+01 2.1091871E+01 313 13 9 4 7.8951073E+01 1.9279131E+01 314 14 0 0 1.6306805E+03 3.3325378E+01 315 14 0 2 2.1279250E+03 4.1975517E+01 316 14 0 4 1.4808168E+03 3.0120180E+01 317 14 0 6 1.0942819E+03 3.5773209E+01 318 14 0 8 6.4083350E+02 2.9797232E+01 319 14 1 1 1.1011003E+01 1.4492120E+01 320 14 1 3 1.0968204E+01 1.5718718E+01 321 14 1 5 -8.8014498E+00 1.6352230E+01 322 14 1 7 1.8400770E+00 2.4755714E+01 323 14 2 0 1.5343340E+03 3.0816914E+01 324 14 2 2 1.4409629E+03 2.9096508E+01 325 14 2 4 1.5732545E+03 3.2775162E+01 326 14 2 6 1.0027414E+03 3.5400040E+01 327 14 2 8 9.3690356E+02 3.5581593E+01 328 14 3 1 1.0663508E+01 1.5136951E+01 329 14 3 3 3.7262012E+01 1.4863894E+01 330 14 3 5 -4.5484862E+00 1.6894073E+01 331 14 3 7 2.9189011E+01 2.6688997E+01 332 14 4 0 9.3549786E+02 2.2327429E+01 333 14 4 2 1.2329325E+03 2.6560251E+01 334 14 4 4 1.2372537E+03 2.6981701E+01 335 14 4 6 1.3986566E+03 3.9157612E+01 336 14 5 1 -3.4686676E+01 1.6690832E+01 337 14 5 3 9.9858418E+00 1.7630779E+01 338 14 5 5 3.5013367E+01 1.7757177E+01 339 14 6 0 1.2571650E+03 2.7514856E+01 340 14 6 2 9.9301019E+02 2.4684254E+01 341 14 6 4 1.1703260E+03 2.6542971E+01 342 14 6 6 1.0092458E+03 3.4870644E+01 343 14 7 1 2.6606512E+01 1.8553329E+01 344 14 7 3 4.5182858E+01 2.6494654E+01 345 14 8 0 1.4067720E+03 4.2320183E+01 346 14 8 2 1.2383472E+03 4.0943512E+01 347 15 1 2 5.1519600E+01 1.2883178E+01 348 15 1 4 2.7872150E+01 1.3284188E+01 349 15 1 6 4.1716576E+01 2.6953409E+01 350 15 2 1 1.6646641E+01 1.4265335E+01 351 15 2 3 -4.7589569E+00 1.5609754E+01 352 15 2 5 2.7399868E+01 1.3308403E+01 353 15 3 2 4.5843922E+01 1.2353557E+01 354 15 3 4 4.9746117E+01 1.3409678E+01 355 15 4 1 -8.7987957E+00 1.4927214E+01 356 15 4 3 6.8623681E+00 1.3229520E+01 357 15 4 5 -1.7052194E+00 2.3566605E+01 358 15 5 2 2.1472251E+00 1.7814720E+01 359 15 5 4 -1.0757232E+01 2.0074387E+01 360 15 6 1 2.2449146E+01 1.5908396E+01 361 16 0 0 9.3023645E+02 2.3517323E+01 362 16 0 2 8.5533051E+02 2.2349226E+01 363 16 1 1 2.7671455E+01 1.2763557E+01 364 16 1 3 1.8319101E+01 1.6397963E+01 365 16 2 0 7.1141034E+02 2.0929350E+01 366 16 2 2 8.5945795E+02 2.2768068E+01 367 16 3 1 4.1180004E+01 1.7138197E+01 -
trunk/GSASIImath.py
