Changeset 3725


Ignore:
Timestamp:
Nov 7, 2018 11:36:24 AM (5 years ago)
Author:
vondreele
Message:

update tutorial

Location:
Tutorials/Magnetic-III
Files:
27 added
28 deleted
6 edited

Legend:

Unmodified
Added
Removed
  • Tutorials/Magnetic-III/Magnetic-III.htm

    r3700 r3725  
    2323  <o:Author>Von Dreele</o:Author>
    2424  <o:LastAuthor>vondreele</o:LastAuthor>
    25   <o:Revision>22</o:Revision>
    26   <o:TotalTime>763</o:TotalTime>
     25  <o:Revision>23</o:Revision>
     26  <o:TotalTime>779</o:TotalTime>
    2727  <o:Created>2012-05-05T14:50:00Z</o:Created>
    28   <o:LastSaved>2018-10-23T13:56:00Z</o:LastSaved>
     28  <o:LastSaved>2018-11-07T17:35:00Z</o:LastSaved>
    2929  <o:Pages>1</o:Pages>
    3030  <o:Words>2118</o:Words>
    31   <o:Characters>12074</o:Characters>
     31  <o:Characters>12075</o:Characters>
    3232  <o:Lines>100</o:Lines>
    3333  <o:Paragraphs>28</o:Paragraphs>
    34   <o:CharactersWithSpaces>14164</o:CharactersWithSpaces>
     34  <o:CharactersWithSpaces>14165</o:CharactersWithSpaces>
    3535  <o:Version>16.00</o:Version>
    3636 </o:DocumentProperties>
     
    12831283<p class=MsoNormal>In this tutorials, we continue showing how GSAS-II makes use
    12841284of the Bilbao crystallographic server (<a href="http://www.cryst.ehu.es/">www.cryst.ehu.es/</a>)
    1285 <i style='mso-bidi-font-style:normal'>Magnetic Symmetry and Applications</i> routine
    1286 k-SUBGROUPSMAG (<a href="http://iopscience.iop.org/0953-8984/28/28/286001"><span
    1287 style='font-size:10.0pt;font-family:"Arial",sans-serif'>Perez-Mato, JM; <span
    1288 class=SpellE>Gallego</span>, SV; <span class=SpellE>Elcoro</span>, L; <span
    1289 class=SpellE>Tasci</span>, E and <span class=SpellE>Aroyo</span>, MI, <i>J. of
    1290 Phys.: <span class=SpellE>Condens</span> Matter</i> (2016), <b>28</b>:28601</span></a>)
    1291 while determining a magnetic crystal structure with a non-zero propagation
    1292 vector. If you have not done so already, you may wish to do the Simple Magnetic
    1293 Structures tutorial first as it contains some background information that will
    1294 not be covered here. It is also helpful to do parts I and II of the series of Magnetic
    1295 Structures tutorials. To make this work, your computer must have an internet
    1296 connection for GSAS-II to access this site. (We will supply the project file
    1297 that results after k-SUBGROUPSMAG is called in case you lack internet access).</p>
     1285<i style='mso-bidi-font-style:normal'>Magnetic Symmetry and Applications</i>
     1286routine k-SUBGROUPSMAG (<a
     1287href="http://iopscience.iop.org/0953-8984/28/28/286001"><span style='font-size:
     128810.0pt;font-family:"Arial",sans-serif'>Perez-Mato, JM; <span class=SpellE>Gallego</span>,
     1289SV; <span class=SpellE>Elcoro</span>, L; <span class=SpellE>Tasci</span>, E and
     1290<span class=SpellE>Aroyo</span>, MI, <i>J. of Phys.: <span class=SpellE>Condens</span>
     1291Matter</i> (2016), <b>28</b>:28601</span></a>) while determining a magnetic
     1292crystal structure with a non-zero propagation vector. If you have not done so
     1293already, you may wish to do the Simple Magnetic Structures tutorial first as it
     1294contains some background information that will not be covered here. It is also
     1295helpful to do parts I and II of the series of Magnetic Structures tutorials. To
     1296make this work, your computer must have an internet connection for GSAS-II to
     1297access this site. (We will supply the project file that results after
     1298k-SUBGROUPSMAG is called in case you lack internet access).</p>
    12981299
    12991300<p class=MsoNormal><span style='mso-no-proof:yes'><!--[if gte vml 1]><v:shapetype
     
