Changeset 3481
- Timestamp:
- Jul 18, 2018 2:51:46 PM (5 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
Tutorials/SimpleMagnetic/SimpleMagnetic.htm
r3480 r3481 23 23 <o:Author>Von Dreele</o:Author> 24 24 <o:LastAuthor>vondreele</o:LastAuthor> 25 <o:Revision>1 7</o:Revision>26 <o:TotalTime>620 1</o:TotalTime>25 <o:Revision>18</o:Revision> 26 <o:TotalTime>6202</o:TotalTime> 27 27 <o:Created>2017-08-09T17:16:00Z</o:Created> 28 <o:LastSaved>2018-07-18T19: 38:00Z</o:LastSaved>28 <o:LastSaved>2018-07-18T19:51:00Z</o:LastSaved> 29 29 <o:Pages>1</o:Pages> 30 30 <o:Words>5837</o:Words> … … 1716 1716 src="SimpleMagnetic_files/image001.png" v:shapes="Picture_x0020_1"><![endif]></span></p> 1717 1717 1718 <p class=MsoNormal>To have this result, one assumes that the neutron beam is 1719 not polarized, the sample has no texture and there is only elastic scattering. 1720 The first term is the ordinary nuclear structure factor found for all 1721 crystalline materials and the second is the magnetic scattering. Note that the 1722 result is a sum of squares implying that the nuclear and magnetic scattering 1723 intensities are summed to give the total that is measured in a magnetic powder 1724 diffraction experiment. This allows us to model the structure as two separate1725 crystalline phases; one consists of the chemical arrangement of all the atoms 1726 in the crystal structure described with a conventional unit cell and space 1727 group, and the other contains only the magnetic atoms in a perhaps different 1728 unit cellwith a magnetic space group to describe the atom and magnetic moment1718 <p class=MsoNormal>To have this result, one assumes that the neutron beam is not 1719 polarized, the sample has no texture and there is only elastic scattering. The 1720 first term is the ordinary nuclear structure factor found for all crystalline 1721 materials and the second is the magnetic scattering. Note that the result is a 1722 sum of squares implying that the nuclear and magnetic scattering intensities 1723 are summed to give the total that is measured in a magnetic powder diffraction 1724 experiment. This allows us to model the structure as two separate crystalline 1725 phases; one consists of the chemical arrangement of all the atoms in the 1726 crystal structure described with a conventional unit cell and space group, and 1727 the other contains only the magnetic atoms in a perhaps different unit cell 1728 with a magnetic space group to describe the atom and magnetic moment 1729 1729 arrangement. Needless to say both phases must describe the same atomic 1730 1730 arrangement for the magnetic ions; these will be linked as needed by … … 1870 1870 <v:imagedata src="SimpleMagnetic_files/image005.png" o:title=""/> 1871 1871 </v:shape><![endif]--><![if !vml]><img border=0 width=426 height=289 1872 src="SimpleMagnetic_files/image0 03.png" v:shapes="Picture_x0020_3"><![endif]></span></h2>1872 src="SimpleMagnetic_files/image078.png" v:shapes="Picture_x0020_3"><![endif]></span></h2> 1873 1873 1874 1874 <p class=MsoNormal><span class=GramE>and</span> the plot window will show the … … 1880 1880 <v:imagedata src="SimpleMagnetic_files/image007.png" o:title=""/> 1881 1881 </v:shape><![endif]--><![if !vml]><img border=0 width=624 height=535 1882 src="SimpleMagnetic_files/image0 04.png" v:shapes="Picture_x0020_4"><![endif]></span></p>1882 src="SimpleMagnetic_files/image080.png" v:shapes="Picture_x0020_4"><![endif]></span></p> 1883 1883 1884 1884 <h3>Step 2: Select Limits </h3> … … 1921 1921 <v:imagedata src="SimpleMagnetic_files/image009.png" o:title=""/> 1922 1922 </v:shape><![endif]--><![if !vml]><img border=0 width=624 height=535 1923 src="SimpleMagnetic_files/image0 06.png" v:shapes="Picture_x0020_5"><![endif]></span></p>1923 src="SimpleMagnetic_files/image081.png" v:shapes="Picture_x0020_5"><![endif]></span></p> 1924 1924 1925 1925 <h3>Step 3: Read in the chemical structure for LaMnO<sub>3</sub></h3> … … 2008 2008 <v:imagedata src="SimpleMagnetic_files/image012.png" o:title=""/> 2009 2009 </v:shape><![endif]--><![if !vml]><img border=0 width=539 height=278 2010 src="SimpleMagnetic_files/image0 08.png" v:shapes="Picture_x0020_7"><![endif]></span></p>2010 src="SimpleMagnetic_files/image082.png" v:shapes="Picture_x0020_7"><![endif]></span></p> 2011 2011 2012 2012 <h3>Step 4. Check powder pattern indexing</h3> … … 2029 2029 <v:imagedata src="SimpleMagnetic_files/image014.png" o:title=""/> 2030 2030 </v:shape><![endif]--><![if !vml]><img border=0 width=543 height=195 2031 src="SimpleMagnetic_files/image0 10.png" v:shapes="Picture_x0020_8"><![endif]></span></p>2031 src="SimpleMagnetic_files/image083.png" v:shapes="Picture_x0020_8"><![endif]></span></p> 2032 2032 2033 2033 <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in;mso-add-space: … … 2063 2063 <v:imagedata src="SimpleMagnetic_files/image016.png" o:title=""/> 2064 2064 </v:shape><![endif]--><![if !vml]><img border=0 width=548 height=197 2065 src="SimpleMagnetic_files/image0 