r889 r902 203 203 if atom[cia] == 'A': 204 204 UIJ = atom[cia+2:cia+8] 205 206 def TLS2Uij(xyz,g,Amat,rbObj): 207 TLStype,TLS = rbObj['ThermalMotion'][:2] 208 Tmat = np.zeros((3,3)) 209 Lmat = np.zeros((3,3)) 210 Smat = np.zeros((3,3)) 211 gvec = np.sqrt(np.array([g[0][0]**2,g[1][1]**2,g[2][2]**2, 212 g[0][0]*g[1][1],g[0][0]*g[2][2],g[1][1]*g[2][2]])) 213 if 'T' in TLStype: 214 Tmat = G2lat.U6toUij(TLS[:6]) 215 if 'L' in TLStype: 216 Lmat = G2lat.U6toUij(TLS[6:12]) 217 if 'S' in TLStype: 218 Smat = np.array([[TLS[18],TLS[12],TLS[13]],[TLS[14],TLS[19],TLS[15]],[TLS[16],TLS[17],0] ]) 219 XYZ = np.inner(Amat,xyz) 220 Axyz = np.array([[ 0,XYZ[2],-XYZ[1]], [-XYZ[2],0,XYZ[0]], [XYZ[1],-XYZ[0],0]] ) 221 Umat = Tmat+np.inner(Axyz,Smat)+np.inner(Smat.T,Axyz.T)+np.inner(np.inner(Axyz,Lmat),Axyz.T) 222 beta = np.inner(np.inner(g,Umat),g) 223 return G2lat.UijtoU6(beta)*gvec 205 224 206 225 def AtomTLS2UIJ(atomData,atPtrs,Amat,rbObj): … … 217 236 Lmat = G2lat.U6toUij(TLS[6:12]) 218 237 if 'S' in TLStype: 219 Smat = np.array([ [TLS[18],TLS[12],S[13]],[TLS[14],TLS[19],TLS[15]],[TLS[16],TLS[17],0]])238 Smat = np.array([ [TLS[18],TLS[12],TLS[13]], [TLS[14],TLS[19],TLS[15]], [TLS[16],TLS[17],0] ]) 220 239 for atom in atomData: 221 240 XYZ = np.inner(Amat,atom[cx:cx+3]) 222 Axyz = np.array([ 0,XYZ[2],-XYZ[1]],[-XYZ[2],0,XYZ[0]],[XYZ[1],-XYZ[0],0])241 Axyz = np.array([ 0,XYZ[2],-XYZ[1], -XYZ[2],0,XYZ[0], XYZ[1],-XYZ[0],0],ndmin=2 ) 223 242 if 'U' in TSLtype: 224 243 atom[cia+1] = TLS[0] … … 352 371 for j,xyz in enumerate(XYZ): 353 372 for i,x in enumerate(np.array([[dx,0,0],[0,dx,0],[0,0,dx]])): 354 XYZ[j] += x373 XYZ[j] -= x 355 374 d1 = Func(getSyXYZ(XYZ,ops,SGData),Amat) 356 XYZ[j] -= 2*x375 XYZ[j] += 2*x 357 376 d2 = Func(getSyXYZ(XYZ,ops,SGData),Amat) 358 XYZ[j] += x377 XYZ[j] -= x 359 378 deriv[j][i] = (d1-d2)/(2*dx) 360 379 return deriv.flatten() … … 432 451 for j,xyz in enumerate(XYZ): 433 452 for i,x in enumerate(np.array([[dx,0,0],[0,dx,0],[0,0,dx]])): 434 XYZ[j] += x453 XYZ[j] -= x 435 454 tor = getRestTorsion(XYZ,Amat) 436 455 p,d1 = calcTorsionEnergy(tor,Coeff) 437 XYZ[j] -= 2*x456 XYZ[j] += 2*x 438 457 tor = getRestTorsion(XYZ,Amat) 439 458 p,d2 = calcTorsionEnergy(tor,Coeff) 440 XYZ[j] += x441 deriv[j][i] = (d 1-d2)/(2*dx)459 XYZ[j] -= x 460 deriv[j][i] = (d2-d1)/(2*dx) 442 461 return deriv.flatten() 443 462 … … 469 488 for j,xyz in enumerate(XYZ): 470 489 for i,x in enumerate(np.array([[dx,0,0],[0,dx,0],[0,0,dx]])): 471 XYZ[j] += x490 XYZ[j] -= x 472 491 phi,psi = getRestRama(XYZ,Amat) 473 492 p,d1 = calcRamaEnergy(phi,psi,Coeff) 474 XYZ[j] -= 2*x493 XYZ[j] += 2*x 475 494 phi,psi = getRestRama(XYZ,Amat) 476 495 p,d2 = calcRamaEnergy(phi,psi,Coeff) 477 XYZ[j] += x478 deriv[j][i] = (d 1-d2)/(2*dx)496 XYZ[j] -= x 497 deriv[j][i] = (d2-d1)/(2*dx) 479 498 return deriv.flatten() 480 499 … … 505 524 deriv = np.zeros(6) 506 525 for i in [0,1,2]: 507 Oxyz[i] += dx526 Oxyz[i] -= dx 508 527 d0 = calcDist(Oxyz,Txyz,Tunit,inv,C,M,T,Amat) 509 Oxyz[i] -= 2*dx528 Oxyz[i] += 2*dx 510 529 deriv[i] = (calcDist(Oxyz,Txyz,Tunit,inv,C,M,T,Amat)-d0)/(2.