    13211322 <v:imagedata src="Magnetic-III_files/image001.png" o:title=""/>
    13221323</v:shape><![endif]--><![if !vml]><img border=0 width=479 height=492
    1323 src="Magnetic-III_files/image004.gif" v:shapes="Picture_x0020_4"><![endif]></span></p>
     1324src="Magnetic-III_files/image002.gif" v:shapes="Picture_x0020_4"><![endif]></span></p>
    13241325
    13251326<p class=MsoNormal>In this example, we will determine the magnetic structure
     
    13451346</v:shape><![endif]--><![if !vml]><img width=9 height=19
    13461347src="Magnetic-III_files/image008.gif" v:shapes="_x0000_i1025"><![endif]></span><![endif]>m2
    1347 with a= 5.64870 Å and c= 5.64870 Å. From the structure drawing above, you can
     1348with a= 5.64870 Å and c= 14.46580Å. From the structure drawing above, you can
    13481349see a tetrameric string of face sharing CoO<sub>6</sub> <span class=SpellE>octahedra</span>
    13491350and a separate CoO<sub>4</sub> tetrahedron with one disordered oxygen position
     
    14291430 <v:imagedata src="Magnetic-III_files/image003.png" o:title=""/>
    14301431</v:shape><![endif]--><![if !vml]><img border=0 width=432 height=266
    1431 src="Magnetic-III_files/image021.gif" v:shapes="Picture_x0020_5"><![endif]></span></p>
     1432src="Magnetic-III_files/image010.gif" v:shapes="Picture_x0020_5"><![endif]></span></p>
    14321433
    14331434<p class=MsoNormal style='margin-left:.5in'><span class=GramE>and</span> the
     
    14391440 <v:imagedata src="Magnetic-III_files/image005.png" o:title=""/>
    14401441</v:shape><![endif]--><![if !vml]><img border=0 width=433 height=447
    1441 src="Magnetic-III_files/image025.gif" v:shapes="Picture_x0020_6"><![endif]></span></p>
     1442src="Magnetic-III_files/image012.gif" v:shapes="Picture_x0020_6"><![endif]></span></p>
    14421443
    14431444<p class=MsoNormal style='margin-left:.5in'>We will use the default limits.</p>
     
    14991500 <v:imagedata src="Magnetic-III_files/image007.png" o:title=""/>
    15001501</v:shape><![endif]--><![if !vml]><img border=0 width=430 height=235
    1501 src="Magnetic-III_files/image028.gif" v:shapes="Picture_x0020_7"><![endif]></span></p>
     1502src="Magnetic-III_files/image014.gif" v:shapes="Picture_x0020_7"><![endif]></span></p>
    15021503
    15031504<h3>Step 3. Check powder pattern indexing</h3>
     
    15151516 <v:imagedata src="Magnetic-III_files/image009.png" o:title=""/>
    15161517</v:shape><![endif]--><![if !vml]><img border=0 width=479 height=162
    1517 src="Magnetic-III_files/image057.gif" v:shapes="Picture_x0020_8"><![endif]></span></p>
     1518src="Magnetic-III_files/image016.gif" v:shapes="Picture_x0020_8"><![endif]></span></p>
    15181519
    15191520<p class=MsoNormal>This can use lattice parameters &amp; space groups to
     
    15421543 <v:imagedata src="Magnetic-III_files/image011.png" o:title=""/>
    15431544</v:shape><![endif]--><![if !vml]><img border=0 width=477 height=152
    1544 src="Magnetic-III_files/image058.gif" v:shapes="Picture_x0020_9"><![endif]></span></p>
     1545src="Magnetic-III_files/image018.gif" v:shapes="Picture_x0020_9"><![endif]></span></p>
    15451546
    15461547<p class=MsoNormal><span class=GramE>showing</span> the lattice constants for
     