13.png" v:shapes="Picture_x0020_9"><![endif]></span><br>2065 src="SimpleMagnetic_files/image084.png" v:shapes="Picture_x0020_9"><![endif]></span><br> 2066 2066 showing the lattice constants for LaMnO3 you had obtained from the <span 2067 2067 class=SpellE>cif</span> file. Note that the space group is set to that of the <span … … 2083 2083 <v:imagedata src="SimpleMagnetic_files/image018.png" o:title=""/> 2084 2084 </v:shape><![endif]--><![if !vml]><img border=0 width=552 height=473 2085 src="SimpleMagnetic_files/image0 15.png" v:shapes="Picture_x0020_10"><![endif]></span></p>2085 src="SimpleMagnetic_files/image085.png" v:shapes="Picture_x0020_10"><![endif]></span></p> 2086 2086 2087 2087 <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in;mso-add-space: … … 2101 2101 <v:imagedata src="SimpleMagnetic_files/image020.png" o:title=""/> 2102 2102 </v:shape><![endif]--><![if !vml]><img border=0 width=548 height=470 2103 src="SimpleMagnetic_files/image0 17.png" v:shapes="Picture_x0020_11"><![endif]></span></p>2103 src="SimpleMagnetic_files/image086.png" v:shapes="Picture_x0020_11"><![endif]></span></p> 2104 2104 2105 2105 <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in;mso-add-space: … … 2121 2121 <v:imagedata src="SimpleMagnetic_files/image022.png" o:title=""/> 2122 2122 </v:shape><![endif]--><![if !vml]><img border=0 width=544 height=466 2123 src="SimpleMagnetic_files/image0 19.png" v:shapes="Picture_x0020_12"><![endif]></span><br>2123 src="SimpleMagnetic_files/image087.png" v:shapes="Picture_x0020_12"><![endif]></span><br> 2124 2124 Notice that the 1<sup>st</sup> peak (as well as the contaminant) is no longer 2125 2125 indexed; this is likely to be a magnetic only peak as expected from an … … 2154 2154 <v:imagedata src="SimpleMagnetic_files/image024.png" o:title=""/> 2155 2155 </v:shape><![endif]--><![if !vml]><img border=0 width=540 height=195 2156 src="SimpleMagnetic_files/image0 21.png" v:shapes="Picture_x0020_13"><![endif]></span></p>2156 src="SimpleMagnetic_files/image088.png" v:shapes="Picture_x0020_13"><![endif]></span></p> 2157 2157 2158 2158 <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in;mso-add-space: … … 2198 2198 <v:imagedata src="SimpleMagnetic_files/image026.png" o:title=""/> 2199 2199 </v:shape><![endif]--><![if !vml]><img border=0 width=256 height=214 2200 src="SimpleMagnetic_files/image0 23.png" v:shapes="Picture_x0020_14"><![endif]></span></p>2200 src="SimpleMagnetic_files/image089.png" v:shapes="Picture_x0020_14"><![endif]></span></p> 2201 2201 2202 2202 <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in;mso-add-space: … … 2210 2210 <v:imagedata src="SimpleMagnetic_files/image028.png" o:title=""/> 2211 2211 </v:shape><![endif]--><![if !vml]><img border=0 width=256 height=214 2212 src="SimpleMagnetic_files/image0 25.png" v:shapes="Picture_x0020_15"><![endif]></span></p>2212 src="SimpleMagnetic_files/image090.png" v:shapes="Picture_x0020_15"><![endif]></span></p> 2213 2213 2214 2214 <p class=MsoListParagraphCxSpLast style='margin-left:.25in;mso-add-space:auto'>It … … 2225 2225 <h3>Step 5. Make the magnetic phase</h3> 2226 2226 2227 <p class=MsoNormal>In the previous step we did not have to resort to any 2228 doubling of a cell axis to explain the suite of magnetic reflections, so the 2229 propagation vector is zero (in case anyone asks!). To make the magnetic cell 2230 from the chemical cell we will use the transform tool that is in GSAS-II in the 2231 Generaltab for the chemical structure. That tab is</p>2227 <p class=MsoNormal>In the previous step we did not have to resort to any doubling 2228 of a cell axis to explain the suite of magnetic reflections, so the propagation 2229 vector is zero (in case anyone asks!). To make the magnetic cell from the 2230 chemical cell we will use the transform tool that is in GSAS-II in the General 2231 tab for the chemical structure. That tab is</p> 2232 2232 2233 2233 <p class=MsoNormal><span style='mso-no-proof:yes'><!--[if gte vml 1]><v:shape … … 2236 2236 <v:imagedata src="SimpleMagnetic_files/image030.png" o:title=""/> 2237 2237 </v:shape><![endif]--><![if !vml]><img border=0 width=624 height=307 2238 src="SimpleMagnetic_files/image0 27.png" v:shapes="Picture_x0020_16"><![endif]></span></p>2238 src="SimpleMagnetic_files/image091.png" v:shapes="Picture_x0020_16"><![endif]></span></p> 2239 2239 2240 2240 <p class=MsoNormal>Under the <b style='mso-bidi-font-weight:normal'><span … … 2254 2254 2255 2255 <p class=MsoNormal>The order of operations for the transformation is given at 2256 the top of the window; the U vector permits applying an origin shift to the 2257 atom coordinates before the transformation and the V vector is for an origin 2258 shift after the transformation. The lattice parameters are transformed by 2259 changingthe metric tensor via</p>2256 the top of the window; the U vector permits applying an origin shift to the atom 2257 coordinates before the transformation and the V vector is for an origin shift 2258 after the transformation. The