Changeset 3553
- Timestamp:
- Aug 3, 2018 10:51:26 PM (5 years ago)
- Files:
-
- 21 edited
Legend:
- Unmodified
- Added
- Removed
-
Tutorials/2DCalibration/Calibration of an area detector in GSAS.htm
r2972 r3553 1144 1144 color:#365F91;mso-themecolor:accent1;mso-themeshade:191'><o:p></o:p></span></b></p> 1145 1145 1146 <P><B>A video version of this tutorial is available at 1147 <A href="https://anl.box.com/v/CalibrationofanareadetectorinG" target="_blank"> 1148 https://anl.box.com/v/CalibrationofanareadetectorinG</A></B></P> 1149 1146 1150 <p class=MsoNormal>In this tutorial, data collected with a Perkin-Elmer area 1147 1151 detector at APS 11-ID-C with a wavelength 0.10798 A, where the detector was … … 1162 1166 text-underline:none'>start GSAS-II</span></a></span></u>.</p> 1163 1167 1164 <h 1>Step 1: read in the data file</h1>1168 <h2>Step 1: read in the data file</h2> 1165 1169 1166 1170 <p class=MsoNormal><span style='mso-spacerun:yes'> </span>Use the <b … … 1244 1248 v:shapes="Picture_x0020_16"><![endif]></span></p> 1245 1249 1246 <h 1><span style='mso-spacerun:yes'> </span>Step 2: Edit image parameters</h1>1250 <h2><span style='mso-spacerun:yes'> </span>Step 2: Edit image parameters</h2> 1247 1251 1248 1252 <p class=MsoNormal>Note that, alas, very few image formats contain all of the … … 1273 1277 minor-latin;mso-bidi-theme-font:minor-latin'>Color bar</span></b> selector. </p> 1274 1278 1275 <h 1><span style='mso-spacerun:yes'> </span>Step 3: Calibrate</h1>1279 <h2><span style='mso-spacerun:yes'> </span>Step 3: Calibrate</h2> 1276 1280 1277 1281 <h3><span style='mso-spacerun:yes'> </span>First: </h3> -
Tutorials/2DIntegration/Integration of area detector data in GSAS.htm
r2973 r3553 1309 1309 <h1>Integration of area detector data in GSAS-II</h1> 1310 1310 1311 <P><B>A video version of this tutorial is available at 1312 <A href="https://anl.box.com/v/Integrationofareadetectordatai" target="_blank"> 1313 https://anl.box.com/v/Integrationofareadetectordatai</A></B></P> 1314 1315 1311 1316 <p class=MsoNormal>In this demo, data collected with a Perkin-Elmer area 1312 1317 detector at APS 11-ID-C with a wavelength 0.10798 A, where the detector was … … 1336 1341 <p class=MsoNormal>Assuming the previous step was calibration, the image plot 1337 1342 will show the located rings and possibly all the picked points. These are no 1338 longer needed. The <b style='mso-bidi-font-weight:normal'><span 1343 longer needed. 1344 Go to the <B>Image Controls</B> window on the data tree. 1345 The <b style='mso-bidi-font-weight:normal'><span 1339 1346 style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin; 1340 1347 mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:minor-latin'>Calibration/Clear … … 1360 1367 style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin; 1361 1368 mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:minor-latin'>Show 1362 integration limits?</span></b> <span class=GramE>check</span> box. Note that 1369 integration limits?</span></b> <span class=GramE>check</span> box (if 1370 not already checked). Note that 1363 1371 inner limit is shown as a green ellipse at 2deg and the outer is shown as a red 1364 1372 ellipse at 5deg by default. These limits may also be dragged to the desired … … 1442 1450 style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif; 1443 1451 mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin'>5000</span></b> 1444 is a better choice than the default .</p>1452 is a better choice than the default in that first box.</p> 1445 1453 1446 1454 <p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span … … 1456 1464 when the <b style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif; 1457 1465 mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin'>Show 1458 integration limits?</span></b> <span class=GramE>check</span> box is checked. </p> 1466 integration limits?</span></b> <span class=GramE>check</span> box, if 1467 not already checked. </p> 1459 1468 1460 1469 <p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span 1461 1470 style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin; 1462 mso-hansi-theme-font:minor-latin'>Appl .Sample absorption</span></b> and <b1471 mso-hansi-theme-font:minor-latin'>Apply Sample absorption</span></b> and <b 1463 1472 style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif; 1464 1473 mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin'>value</span></b>: … … 1470 1479 <p class=MsoNormal><b style='mso-bidi-font-weight:normal'><span 1471 1480 style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin; 1472 mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:minor-latin'>Appl . det.1481 mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:minor-latin'>Apply detector 1473 1482 absorption</span></b> and <b style='mso-bidi-font-weight:normal'><span 1474 1483 style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin; -
Tutorials/2DStrain/Strain fitting of 2D data in GSAS-II.htm
r3040 r3553 1309 1309 <h1>Strain fitting of 2D data in GSAS-II</h1> 1310 1310 1311 <P><B>A video version of this tutorial is available at 1312 <A href="https://anl.box.com/v/Strainfittingof2DdatainGSAS-II" target="_blank"> 1313 https://anl.box.com/v/Strainfittingof2DdatainGSAS-II</A></B></P> 1314 1311 1315 <p class=MsoNormal>For this tutorial, data were collected with a MAR2300 area 1312 1316 detector at APS 1-ID-C with a wavelength 0.12398 Å (100<span style='font-family: -
Tutorials/2DTexture/Texture analysis of 2D data in GSAS-II.htm
r3055 r3553 1433 1433 0in;line-height:115%'>Texture analysis of 2D data in GSAS-II</h1> 1434 1434 1435 <P><B>A video version of this tutorial is available at 1436 <A href="https://anl.box.com/v/Textureanalysisof2DdatainGSAS-" target="_blank"> 1437 https://anl.box.com/v/Textureanalysisof2DdatainGSAS-</A></B></P> 1438 1435 1439 <h2 style='margin-top:0in;margin-right:0in;margin-bottom:12.0pt;margin-left: 1436 1440 0in;line-height:115%'>Introduction</h2> -
Tutorials/CWInstDemo/FindProfParamCW.htm
r3354 r3553 713 713 Parameters from a Standard<o:p></o:p></span></h1> 714 714 715 <P><B>A video version of this tutorial is available at 716 <A href="https://anl.box.com/v/FindProfParamCW" target="_blank"> 717 https://anl.box.com/v/FindProfParamCW</A></B></P> 718 715 719 <p class=MsoNormal><span style='font-size:14.0pt'><o:p> </o:p></span></p> 716 720 -
Tutorials/DeterminingWavelength/DeterminingWavelength.html
r3544 r3553 27 27 <p class="c3"><span class="c4 c2">Since the single-image calibration looks good, it is time to copy these parameters onto the rest of the images.</span></p><p class="c3"><span class="c2">Next select </span><span class="c0">Parms/Copy Selected</span><span class="c4 c2">. A text box like this will pop up:</span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 446.50px; height: 299.36px;"><img alt="" src="images/image7.png" style="width: 936.47px; height: 523.88px; margin-left: -321.16px; margin-top: -99.15px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c2">Click </span><span class="c0">Set All</span><span class="c2"> on the bottom then go back and unselect both </span><span class="c0">distance (10)</span><span class="c2"> and</span><span class="c0"> setdist</span><span class="c2"> </span><span class="c0">(25)</span><span class="c2">, as below, then press</span><span class="c0"> OK</span><span class="c4 c2">. We want to copy all parameters except for the distances because they differ for each image. </span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 465.50px; height: 414.40px;"><img alt="" src="images/image16.png" style="width: 902.09px; height: 506.81px; margin-left: -284.79px; margin-top: -30.32px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c2">Another dialog box will appear for selection of the images to copy these parameters to, hit </span><span class="c0">Set All</span><span class="c2"> and press </span><span class="c4 c0">OK</span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 246.75px; height: 321.50px;"><img alt="" src="images/image23.png" style="width: 1015.29px; height: 565.44px; margin-left: -466.62px; margin-top: -106.06px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c2">Next select </span><span class="c0">C</span><span class="c0">alibration/Recalibrate all </span><span class="c2">to recalibrate all images with the new parameters. 