    15701571 <v:imagedata src="Magnetic-III_files/image013.png" o:title=""/>
    15711572</v:shape><![endif]--><![if !vml]><img border=0 width=473 height=488
    1572 src="Magnetic-III_files/image059.gif" v:shapes="Picture_x0020_10"><![endif]></span></b></p>
     1573src="Magnetic-III_files/image020.gif" v:shapes="Picture_x0020_10"><![endif]></span></b></p>
    15731574
    15741575<p class=MsoNormal>I’ve expanded &amp; shifted the plot slightly to see that a
     
    16051606 <v:imagedata src="Magnetic-III_files/image015.png" o:title=""/>
    16061607</v:shape><![endif]--><![if !vml]><img border=0 width=476 height=152
    1607 src="Magnetic-III_files/image060.gif" v:shapes="Picture_x0020_11"><![endif]></span></p>
     1608src="Magnetic-III_files/image022.gif" v:shapes="Picture_x0020_11"><![endif]></span></p>
    16081609
    16091610<p class=MsoNormal>Notice that the a-axis (11.2974) is now twice the original
     
    16111612
    16121613<p class=MsoNormal><span style='mso-no-proof:yes'><!--[if gte vml 1]><v:shape
    1613  id="Picture_x0020_12" o:spid="_x0000_i1044" type="#_x0000_t75" style='width:356.25pt;
    1614  height:366.75pt;visibility:visible;mso-wrap-style:square'>
     1614 id="_x0000_i1044" type="#_x0000_t75" style='width:356.25pt;height:366.75pt;
     1615 visibility:visible;mso-wrap-style:square'>
    16151616 <v:imagedata src="Magnetic-III_files/image017.png" o:title=""/>
    16161617</v:shape><![endif]--><![if !vml]><img border=0 width=475 height=489
    1617 src="Magnetic-III_files/image061.gif" v:shapes="Picture_x0020_12"><![endif]></span></p>
     1618src="Magnetic-III_files/image024.gif" v:shapes="_x0000_i1044"><![endif]></span></p>
    16181619
    16191620<p class=MsoNormal>Clearly that did not index all the observed peaks, so we
     
    16321633 <v:imagedata src="Magnetic-III_files/image019.png" o:title=""/>
    16331634</v:shape><![endif]--><![if !vml]><img border=0 width=480 height=493
    1634 src="Magnetic-III_files/image062.gif" v:shapes="Picture_x0020_13"><![endif]></span></p>
     1635src="Magnetic-III_files/image026.gif" v:shapes="Picture_x0020_13"><![endif]></span></p>
    16351636
    16361637<p class=MsoNormal>In this case every powder peak is indexed so a doubling of
     
    16631664 <v:imagedata src="Magnetic-III_files/image030.png" o:title=""/>
    16641665</v:shape><![endif]--><![if !vml]><img border=0 width=277 height=301
    1665 src="Magnetic-III_files/image063.gif" v:shapes="Picture_x0020_32"><![endif]></span></p>
     1666src="Magnetic-III_files/image032.gif" v:shapes="Picture_x0020_32"><![endif]></span></p>
    16661667
    16671668<p class=MsoNormal>These are the controls for running the Bilbao routine. The
     
    17001701
    17011702<p class=MsoNormal><span style='mso-no-proof:yes'><!--[if gte vml 1]><v:shape
    1702  id="_x0000_i1041" type="#_x0000_t75" style='width:357.75pt;height:123.75pt;
    1703  visibility:visible;mso-wrap-style:square'>
     1703 id="Picture_x0020_12" o:spid="_x0000_i1041" type="#_x0000_t75" style='width:357.75pt;
     1704 height:123.75pt;visibility:visible;mso-wrap-style:square'>
    17041705 <v:imagedata src="Magnetic-III_files/image023.png" o:title=""/>
    17051706</v:shape><![endif]--><![if !vml]><img border=0 width=477 height=165
    1706 src="Magnetic-III_files/image064.gif" v:shapes="_x0000_i1041"><![endif]></span></p>
     1707src="Magnetic-III_files/image034.gif" v:shapes="Picture_x0020_12"><![endif]></span></p>
    17071708
    17081709<p class=MsoNormal>Press <b style='mso-bidi-font-weight:normal'><span
     
