Changeset 3613
- Timestamp:
- Sep 19, 2018 1:31:56 PM (5 years ago)
- Location:
- trunk
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/GSASIIctrlGUI.py
r3599 r3613 5039 5039 ['CWNeutron', 'Neutron CW Powder Data.htm', 'CW Neutron Powder fit for Yttrium-Iron Garnet', 5040 5040 '''This shows a simple Rietveld refinement with constraints from CW neutron powder diffraction data.'''], 5041 5041 5042 ['LabData', 'Laboratory X.htm', 'Fitting laboratory X-ray powder data for fluoroapatite', 5042 5043 '''This shows a simple Rietveld refinement with CuKa lab Bragg-Brentano powder data.'''], 5044 5043 5045 ['CWCombined', 'Combined refinement.htm', 'Combined X-ray/CW-neutron refinement of PbSO4', 5044 5046 '''This shows Rietveld refinement of a structure with room temperature lab CuKa data and low temperature CW neutron data; 5045 5047 use is made of the lattice parameter offsets to account for thermal expansion.'''], 5048 5046 5049 ['TOF-CW Joint Refinement', 'TOF combined XN Rietveld refinement in GSAS.htm', 'Combined X-ray/TOF-neutron Rietveld refinement', 5047 5050 '''This shows Rietveld refinement with high resolution synchrotron powder data and neutron TOF data'''], 5048 ['SimpleMagnetic', 'SimpleMagnetic.htm',"Simple Magnetic Structure Analysis", 5049 '''Analysis of a simple antiferromagnet and a simple ferromagnet from CW neutron powder data'''], 5051 5050 5052 ['Simulation', 'SimTutorial.htm', 'Simulating Powder Diffraction with GSAS-II', 5051 5053 '''This show how to create a simulated powder pattern from a lab diffractometer.'''], 5054 5052 5055 ['BkgFit', 'FitBkgTut.htm', 'Fitting the Starting Background using Fixed Points', 5053 5056 '''This shows how to get an initial estimate of background parameters from a suite of fixed points 5054 5057 before beginning Rietveld refinement.'''], 5058 5055 5059 ['RietPlot', 'PublicationPlot.htm', 'Create a Publication-Ready Rietveld Plot', 5056 5060 '''Shows how to create a customized version of a plot from a fit, … … 5058 5062 as a bitmap file, a pdf file or be exported to the Grace or Igor Pro 5059 5063 plotting programs.'''], 5064 5065 ['Magnetic Structure Analysis'], 5066 ['SimpleMagnetic', 'SimpleMagnetic.htm',"Simple Magnetic Structure Analysis", 5067 '''Analysis of a simple antiferromagnet and a simple ferromagnet from CW neutron powder data'''], 5068 5069 ['Magnetic-I', 'Magnetic Structures-I.htm',"Magnetic Structure Analysis with k-SUBGROUPSMAG-I", 5070 '''Analysis of a simple antiferromagnet using Bilbao k-SUBGROUPSMAG from CW neutron powder data'''], 5071 5060 5072 5061 5073 ['Parametric sequential fitting'], … … 5063 5075 '''This shows the fitting of a structural model to multiple data sets collected as a function of temperature (7-300K). 5064 5076 This tutorial is the prerequisite for the next one.'''], 5077 5065 5078 ['SeqParametric', 'ParametricFitting.htm', ' Parametric Fitting and Pseudo Variables for Sequential Fits', 5066 5079 '''This explores the results of the sequential refinement obtained in the previous tutorial; includes 5067 5080 plotting of variables and fitting the changes with simple equations.'''], 5081 5068 5082 ['TOF Sequential Single Peak Fit','TOF Sequential Single Peak Fit.htm','Sequential fitting of single peaks and strain analysis of result', 5069 5083 '''This shows the fitting of single peaks in a sequence of TOF powder patterns from a sample under load; includes … … 5074 5088 '''This covers two examples of selecting individual powder diffraction peaks, fitting them and then 5075 5089 indexing to determine the crystal lattice and possible space group. This is the prerequisite for the next two tutorials.'''], 5090 5076 5091 ['CFjadarite', 'Charge Flipping in GSAS.htm', ' Charge Flipping structure solution for jadarite', 5077 5092 '''Solving the