Changeset 3613


Ignore:
Timestamp:
Sep 19, 2018 1:31:56 PM (3 years ago)
Author:
vondreele
Message:

add new tutorial to tutorialIndex & add some spaces to make it more readable
fix phase name problem for new mag phases & allow formation of constraints

Location:
trunk
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • trunk/GSASIIctrlGUI.py

    r3599 r3613  
    50395039    ['CWNeutron', 'Neutron CW Powder Data.htm', 'CW Neutron Powder fit for Yttrium-Iron Garnet',
    50405040     '''This shows a simple Rietveld refinement with constraints from CW neutron powder diffraction data.'''],
     5041     
    50415042    ['LabData', 'Laboratory X.htm', 'Fitting laboratory X-ray powder data for fluoroapatite',
    50425043     '''This shows a simple Rietveld refinement with CuKa lab Bragg-Brentano powder data.'''],
     5044     
    50435045    ['CWCombined', 'Combined refinement.htm', 'Combined X-ray/CW-neutron refinement of PbSO4',
    50445046     '''This shows Rietveld refinement of a structure with room temperature lab CuKa data and low temperature CW neutron data;
    50455047     use is made of the lattice parameter offsets to account for thermal expansion.'''],
     5048     
    50465049    ['TOF-CW Joint Refinement', 'TOF combined XN Rietveld refinement in GSAS.htm', 'Combined X-ray/TOF-neutron Rietveld refinement',
    50475050     '''This shows Rietveld refinement with high resolution synchrotron powder data and neutron TOF data'''],
    5048     ['SimpleMagnetic', 'SimpleMagnetic.htm',"Simple Magnetic Structure Analysis",
    5049      '''Analysis of a simple antiferromagnet and a simple ferromagnet from CW neutron powder data'''],
     5051     
    50505052    ['Simulation', 'SimTutorial.htm',  'Simulating Powder Diffraction with GSAS-II',
    50515053     '''This show how to create a simulated powder pattern from a lab diffractometer.'''],
     5054     
    50525055    ['BkgFit', 'FitBkgTut.htm',  'Fitting the Starting Background using Fixed Points',
    50535056     '''This shows how to get an initial estimate of background parameters from a suite of fixed points
    50545057     before beginning Rietveld refinement.'''],
     5058     
    50555059    ['RietPlot', 'PublicationPlot.htm', 'Create a Publication-Ready Rietveld Plot',
    50565060     '''Shows how to create a customized version of a plot from a fit,
     
    50585062     as a bitmap file, a pdf file or be exported to the Grace or Igor Pro
    50595063     plotting programs.'''],
     5064     
     5065    ['Magnetic Structure Analysis'],
     5066    ['SimpleMagnetic', 'SimpleMagnetic.htm',"Simple Magnetic Structure Analysis",
     5067     '''Analysis of a simple antiferromagnet and a simple ferromagnet from CW neutron powder data'''],
     5068     
     5069    ['Magnetic-I', 'Magnetic Structures-I.htm',"Magnetic Structure Analysis with k-SUBGROUPSMAG-I",
     5070     '''Analysis of a simple antiferromagnet using Bilbao k-SUBGROUPSMAG from CW neutron powder data'''],
     5071     
    50605072   
    50615073    ['Parametric sequential fitting'],
     
    50635075     '''This shows the fitting of a structural model to multiple data sets collected as a function of temperature (7-300K).
    50645076     This tutorial is the prerequisite for the next one.'''],
     5077     
    50655078    ['SeqParametric', 'ParametricFitting.htm', '     Parametric Fitting and Pseudo Variables for Sequential Fits',
    50665079     '''This explores the results of the sequential refinement obtained in the previous tutorial; includes
    50675080     plotting of variables and fitting the changes with simple equations.'''],
     5081     
    50685082     ['TOF Sequential Single Peak Fit','TOF Sequential Single Peak Fit.htm','Sequential fitting of single peaks and strain analysis of result',
    50695083      '''This shows the fitting of single peaks in a sequence of TOF powder patterns from a sample under load; includes
     