    17351736
    17361737<p class=MsoNormal><span style='mso-no-proof:yes'><!--[if gte vml 1]><v:shape
    1737  id="Picture_x0020_33" o:spid="_x0000_i1040" type="#_x0000_t75" style='width:360.75pt;
    1738  height:293.25pt;visibility:visible;mso-wrap-style:square'>
    1739  <v:imagedata src="Magnetic-III_files/image066.png" o:title=""/>
    1740 </v:shape><![endif]--><![if !vml]><img border=0 width=481 height=391
    1741 src="Magnetic-III_files/image065.gif" v:shapes="Picture_x0020_33"><![endif]></span></p>
     1738 id="_x0000_i1040" type="#_x0000_t75" style='width:358.5pt;height:323.25pt;
     1739 visibility:visible;mso-wrap-style:square'>
     1740 <v:imagedata src="Magnetic-III_files/image035.png" o:title=""/>
     1741</v:shape><![endif]--><![if !vml]><img border=0 width=478 height=431
     1742src="Magnetic-III_files/image036.gif" v:shapes="_x0000_i1040"><![endif]></span></p>
    17421743
    17431744<p class=MsoNormal>Notice that the number of unique magnetic atoms is either 3
     
    17451746atoms. Use the <b style='mso-bidi-font-weight:normal'><span style='font-family:
    17461747"Calibri",sans-serif;mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:
    1747 minor-latin;mso-bidi-theme-font:minor-latin'>Try</span></b> on the first two
    1748 entries; they both index every reflection. The two seem identical except for
    1749 the translation vector. Double click the row number for the 1<sup>st</sup> one;
    1750 a popup will appear</p>
     1748minor-latin;mso-bidi-theme-font:minor-latin'>Try</span></b> on the first two entries;
     1749they both index every reflection. The two seem identical except for the
     1750translation vector. Click the space group symbol for the 1<sup>st</sup> one; a
     1751popup will appear</p>
    17511752
    17521753<p class=MsoNormal><span style='mso-no-proof:yes'><!--[if gte vml 1]><v:shape
     
    17551756 <v:imagedata src="Magnetic-III_files/image027.png" o:title=""/>
    17561757</v:shape><![endif]--><![if !vml]><img border=0 width=406 height=440
    1757 src="Magnetic-III_files/image067.gif" v:shapes="Picture_x0020_14"><![endif]></span></p>
     1758src="Magnetic-III_files/image038.gif" v:shapes="Picture_x0020_14"><![endif]></span></p>
    17581759
    17591760<p class=MsoNormal>These are the magnetic symmetry operations for P<sub>c</sub>
    17601761-6 c 2. The subscript c on the lattice symbol indicates the c-axis magnetic
    1761 centering operation; see the entry “<b style='mso-bidi-font-weight:normal'><span
    1762 style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin;
    1763 mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:minor-latin'>for (0<span
    1764 class=GramE>,0,1</span>/2)+1’</span></b>”. The list of operators below it are
    1765 in red to indicate the spin inversion is applied for all of them. The Print Ops
    1766 button makes a full list on the console; these can be cut &amp; pasted into
    1767 other programs as needed. Press <b style='mso-bidi-font-weight:normal'><span
    1768 style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin;
    1769 mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:minor-latin'>OK</span></b>.
     1762centering operation; see the entry “<span style='font-family:"Calibri",sans-serif;
     1763mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:
     1764minor-latin'>for (0<span class=GramE>,0,1</span>/2)+1’</span>”. The list of
     1765operators below it are in red to indicate the spin inversion is applied for all
     1766of them. The Print Ops button makes a full list on the console; these can be
     1767cut &amp; pasted into other programs as needed. Press <b style='mso-bidi-font-weight:
     1768normal'><span style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:
     1769minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:minor-latin'>OK</span></b>.
    17701770Since the 1<sup>st</sup> two solutions seem reasonable, we’ll try these.</p>
    17711771
     