28 28 </span></p><p class="c8"><span class="c4 c2"> 29 Do </span><span class="c0">File/Save project as...</span><span class="c2"> and name it </span><span class="c0">Wavelength_Determination</span><span class="c4 c2">. This will create a copy of the project to use for calibration.</span></p><p class="c1"><span class="c4 c2"></span></p><p class="c1"><span class="c4 c2"></span></p><p class="c3"><span class="c2">The next step is to check to make sure the Min calib d-spacing setting value ensures that only full rings are used in each calibration. The </span><span class="c2">Min calib d-spacing restrict the set of reflections to be used in the MC/SA run</span><span class="c2">.To do this, start at the </span><span class="c0">Image Controls</span><span class="c2"> for the first image and then go in increasing order through the images until you find one where the outer rings are cut off. For us, the first image with rings cut off is </span><span class="c0">IMG Si_free_dc400_1</span><span class="c0">-00000.tif</span><span class="c4 c2">, as below.</span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 582.00px; height: 543.00px;"><img alt="" src="images/image21.png" style="width: 1104.29px; height: 620.82px; margin-left: -279.84px; margin-top: -21.22px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c1"><span class="c4 c2"></span></p><p class="c3"><span class="c4 c2">Start with your cursor in the center of the rings and then pan your mouse over to the right edge. Watch the Min calib d-spacing decrease as you continue to move the mouse to the right.</span></p><p class="c1"><span class="c4 c2"></span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 624.00px; height: 488.00px;"><img alt="" src="images/image18.gif" style="width: 624.00px; height: 488.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c2">Look at the dsp value at the bottom of the plot window. Look at the value when the cursor is on the edge. That will be the new Min calib d-spacing. The default value of 0.50 is allowing the outer rings to be cut off.</span><span class="c2"> </span><span class="c2"> We then looked at what the dsp value was when the cursor was on the edge of the image. Here it is 0.529, so we went to image controls for image </span><span class="c0">IMG Si_free_dc400_1</span><span class="c0">-00000.tif</span><span class="c2"> </span><span class="c2">a</span><span class="c2">nd changed </span><span class="c0">Min calib d-spacing</span><span class="c4 c2"> to 0.53.</span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 637.00px; height: 394.00px;"><img alt="" src="images/image5.png" style="width: 799.07px; height: 449.01px; margin-left: -109.57px; margin-top: -14.07px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c2">Then select </span><span class="c0">Calibration/Recalibrate</span><span class="c4 c2"> and the image should now have all the rings intact. </span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 561.00px; height: 527.00px;"><img alt="" src="images/image14.png" style="width: 1070.53px; height: 602.04px; margin-left: -271.06px; margin-top: -20.58px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c2">After you fix the first image where the Min calib d-spacing is off you can fix the rest of the images that also have this problem. To fix this, select image controls for image </span><span class="c0">IMG Si_free_dc400_1</span><span class="c0">-00000.tif</span><span class="c2">. </span><span class="c2">Then select </span><span class="c0">Parms/XFer Angles </span><span class="c4 c2">and a window will pop up.</span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 252.50px; height: 441.38px;"><img alt="" src="images/image20.png" style="width: 1240.63px; height: 697.85px; margin-left: -536.81px; margin-top: -107.36px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c2">Select </span><span class="c0">Set All </span><span class="c2">but then </span><span class="c0">unselect</span><span class="c2"> all the earlier images that did not have a Min calib d-spacing problem. For us, this was </span><span class="c0">images 200-350</span><span class="c2">. Then </span><span class="c0">select</span><span class="c2"> the </span><span class="c0">Xfer scaled calib d-min </span><span class="c2">option on the bottom of the window and </span><span class="c0">unselect</span><span class="c2"> the </span><span class="c0">Xfer scaled 2-theta max </span><span class="c4 c2">option. This takes min calibrated d-spacing from the image selected and determines the accurate d-spacing for all other images. The text box should look like the following:</span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 262.00px; height: 454.00px;"><img alt="" src="images/image22.png" style="width: 1277.25px; height: 717.60px; margin-left: -552.66px; margin-top: -108.36px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c2">Then select</span><span class="c0"> OK</span><span class="c4 c2"> and the rest of the Min calib d-spacing will be adjusted for the rest of the images.</span></p><p class="c3"><span class="c2">Now it’s time to recalibrate all of the images with the new Min calib d-spacing values. Go to any image controls window and select </span><span class="c0">Calibration/Recalibrate all </span><span class="c2">and select </span><span class="c4 c0">Set All. </span></p><p class="c3"><span class="c4 c2">This will take a bit of time as each image is being recalibrated. </span></p><p class="c3"><span class="c2">After the recalibration, all the images should only have full intact rings. Once the process is complete go to the bottom of the data tree and select </span><span class="c0">Sequential image calibration results </span><span class="c4 c2">and a table should appear. </span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 605.50px; height: 376.16px;"><img alt="" src="images/image17.png" style="width: 757.18px; height: 425.91px; margin-left: -103.14px; margin-top: -12.13px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c2">In </span><span class="c0">Sequential Image Calibration results</span><span class="c2">, a table should appear with a column labeled dep containing detector penetration depths (</span><span class="c0">dep</span><span class="c2">). As we look over the table we need to make sure that the detector penetration depths have roughly the same values except for the first few rows (these will be off due to the close distances). As we look at our data we notice that the last few values are inconsistent with the rest. To investigate we select the </span><span class="c0">IMG Si_free_dc1250_1</span><span class="c0">-00000.tif</span><span class="c0">/ Image Controls</span><span class="c2"> and view the second to last image.