    50745088     '''This covers two examples of selecting individual powder diffraction peaks, fitting them and then
    50755089     indexing to determine the crystal lattice and possible space group. This is the prerequisite for the next two tutorials.'''],
     5090     
    50765091    ['CFjadarite', 'Charge Flipping in GSAS.htm', '     Charge Flipping structure solution for jadarite',
    50775092     '''Solving the structure of jadarite (HLiNaSiB3O8) by charge flipping from Pawley extracted intensities
    50785093     from a high resolution synchrotron powder pattern.'''],
     5094     
    50795095    ['CFsucrose', 'Charge Flipping - sucrose.htm','     Charge Flipping structure solution for sucrose',
    50805096          '''Solving the structure of sucrose (C12H22O11) by charge flipping from Pawley extracted intensities
    50815097     from a high resolution synchrotron powder pattern.'''],
     5098     
    50825099    ['CFXraySingleCrystal', 'CFSingleCrystal.htm', 'Charge Flipping structure solution with Xray single crystal data',
    5083      '''Solving the structure of dipyridyl disulfate by charge flipping and then refine the structure by least-squares.'''],       
    5084     ['TOF Charge Flipping', 'Charge Flipping with TOF single crystal data in GSASII.htm', 'Charge flipping with neutron TOF single crystal data',
    5085      '''Solving the crystal structure or rubrene (C42H28) from single crystal neutron data via charge flipping and then refine the structure by least squares.'''],
     5100     '''Solving the structure of dipyridyl disulfate by charge flipping and then refine the structure by least-squares.'''],
     5101       
     5102    ['TOF Charge Flipping', 'Charge Flipping with TOF single crystal data in GSASII.htm',
     5103     'Charge flipping with neutron TOF single crystal data',
     5104     '''Solving the crystal structure or rubrene (C42H28) from single crystal neutron data
     5105     via charge flipping and then refine the structure by least squares.'''],
     5106     
    50865107    ['MCsimanneal', 'MCSA in GSAS.htm', 'Monte-Carlo simulated annealing structure determination',
    5087      '''Solving the structures of 3-aminoquinoline and α-d-lactose monohydrate from powder diffraction data via Monte Carlo/Simulated Annealing (MC/SA).'''],
     5108     '''Solving the structures of 3-aminoquinoline and α-d-lactose monohydrate from powder diffraction data
     5109     via Monte Carlo/Simulated Annealing (MC/SA).'''],
    50885110
    50895111    ['Stacking Fault Modeling'],
    50905112    ['StackingFaults-I', 'Stacking Faults-I.htm', 'Stacking fault simulations for diamond',
    50915113     '''This shows how to simulate the diffraction patterns from faulted diamond.'''],
     5114     
    50925115    ['StackingFaults-II', 'Stacking Faults II.htm', 'Stacking fault simulations for Keokuk kaolinite',
    50935116     '''This shows how to simulate some diffraction patterns from well ordered Keokuk kaolinite (Al2Si2O5(OH)4) clay.'''],
     5117     
    50945118    ['StackingFaults-III', 'Stacking Faults-III.htm', 'Stacking fault simulations for Georgia kaolinite',
    50955119     '''This shows how to simulate some diffraction patterns from poorly ordered Georgia kaolinite (Al2Si2O5(OH)4) clay.'''],
     
    50995123     '''This shows how to determine profile parameters by fitting individual peaks
    51005124        with data collected on a standard using a lab diffractometer.'''],
     5125     
    51015126    ['TOF Calibration', 'Calibration of a TOF powder diffractometer.htm', 'Calibration of a Neutron TOF diffractometer',
    51025127     '''This uses the fitted positions of all visible peaks in a pattern of NIST SRM 660b La11B6
     