    17831783 <v:imagedata src="Magnetic-III_files/image029.png" o:title=""/>
    17841784</v:shape><![endif]--><![if !vml]><img border=0 width=479 height=246
    1785 src="Magnetic-III_files/image068.gif" v:shapes="Picture_x0020_15"><![endif]></span></p>
     1785src="Magnetic-III_files/image040.gif" v:shapes="Picture_x0020_15"><![endif]></span></p>
    17861786
    17871787<p class=MsoNormal>Do <b style='mso-bidi-font-weight:normal'><span
     
    17951795 <v:imagedata src="Magnetic-III_files/image031.png" o:title=""/>
    17961796</v:shape><![endif]--><![if !vml]><img border=0 width=297 height=297
    1797 src="Magnetic-III_files/image069.gif" v:shapes="Picture_x0020_16"><![endif]></span></p>
     1797src="Magnetic-III_files/image041.gif" v:shapes="Picture_x0020_16"><![endif]></span></p>
    17981798
    17991799<p class=MsoNormal>This shows all magnetic phases that were marked Keep in the
     
    18101810 <v:imagedata src="Magnetic-III_files/image033.png" o:title=""/>
    18111811</v:shape><![endif]--><![if !vml]><img border=0 width=378 height=165
    1812 src="Magnetic-III_files/image070.gif" v:shapes="Picture_x0020_17"><![endif]></span></p>
     1812src="Magnetic-III_files/image042.gif" v:shapes="Picture_x0020_17"><![endif]></span></p>
    18131813
    18141814<p class=MsoNormal>Since the chemical phase had three Co atoms, having three
     
    18451845 <v:imagedata src="Magnetic-III_files/image037.png" o:title=""/>
    18461846</v:shape><![endif]--><![if !vml]><img border=0 width=625 height=330
    1847 src="Magnetic-III_files/image071.gif" v:shapes="Picture_x0020_18"><![endif]></span></p>
     1847src="Magnetic-III_files/image043.gif" v:shapes="Picture_x0020_18"><![endif]></span></p>
    18481848
    18491849<p class=MsoNormal>Select Atoms, enter <b style='mso-bidi-font-weight:normal'><span
     
    18641864 <v:imagedata src="Magnetic-III_files/image039.png" o:title=""/>
    18651865</v:shape><![endif]--><![if !vml]><img border=0 width=454 height=864
    1866 src="Magnetic-III_files/image072.gif" v:shapes="Picture_x0020_19"><![endif]></span></p>
     1866src="Magnetic-III_files/image044.gif" v:shapes="Picture_x0020_19"><![endif]></span></p>
    18671867
    18681868<p class=MsoNormal>Do <b style='mso-bidi-font-weight:normal'><span
     
    18811881style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif;
    18821882mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:
    1883 minor-latin'>Refine unit cell</span></b> box for each. Then go to Sample
    1884 parameters for the PWDR data set, set goniometer radius to <b style='mso-bidi-font-weight:
     1883minor-latin'>Refine unit cell</span></b> box for each. Then go to Sample parameters
     1884for the PWDR data set, set goniometer radius to <b style='mso-bidi-font-weight:
    18851885normal'><span style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:
    18861886minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:minor-latin'>650</span></b>
     
    19161916 <v:imagedata src="Magnetic-III_files/image047.png" o:title=""/>
    19171917</v:shape><![endif]--><![if !vml]><img border=0 width=475 height=799
    1918 src="Magnetic-III_files/image073.gif" v:shapes="Picture_x0020_23"><![endif]></span></p>
     1918src="Magnetic-III_files/image045.gif" v:shapes="Picture_x0020_23"><![endif]></span></p>
    19191919
    19201920<p class=MsoNormal>The fit to the powder pattern looks quite good</p>
     
    19251925 <v:imagedata src="Magnetic-III_files/image049.png" o:title=""/>
    19261926</v:shape><![endif]--><![if !vml]><img border=0 width=480 height=377
    1927 src="Magnetic-III_files/image074.gif" v:shapes="Picture_x0020_24"><![endif]></span></p>
     1927src="Magnetic-III_files/image046.gif" v:shapes="Picture_x0020_24"><![endif]></span></p>
    19281928
    19291929<p class=MsoNormal>But we should try the other solution to see if it is better.
     