</span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 537.50px; height: 503.19px;"><img alt="" src="images/image15.png" style="width: 1019.45px; height: 573.44px; margin-left: -258.13px; margin-top: -17.97px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c4 c2">We can see from the image that there is a fake (or fragmented) fourth ring that should not actually be there (the last “1300” image does not have this issue of the fake fourth ring). In order to fix this we will pan the mouse over to the space in between the last full ring and the fake ring as shown below.</span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 624.00px; height: 577.33px;"><img alt="" src="images/image26.gif" style="width: 624.00px; height: 577.33px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c2">We found a value of the dsp to be 1.592 and changed the Min calib d-spacing to that value under </span><span class="c0">Image controls </span><span class="c4 c2">for the “1250” image. </span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 620.00px; height: 383.00px;"><img alt="" src="images/image2.png" style="width: 776.56px; height: 436.77px; margin-left: -106.78px; margin-top: -12.44px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c2">We then selected </span><span class="c0">Calibration/Recalibrate</span><span class="c4 c2"> and our image now excludes the fake fourth ring.</span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 497.50px; height: 464.33px;"><img alt="" src="images/image3.png" style="width: 940.73px; height: 529.16px; margin-left: -236.69px; margin-top: -16.58px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c2">Continue to go through the i</span><span class="c2">mages in decreasing distance from</span><span class="c2"> the detector and check to see whether there is a phantom ring and adjust the Min calib d-spacing accordingly. However once you get to an image where there is another full ring outside of the phantom ring, there is no need to adjust the Min calib d-spacing. We adjusted the Min calib d-spacing value to </span><span class="c0">1.59</span><span class="c2"> for images </span><span class="c0">IMG Si_free_dc1200_1</span><span class="c0">-00000.tif</span><span class="c0"> </span><span class="c2">and </span><span class="c0">IMG Si_free_dc1150_1</span><span class="c0">-00000.tif</span><span class="c4 c2">. The “1100” image had a fifth full ring that we did not want to exclude.</span></p><p class="c1"><span class="c4 c2"></span></p><p class="c3"><span class="c2">After completing this process select </span><span class="c0">Calibration/Recalibrate all </span><span class="c2">once again. Continue calibrating until the dep values</span><span class="c2"> </span><span class="c2">converge. After a few recalibrations, the table under </span><span class="c0">Sequential image calibration results</span><span class="c2 c4"> shows our dep values converge the detector distances are further from the sample.</span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 636.00px; height: 395.00px;"><img alt="" src="images/image25.png" style="width: 796.57px; height: 447.24px; margin-left: -109.51px; margin-top: -12.74px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c2">Our new values have improved quite a bit. If the any </span><span class="c2"> detector penetration depth (dep) </span><span class="c2">values are negative then go to </span><span class="c0">Image Controls </span><span class="c2">for the images with negative dep values. You will see that the penetration values for those images are also negative. As this should not be possible, change the value of </span><span class="c0">Penetration </span><span class="c2">to </span><span class="c0">zero</span><span class="c2"> and then did </span><span class="c0">Calibration/Recalibrate all </span><span class="c2">once again and the penetration values should become positive.29 Do </span><span class="c0">File/Save project as...</span><span class="c2"> and name it </span><span class="c0">Wavelength_Determination</span><span class="c4 c2">. This will create a copy of the project to use for calibration.</span></p><p class="c1"><span class="c4 c2"></span></p><p class="c1"><span class="c4 c2"></span></p><p class="c3"><span class="c2">The next step is to check to make sure the Min calib d-spacing setting value ensures that only full rings are used in each calibration. The </span><span class="c2">Min calib d-spacing restrict the set of reflections to be used. </span><span class="c2">To do this, start at the </span><span class="c0">Image Controls</span><span class="c2"> for the first image and then go in increasing order through the images until you find one where the outer rings are cut off. For us, the first image with rings cut off is </span><span class="c0">IMG Si_free_dc400_1</span><span class="c0">-00000.tif</span><span class="c4 c2">, as below.</span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 582.00px; height: 543.00px;"><img alt="" src="images/image21.png" style="width: 1104.29px; height: 620.82px; margin-left: -279.84px; margin-top: -21.22px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c1"><span class="c4 c2"></span></p><p class="c3"><span class="c4 c2">Start with your cursor in the center of the rings and then pan your mouse over to the right edge. Watch the Min calib d-spacing decrease as you continue to move the mouse to the right.</span></p><p class="c1"><span class="c4 c2"></span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 624.00px; height: 488.00px;"><img alt="" src="images/image18.gif" style="width: 624.00px; height: 488.00px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c2">Look at the dsp value at the bottom of the plot window. Look at the value when the cursor is on the edge. That will be the new Min calib d-spacing. The default value of 0.50 is allowing the outer rings to be cut off.</span><span class="c2"> </span><span class="c2"> We then looked at what the dsp value was when the cursor was on the edge of the image. Here it is 0.529, so we went to image controls for image </span><span class="c0">IMG Si_free_dc400_1</span><span class="c0">-00000.tif</span><span class="c2"> </span><span class="c2">a</span><span class="c2">nd changed </span><span class="c0">Min calib d-spacing</span><span class="c4 c2"> to 0.53.</span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 637.00px; height: 394.00px;"><img alt="" src="images/image5.png" style="width: 799.07px; height: 449.01px; margin-left: -109.57px; margin-top: -14.07px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c2">Then select </span><span class="c0">Calibration/Recalibrate</span><span class="c4 c2"> and the image should now have all the rings intact. </span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 561.00px; height: 527.00px;"><img alt="" src="images/image14.png" style="width: 1070.53px; height: 602.04px; margin-left: -271.06px; margin-top: -20.58px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c2">After you fix the first image where the Min calib d-spacing is off you can fix the rest of the images that also have this problem. To fix this, select image controls for image </span><span class="c0">IMG Si_free_dc400_1</span><span class="c0">-00000.tif</span><span class="c2">. </span><span class="c2">Then select </span><span class="c0">Parms/XFer Angles </span><span class="c4 c2">and a window will pop up.