*dx) 511 Oxyz[i] += dx512 Txyz[i] += dx530 Oxyz[i] -= dx 531 Txyz[i] -= dx 513 532 d0 = calcDist(Oxyz,Txyz,Tunit,inv,C,M,T,Amat) 514 Txyz[i] -= 2*dx533 Txyz[i] += 2*dx 515 534 deriv[i+3] = (calcDist(Oxyz,Txyz,Tunit,inv,C,M,T,Amat)-d0)/(2.*dx) 516 Txyz[i] += dx535 Txyz[i] -= dx 517 536 return deriv 518 537 … … 556 575 Ang = calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat) 557 576 for i in [0,1,2]: 558 OxA[i] += dx577 OxA[i] -= dx 559 578 a0 = calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat) 560 OxA[i] -= 2*dx561 dadx[i] = (calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat)-a0)/ dx562 OxA[i] += dx579 OxA[i] += 2*dx 580 dadx[i] = (calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat)-a0)/(2*dx) 581 OxA[i] -= dx 563 582 564 TxA[i] += dx583 TxA[i] -= dx 565 584 a0 = calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat) 566 TxA[i] -= 2*dx567 dadx[i+3] = (calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat)-a0)/ dx568 TxA[i] += dx585 TxA[i] += 2*dx 586 dadx[i+3] = (calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat)-a0)/(2*dx) 587 TxA[i] -= dx 569 588 570 TxB[i] += dx589 TxB[i] -= dx 571 590 a0 = calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat) 572 TxB[i] -= 2*dx573 dadx[i+6] = (calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat)-a0)/ dx574 TxB[i] += dx591 TxB[i] += 2*dx 592 dadx[i+6] = (calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat)-a0)/(2*dx) 593 TxB[i] -= dx 575 594 576 595 sigAng = np.sqrt(np.inner(dadx,np.inner(AngVcov,dadx))) … … 721 740 ia = i/3 722 741 ix = i%3 723 Oatoms[ia][ix+1] += dx742 Oatoms[ia][ix+1] -= dx 724 743 a0 = calcTorsion(Oatoms,SyOps,Amat) 725 Oatoms[ia][ix+1] -= 2*dx744 Oatoms[ia][ix+1] += 2*dx 726 745 dadx[i] = (calcTorsion(Oatoms,SyOps,Amat)-a0)/(2.*dx) 746 Oatoms[ia][ix+1] -= dx 727 747 covMatrix = covData['covMatrix'] 728 748 varyList = covData['varyList'] -
trunk/testGSASIIstruct.py
r885 r902 8 8 9 9 #testing data 10 10 11 NeedTestData = True 11 12 def TestData(): 12 13 import cPickle 13 14 file = open('structTestdata.dat','rb') 15 global values 16 values = cPickle.load(file) 17 global HistoPhases 18 HistoPhases = cPickle.load(file) 14 19 global parmDict 15 20 parmDict = cPickle.load(file) 16 21 global varylist 17 22 varylist = cPickle.load(file) 18 global Histogram19 Histogram = cPickle.load(file)20 global Phases21 