    19531953 <v:imagedata src="Magnetic-III_files/image051.png" o:title=""/>
    19541954</v:shape><![endif]--><![if !vml]><img border=0 width=479 height=247
    1955 src="Magnetic-III_files/image075.gif" v:shapes="Picture_x0020_25"><![endif]></span></p>
     1955src="Magnetic-III_files/image048.gif" v:shapes="Picture_x0020_25"><![endif]></span></p>
    19561956
    19571957<p class=MsoNormal>Do <b style='mso-bidi-font-weight:normal'><span
     
    19651965 <v:imagedata src="Magnetic-III_files/image031.png" o:title=""/>
    19661966</v:shape><![endif]--><![if !vml]><img border=0 width=297 height=297
    1967 src="Magnetic-III_files/image069.gif" v:shapes="Picture_x0020_26"><![endif]></span></p>
     1967src="Magnetic-III_files/image041.gif" v:shapes="Picture_x0020_26"><![endif]></span></p>
    19681968
    19691969<p class=MsoNormal>We already tried the 1<sup>st</sup> one; now select the 2<sup>nd</sup>
     
    19751975 <v:imagedata src="Magnetic-III_files/image053.png" o:title=""/>
    19761976</v:shape><![endif]--><![if !vml]><img border=0 width=378 height=165
    1977 src="Magnetic-III_files/image076.gif" v:shapes="Picture_x0020_27"><![endif]></span></p>
     1977src="Magnetic-III_files/image050.gif" v:shapes="Picture_x0020_27"><![endif]></span></p>
    19781978
    19791979<p class=MsoNormal>It looks very similar to what we had before; close
     
    19921992 <v:imagedata src="Magnetic-III_files/image055.png" o:title=""/>
    19931993</v:shape><![endif]--><![if !vml]><img border=0 width=484 height=249
    1994 src="Magnetic-III_files/image077.gif" v:shapes="Picture_x0020_28"><![endif]></span></p>
     1994src="Magnetic-III_files/image052.gif" v:shapes="Picture_x0020_28"><![endif]></span></p>
    19951995
    19961996<p class=MsoNormal>Select the Atoms tab &amp; set <span class=SpellE>Mz</span>
     