</span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 252.50px; height: 441.38px;"><img alt="" src="images/image20.png" style="width: 1240.63px; height: 697.85px; margin-left: -536.81px; margin-top: -107.36px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c2">Select </span><span class="c0">Set All </span><span class="c2">but then </span><span class="c0">unselect</span><span class="c2"> all the earlier images that did not have a Min calib d-spacing problem. For us, this was </span><span class="c0">images 200-350</span><span class="c2">. Then </span><span class="c0">select</span><span class="c2"> the </span><span class="c0">Xfer scaled calib d-min </span><span class="c2">option on the bottom of the window and </span><span class="c0">unselect</span><span class="c2"> the </span><span class="c0">Xfer scaled 2-theta max </span><span class="c4 c2">option. This takes min calibrated d-spacing from the image selected and determines the accurate d-spacing for all other images. The text box should look like the following:</span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 262.00px; height: 454.00px;"><img alt="" src="images/image22.png" style="width: 1277.25px; height: 717.60px; margin-left: -552.66px; margin-top: -108.36px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c2">Then select</span><span class="c0"> OK</span><span class="c4 c2"> and the rest of the Min calib d-spacing will be adjusted for the rest of the images.</span></p><p class="c3"><span class="c2">Now it’s time to recalibrate all of the images with the new Min calib d-spacing values. Go to any image controls window and select </span><span class="c0">Calibration/Recalibrate all </span><span class="c2">and select </span><span class="c4 c0">Set All. </span></p><p class="c3"><span class="c4 c2">This will take a bit of time as each image is being recalibrated. </span></p><p class="c3"><span class="c2">After the recalibration, all the images should only have full intact rings. Once the process is complete go to the bottom of the data tree and select </span><span class="c0">Sequential image calibration results </span><span class="c4 c2">and a table should appear. </span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 605.50px; height: 376.16px;"><img alt="" src="images/image17.png" style="width: 757.18px; height: 425.91px; margin-left: -103.14px; margin-top: -12.13px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c2">In </span><span class="c0">Sequential Image Calibration results</span><span class="c2">, a table should appear with a column labeled dep containing detector penetration depths (</span><span class="c0">dep</span><span class="c2">). As we look over the table we need to make sure that the detector penetration depths have roughly the same values except for the first few rows (these will be off due to the close distances). As we look at our data we notice that the last few values are inconsistent with the rest. To investigate we select the </span><span class="c0">IMG Si_free_dc1250_1</span><span class="c0">-00000.tif</span><span class="c0">/ Image Controls</span><span class="c2"> and view the second to last image.</span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 537.50px; height: 503.19px;"><img alt="" src="images/image15.png" style="width: 1019.45px; height: 573.44px; margin-left: -258.13px; margin-top: -17.97px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c4 c2">We can see from the image that there is a fake (or fragmented) fourth ring that should not actually be there (the last “1300” image does not have this issue of the fake fourth ring). In order to fix this we will pan the mouse over to the space in between the last full ring and the fake ring as shown below.</span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 624.00px; height: 577.33px;"><img alt="" src="images/image26.gif" style="width: 624.00px; height: 577.33px; margin-left: 0.00px; margin-top: 0.00px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c2">We found a value of the dsp to be 1.592 and changed the Min calib d-spacing to that value under </span><span class="c0">Image controls </span><span class="c4 c2">for the “1250” image. </span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 620.00px; height: 383.00px;"><img alt="" src="images/image2.png" style="width: 776.56px; height: 436.77px; margin-left: -106.78px; margin-top: -12.44px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c2">We then selected </span><span class="c0">Calibration/Recalibrate</span><span class="c4 c2"> and our image now excludes the fake fourth ring.</span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 497.50px; height: 464.33px;"><img alt="" src="images/image3.png" style="width: 940.73px; height: 529.16px; margin-left: -236.69px; margin-top: -16.58px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c2">Continue to go through the i</span><span class="c2">mages in decreasing distance from</span><span class="c2"> the detector and check to see whether there is a phantom ring and adjust the Min calib d-spacing accordingly. However once you get to an image where there is another full ring outside of the phantom ring, there is no need to adjust the Min calib d-spacing. We adjusted the Min calib d-spacing value to </span><span class="c0">1.59</span><span class="c2"> for images </span><span class="c0">IMG Si_free_dc1200_1</span><span class="c0">-00000.tif</span><span class="c0"> </span><span class="c2">and </span><span class="c0">IMG Si_free_dc1150_1</span><span class="c0">-00000.tif</span><span class="c4 c2">. The “1100” image had a fifth full ring that we did not want to exclude.</span></p><p class="c1"><span class="c4 c2"></span></p><p class="c3"><span class="c2">After completing this process select </span><span class="c0">Calibration/Recalibrate all </span><span class="c2">once again. Continue calibrating until the dep values</span><span class="c2"> </span><span class="c2">converge. After a few recalibrations, the table under </span><span class="c0">Sequential image calibration results</span><span class="c2 c4"> shows our dep values converge the detector distances are further from the sample.</span></p><p class="c3"><span style="overflow: hidden; display: inline-block; margin: 0.00px 0.00px; border: 0.00px solid #000000; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px); width: 636.00px; height: 395.00px;"><img alt="" src="images/image25.png" style="width: 796.57px; height: 447.24px; margin-left: -109.51px; margin-top: -12.74px; transform: rotate(0.00rad) translateZ(0px); -webkit-transform: rotate(0.00rad) translateZ(0px);" title=""></span></p><p class="c3"><span class="c2">Our new values have improved quite a bit. If the any </span><span class="c2"> detector penetration depth (dep) </span><span class="c2">values are negative then go to </span><span class="c0">Image Controls </span><span class="c2">for the images with negative dep values. You will see that the penetration values for those images are also negative. As this should not be possible, change the value of </span><span class="c0">Penetration </span><span class="c2">to </span><span class="c0">zero</span><span class="c2"> and then did </span><span class="c0">Calibration/Recalibrate all </span><span class="c2">once again and the penetration values should become positive. 30 30 If required, turn off refinement of Penetration with a value of 0.0 if that is the only way to keep 31 31 the value from becoming negative. </span></p> -
Tutorials/FitPeaks/Fit Peaks.htm
r2983 r3553 1457 1457 <h1>Fit Peaks/<span class=SpellE>Autoindexing</span> in GSAS-II </h1> 1458 1458 1459 <P><B>A video version of this tutorial is available at 1460 <A href="https://anl.box.com/v/FitPeaks" target="_blank"> 1461 https://anl.box.com/v/FitPeaks</A></B></P> 1462 1459 1463 <p class=MsoNormal>In this exercise you will use GSAS-II to search for a unit 1460 1464 cell that matches a set of diffraction peaks -- a process known as -
Tutorials/MCsimanneal/MCSA in GSAS.htm