lattice parameters are transformed by changing 2259 the metric tensor via</p> 2260 2260 2261 2261 <p class=MsoNormal><o:p> </o:p></p> … … 2284 2284 2285 2285 <p class=MsoNormal>The dialog box gives an extensive list of commonly used 2286 transformations for e.g. swapping axes. In this case we are not transforming 2287 the unit cell so the matrix is just the unit matrix (ones on diagonal) and we2288 are not shifting the origin so U & V are zeros. We do want the new phase to 2289 bemagnetic so press the <b style='mso-bidi-font-weight:normal'><span2286 transformations for e.g. swapping axes. In this case we are not transforming the 2287 unit cell so the matrix is just the unit matrix (ones on diagonal) and we are 2288 not shifting the origin so U & V are zeros. We do want the new phase to be 2289 magnetic so press the <b style='mso-bidi-font-weight:normal'><span 2290 2290 style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin; 2291 2291 mso-hansi-theme-font:minor-latin;mso-bidi-theme-font:minor-latin'>Make new … … 2302 2302 centering operations as given by the BNS nomenclature. This can be needed if 2303 2303 one had discovered a requirement of doubling a cell axis in the previous step 2304 (e.g. a nonzero propagation vector). This is not required in this case and we are2305 using the space group (<span class=SpellE>Pnma</span>) for the magnetic cell. 2306 Leave the box at the bottom about constraints checked as we want them to tie 2307 t he two phases together.<span style='mso-spacerun:yes'> </span>Press <b2304 (e.g. a nonzero propagation vector). This is not required in this case and we 2305 are using the space group (<span class=SpellE>Pnma</span>) for the magnetic 2306 cell. Leave the box at the bottom about constraints checked as we want them to 2307 tie the two phases together.<span style='mso-spacerun:yes'> </span>Press <b 2308 2308 style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif; 2309 2309 mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin;mso-bidi-theme-font: … … 2329 2329 <v:imagedata src="SimpleMagnetic_files/image035.png" o:title=""/> 2330 2330 </v:shape><![endif]--><![if !vml]><img border=0 width=624 height=360 2331 src="SimpleMagnetic_files/image0 32.png" v:shapes="_x0000_i1080"><![endif]></span></p>2331 src="SimpleMagnetic_files/image092.png" v:shapes="_x0000_i1080"><![endif]></span></p> 2332 2332 2333 2333 <p class=MsoNormal>The phase is named with mag appended to the end, the phase … … 2345 2345 <v:imagedata src="SimpleMagnetic_files/image037.png" o:title=""/> 2346 2346 </v:shape><![endif]--><![if !vml]><img border=0 width=517 height=353 2347 src="SimpleMagnetic_files/image0 33.png" v:shapes="_x0000_i1079"><![endif]></span></p>2347 src="SimpleMagnetic_files/image093.png" v:shapes="_x0000_i1079"><![endif]></span></p> 2348 2348 2349 2349 <p class=MsoNormal>This shows all the possible required constraints between the … … 2364 2364 <v:imagedata src="SimpleMagnetic_files/image039.png" o:title=""/> 2365 2365 </v:shape><![endif]--><![if !vml]><img border=0 width=515 height=186 2366 src="SimpleMagnetic_files/image0 36.png" v:shapes="Picture_x0020_32"><![endif]></span></p>2367 2368 <p class=MsoNormal>This gives the constraints between the two phases for scale 2369 factors (e.g. phase fractions) and the size & mustrain sample broadening 2370 t erms. NB: this assumes isotropic modelling of both because the original LaMnO<sub>3</sub>2366 src="SimpleMagnetic_files/image095.png" v:shapes="Picture_x0020_32"><![endif]></span></p> 2367 2368 <p class=MsoNormal>This gives the constraints between the two phases for scale factors 2369 (e.g. phase fractions) and the size & mustrain sample broadening terms. NB: 2370 this assumes isotropic modelling of both because the original LaMnO<sub>3</sub> 2371 2371 was modeled that way. If you want to use one of the more complex sample 2372 2372 broadening models, you will have to revisit this tab and put in the appropriate … … 2396 2396 <v:imagedata src="SimpleMagnetic_files/image041.png" o:title=""/> 2397 2397 </v:shape><![endif]--><![if !vml]><img border=0 width=624 height=149 2398 src="SimpleMagnetic_files/image0 38.png" v:shapes="Picture_x0020_23"><![endif]></span></p>2398 src="SimpleMagnetic_files/image097.png" v:shapes="Picture_x0020_23"><![endif]></span></p> 2399 2399 2400 2400 <p class=MsoNormal>The boxes that carry the magnetic moment components (<span … … 2431 2431 <v:imagedata src="SimpleMagnetic_files/image043.png" o:title=""/> 2432 2432 </v:shape><![endif]--><![if !vml]><img border=0 width=624 height=308 2433 src="SimpleMagnetic_files/image0 40.png" v:shapes="Picture_x0020_24"><![endif]></span></p>2433 src="SimpleMagnetic_files/image098.png" v:shapes="Picture_x0020_24"><![endif]></span></p> 2434 2434 2435 2435 <p class=MsoNormal>It now shows the magnetic space group as <span class=SpellE>Pnma</span>. … … 2443 2443 <v:imagedata src="SimpleMagnetic_files/image045.png" o:title=""/> 2444 2444 </v:shape><![endif]--><![if !vml]><img border=0 width=624 height=162 