structure of jadarite (HLiNaSiB3O8) by charge flipping from Pawley extracted intensities 5078 5093 from a high resolution synchrotron powder pattern.'''], 5094 5079 5095 ['CFsucrose', 'Charge Flipping - sucrose.htm',' Charge Flipping structure solution for sucrose', 5080 5096 '''Solving the structure of sucrose (C12H22O11) by charge flipping from Pawley extracted intensities 5081 5097 from a high resolution synchrotron powder pattern.'''], 5098 5082 5099 ['CFXraySingleCrystal', 'CFSingleCrystal.htm', 'Charge Flipping structure solution with Xray single crystal data', 5083 '''Solving the structure of dipyridyl disulfate by charge flipping and then refine the structure by least-squares.'''], 5084 ['TOF Charge Flipping', 'Charge Flipping with TOF single crystal data in GSASII.htm', 'Charge flipping with neutron TOF single crystal data', 5085 '''Solving the crystal structure or rubrene (C42H28) from single crystal neutron data via charge flipping and then refine the structure by least squares.'''], 5100 '''Solving the structure of dipyridyl disulfate by charge flipping and then refine the structure by least-squares.'''], 5101 5102 ['TOF Charge Flipping', 'Charge Flipping with TOF single crystal data in GSASII.htm', 5103 'Charge flipping with neutron TOF single crystal data', 5104 '''Solving the crystal structure or rubrene (C42H28) from single crystal neutron data 5105 via charge flipping and then refine the structure by least squares.'''], 5106 5086 5107 ['MCsimanneal', 'MCSA in GSAS.htm', 'Monte-Carlo simulated annealing structure determination', 5087 '''Solving the structures of 3-aminoquinoline and α-d-lactose monohydrate from powder diffraction data via Monte Carlo/Simulated Annealing (MC/SA).'''], 5108 '''Solving the structures of 3-aminoquinoline and α-d-lactose monohydrate from powder diffraction data 5109 via Monte Carlo/Simulated Annealing (MC/SA).'''], 5088 5110 5089 5111 ['Stacking Fault Modeling'], 5090 5112 ['StackingFaults-I', 'Stacking Faults-I.htm', 'Stacking fault simulations for diamond', 5091 5113 '''This shows how to simulate the diffraction patterns from faulted diamond.'''], 5114 5092 5115 ['StackingFaults-II', 'Stacking Faults II.htm', 'Stacking fault simulations for Keokuk kaolinite', 5093 5116 '''This shows how to simulate some diffraction patterns from well ordered Keokuk kaolinite (Al2Si2O5(OH)4) clay.'''], 5117 5094 5118 ['StackingFaults-III', 'Stacking Faults-III.htm', 'Stacking fault simulations for Georgia kaolinite', 5095 5119 '''This shows how to simulate some diffraction patterns from poorly ordered Georgia kaolinite (Al2Si2O5(OH)4) clay.'''], … … 5099 5123 '''This shows how to determine profile parameters by fitting individual peaks 5100 5124 with data collected on a standard using a lab diffractometer.'''], 5125 5101 5126 ['TOF Calibration', 'Calibration of a TOF powder diffractometer.htm', 'Calibration of a Neutron TOF diffractometer', 5102 5127 '''This uses the fitted positions of all visible peaks in a pattern of NIST SRM 660b La11B6 … … 5111 5136 '''A demonstration of calibrating a Perkin-Elmer area detector, where the detector was intentionally tilted at 45 degrees. 5112 5137 This exercise is the prerequisite for the next one.'''], 5138 5113 5139 ['2DIntegration', 'Integration of area detector data in GSAS.htm', ' Integration of area detector data', 5114 5140 '''Integration of the image from a Perkin-Elmer area detector, where the detector was intentionally tilted at 45 degrees.'''], 5141 5115 5142 ['2DStrain', 'Strain fitting of 2D data in GSAS-II.htm', 'Strain fitting of 2D data', 5116 5143 '''This show how to determine 3 strain tensor values using the method of He & Smith (Adv. in X-ray Anal. 41, 501, 1997) 5117 5144 directly froom a sequence of 2D imges from a loaded sample.'''], 5145 