r3078 r3553 1401 1401 style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif; 1402 1402 mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-theme-font: 1403 minor-latin'>2-amino</span></b>). You will need to varyat least <b1403 minor-latin'>2-amino</span></b>). You will need to refine at least <b 1404 1404 style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif; 1405 1405 mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin'>X</span></b> … … 1432 1432 both and see what comes out (Hint: its <b style='mso-bidi-font-weight:normal'><span 1433 1433 style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin; 1434 mso-hansi-theme-font:minor-latin'>Orthorhombic-P</span></b>). The correct unit 1434 mso-hansi-theme-font:minor-latin'>Orthorhombic-P</span></b>). 1435 Click on <B>Cell Index/Refine/Index Cell</B>. The correct unit 1435 1436 cell should almost immediately appear with an M20 ~370 with a=7.748, b=7.650, 1436 1437 c=12.736, Vol=755.01. NB: your solution may have a & b switched. Do <b … … 1443 1444 style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif; 1444 1445 mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin'>P 2<sub>1</sub> 1445 2<sub>1</sub> 2<sub>1</sub></span></b>). You can then do <b style='mso-bidi-font-weight: 1446 2<sub>1</sub> 2<sub>1</sub></span></b>). 1447 Under the <B>General</B> tab, change the space group to <B>P 21 21 21</B>. 1448 You can then do <b style='mso-bidi-font-weight: 1446 1449 normal'><span style='font-family:"Calibri",sans-serif;mso-ascii-theme-font: 1447 1450 minor-latin;mso-hansi-theme-font:minor-latin'>Cell Index/Refine/Refine Cell</span></b> … … 1508 1511 to find the <b style='mso-bidi-font-weight:normal'><span style='font-family: 1509 1512 "Calibri",sans-serif;mso-ascii-theme-font:minor-latin;mso-hansi-theme-font: 1510 minor-latin'>Pawley controls</span></b>. Check the <b style='mso-bidi-font-weight: 1511 normal'><span style='font-family:"Calibri",sans-serif;mso-ascii-theme-font: 1512 minor-latin;mso-hansi-theme-font:minor-latin'>Do Pawley refinement</span></b> 1513 minor-latin'>Pawley controls</span></b> under the <B>General</B> tab. 1514 Check the <b style='mso-bidi-font-weight: 1515 normal'><span style='font-family:"Calibri",sans-serif;mso-ascii-theme-font: 1516 minor-latin;mso-hansi-theme-font:minor-latin'>Do Pawley refinement?</span></b> 1513 1517 box, enter the d-spacing (<b style='mso-bidi-font-weight:normal'><span 1514 1518 style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin; … … 1784 1788 C1-C3 defines the Z-axis (blue; default view direction) and the Y-axis is 1785 1789 defined as Z-axis cross X-axis (green; down toward C5). You can change these 1786 via the pull downs (you cant pick the same atom for two of these so pick them 1790 via the pull downs 1791 next to <B>Orientation reference non-H atoms A-B-C</B> 1792 (you cant pick the same atom for two of these so pick them 1787 1793 appropriately; I chose C2, C3 & C6). At each choice the structure will be 1788 1794 transformed accordingly. My new model is</p> … … 1813 1819 includes H-atoms; they are not really needed for MC/SA and will just make 1814 1820 computation times a bit longer than necessary. They can be removed by selecting 1815 the Strip H-atoms box; for now leave them in. </p>1821 the <B>Strip H-atoms box</B>; for now leave them in. </p> 1816 1822 1817 1823 <p class=MsoNormal><o:p> </o:p></p> … … 2032 2038 minor-latin'> current settings</span></b>; your choice becomes available immediately 2033 2039 and is then set for all your future uses of GSAS-II. <span 2034 style='mso-spacerun:yes'> </span>Do <b style='mso-bidi-font-weight:normal'><span 2040 style='mso-spacerun:yes'> </span>Go to the <B>General</B> tab and 2041 select 2042 <b style='mso-bidi-font-weight:normal'><span 2035 2043 style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin; 2036 2044 mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:minor-latin'>Compute/Multi … … 2056 2064 style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif; 2057 2065 mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin'>MC/SA Refine</span></b> 2058 box . Using 10% of the ranges reduces the search volume in this case by ~62066 box under the <B>General</B> tab. Using 10% of the ranges reduces the search volume in this case by ~6 2059 2067 orders of magnitude so that the true minimum is much easier to find. Now rerun <b 2060 2068 style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif; … … 2166 2174 style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif; 2167 2175 mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin'>. <span 2168 class=GramE>size</span></span></b> &<span class=SpellE><b2176 class=GramE>size</span></span></b> and both <span class=SpellE><b 2169 2177 style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif; 2170 2178 mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin'>mustrain</span></b></span> -
Tutorials/MerohedralTwins/Merohedral twin refinement in GSAS.htm
r3059 r3553 810 810 refinement in GSAS-II<o:p></o:p></span></h1> 811 811 812 <P><B>A video version of this tutorial is available at 813 <A href="https://anl.box.com/v/MerohedraltwinrefinementinGSAS" target="_blank"> 814 https://anl.box.com/v/MerohedraltwinrefinementinGSAS</A></B></P> 815 812 816 <h2><span style='mso-fareast-font-family:"Times New Roman"'>Introduction: <o:p></o:p></span></h2> 813 817 -
Tutorials/SAfit/Fitting Small Angle Scattering Data.htm
r3032 r3553 1222 1222 Small Angle X-Ray Data Alumina Powder</span><o:p></o:p></strong></h1> 1223 1223 1224 <P><B>A video version of this tutorial is available at 1225 <A href="https://anl.box.com/v/FittingSmallAngleScatteringDat" target="_blank"> 1226 https://anl.box.com/v/FittingSmallAngleScatteringDat</A></B></P> 1227 1224 1228 <p class=MsoNormal style='mso-layout-grid-align:none;text-autospace:none'>In 1225 1229 this tutorial you will fit small angle scattering data for an alumina polishing -
Tutorials/SAimages/Small Angle Image Processing.htm
r2799 r3553 1172 1172 <h1><strong>Small Angle X-Ray Data Image Processing<o:p></o:p></strong></h1> 1173 1173 1174 <P><B>A video version of this tutorial is available at 1175 <A href="https://anl.box.com/v/SmallAngleImageProcessing" target="_blank"> 1176 https://anl.box.com/v/SmallAngleImageProcessing</A></B></P> 1177 1174 1178 <p class=MsoNormal style='mso-layout-grid-align:none;text-autospace:none'>In 1175 1179 this tutorial you will reduce 2D SAXS data to create 1D absolute scaled data. -
Tutorials/SAseqref/Sequential Refinement of Small Angle Scattering Data.htm
r3552 r3553 1222 1222 Small Angle Scattering Data</span><o:p></o:p></strong></h1> 1223 1223 1224 <P><B>A video version of this tutorial is available at 1225 <A href="https://anl.box.com/v/SequentialRefinementofSmallAng" target="_blank"> 1226 https://anl.box.com/v/SequentialRefinementofSmallAng</A></B></P> 1227 1228 1224 1229 <p class=MsoNormal style='mso-layout-grid-align:none;text-autospace:none'>In 1225 1230 this tutorial you will fit USAXS small angle scattering data for <span -
Tutorials/SAsize/Small Angle Size Distribution.htm