2445 src="SimpleMagnetic_files/image0 42.png" v:shapes="Picture_x0020_25"><![endif]></span></p>2445 src="SimpleMagnetic_files/image099.png" v:shapes="Picture_x0020_25"><![endif]></span></p> 2446 2446 2447 2447 <p class=MsoNormal><span class=GramE>with</span> 0.0 in each of the magnetic … … 2487 2487 <v:imagedata src="SimpleMagnetic_files/image047.png" o:title=""/> 2488 2488 </v:shape><![endif]--><![if !vml]><img border=0 width=421 height=307 2489 src="SimpleMagnetic_files/image 044.png" v:shapes="Picture_x0020_26"><![endif]></span></p>2489 src="SimpleMagnetic_files/image100.png" v:shapes="Picture_x0020_26"><![endif]></span></p> 2490 2490 2491 2491 <p class=MsoNormal>Under the <b style='mso-bidi-font-weight:normal'><span … … 2502 2502 <v:imagedata src="SimpleMagnetic_files/image049.png" o:title=""/> 2503 2503 </v:shape><![endif]--><![if !vml]><img border=0 width=444 height=225 2504 src="SimpleMagnetic_files/image 046.png" v:shapes="Picture_x0020_34"><![endif]></span></p>2504 src="SimpleMagnetic_files/image101.png" v:shapes="Picture_x0020_34"><![endif]></span></p> 2505 2505 2506 2506 <p class=MsoNormal>Scroll down to the bottom and select <b style='mso-bidi-font-weight: … … 2518 2518 <v:imagedata src="SimpleMagnetic_files/image051.png" o:title=""/> 2519 2519 </v:shape><![endif]--><![if !vml]><img border=0 width=416 height=303 2520 src="SimpleMagnetic_files/image 048.png" v:shapes="Picture_x0020_35"><![endif]></span></p>2520 src="SimpleMagnetic_files/image102.png" v:shapes="Picture_x0020_35"><![endif]></span></p> 2521 2521 2522 2522 <p class=MsoNormal>Now return to phases and select <b style='mso-bidi-font-weight: … … 2533 2533 <v:imagedata src="SimpleMagnetic_files/image053.png" o:title=""/> 2534 2534 </v:shape><![endif]--><![if !vml]><img border=0 width=489 height=101 2535 src="SimpleMagnetic_files/image 050.png" v:shapes="Picture_x0020_37"><![endif]></span></p>2535 src="SimpleMagnetic_files/image103.png" v:shapes="Picture_x0020_37"><![endif]></span></p> 2536 2536 2537 2537 <p class=MsoNormal>The least squares will not begin a refinement of <span … … 2554 2554 <v:imagedata src="SimpleMagnetic_files/image055.png" o:title=""/> 2555 2555 </v:shape><![endif]--><![if !vml]><img border=0 width=618 height=567 2556 src="SimpleMagnetic_files/image 052.png" v:shapes="Picture_x0020_30"><![endif]></span></p>2556 src="SimpleMagnetic_files/image105.png" v:shapes="Picture_x0020_30"><![endif]></span></p> 2557 2557 2558 2558 <p class=MsoNormal>There does not appear to be any calculated magnetic … … 2565 2565 <v:imagedata src="SimpleMagnetic_files/image057.png" o:title=""/> 2566 2566 </v:shape><![endif]--><![if !vml]><img border=0 width=618 height=567 2567 src="SimpleMagnetic_files/image 054.png" v:shapes="Picture_x0020_31"><![endif]></span></p>2567 src="SimpleMagnetic_files/image107.png" v:shapes="Picture_x0020_31"><![endif]></span></p> 2568 2568 2569 2569 <p class=MsoNormal>The magnetic moment is clearly too small; to let the least … … 2578 2578 2579 2579 <p class=MsoNormal><span style='mso-no-proof:yes'><!--[if gte vml 1]><v:shape 2580 id=" Picture_x0020_40" o:spid="_x0000_i1068" type="#_x0000_t75" style='width:463.5pt;2581 height:426pt;visibility:visible;mso-wrap-style:square'>2580 id="_x0000_i1068" type="#_x0000_t75" style='width:463.5pt;height:426pt; 2581 visibility:visible;mso-wrap-style:square'> 2582 2582 <v:imagedata src="SimpleMagnetic_files/image059.png" o:title=""/> 2583 2583 </v:shape><![endif]--><![if !vml]><img border=0 width=618 height=568 2584 src="SimpleMagnetic_files/image 056.png" v:shapes="Picture_x0020_40"><![endif]></span></p>2584 src="SimpleMagnetic_files/image108.png" v:shapes="_x0000_i1068"><![endif]></span></p> 2585 2585 2586 2586 <p class=MsoNormal>This appears to be a reasonable solution; a more complete … … 2611 2611 <v:imagedata src="SimpleMagnetic_files/image061.png" o:title=""/> 2612 2612 </v:shape><![endif]--><![if !vml]><img border=0 width=621 height=351 2613 src="SimpleMagnetic_files/image 058.png" v:shapes="Picture_x0020_33"><![endif]></span></p>2613 src="SimpleMagnetic_files/image109.png" v:shapes="Picture_x0020_33"><![endif]></span></p> 2614 2614 2615 2615 <p class=MsoNormal>Now set the spin operators to all <b style='mso-bidi-font-weight: … … 2626 2626 <v:imagedata src="SimpleMagnetic_files/image063.png" o:title=""/> 2627 2627 </v:shape><![endif]--><![if !vml]><img border=0 width=619 height=124 2628 src="SimpleMagnetic_files/image 060.png" v:shapes="Picture_x0020_18"><![endif]></span></p>2628 src="SimpleMagnetic_files/image113.png" v:shapes="Picture_x0020_18"><![endif]></span></p> 2629 2629 2630 2630 <p class=MsoNormal>Again, one can make the same argument that since the 010 … … 2656 2656 <v:imagedata src="SimpleMagnetic_files/image065.png" o:title=""/> 2657 2657 </v:shape><![endif]--><![if !vml]><img border=0 width=619 height=568 2658 src="SimpleMagnetic_files/image 062.png" v:shapes="Picture_x0020_19"><![endif]></span></p>2658 src="SimpleMagnetic_files/image115.png" v:shapes="Picture_x0020_19"><![endif]></span></p> 2659 2659 2660 2660 <p class=MsoNormal>There is intensity in the lowest angle reflection (the 010) … … 2679 2679 <v:imagedata src="SimpleMagnetic_files/image104.png" o:title=""/> 2680 2680 </v:shape><![endif]--><![if !vml]><img border=0 width=612 height=251 2681 src="SimpleMagnetic_files/image 064.png" v:shapes="Picture_x0020_20"><![endif]></span></p>2681 src="SimpleMagnetic_files/image116.png" v:shapes="Picture_x0020_20"><![endif]></span></p> 2682 2682 2683 2683 <p class=MsoNormal><span style='mso-no-proof:yes'><!