Phases = cPickle.load(file)22 global RBData23 RBData = cPickle.load(file)24 23 global calcControls 25 24 calcControls = cPickle.load(file) … … 33 32 def test1(): 34 33 if NeedTestData: TestData() 35 limits = Histogram['Limits'][1]36 data = Histogram['Data']37 xdata = data[0]38 xB = np.searchsorted(xdata,limits[0])39 xF = np.searchsorted(xdata,limits[1])40 34 fplot = plotter.add('function test').gca() 41 yc,yb = G2st.getPowderProfile(parmDict,xdata[xB:xF],varylist,Histogram,Phases,calcControls,pawleyLookup)42 fplot.plot( xdata[xB:xF],yc+yb,'r',label='calc+bkg')43 fplot.legend( )35 M = G2st.errRefine(values,HistoPhases,parmDict,varylist,calcControls,pawleyLookup,None) 36 fplot.plot(M,'r',label='M') 37 fplot.legend(loc='best') 44 38 45 39 def test2(name,delt): 46 40 if NeedTestData: TestData() 47 varyList = [name,]48 limits = Histogram['Limits'][1]49 data = Histogram['Data']50 xdata = data[0]51 xB = np.searchsorted(xdata,limits[0])52 xF = np.searchsorted(xdata,limits[1])53 41 hplot = plotter.add('derivatives test for '+name).gca() 54 ya = G2st.getPowderProfileDerv(parmDict,xdata[xB:xF],varyList,Histogram,Phases,RBData,calcControls,pawleyLookup)[0] 55 hplot.plot(xdata[xB:xF],ya,'b',label='analytic deriv') 56 if 'dA' in name: 57 name = ''.join(name.split('d')) 58 varyList = [name,] 59 parmDict[name] -= delt 60 y0,yb = G2st.getPowderProfile(parmDict,xdata[xB:xF],varyList,Histogram,Phases,calcControls,pawleyLookup) 61 y0 += yb 62 parmDict[name] += 2.*delt 63 y1,yb = G2st.getPowderProfile(parmDict,xdata[xB:xF],varyList,Histogram,Phases,calcControls,pawleyLookup) 64 y1 += yb 65 yn = (y1-y0)/(2.*delt) 66 hplot.plot(xdata[xB:xF],yn,'r+',label='numeric deriv') 67 hplot.plot(xdata[xB:xF],ya-yn,'g',label='diff') 68 hplot.legend() 42 dMdV = G2st.dervRefine(values,HistoPhases,parmDict,varylist,calcControls,pawleyLookup,None) 43 hplot.plot(dMdV[varylist.index(name)],'b',label='analytic deriv') 44 if name in varylist: 45 values[varylist.index(name)] -= delt 46 M0 = G2st.errRefine(values,HistoPhases,parmDict,varylist,calcControls,pawleyLookup,None) 47 values[varylist.index(name)] += 2.*delt 48 M1 = G2st.errRefine(values,HistoPhases,parmDict,varylist,calcControls,pawleyLookup,None) 49 values[varylist.index(name)] -= delt 50 Mn = (M1-M0)/(2.