r3031 r3553 1222 1222 Size Distribution in Alumina Powder</span><o:p></o:p></strong></h1> 1223 1223 1224 <P><B>A video version of this tutorial is available at 1225 <A href="https://anl.box.com/v/SmallAngleSizeDistribution" target="_blank"> 1226 https://anl.box.com/v/SmallAngleSizeDistribution</A></B></P> 1227 1228 1224 1229 <p class=MsoNormal style='mso-layout-grid-align:none;text-autospace:none'>In 1225 1230 this tutorial you will determine the size distribution of particles in an … … 1353 1358 <h2>Step 3 Select the scattering substances for your sample</h2> 1354 1359 1355 <p class=MsoNormal><span style='mso-no-proof:yes'>Two sc sttering substances1360 <p class=MsoNormal><span style='mso-no-proof:yes'>Two scattering substances 1356 1361 need to be defined for your sample to give the anticipated scattering contrast; 1357 1362 in this case one is alumina and the other is vacuum (really air). Parameters … … 1415 1420 values will change accordingly. If your substance isnt in the list, you can <b 1416 1421 style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif; 1417 mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin'>Edit/Add 1422 mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin'>Edit 1423 Substance/Add 1418 1424 substance</span></b> to create a new one (you will be asked for a name and the 1419 1425 set of elements in two successive popup windows). From this information the … … 1508 1514 style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin; 1509 1515 mso-hansi-theme-font:minor-latin'>0.12</span></b>; enter that into the 1510 appropriate place in the data window . The plot will be redrawn showing a1516 appropriate place in the data window next to <B>Background</B>. The plot will be redrawn showing a 1511 1517 horizontal red line for the background. All the other parameters seem 1512 1518 reasonable for a 1<sup>st</sup> attempt at a <span class=SpellE>MaxEnt</span> -
Tutorials/SeqParametric/ParametricFitting.htm
r3094 r3553 1267 1267 1268 1268 <p class=MsoNormal><o:p> </o:p></p> 1269 1270 <P><B>A video version of this tutorial is available at 1271 <A href="https://anl.box.com/v/ParametricFitting" target="_blank"> 1272 https://anl.box.com/v/ParametricFitting</A></B></P> 1269 1273 1270 1274 <p class=MsoNormal>Once a sequential fit has been performed, any function of … … 2147 2151 style='mso-fareast-font-family:"Times New Roman";mso-bidi-font-family:"Times New Roman"'><span 2148 2152 style='mso-list:Ignore'>2.<span style='font:7.0pt "Times New Roman"'> 2149 </span></span></span><![endif]>Then enter the equation as </p> 2153 </span></span></span><![endif]>Then enter the equation 2154 (you can copy and paste the equation above into the text box) as: 2155 </p> 2150 2156 2151 2157 <p class=MsoListParagraphCxSpMiddle><o:p> </o:p></p> … … 2166 2172 style='mso-list:Ignore'>3.<span style='font:7.0pt "Times New Roman"'> 2167 2173 </span></span></span><![endif]>Assign the free and fixed variables, as shown 2168 below. Note that the exponent (<b style='mso-bidi-font-weight:normal'><span 2174 below. 2175 Note: if no option under Phase for Temperature, then select variable 2176 type <B>Global</B> and select <B>Global Temperature</B>. 2177 Note that the exponent (<b style='mso-bidi-font-weight:normal'><span 2169 2178 style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:major-latin; 2170 2179 mso-hansi-theme-font:major-latin'>k</span></b>) and scaling factor (<b … … 2176 2185 should be set to <b style='mso-bidi-font-weight:normal'><span style='font-family: 2177 2186 "Calibri",sans-serif;mso-ascii-theme-font:major-latin;mso-hansi-theme-font: 2178 major-latin;mso-bidi-theme-font:major-latin'>120</span></b><span class=GramE>.< b2179 style='mso-bidi-font-weight:normal'>.</b></span><b style='mso-bidi-font-weight: 2180 normal'> </b></p>2187 major-latin;mso-bidi-theme-font:major-latin'>120</span></b><span class=GramE>.</span><b style='mso-bidi-font-weight: 2188 normal'> </b> 2189 </p> 2181 2190 2182 2191 <p class=MsoListParagraphCxSpMiddle><o:p> </o:p></p> -
Tutorials/SeqRefine/SequentialTutorial.htm
r3451 r3553 1387 1387 CuCr<sub>2</sub>O<sub>4</sub> from 7K to 300K<o:p></o:p></span></h1> 1388 1388 1389 <p class=MsoNormal><o:p> </o:p></p> 1390 1389 <P><B>A video version of this tutorial is available at 1390 <A href="https://anl.box.com/v/SequentialTutorial" target="_blank"> 1391 https://anl.box.com/v/SequentialTutorial</A></B></P> 1392 1391 1393 <p class=MsoNormal>Sequential refinement is a way to fit a series of datasets 1392 1394 with a set of closely related models that evolve over the course of the -
Tutorials/StackingFaults-I/Stacking Faults-I.htm
r3081 r3553 1131 1131 Simulations I<o:p></o:p></span></h1> 1132 1132 1133 <P><B>A video version of this tutorial is available at 1134 <A href="https://anl.box.com/v/StackingFaults-I" target="_blank"> 1135 https://anl.box.com/v/StackingFaults-I</A></B></P> 1136 1133 1137 <p class=MsoNormal>In this exercise you will use GSAS-II to simulate the 1134 1138 diffraction patterns from faulted diamond. Diamond most commonly has the … … 1384 1388 <p class=MsoNormal>You can explore the result of various stacking sequences in 1385 1389 the next block of commands; enter <b><span style='font-family:"Calibri",sans-serif'>1 1386 1 1 1 2 2 2</span></b> into the box and press <b><span style='font-family:"Calibri",sans-serif'>Enter</span></b>.1390 1 1 1 2 2 2</span></b> into the box (remember to include spaces in between each number) and press <b><span style='font-family:"Calibri",sans-serif'>Enter</span></b>. 1387 1391 A plot showing the result of a single twin fault will be shown.</p> 1388 1392 … … 1508 1512 for the <b><span style='font-family:"Calibri",sans-serif'>Histogram scale 1509 1513 factor</span></b> and change the <b><span style='font-family:"Calibri",sans-serif'>Diffractometer 1510 type</span></b> to <b><span style='font-family:"Calibri",sans-serif'>Bragg-Brentano</span></b>. 1514 type</span></b> to <b><span 1515 style='font-family:"Calibri",sans-serif'>Bragg-Brentano</span></b> (if 1516 not already set to that). 1511 1517 Finally, find your phase (<b><span style='font-family:"Calibri",sans-serif'>random 1512 1518 faults</span></b>) and select it and then the <b><span style='font-family:"Calibri",sans-serif'>Layers</span></b> … … 1525 1531 the powder pattern will be displayed with the result. On the plot press the <b><span 1526 1532 style='font-family:"Calibri",sans-serif'>+</span></b> key to suppress the + 1527 marks. The plot should look like: Ive expanded the scale to show the 1528 interesting stuff around each peak.</p> 1533 marks. The plot should look like: </p> 1529 1534 1530 1535 <p class=MsoNormal><span style='mso-no-proof:yes'><!--[if gte vml 1]><v:shape … … 1534 1539 </v:shape><![endif]--><![if !vml]><img width=624 height=535 1535 1540 src="Stacking%20Faults-I_files/image042.gif" v:shapes="Picture_x0020_51"><![endif]></span></p> 1536 1541 (Ive expanded the scale to show the 1542 interesting stuff around each peak.) 1543 <p></p> 1537 1544 <p class=MsoNormal>The blue line is a simulated observed pattern with imposed 1538 1545 Poisson noise, the red line is the calculated background and the green curve is … … 1572 1579 as layer 2 to layer 2 at each step in the simulation. We can force this by 1573 1580 selecting <b><span style='font-family:"Calibri",sans-serif'>Symmetric 1574 probabilities?</span></b> <span class=GramE>on</span> the Layers page. Do this1581 probabilities?</span></b> <span class=GramE>on</span> the Layers tab. Do this 1575 1582 and repeat the sequential simulation as above. Now the matrices are symmetric 1576 1583 as one could expect. When the simulation is finished, select the <b><span … … 1837 1844 "Calibri",sans-serif'>Edit range</span></b> from the data window. Dont change 1838 1845 anything, just press <b><span style='font-family:"Calibri",sans-serif'>Ok</span></b>; 1839 this will clear the previous simulation. Then return to the clustered phase 1846 this will clear the previous simulation. Then return to the random 1847 faults phase 1840 1848 Layers tab. Do <b><span style='font-family:"Calibri",sans-serif'>Operations/Simulate 1841 1849 pattern</span></b> and press <b><span style='font-family:"Calibri",sans-serif'>Ok</span></b> -