--[if gte vml 1]><v:shape … … 2686 2686 <v:imagedata src="SimpleMagnetic_files/image106.png" o:title=""/> 2687 2687 </v:shape><![endif]--><![if !vml]><img border=0 width=610 height=235 2688 src="SimpleMagnetic_files/image 066.png" v:shapes="Picture_x0020_21"><![endif]></span></p>2688 src="SimpleMagnetic_files/image117.png" v:shapes="Picture_x0020_21"><![endif]></span></p> 2689 2689 2690 2690 <p class=MsoNormal>You can see in particular at the pair of peaks at 33.3 and … … 2712 2712 <v:imagedata src="SimpleMagnetic_files/image110.png" o:title=""/> 2713 2713 </v:shape><![endif]--><![if !vml]><img border=0 width=606 height=528 2714 src="SimpleMagnetic_files/image 068.png" v:shapes="Picture_x0020_38"><![endif]></span></p>2714 src="SimpleMagnetic_files/image118.png" v:shapes="Picture_x0020_38"><![endif]></span></p> 2715 2715 2716 2716 <p class=MsoNormal>Looking at the plot, it would seem that the lattice … … 2735 2735 <v:imagedata src="SimpleMagnetic_files/image114.png" o:title=""/> 2736 2736 </v:shape><![endif]--><![if !vml]><img border=0 width=479 height=317 2737 src="SimpleMagnetic_files/image 070.png" v:shapes="Picture_x0020_39"><![endif]></span></p>2737 src="SimpleMagnetic_files/image122.png" v:shapes="Picture_x0020_39"><![endif]></span></p> 2738 2738 2739 2739 <p class=MsoNormal>Since the scan covers a very wide range in 2<span … … 2767 2767 2768 2768 <p class=MsoNormal><span style='mso-no-proof:yes'><!--[if gte vml 1]><v:shape 2769 id=" _x0000_i1060" type="#_x0000_t75" style='width:465pt;height:404.25pt;2770 visibility:visible;mso-wrap-style:square'>2769 id="Picture_x0020_40" o:spid="_x0000_i1060" type="#_x0000_t75" style='width:465pt; 2770 height:404.25pt;visibility:visible;mso-wrap-style:square'> 2771 2771 <v:imagedata src="SimpleMagnetic_files/image072.png" o:title=""/> 2772 2772 </v:shape><![endif]--><![if !vml]><img border=0 width=620 height=539 2773 src="SimpleMagnetic_files/image 073.png" v:shapes="_x0000_i1060"><![endif]></span></p>2773 src="SimpleMagnetic_files/image123.png" v:shapes="Picture_x0020_40"><![endif]></span></p> 2774 2774 2775 2775 <p class=MsoNormal>Now we can add refinement of the atom positions and thermal … … 2824 2824 <v:imagedata src="SimpleMagnetic_files/image121.png" o:title=""/> 2825 2825 </v:shape><![endif]--><![if !vml]><img border=0 width=615 height=527 2826 src="SimpleMagnetic_files/image 074.png" v:shapes="Picture_x0020_41"><![endif]></span></p>2826 src="SimpleMagnetic_files/image124.png" v:shapes="Picture_x0020_41"><![endif]></span></p> 2827 2827 2828 2828 <p class=MsoNormal>This curve shows a couple of peaks which are from some … … 2858 2858 <v:imagedata src="SimpleMagnetic_files/image111.png" o:title=""/> 2859 2859 </v:shape><![endif]--><![if !vml]><img border=0 width=615 height=129 2860 src="SimpleMagnetic_files/image 075.png" v:shapes="Picture_x0020_42"><![endif]></span></p>2860 src="SimpleMagnetic_files/image125.png" v:shapes="Picture_x0020_42"><![endif]></span></p> 2861 2861 2862 2862 <p class=MsoNormal><o:p> </o:p></p> … … 2876 2876 <v:imagedata src="SimpleMagnetic_files/image119.png" o:title=""/> 2877 2877 </v:shape><![endif]--><![if !vml]><img border=0 width=616 height=247 2878 src="SimpleMagnetic_files/image 076.png" v:shapes="Picture_x0020_44"><![endif]></span></p>2878 src="SimpleMagnetic_files/image131.png" v:shapes="Picture_x0020_44"><![endif]></span></p> 2879 2879 2880 2880 <p class=MsoNormal>The plot will show the unit cell contents of <span … … 2889 2889 <v:imagedata src="SimpleMagnetic_files/image126.png" o:title=""/> 2890 2890 </v:shape><![endif]--><![if !vml]><img border=0 width=610 height=513 2891 src="SimpleMagnetic_files/image 077.png" v:shapes="Picture_x0020_45"><![endif]></span></p>2891 src="SimpleMagnetic_files/image132.png" v:shapes="Picture_x0020_45"><![endif]></span></p> 2892 2892 2893 2893 <p class=MsoNormal>This completes this tutorial; you can save the project if … … 2999 2999 <v:imagedata src="SimpleMagnetic_files/image067.png" o:title=""/> 3000 3000 </v:shape><![endif]--><![if !vml]><img border=0 width=261 height=276 3001 src="SimpleMagnetic_files/image 079.png" v:shapes="Picture_x0020_27"><![endif]></span></p>3001 src="SimpleMagnetic_files/image133.png" v:shapes="Picture_x0020_27"><![endif]></span></p> 3002 3002 3003 3003 <p class=MsoNormal style='margin-left:.25in'><span class=GramE>and</span> the … … 3009 3009 <v:imagedata src="SimpleMagnetic_files/image069.png" o:title=""/> 3010 3010 </v:shape><![endif]--><![if !vml]><img border=0 width=596 height=543 3011 src="SimpleMagnetic_files/image 094.png" v:shapes="Picture_x0020_28"><![endif]></span></p>3011 src="SimpleMagnetic_files/image135.png" v:shapes="Picture_x0020_28"><![endif]></span></p> 3012 3012 3013 3013 <h3>Step 2: Select Limits </h3> … … 3044 3044 <v:imagedata src="SimpleMagnetic_files/image071.png" o:title=""/> 3045 3045 </v:shape><![endif]--><![if !vml]><img border=0 width=624 height=568 3046 src="SimpleMagnetic_files/image 096.png" v:shapes="Picture_x0020_29"><![endif]></span></p>3046 src="SimpleMagnetic_files/image137.png" v:shapes="Picture_x0020_29"><![endif]></span></p> 3047 3047 3048 3048 <h3><a name="sucrose_peak_fit"></a>Step 3: Read in the chemical structure for … … 3113 3113 <v:imagedata src="SimpleMagnetic_files/image134.png" o:title=""/> 3114 3114 </v:shape><![endif]--><![if !vml]><img border=0 width=280 height=224 3115 src="SimpleMagnetic_files/image1 12.png" v:shapes="Picture_x0020_46"><![endif]></span></p>3115 src="SimpleMagnetic_files/image139.png" v:shapes="Picture_x0020_46"><![endif]></span></p> 3116 3116 3117 3117 <p class=MsoNormal style='margin-left:.25in'>Select the histogram (or press <b … … 3127 3127 <v:imagedata src="SimpleMagnetic_files/image136.png" o:title=""/> 3128 3128 </v:shape><![endif]--><![if !vml]><img border=0 width=598 height=304 3129 src="SimpleMagnetic_files/image1 20.png" v:shapes="Picture_x0020_47"><![endif]></span></p>3129 src="SimpleMagnetic_files/image161.png" v:shapes="Picture_x0020_47"><![endif]></span></p> 3130 3130 3131 3131 <p class=MsoNormal style='margin-left:.25in'>Notice that the space group from … … 3151 3151 <v:imagedata src="SimpleMagnetic_files/image138.png" o:title=""/> 3152 3152 </v:shape><![endif]--><![if !vml]><img border=0 width=622 height=221 3153 src="SimpleMagnetic_files/image1 27.png" v:shapes="Picture_x0020_48"><![endif]></span></p>3153 src="SimpleMagnetic_files/image162.png" v:shapes="Picture_x0020_48"><![endif]></span></p> 3154 3154 3155 3155 <p class=MsoListParagraphCxSpFirst style='margin-left:0in;mso-add-space:auto'>This … … 3176 3176 <v:imagedata src="SimpleMagnetic_files/image143.png" o:title=""/> 3177 3177 </v:shape><![endif]--><![if !vml]><img border=0 width=622 height=221 3178 src="SimpleMagnetic_files/image1 28.png" v:shapes="Picture_x0020_49"><![endif]></span><br3178 src="SimpleMagnetic_files/image163.png" v:shapes="Picture_x0020_49"><![endif]></span><br 3179 3179 style='mso-special-character:line-break'> 3180 3180 <![if !supportLineBreakNewLine]><br style='mso-special-character:line-break'> … … 3182 3182 3183 3183 <p class=MsoNormal><span class=GramE>showing</span> the lattice constants for 3184 LaCaMnO<sub>3</sub> you had obtained from the <span class=SpellE>cif</span> file.3185 Note that the space group is set to that of the <span class=SpellE>Bravais</span>3184 LaCaMnO<sub>3</sub> you had obtained from the <span class=SpellE>cif</span> 3185 file. Note that the space group is set to that of the <span class=SpellE>Bravais</span> 3186 3186 lattice (P m <span class=SpellE>m</span> m) and not the space group for LaCaMnO<sub>3</sub> 3187 3187 (P b n m).</p> … … 3198 3198 <v:imagedata src="SimpleMagnetic_files/image145.png" o:title=""/> 3199 3199 </v:shape><![endif]--><![if !vml]><img border=0 width=621 height=436 3200 src="SimpleMagnetic_files/image1 29.png" v:shapes="Picture_x0020_50"><![endif]></span></p>3200 src="SimpleMagnetic_files/image164.png" v:shapes="Picture_x0020_50"><![endif]></span></p> 3201 3201 3202 3202 <p class=MsoListParagraphCxSpLast style='margin-left:0in;mso-add-space:auto'>Note … … 3205 3205 also a few seemingly misplaced unindexed lines (at 37.4, 53.9 & 3206 3206 67.4°2Θ); probably some contaminating minor phase. Well have to ignore 3207 them. Change the space group to <span class=SpellE>Pbnm</span>; the indexing will3208 change.</p>3207 them. Change the space group to <span class=SpellE>Pbnm</span>; the indexing 3208 will change.</p> 3209 3209 3210 3210 <p class=MsoNormal><span style='mso-no-proof:yes'><!--[if gte vml 1]><v:shape … … 3213 3213 <v:imagedata src="SimpleMagnetic_files/image147.png" o:title=""/> 3214 3214 </v:shape><![endif]--><![if !vml]><img border=0 width=625 height=439 3215 src="SimpleMagnetic_files/image1 30.png" v:shapes="Picture_x0020_51"><![endif]></span><br>3215 src="SimpleMagnetic_files/image165.png" v:shapes="Picture_x0020_51"><![endif]></span><br> 3216 3216 Then check the box <b style='mso-bidi-font-weight:normal'><span 3217 3217 style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin; … … 3226 3226 <v:imagedata src="SimpleMagnetic_files/image149.png" o:title=""/> 3227 3227 </v:shape><![endif]--><![if !vml]><img border=0 width=623 height=199 3228 src="SimpleMagnetic_files/image1 40.png" v:shapes="Picture_x0020_52"><![endif]></span></p>3228 src="SimpleMagnetic_files/image166.png" v:shapes="Picture_x0020_52"><![endif]></span></p> 3229 3229 3230 3230 <p class=MsoListParagraphCxSpLast style='margin-left:0in;mso-add-space:auto'>Because … … 3245 3245 