    51115136     '''A demonstration of calibrating a Perkin-Elmer area detector,  where the detector was intentionally tilted at 45 degrees.
    51125137     This exercise is the prerequisite for the next one.'''],
     5138     
    51135139    ['2DIntegration', 'Integration of area detector data in GSAS.htm', '     Integration of area detector data',
    51145140     '''Integration of the image from a Perkin-Elmer area detector, where the detector was intentionally tilted at 45 degrees.'''],
     5141     
    51155142    ['2DStrain', 'Strain fitting of 2D data in GSAS-II.htm', 'Strain fitting of 2D data',
    51165143     '''This show how to determine 3 strain tensor values using the method of He & Smith (Adv. in X-ray Anal. 41, 501, 1997)
    51175144     directly froom a sequence of 2D imges from a loaded sample.'''],
     5145   
    51185146    ['2DTexture', 'Texture analysis of 2D data in GSAS-II.htm', 'Texture analysis of 2D data',
    51195147     '''This shows 3 different methods for determining texture via spherical harmonics from 2D x-ray diffraction images. '''],
     5148     
    51205149    ['DeterminingWavelength', 'DeterminingWavelength.html', 'Area Detector Calibration with Multiple Distances: Determine Wavelength',
    51215150     '''To get an accurate wavelength, without knowing the sample-to-detector distance accurately, images recorded with
    51225151     several different distances can be used. This exercise shows how to determine the wavelength from such a series.
    51235152     This exercise is the prerequisite for the next one.'''],
     5153     
    51245154    ['CalibrationTutorial', 'CalibrationTutorial.html', '    Area Detector Calibration with Multiple Distances: Calibrate Detector Distances',
    51255155     '''To get an accurate wavelength, without knowing the sample-to-detector distance accurately, images recorded with
     
    51325162     '''This shows how to determine the size distribution of particles using data from a constant
    51335163     wavelength synchrotron X-ray USAXS instrument. This is the prerequisite for the next tutorial'''],
     5164     
    51345165    ['SAfit', 'Fitting Small Angle Scattering Data.htm', '     Fitting small angle x-ray data (alumina powder)',
    51355166     '''This shows how to fit small angle scattering data using data from a constant wavelength synchrotron X-ray USAXS instrument. '''],
     5167     
    51365168    ['SAimages', 'Small Angle Image Processing.htm', 'Image Processing of small angle x-ray data',
    51375169     '''This shows how to  reduce 2D SAXS data to create 1D absolute scaled data. '''],
     5170     
    51385171    ['SAseqref', 'Sequential Refinement of Small Angle Scattering Data.htm', 'Sequential refinement with small angle scattering data',
    51395172     '''This shows how to fit USAXS small angle scattering data for a suite of samples to demonstrate the
     
    51445177    ['MerohedralTwins', 'Merohedral twin refinement in GSAS.htm', 'Merohedral twin refinements',
    51455178     '''This shows how to use GSAS-II to refine the structure of a few single crystal structures where there is merohedral twinning. '''],
     5179     
    51465180    ['TOF Single Crystal Refinement', 'TOF single crystal refinement in GSAS.htm', 'Single crystal refinement from TOF data',
    51475181     '''This shows how to refine the structure of sapphire (really corundum, Al2O3) from single crystal diffraction data
    51485182     collected at the SNS on the TOPAZ instrument at room temperature.  '''],
     5183     
    51495184    ['PythonScript','Scripting.htm','Scripting a GSAS-II Refinement from Python',
    51505185     '''This demonstrates the use of the GSASIIscriptable module. This uses a Python script to perform a refinement or
    51515186     computation, but without use of the GSAS-II graphical user interface. This is a prerequisite for the next tutorial.'''],
     5187     
    51525188    ['PythonScript','CommandLine.htm','     Running a GSAS-II Refinement from the Command Line',
    51535189     '''This shows a unix script that duplicates the previous Python Scripting GSAS-II tutorial. '''],
  • trunk/GSASIIphsGUI.py

    r3602 r3613  
    24892489            del newPhase['magPhases']
    24902490            generalData = newPhase['General']
     2491            generalData['Name'] = phaseName
    24912492            generalData['SGData'] = copy.deepcopy(magchoice['SGData'])           
    24922493            generalData['Cell'][1:] = magchoice['Cell'][:]
     
    25362537        G2frame.GPXtree.SetItemPyData(sub,newPhase)
    25372538        newPhase['Drawing'] = []
    2538 #        G2cnstG.TransConstraints(G2frame,data,newPhase,magchoice['Trans'],vvec,atCodes)     #data is old phase
     2539        G2cnstG.TransConstraints(G2frame,data,newPhase,magchoice['Trans'],vvec,atCodes)     #data is old phase
    25392540        G2frame.newGPXfile = phaseName+'.gpx'
    25402541        G2frame.OnFileSaveas(event)
Note: See TracChangeset for help on using the changeset viewer.