Tutorials/TOF Calibration/Calibration of a TOF powder diffractometer.htm
r3064 r3553 1153 1153 color:#365F91;mso-themecolor:accent1;mso-themeshade:191'><o:p></o:p></span></b></p> 1154 1154 1155 <P><B>A video version of this tutorial is available at 1156 <A href="https://anl.box.com/v/CalibrationofaTOFpowderdiffrac" target="_blank"> 1157 https://anl.box.com/v/CalibrationofaTOFpowderdiffrac</A></B></P> 1158 1155 1159 <p class=MsoNormal>In this tutorial, data collected on the SNS instrument 1156 1160 POWGEN, are used. The calibration process will use the fitted positions of all … … 1179 1183 text-underline:none'>start GSAS-II</span></a></span></u>.</p> 1180 1184 1181 <h 1>Part I. Determine the diffractometer constants</h1>1182 1183 <h 2>Step 1: Read in the data file</h2>1185 <h2>Part I. Determine the diffractometer constants</h2> 1186 1187 <h3>Step 1: Read in the data file</h3> 1184 1188 1185 1189 <p class=MsoNormal><span style='mso-spacerun:yes'> </span>Use the <b … … 1265 1269 style='mso-spacerun:yes'> </span><b style='mso-bidi-font-weight:normal'><o:p></o:p></b></p> 1266 1270 1267 <h 2><span style='mso-spacerun:yes'> </span>Step 2: Select peaks</h2>1271 <h3><span style='mso-spacerun:yes'> </span>Step 2: Select peaks</h3> 1268 1272 1269 1273 <p class=MsoNormal>Under the <b style='mso-bidi-font-weight:normal'><span … … 1305 1309 turned off.</p> 1306 1310 1307 <h 2>Step 3: Fit peaks</h2>1311 <h3>Step 3: Fit peaks</h3> 1308 1312 1309 1313 <p class=MsoNormal>To do the initial fit to the peaks, select the <b … … 1365 1369 v:shapes="Picture_x0020_40"><![endif]></span></p> 1366 1370 1367 <h 2>Step 4: Setup for calibration</h2>1371 <h3>Step 4: Setup for calibration</h3> 1368 1372 1369 1373 <p class=MsoNormal>Now that we have a reasonably well fit set of peak … … 1445 1449 <p class=MsoNormal>The calibration set up is now complete.</p> 1446 1450 1447 <h 2>Step 5: Calibration of diffractometer constants</h2>1451 <h3>Step 5: Calibration of diffractometer constants</h3> 1448 1452 1449 1453 <p class=MsoNormal>As we now have a set of reflection positions each properly … … 1602 1606 in the second part of the tutorial.</p> 1603 1607 1604 <h 1>Part II. Determine the instrument profile coefficients</h1>1608 <h2>Part II. Determine the instrument profile coefficients</h2> 1605 1609 1606 1610 <p class=MsoNormal>To best establish the profile coefficients one must have the … … 1610 1614 automatic procedure used above.</p> 1611 1615 1612 <h 2>Step 1. Change background</h2>1616 <h3>Step 1. Change background</h3> 1613 1617 1614 1618 <p class=MsoNormal>Select the <b style='mso-bidi-font-weight:normal'><span … … 1655 1659 v:shapes="Picture_x0020_51"><![endif]></span></p> 1656 1660 1657 <h 2>Step 2. Add more peaks to be fitted</h2>1661 <h3>Step 2. Add more peaks to be fitted</h3> 1658 1662 1659 1663 <p class=MsoNormal>Now zoom in on the right hand end of the pattern and select … … 1715 1719 project</span></b> from the main GSAS-II data tree window.</p> 1716 1720 1717 <h 2>Step 3. Refine profile coefficients</h2>1721 <h3>Step 3. Refine profile coefficients</h3> 1718 1722 1719 1723 <p class=MsoNormal>In this step you will be selecting some profile coefficients … … 2125 2129 curve to be about zero.</p> 2126 2130 2127 <h 2>Step 4. Check diffractometer constants </h2>2131 <h3>Step 4. Check diffractometer constants </h3> 2128 2132 2129 2133 <p class=MsoNormal>Since these calibration fits for profile coefficients varied … … 2179 2183 the main GSAS-II data tree menu).</p> 2180 2184 2181 <h 2>Step 5. Make instrument parameter file</h2>2185 <h3>Step 5. Make instrument parameter file</h3> 2182 2186 2183 2187 <p class=MsoNormal>We now have a fully calibrated instrument with -
Tutorials/TOF Sequential Single Peak Fit/TOF Sequential Single Peak Fit.htm
r3547 r3553 1194 1194 <h1>TOF Sequential Single Peak Fits and loading curve</h1> 1195 1195 1196 <p class=MsoNormal>A common analysis of diffraction data obtained from a 1196 <P><B>A video version of this tutorial is available at 1197 <A href="https://anl.box.com/v/TOFSequentialSinglePeakFit" target="_blank"> 1198 https://anl.box.com/v/TOFSequentialSinglePeakFit</A></B></P> 1199 1200 <p class=MsoNormal>A common analysis of diffraction data obtained from a 1197 1201 polycrystalline sample subjected to a changing uniaxial load is to follow the behavior 1198 1202 of fitted single peaks. The data sets considered here were obtained on the -
Tutorials/TOF Single Crystal Refinement/TOF single crystal refinement in GSAS.htm
r3073 r3553 1298 1298 style='font:7.0pt "Times New Roman"'> </span></span></span><![endif]>Enter 1299 1299 <b style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif; 1300 mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin'>R -3 c</span></b> 1300 mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin'>R 1301 -3 c</span></b> for the space group 1301 1302 (dont forget the spaces between axial fields) & press <b style='mso-bidi-font-weight: 1302 1303 normal'><span style='font-family:"Calibri",sans-serif;mso-ascii-theme-font: … … 1421 1422 style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif; 1422 1423 mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin'>Import/Structure 1423 Factor/from Neutron TOF HKL F<sup>2 </sup>file</span></b>; a file dialog box1424 Factor/from Neutron ISIS SXD TOF HKL F<sup>2 </sup>file</span></b>; a file dialog box 1424 1425 will appear. Change the directory to the location of this exercise (<b 1425 1426 style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif; -
trunk/GSASIIctrlGUI.py
r3551 r3553 5019 5019 '''This explores the results of the sequential refinement obtained in the previous tutorial; includes 5020 5020 plotting of variables and fitting the changes with simple equations.'''], 5021 ['TOF Sequential Single Peak Fit','TOF Sequential Single Peak Fit.htm',' Sequential fitting of single peaks and strain analysis of reult',5021 ['TOF Sequential Single Peak Fit','TOF Sequential Single Peak Fit.htm','Sequential fitting of single peaks and strain analysis of result', 5022 5022 '''This shows the fitting of single peaks in a sequence of TOF powder patterns from a sample under load; includes 5023 5023 fitting of the result to get Hookes Law coefficients for elastic deformations.'''], -
trunk/help/Tutorials.html
r3552 r3553 49 49 </UL><h4>Parametric sequential fitting</H4><UL> 50 50 <LI><A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/SeqRefine/SequentialTutorial.htm">Sequential refinement of multiple datasets</A> 51 [link: <A href="https://anl.box.com/v/SequentialTutorial">video</A>] 51 52 [link: <A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/SeqRefine/data">Exercise files</A>]. 52 53 <blockquote><I>This shows the fitting of a structural model to multiple data sets collected as a function of temperature (7-300K). 53 54 This tutorial is the prerequisite for the next one.</I></blockquote> 54 55 <UL><LI><A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/SeqParametric/ParametricFitting.htm">Parametric Fitting and Pseudo Variables for Sequential Fits</A> <A href="#prereq">*</A> 56 [link: <A href="https://anl.box.com/v/ParametricFitting">video</A>] 55 57 [No exercise files]. 56 58 <blockquote><I>This explores the results of the sequential refinement obtained in the previous tutorial; includes 57 59 plotting of variables and fitting the changes with simple equations.