3246 3246 <p class=MsoNormal>In the previous step we did not have to resort to any 3247 doubling of a cell axis to explain the suite of magnetic reflections, so the propagation3248 vector is zero (in case anyone asks!). To make the magnetic cell from the 3249 chemical cell we will use the transform tool that is in GSAS-II in the General 3250 tab for the chemical structure. That tab is</p>3247 doubling of a cell axis to explain the suite of magnetic reflections, so the 3248 propagation vector is zero (in case anyone asks!). To make the magnetic cell 3249 from the chemical cell we will use the transform tool that is in GSAS-II in the 3250 General tab for the chemical structure. That tab is</p> 3251 3251 3252 3252 <p class=MsoListParagraph style='margin-left:0in;mso-add-space:auto'><span … … 3256 3256 <v:imagedata src="SimpleMagnetic_files/image151.png" o:title=""/> 3257 3257 </v:shape><![endif]--><![if !vml]><img border=0 width=623 height=275 3258 src="SimpleMagnetic_files/image1 41.png" v:shapes="Picture_x0020_53"><![endif]></span></p>3258 src="SimpleMagnetic_files/image167.png" v:shapes="Picture_x0020_53"><![endif]></span></p> 3259 3259 3260 3260 <p class=MsoNormal>Under the <b style='mso-bidi-font-weight:normal'><span … … 3308 3308 <v:imagedata src="SimpleMagnetic_files/image157.png" o:title=""/> 3309 3309 </v:shape><![endif]--><![if !vml]><img border=0 width=196 height=87 3310 src="SimpleMagnetic_files/image1 46.png" v:shapes="Picture_x0020_56"><![endif]></span></p>3310 src="SimpleMagnetic_files/image168.png" v:shapes="Picture_x0020_56"><![endif]></span></p> 3311 3311 3312 3312 <p class=MsoNormal>This allows one to reject certain atoms that are known to … … 3323 3323 <v:imagedata src="SimpleMagnetic_files/image159.png" o:title=""/> 3324 3324 </v:shape><![endif]--><![if !vml]><img border=0 width=619 height=365 3325 src="SimpleMagnetic_files/image1 48.png" v:shapes="Picture_x0020_57"><![endif]></span></p>3325 src="SimpleMagnetic_files/image169.png" v:shapes="Picture_x0020_57"><![endif]></span></p> 3326 3326 3327 3327 <p class=MsoNormal>The phase is named with mag appended to the end, the phase … … 3347 3347 <v:imagedata src="SimpleMagnetic_files/image170.png" o:title=""/> 3348 3348 </v:shape><![endif]--><![if !vml]><img border=0 width=625 height=143 3349 src="SimpleMagnetic_files/image1 50.png" v:shapes="Picture_x0020_58"><![endif]></span></p>3349 src="SimpleMagnetic_files/image171.png" v:shapes="Picture_x0020_58"><![endif]></span></p> 3350 3350 3351 3351 <p class=MsoListParagraphCxSpMiddle style='margin-left:0in;mso-add-space:auto'>Notice … … 3374 3374 <v:imagedata src="SimpleMagnetic_files/image172.png" o:title=""/> 3375 3375 </v:shape><![endif]--><![if !vml]><img border=0 width=320 height=266 3376 src="SimpleMagnetic_files/image1 52.png" v:shapes="Picture_x0020_60"><![endif]></span></p>3376 src="SimpleMagnetic_files/image173.png" v:shapes="Picture_x0020_60"><![endif]></span></p> 3377 3377 3378 3378 <p class=MsoListParagraphCxSpMiddle style='margin-left:0in;mso-add-space:auto'>The … … 3389 3389 <v:imagedata src="SimpleMagnetic_files/image174.png" o:title=""/> 3390 3390 </v:shape><![endif]--><![if !vml]><img border=0 width=634 height=133 3391 src="SimpleMagnetic_files/image1 53.png" v:shapes="Picture_x0020_61"><![endif]></span></p>3391 src="SimpleMagnetic_files/image177.png" v:shapes="Picture_x0020_61"><![endif]></span></p> 3392 3392 3393 3393 <p class=MsoListParagraphCxSpLast style='margin-left:0in;mso-add-space:auto'>If … … 3445 3445 <v:imagedata src="SimpleMagnetic_files/image176.png" o:title=""/> 3446 3446 </v:shape><![endif]--><![if !vml]><img border=0 width=692 height=486 3447 src="SimpleMagnetic_files/image1 54.png" v:shapes="Picture_x0020_64"><![endif]></span></p>3447 src="SimpleMagnetic_files/image181.png" v:shapes="Picture_x0020_64"><![endif]></span></p> 3448 3448 3449 3449 <p class=MsoListParagraphCxSpLast style='margin-left:0in;mso-add-space:auto'>Clearly … … 3516 3516 <v:imagedata src="SimpleMagnetic_files/image178.png" o:title=""/> 3517 3517 </v:shape><![endif]--><![if !vml]><img border=0 width=624 height=119 3518 src="SimpleMagnetic_files/image1 55.png" v:shapes="Picture_x0020_63"><![endif]></span></p>3518 src="SimpleMagnetic_files/image183.png" v:shapes="Picture_x0020_63"><![endif]></span></p> 3519 3519 3520 3520 <p class=MsoNormal>Then do <b style='mso-bidi-font-weight:normal'><span … … 3529 3529 <v:imagedata src="SimpleMagnetic_files/image180.png" o:title=""/> 3530 3530 </v:shape><![endif]--><![if !vml]><img border=0 width=625 height=439 3531 src="SimpleMagnetic_files/image1 56.png" v:shapes="Picture_x0020_65"><![endif]></span></p>3531 src="SimpleMagnetic_files/image185.png" v:shapes="Picture_x0020_65"><![endif]></span></p> 3532 3532 3533 3533 <p class=MsoNormal><span class=GramE>and</span> the magnetic moment components … … 3539 3539 <v:imagedata src="SimpleMagnetic_files/image182.png" o:title=""/> 3540 3540 </v:shape><![endif]--><![if !vml]><img border=0 width=628 height=123 3541 src="SimpleMagnetic_files/image1 58.png" v:shapes="Picture_x0020_66"><![endif]></span></p>3541 src="SimpleMagnetic_files/image187.png" v:shapes="Picture_x0020_66"><![endif]></span></p> 3542 3542 3543 3543 <p class=MsoNormal>So we test the next possibility.