5118 5146 ['2DTexture', 'Texture analysis of 2D data in GSAS-II.htm', 'Texture analysis of 2D data', 5119 5147 '''This shows 3 different methods for determining texture via spherical harmonics from 2D x-ray diffraction images. '''], 5148 5120 5149 ['DeterminingWavelength', 'DeterminingWavelength.html', 'Area Detector Calibration with Multiple Distances: Determine Wavelength', 5121 5150 '''To get an accurate wavelength, without knowing the sample-to-detector distance accurately, images recorded with 5122 5151 several different distances can be used. This exercise shows how to determine the wavelength from such a series. 5123 5152 This exercise is the prerequisite for the next one.'''], 5153 5124 5154 ['CalibrationTutorial', 'CalibrationTutorial.html', ' Area Detector Calibration with Multiple Distances: Calibrate Detector Distances', 5125 5155 '''To get an accurate wavelength, without knowing the sample-to-detector distance accurately, images recorded with … … 5132 5162 '''This shows how to determine the size distribution of particles using data from a constant 5133 5163 wavelength synchrotron X-ray USAXS instrument. This is the prerequisite for the next tutorial'''], 5164 5134 5165 ['SAfit', 'Fitting Small Angle Scattering Data.htm', ' Fitting small angle x-ray data (alumina powder)', 5135 5166 '''This shows how to fit small angle scattering data using data from a constant wavelength synchrotron X-ray USAXS instrument. '''], 5167 5136 5168 ['SAimages', 'Small Angle Image Processing.htm', 'Image Processing of small angle x-ray data', 5137 5169 '''This shows how to reduce 2D SAXS data to create 1D absolute scaled data. '''], 5170 5138 5171 ['SAseqref', 'Sequential Refinement of Small Angle Scattering Data.htm', 'Sequential refinement with small angle scattering data', 5139 5172 '''This shows how to fit USAXS small angle scattering data for a suite of samples to demonstrate the … … 5144 5177 ['MerohedralTwins', 'Merohedral twin refinement in GSAS.htm', 'Merohedral twin refinements', 5145 5178 '''This shows how to use GSAS-II to refine the structure of a few single crystal structures where there is merohedral twinning. '''], 5179 5146 5180 ['TOF Single Crystal Refinement', 'TOF single crystal refinement in GSAS.htm', 'Single crystal refinement from TOF data', 5147 5181 '''This shows how to refine the structure of sapphire (really corundum, Al2O3) from single crystal diffraction data 5148 5182 collected at the SNS on the TOPAZ instrument at room temperature. '''], 5183 5149 5184 ['PythonScript','Scripting.htm','Scripting a GSAS-II Refinement from Python', 5150 5185 '''This demonstrates the use of the GSASIIscriptable module. This uses a Python script to perform a refinement or 5151 5186 computation, but without use of the GSAS-II graphical user interface. This is a prerequisite for the next tutorial.'''], 5187 5152 5188 ['PythonScript','CommandLine.htm',' Running a GSAS-II Refinement from the Command Line', 5153 5189 '''This shows a unix script that duplicates the previous Python Scripting GSAS-II tutorial. '''], -
trunk/GSASIIphsGUI.py
r3602 r3613 2489 2489 del newPhase['magPhases'] 2490 2490 generalData = newPhase['General'] 2491 generalData['Name'] = phaseName 2491 2492 generalData['SGData'] = copy.deepcopy(magchoice['SGData']) 2492 2493 generalData['Cell'][1:] = magchoice['Cell'][:] … … 2536 2537 G2frame.GPXtree.SetItemPyData(sub,newPhase) 2537 2538 newPhase['Drawing'] = [] 2538 #G2cnstG.TransConstraints(G2frame,data,newPhase,magchoice['Trans'],vvec,atCodes) #data is old phase2539 G2cnstG.TransConstraints(G2frame,data,newPhase,magchoice['Trans'],vvec,atCodes) #data is old phase 2539 2540 G2frame.newGPXfile = phaseName+'.gpx' 2540 2541 G2frame.OnFileSaveas(event)
Note: See TracChangeset
for help on using the changeset viewer.