</I></blockquote> 58 60 </UL> 59 <UL><LI><A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/TOF Sequential Single Peak Fit/TOF Sequential Single Peak Fit.htm">Sequential fitting of single peaks and strain analysis of reult</A> <A href="#prereq">*</A> 61 <LI><A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/TOF Sequential Single Peak Fit/TOF Sequential Single Peak Fit.htm">Sequential fitting of single peaks and strain analysis of result</A> 62 [link: <A href="https://anl.box.com/v/TOFSequentialSinglePeakFit">video</A>] 60 63 [link: <A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/TOF Sequential Single Peak Fit/data">Exercise files</A>]. 61 64 <blockquote><I>This shows the fitting of single peaks in a sequence of TOF powder patterns from a sample under load; includes 62 65 fitting of the result to get Hookes Law coefficients for elastic deformations.</I></blockquote> 63 </UL>64 66 </UL><h4>Structure solution</H4><UL> 65 67 <LI><A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/FitPeaks/Fit Peaks.htm">Fitting individual peaks & autoindexing</A> 68 [link: <A href="https://anl.box.com/v/FitPeaks">video</A>] 66 69 [link: <A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/FitPeaks/data">Exercise files</A>]. 67 70 <blockquote><I>This covers two examples of selecting individual powder diffraction peaks, fitting them and then … … 88 91 </UL><h4>Stacking Fault Modeling</H4><UL> 89 92 <LI><A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/StackingFaults-I/Stacking Faults-I.htm">Stacking fault simulations for diamond</A> 93 [link: <A href="https://anl.box.com/v/StackingFaults-I">video</A>] 90 94 [No exercise files]. 91 95 <blockquote><I>This shows how to simulate the diffraction patterns from faulted diamond.</I></blockquote> … … 98 102 </UL><h4>Powder diffractometer calibration</H4><UL> 99 103 <LI><A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/CWInstDemo/FindProfParamCW.htm">Determining Starting Profile Parameters from a Standard</A> 104 [link: <A href="https://anl.box.com/v/FindProfParamCW">video</A>] 100 105 [link: <A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/CWInstDemo/data">Exercise files</A>]. 101 106 <blockquote><I>This shows how to determine profile parameters by fitting individual peaks 102 107 with data collected on a standard using a lab diffractometer.</I></blockquote> 103 108 <LI><A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/TOF Calibration/Calibration of a TOF powder diffractometer.htm">Calibration of a Neutron TOF diffractometer</A> 109 [link: <A href="https://anl.box.com/v/CalibrationofaTOFpowderdiffrac">video</A>] 104 110 [link: <A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/TOF Calibration/data">Exercise files</A>]. 105 111 <blockquote><I>This uses the fitted positions of all visible peaks in a pattern of NIST SRM 660b La11B6 … … 111 117 </UL><h4>2D Image Processing</H4><UL> 112 118 <LI><A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/2DCalibration/Calibration of an area detector in GSAS.htm">Calibration of an area detector</A> 119 [link: <A href="https://anl.box.com/v/CalibrationofanareadetectorinG">video</A>] 113 120 [link: <A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/2DCalibration/data">Exercise files</A>]. 114 121 <blockquote><I>A demonstration of calibrating a Perkin-Elmer area detector, where the detector was intentionally tilted at 45 degrees. 115 122 This exercise is the prerequisite for the next one.</I></blockquote> 116 123 <UL><LI><A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/2DIntegration/Integration of area detector data in GSAS.htm">Integration of area detector data</A> <A href="#prereq">*</A> 124 [link: <A href="https://anl.box.com/v/Integrationofareadetectordatai">video</A>] 117 125 [No exercise files]. 118 126 <blockquote><I>Integration of the image from a Perkin-Elmer area detector, where the detector was intentionally tilted at 45 degrees.</I></blockquote> 119 127 </UL> 120 128 <LI><A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/2DStrain/Strain fitting of 2D data in GSAS-II.htm">Strain fitting of 2D data</A> 129 [link: <A href="https://anl.box.com/v/Strainfittingof2DdatainGSAS-II">video</A>] 121 130 [link: <A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/2DStrain/data">Exercise files</A>]. 122 131 <blockquote><I>This show how to determine 3 strain tensor values using the method of He & Smith (Adv. in X-ray Anal. 41, 501, 1997) 123 132 directly froom a sequence of 2D imges from a loaded sample.</I></blockquote> 124 133 <LI><A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/2DTexture/Texture analysis of 2D data in GSAS-II.htm">Texture analysis of 2D data</A> 134 [link: <A href="https://anl.box.com/v/Textureanalysisof2DdatainGSAS-">video</A>] 125 135 [link: <A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/2DTexture/data">Exercise files</A>]. 126 136 <blockquote><I>This shows 3 different methods for determining texture via spherical harmonics from 2D x-ray diffraction images. </I></blockquote> … … 141 151 </UL><h4>Small-Angle Scattering</H4><UL> 142 152 <LI><A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/SAsize/Small Angle Size Distribution.htm">Small angle x-ray data size distribution (alumina powder)</A> 153 [link: <A href="https://anl.box.com/v/SmallAngleSizeDistribution">video</A>] 143 154 [link: <A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/SAsize/data">Exercise files</A>]. 144 155 <blockquote><I>This shows how to determine the size distribution of particles using data from a constant 145 156 wavelength synchrotron X-ray USAXS instrument. This is the prerequisite for the next tutorial</I></blockquote> 146 157 <UL><LI><A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/SAfit/Fitting Small Angle Scattering Data.htm">Fitting small angle x-ray data (alumina powder)</A> <A href="#prereq">*</A> 158 [link: <A href="https://anl.box.com/v/FittingSmallAngleScatteringDat">video</A>] 147 159 [link: <A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/SAfit/data">Exercise files</A>]. 148 160 <blockquote><I>This shows how to fit small angle scattering data using data from a constant wavelength synchrotron X-ray USAXS instrument. </I></blockquote> 149 161 </UL> 150 162 <LI><A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/SAimages/Small Angle Image Processing.htm">Image Processing of small angle x-ray data</A> 163 [link: <A href="https://anl.box.com/v/SmallAngleImageProcessing">video</A>] 151 164 [link: <A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/SAimages/data">Exercise files</A>]. 152 165 <blockquote><I>This shows how to reduce 2D SAXS data to create 1D absolute scaled data. </I></blockquote> 153 166 <LI><A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/SAseqref/Sequential Refinement of Small Angle Scattering Data.htm">Sequential refinement with small angle scattering data</A> 167 [link: <A href="https://anl.box.com/v/SequentialRefinementofSmallAng">video</A>] 154 168 [link: <A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/SAseqref/data">Exercise files</A>]. 155 169 <blockquote><I>This shows how to fit USAXS small angle scattering data for a suite of samples to demonstrate the … … 158 172 </UL><h4>Other</H4><UL> 159 173 <LI><A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/MerohedralTwins/Merohedral twin refinement in GSAS.htm">Merohedral twin refinements</A> 174 [link: <A href="https://anl.box.com/v/MerohedraltwinrefinementinGSAS">video</A>] 160 175 [link: <A href="https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/MerohedralTwins/data">Exercise files</A>]. 161 176 <blockquote><I>This shows how to use GSAS-II to refine the structure of a few single crystal structures where there is merohedral twinning. </I></blockquote>
Note: See TracChangeset
for help on using the changeset viewer.