</p> … … 3592 3592 <v:imagedata src="SimpleMagnetic_files/image184.png" o:title=""/> 3593 3593 </v:shape><![endif]--><![if !vml]><img border=0 width=630 height=442 3594 src="SimpleMagnetic_files/image1 60.png" v:shapes="Picture_x0020_67"><![endif]></span></p>3594 src="SimpleMagnetic_files/image189.png" v:shapes="Picture_x0020_67"><![endif]></span></p> 3595 3595 3596 3596 <p class=MsoNormal>The <b style='mso-bidi-font-weight:normal'><span … … 3606 3606 <v:imagedata src="SimpleMagnetic_files/image186.png" o:title=""/> 3607 3607 </v:shape><![endif]--><![if !vml]><img border=0 width=630 height=118 3608 src="SimpleMagnetic_files/image1 75.png" v:shapes="Picture_x0020_68"><![endif]></span></p>3608 src="SimpleMagnetic_files/image191.png" v:shapes="Picture_x0020_68"><![endif]></span></p> 3609 3609 3610 3610 <p class=MsoNormal>Lets test the next one.</p> … … 3657 3657 <v:imagedata src="SimpleMagnetic_files/image188.png" o:title=""/> 3658 3658 </v:shape><![endif]--><![if !vml]><img border=0 width=629 height=441 3659 src="SimpleMagnetic_files/image1 79.png" v:shapes="Picture_x0020_69"><![endif]></span></p>3659 src="SimpleMagnetic_files/image193.png" v:shapes="Picture_x0020_69"><![endif]></span></p> 3660 3660 3661 3661 <p class=MsoNormal>The <b style='mso-bidi-font-weight:normal'><span … … 3670 3670 <v:imagedata src="SimpleMagnetic_files/image190.png" o:title=""/> 3671 3671 </v:shape><![endif]--><![if !vml]><img border=0 width=630 height=126 3672 src="SimpleMagnetic_files/image 194.png" v:shapes="Picture_x0020_70"><![endif]></span></p>3672 src="SimpleMagnetic_files/image200.png" v:shapes="Picture_x0020_70"><![endif]></span></p> 3673 3673 3674 3674 <p class=MsoNormal>We should now check the last spin configuration.</p> … … 3719 3719 <v:imagedata src="SimpleMagnetic_files/image192.png" o:title=""/> 3720 3720 </v:shape><![endif]--><![if !vml]><img border=0 width=633 height=444 3721 src="SimpleMagnetic_files/image 195.png" v:shapes="Picture_x0020_71"><![endif]></span></p>3721 src="SimpleMagnetic_files/image201.png" v:shapes="Picture_x0020_71"><![endif]></span></p> 3722 3722 3723 3723 <p class=MsoNormal><span class=GramE>and</span> with the strong <span … … 3730 3730 <v:imagedata src="SimpleMagnetic_files/image206.png" o:title=""/> 3731 3731 </v:shape><![endif]--><![if !vml]><img border=0 width=636 height=108 3732 src="SimpleMagnetic_files/image 196.png" v:shapes="Picture_x0020_72"><![endif]></span></p>3732 src="SimpleMagnetic_files/image202.png" v:shapes="Picture_x0020_72"><![endif]></span></p> 3733 3733 3734 3734 <p class=MsoNormal><o:p> </o:p></p> … … 3761 3761 well. The do <b style='mso-bidi-font-weight:normal'><span style='font-family: 3762 3762 "Calibri",sans-serif;mso-ascii-theme-font:minor-latin;mso-hansi-theme-font: 3763 minor-latin;mso-bidi-theme-font:minor-latin'>Calculate/Refine</span></b> for 3764 eachone. After several cycles of refinement I find the <span class=SpellE>rrb</span>3763 minor-latin;mso-bidi-theme-font:minor-latin'>Calculate/Refine</span></b> for each 3764 one. After several cycles of refinement I find the <span class=SpellE>rrb</span> 3765 3765 model <span class=SpellE>Rwp</span>=7.615%, the <span class=SpellE>rbr</span> 3766 3766 model <span class=SpellE>Rwp</span>=7.716% and the <span class=SpellE>brr</span> … … 3793 3793 <v:imagedata src="SimpleMagnetic_files/image209.png" o:title=""/> 3794 3794 </v:shape><![endif]--><![if !vml]><img border=0 width=317 height=681 3795 src="SimpleMagnetic_files/image 197.png" v:shapes="Picture_x0020_73"><![endif]><!--[if gte vml 1]><v:shape3795 src="SimpleMagnetic_files/image203.png" v:shapes="Picture_x0020_73"><![endif]><!--[if gte vml 1]><v:shape 3796 3796 id="Picture_x0020_74" o:spid="_x0000_i1026" type="#_x0000_t75" style='width:239.25pt; 3797 3797 height:510pt;visibility:visible;mso-wrap-style:square'> 3798 3798 <v:imagedata src="SimpleMagnetic_files/image211.png" o:title=""/> 3799 3799 </v:shape><![endif]--><![if !vml]><img border=0 width=319 height=680 3800 src="SimpleMagnetic_files/image 198.png" v:shapes="Picture_x0020_74"><![endif]></span></p>3800 src="SimpleMagnetic_files/image204.png" v:shapes="Picture_x0020_74"><![endif]></span></p> 3801 3801 3802 3802 <p class=MsoNormal>The magnetic peaks contributing to this peak are the 200,221 … … 3814 3814 <v:imagedata src="SimpleMagnetic_files/image213.png" o:title=""/> 3815 3815 </v:shape><![endif]--><![if !vml]><img border=0 width=632 height=669 3816 src="SimpleMagnetic_files/image 199.png" v:shapes="Picture_x0020_75"><![endif]></span></p>3816 src="SimpleMagnetic_files/image205.png" v:shapes="Picture_x0020_75"><![endif]></span></p> 3817 3817 3818 3818 <p class=MsoNormal><span class=GramE>which</span> shows that the ferromagnetic
Note: See TracChangeset
for help on using the changeset viewer.