*delt) 51 hplot.plot(Mn,'r+',label='numeric deriv') 52 hplot.plot(dMdV[varylist.index(name)]-Mn,'g',label='diff') 53 hplot.legend(loc='best') 69 54 70 55 if __name__ == '__main__': … … 76 61 plotter = plot.PlotNotebook() 77 62 test1() 78 for name in parmDict:79 print name,parmDict[name]63 for name in varylist: 64 print ' %15s %f'%(name,parmDict[name]) 80 65 names = [ 81 ['0::AUiso:0',0.001], 82 ['::RBV;0:0',0.001], 83 ['0::RBVT11:0:0',0.1], 84 ['0::RBVL11:0:0',0.1], 85 ['0::RBVPz:0:0',0.0001], 86 ['0::RBVOa:0:0',0.001], 66 67 #FAP derivatives 68 ['0::RBVOa:0:0',0.0001], #almost perfect 69 ['0::RBVPx:0:0',0.000001], #perfect 70 ['0::RBVPy:0:0',0.000001], #perfect 71 ['::RBV;0:0',0.00001], #perfect 72 ['0::RBVT11:0:0',0.0001], #not good 73 ['0::RBVT22:0:0',0.0001], 74 ['0::RBVT33:0:0',0.0001], 75 ['0::RBVT12:0:0',0.0001], 76 ['0::RBVL11:0:0',0.01], #not good 77 ['0::RBVL22:0:0',0.01], 78 ['0::RBVL33:0:0',0.01], 79 ['0::RBVL12:0:0',0.01], 80 81 # quinuclidine derivatives 82 # ['0::RBVOi:0:0',0.0001], #bad 83 # ['0::RBVOj:0:0',0.0001], #bad 84 # ['0::RBVOk:0:0',0.0001], #bad 85 # ['0::RBVPx:0:0',0.000001], #perfect 86 # ['0::RBVPz:0:0',0.000001], #perfect 87 # ['0::RBVT11:0:0',0.0001], #not good 88 # ['0::RBVT22:0:0',0.0001], 89 # ['0::RBVT33:0:0',0.0001], 90 # ['0::RBVT13:0:0',0.0001], 91 # ['0::RBVL11:0:0',0.01], #not good 92 # ['0::RBVL22:0:0',0.01], 93 # ['0::RBVL33:0:0',0.01], 94 # ['0::RBVL13:0:0',0.01], 95 # ['0::RBVS12:0:0',0.001], #very close 96 # ['0::RBVS21:0:0',0.001], 97 # ['0::RBVS23:0:0',0.001], 98 # ['0::RBVS32:0:0',0.001], 99 # ['::RBV;0:0',0.00001], #wrong 100 # ['::RBV;0:2',0.00001], 101 # ['::RBV;1:1',0.00001], 102 # ['::RBV;1:2',0.00001], 103 # ['::RBV;2:1',0.00001], 104 # ['::RBV;2:2',0.00001], 105 # ['::RBV;3:3',0.00001], 106 107 108 # Na BenzRB derivatives 109 # ['0::RBROi:0:0',0.0001], #almost perfect 110 # ['0::RBROj:0:0',0.0001], #almost perfect 111 # ['0::RBROk:0:0',0.0001], #almost perfect 112 # ['0::RBRPx:0:0',0.000001], #perfect 113 # ['0::RBRPy:0:0',0.000001], #perfect 114 # ['0::RBRPz:0:0',0.000001], #perfect 115 # ['0::AUiso:0',0.0001], #perfect 116 # [':0:BkPkint:2',0.1], #perfect 117 # ['0:0:Mustrain:6',0.00001], #perfect 118 # ['0:0:Size;a',0.0001], #perfect 119 # ['0::dAz:0',0.0001], #perfect 120 # [':0:DisplaceX',0.001], #OK but flaky 121 # ['0::dAx:0',1.e-7], #perfect 122 # ['0::RBRTr;0:0:0',0.001], #perfect 123 # ['0::RBRU:0:0',0.00001], #perfect 124 # Na Benz - restraints derivatives 125 # ['0::dAz:0',0.0001], #perfect 126 # ['0::dAx:10',0.0001], #perfect 127 # ['0::dAy:10',0.0001], #perfect 128 # ['0::dAz:10',0.0001], #perfect 129 # ['0::dAx:12',0.0001], #perfect 130 # ['0::dAy:12',0.0001], #perfect 131 # ['0::dAz:12',0.0001], #perfect 132 87 133 ] 88 134 for [name,delt] in names:
Note: See TracChangeset
for help on using the changeset viewer.