    20242024Finally use <b style='mso-bidi-font-weight:normal'><span style='font-family:
    20252025"Calibri",sans-serif;mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:
    2026 minor-latin;mso-bidi-theme-font:minor-latin'>6</span></b> background coefficients
    2027 and refine <b style='mso-bidi-font-weight:normal'><span style='font-family:
    2028 "Calibri",sans-serif;mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:
    2029 minor-latin;mso-bidi-theme-font:minor-latin'>XU</span></b> for the chemical
    2030 phase atoms and <b style='mso-bidi-font-weight:normal'><span style='font-family:
    2031 "Calibri",sans-serif;mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:
    2032 minor-latin;mso-bidi-theme-font:minor-latin'>XUM</span></b> for the magnetic
    2033 atoms. Do <b style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif;
    2034 mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:
    2035 minor-latin'>Calculate/Refine</span></b> a few times until it converges. I got <span
    2036 class=SpellE>wR</span> = 7.47% which is only slightly better than the result
    2037 for the first model. In this case the tetrahedral Co atom carries the large
    2038 magnetic moment while the octahedral ones have nearly zero moment. This is
    2039 probably the better model because it is similar to the magnetic structures
    2040 found for related materials. We can see if the moment is fully on the
    2041 tetrahedral Co; set <span class=SpellE><b style='mso-bidi-font-weight:normal'><span
    2042 style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin;
    2043 mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:minor-latin'>Mz</span></b></span><b
     2026minor-latin;mso-bidi-theme-font:minor-latin'>6</span></b> background
     2027coefficients and refine <b style='mso-bidi-font-weight:normal'><span
     2028style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin;
     2029mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:minor-latin'>XU</span></b>
     2030for the chemical phase atoms and <b style='mso-bidi-font-weight:normal'><span
     2031style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin;
     2032mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:minor-latin'>XUM</span></b>
     2033for the magnetic atoms. Do <b style='mso-bidi-font-weight:normal'><span
     2034style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin;
     2035mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:minor-latin'>Calculate/Refine</span></b>
     2036a few times until it converges. I got <span class=SpellE>wR</span> = 7.47%
     2037which is only slightly better than the result for the first model. In this case
     2038the tetrahedral Co atom carries the large magnetic moment while the octahedral
     2039ones have nearly zero moment. This is probably the better model because it is
     2040similar to the magnetic structures found for related materials. We can see if
     2041the moment is fully on the tetrahedral Co; set <span class=SpellE><b
    20442042style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif;
    20452043mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:
    2046 minor-latin'>=0</span></b> for the other two and set their refinement flags to
    2047 just <b style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif;
    2048 mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:
    2049 minor-latin'>XU</span></b>. Do <b style='mso-bidi-font-weight:normal'><span
    2050 style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin;
    2051 mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:minor-latin'>Calculate/Refine</span></b>.
    2052 My final <span class=SpellE>wR</span>=7.476% shows that probably all the
    2053 magnetic moment is on the tetrahedral Co atoms. The Atoms list </p>
     2044minor-latin'>Mz</span></b></span><b style='mso-bidi-font-weight:normal'><span
     2045style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin;
     2046mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:minor-latin'>=0</span></b>
     2047for the other two and set their refinement flags to just <b style='mso-bidi-font-weight:
     2048normal'><span style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:
     2049minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:minor-latin'>XU</span></b>.
     2050Do <b style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif;
     2051mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:
     2052minor-latin'>Calculate/Refine</span></b>. My final <span class=SpellE>wR</span>=7.476%
     2053shows that probably all the magnetic moment is on the tetrahedral Co atoms. The
     2054Atoms list </p>
    20542055
    20552056<p class=MsoNormal><span style='mso-no-proof:yes'><!--[if gte vml 1]><v:shape
     
    20582059 <v:imagedata src="Magnetic-III_files/image084.png" o:title=""/>
    20592060</v:shape><![endif]--><![if !vml]><img border=0 width=482 height=110
    2060 src="Magnetic-III_files/image078.gif" v:shapes="Picture_x0020_29"><![endif]></span></p>
     2061src="Magnetic-III_files/image054.gif" v:shapes="Picture_x0020_29"><![endif]></span></p>
    20612062
    20622063<p class=MsoNormal><span class=GramE>gives</span> <span class=SpellE>Mz</span>=3.347(43);
     
    20712072 <v:imagedata src="Magnetic-III_files/image086.png" o:title=""/>
    20722073</v:shape><![endif]--><![if !vml]><img border=0 width=237 height=480
    2073 src="Magnetic-III_files/image079.gif" v:shapes="Picture_x0020_30"><![endif]><!--[if gte vml 1]><v:shape
     2074src="Magnetic-III_files/image056.gif" v:shapes="Picture_x0020_30"><![endif]><!--[if gte vml 1]><v:shape
    20742075 id="Picture_x0020_31" o:spid="_x0000_i1025" type="#_x0000_t75" style='width:187.5pt;
    20752076 height:358.5pt;visibility:visible;mso-wrap-style:square'>
    20762077 <v:imagedata src="Magnetic-III_files/image088.png" o:title=""/>
    20772078</v:shape><![endif]--><![if !vml]><img border=0 width=250 height=478
    2078 src="Magnetic-III_files/image080.gif" v:shapes="Picture_x0020_31"><![endif]></span></p>
     2079src="Magnetic-III_files/image081.gif" v:shapes="Picture_x0020_31"><![endif]></span></p>
    20792080
    20802081<p class=MsoNormal>I’ve placed the doubled c-axis chemical structure so you can
  • Tutorials/Magnetic-III/Magnetic-III_files/filelist.xml

    r3700 r3725  
    44 <o:File HRef="colorschememapping.xml"/>
    55 <o:File HRef="image001.png"/>
    6  <o:File HRef="image004.gif"/>
     6 <o:File HRef="image002.gif"/>
    77 <o:File HRef="image006.png"/>
    88 <o:File HRef="image008.gif"/>
    99 <o:File HRef="image003.png"/>
    10  <o:File HRef="image021.gif"/>
     10 <o:File HRef="image010.gif"/>
    1111 <o:File HRef="image005.png"/>
    12  <o:File HRef="image025.gif"/>
     12 <o:File HRef="image012.gif"/>
    1313 <o:File HRef="image007.png"/>
    14  <o:File HRef="image028.gif"/>
     14 <o:File HRef="image014.gif"/>
    1515 <o:File HRef="image009.png"/>
    16  <o:File HRef="image057.gif"/>
     16 <o:File HRef="image016.gif"/>
    1717 <o:File HRef="image011.png"/>
    18  <o:File HRef="image058.gif"/>
     18 <o:File HRef="image018.gif"/>
    1919 <o:File HRef="image013.png"/>
    20  <o:File HRef="image059.gif"/>
     20 <o:File HRef="image020.gif"/>
    2121 <o:File HRef="image015.png"/>
    22  <o:File HRef="image060.gif"/>
     22 <o:File HRef="image022.gif"/>
    2323 <o:File HRef="image017.png"/>
    24  <o:File HRef="image061.gif"/>
     24 <o:File HRef="image024.gif"/>
    2525 <o:File HRef="image019.png"/>
    26  <o:File HRef="image062.gif"/>
     26 <o:File HRef="image026.gif"/>
    2727 <o:File HRef="image030.png"/>
    28  <o:File HRef="image063.gif"/>
     28 <o:File HRef="image032.gif"/>
    2929 <o:File HRef="image023.png"/>
    30  <o:File HRef="image064.gif"/>
    31  <o:File HRef="image066.png"/>
    32  <o:File HRef="image065.gif"/>
     30 <o:File HRef="image034.gif"/>
     31 <o:File HRef="image035.png"/>
     32 <o:File HRef="image036.gif"/>
    3333 <o:File HRef="image027.png"/>
    34  <o:File HRef="image067.gif"/>
     34 <o:File HRef="image038.gif"/>
    3535 <o:File HRef="image029.png"/>
    36  <o:File HRef="image068.gif"/>
     36 <o:File HRef="image040.gif"/>
    3737 <o:File HRef="image031.png"/>
    38  <o:File HRef="image069.gif"/>
     38 <o:File HRef="image041.gif"/>
    3939 <o:File HRef="image033.png"/>
    40  <o:File HRef="image070.gif"/>
     40 <o:File HRef="image042.gif"/>
    4141 <o:File HRef="image037.png"/>
    42  <o:File HRef="image071.gif"/>
     42 <o:File HRef="image043.gif"/>
    4343 <o:File HRef="image039.png"/>
    44  <o:File HRef="image072.gif"/>
     44 <o:File HRef="image044.gif"/>
    4545 <o:File HRef="image047.png"/>
    46  <o:File HRef="image073.gif"/>
     46 <o:File HRef="image045.gif"/>
    4747 <o:File HRef="image049.png"/>
    48  <o:File HRef="image074.gif"/>
     48 <o:File HRef="image046.gif"/>
    4949 <o:File HRef="image051.png"/>
    50  <o:File HRef="image075.gif"/>
     50 <o:File HRef="image048.gif"/>
    5151 <o:File HRef="image053.png"/>
    52  <o:File HRef="image076.gif"/>
     52 <o:File HRef="image050.gif"/>
    5353 <o:File HRef="image055.png"/>
    54  <o:File HRef="image077.gif"/>
     54 <o:File HRef="image052.gif"/>
    5555 <o:File HRef="image084.png"/>
    56  <o:File HRef="image078.gif"/>
     56 <o:File HRef="image054.gif"/>
    5757 <o:File HRef="image086.png"/>
    58  <o:File HRef="image079.gif"/>
     58 <o:File HRef="image056.gif"/>
    5959 <o:File HRef="image088.png"/>
    60  <o:File HRef="image080.gif"/>
     60 <o:File HRef="image081.gif"/>
    6161 <o:File HRef="filelist.xml"/>
    6262</xml>
Note: See TracChangeset for help on using the changeset viewer.