Changeset 2937 for branch


Ignore:
Timestamp:
Jul 19, 2017 4:14:08 PM (6 years ago)
Author:
vondreele
Message:

put a self.SetAutoLayout?(True) in SetDataSize?
cleanup anneal - remove boltzmann & cauchy option & parameters - fundamentlly flawed
add new function (makeTsched) to generate anneal T schedule - show plot if coeff changed
add a final 'L-BFGS-B' refinement of each anneal result - gives much improved results
show plot of reflection covariances for MC/SA runs
cleanup MC/SA GUI stuff
cleanup Index list stuff - fix bug as well

Location:
branch/2frame
Files:
5 edited

Legend:

Unmodified
Added
Removed
  • branch/2frame/GSASIIdataGUI.py

    r2934 r2937  
    47894789            print 'No sizer in dataWindow'
    47904790            raise Exception
    4791         self.Layout()
     4791#        self.Layout()
     4792        self.SetAutoLayout(True)
    47924793        self.SetupScrolling()
    47934794        self.SendSizeEvent()
     
    80488049            G2frame.RefList = data.keys()[0]
    80498050        G2pdG.UpdateReflectionGrid(G2frame,data)
    8050         G2plt.PlotPatterns(G2frame)
     8051        wx.CallAfter(G2plt.PlotPatterns,G2frame)
    80518052    elif G2frame.GPXtree.GetItemText(item) == 'Reflection List':    #HKLF reflections
    80528053        G2frame.PatternId = G2frame.GPXtree.GetItemParent(item)
  • branch/2frame/GSASIImath.py

    r2930 r2937  
    38833883
    38843884import numpy
    3885 from numpy import asarray, tan, exp, squeeze, sign, \
    3886      all, log, pi, shape, array, where
     3885from numpy import asarray, exp, squeeze, sign, \
     3886     all, shape, array, where
    38873887from numpy import random
    38883888
     
    38943894    def __init__(self):
    38953895        self.dwell = 20
    3896         self.learn_rate = 0.5
    38973896        self.lower = -10
    38983897        self.upper = 10
     
    39603959            self.accepted += 1
    39613960            return 1
    3962         p = exp(-dE*1.0/self.boltzmann/T)
     3961        p = exp(-dE*1.0/T)
    39633962        if (p > random.uniform(0.0, 1.0)):
    39643963            self.accepted += 1
     
    39723971        pass
    39733972
    3974 
    39753973#  A schedule due to Lester Ingber modified to use bounds - OK
    39763974class fast_sa(base_schedule):
    39773975    def init(self, **options):
    39783976        self.__dict__.update(options)
    3979         if self.m is None:
    3980             self.m = 1.0
    3981         if self.n is None:
    3982             self.n = 1.0
    3983         self.c = self.m * exp(-self.n * self.quench)
    39843977
    39853978    def update_guess(self, x0):
     
    39903983        xnew = xc*(self.upper - self.lower)+self.lower
    39913984        return xnew
    3992 #        y = sign(u-0.5)*T*((1+1.0/T)**abs(2*u-1)-1.0)
    3993 #        xc = y*(self.upper - self.lower)
    3994 #        xnew = x0 + xc
    3995 #        return xnew
    39963985
    39973986    def update_temp(self):
     
    40003989        return
    40013990
    4002 class cauchy_sa(base_schedule):     #modified to use bounds - not good
    4003     def update_guess(self, x0):
    4004         x0 = asarray(x0)
    4005         numbers = squeeze(random.uniform(-pi/4, pi/4, size=self.dims))
    4006         xc = (1.+(self.learn_rate * self.T * tan(numbers))%1.)
    4007         xnew = xc*(self.upper - self.lower)+self.lower
    4008         return xnew
    4009 #        numbers = squeeze(random.uniform(-pi/2, pi/2, size=self.dims))
    4010 #        xc = self.learn_rate * self.T * tan(numbers)
    4011 #        xnew = x0 + xc
    4012 #        return xnew
    4013 
    4014     def update_temp(self):
    4015         self.T = self.T0/(1+self.k)
    4016         self.k += 1
    4017         return
    4018 
    4019 class boltzmann_sa(base_schedule):
    4020 #    def update_guess(self, x0):
    4021 #        std = minimum(sqrt(self.T)*ones(self.dims), (self.upper-self.lower)/3.0/self.learn_rate)
    4022 #        x0 = asarray(x0)
    4023 #        xc = squeeze(random.normal(0, 1.0, size=self.dims))
    4024 #
    4025 #        xnew = x0 + xc*std*self.learn_rate
    4026 #        return xnew
    4027 
    4028     def update_temp(self):
    4029         self.k += 1
    4030         self.T = self.T0 / log(self.k+1.0)
    4031         return
    4032 
    40333991class log_sa(base_schedule):        #OK
    40343992
     
    40373995       
    40383996    def update_guess(self,x0):     #same as default #TODO - is this a reasonable update procedure?
    4039         return np.squeeze(np.random.uniform(0.,1.,size=self.dims))*(self.upper-self.lower)+self.lower
     3997        u = squeeze(random.uniform(0.0, 1.0, size=self.dims))
     3998        T = self.T
     3999        xc = (sign(u-0.5)*T*((1+1.0/T)**abs(2*u-1)-1.0)+1.0)/2.0
     4000        xnew = xc*(self.upper - self.lower)+self.lower
     4001        return xnew
    40404002       
    40414003    def update_temp(self):
     
    40484010        self.cost = None
    40494011
    4050 # TODO:
    4051 #     allow for general annealing temperature profile
    4052 #     in that case use update given by alpha and omega and
    4053 #     variation of all previous updates and temperature?
    4054 
    4055 # Simulated annealing   #TODO - should we switch to scipy basinhopping?
    4056 
     4012def makeTsched(data):
     4013    if data['Algorithm'] == 'fast':
     4014        sched = fast_sa()
     4015        sched.quench = data['fast parms'][0]
     4016        sched.c = data['fast parms'][1]
     4017    elif data['Algorithm'] == 'log':
     4018        sched = log_sa()
     4019        sched.slope = data['log slope']
     4020    sched.T0 = data['Annealing'][0]
     4021    Tf = data['Annealing'][1]
     4022    Tsched = [sched.T0,]
     4023    while Tsched[-1] > Tf:
     4024        sched.update_temp()
     4025        Tsched.append(sched.T)
     4026    return Tsched[1:]
     4027   
    40574028def anneal(func, x0, args=(), schedule='fast', full_output=0,
    40584029           T0=None, Tf=1e-12, maxeval=None, maxaccept=None, maxiter=400,
    4059            boltzmann=1.0, learn_rate=0.5, feps=1e-6, quench=1.0, m=1.0, n=1.0,
     4030           feps=1e-6, quench=1.0, c=1.0,
    40604031           lower=-100, upper=100, dwell=50, slope=0.9,ranStart=False,
    40614032           ranRange=0.10,autoRan=False,dlg=None):
     
    40884059    :param float learn_rate:
    40894060        Scale constant for adjusting guesses.
    4090     :param float boltzmann:
    4091         Boltzmann constant in acceptance test
    4092         (increase for less stringent test at each temperature).
    40934061    :param float feps:
    40944062        Stopping relative error tolerance for the function value in
    40954063        last four coolings.
    4096     :param float quench,m,n:
     4064    :param float quench,c:
    40974065        Parameters to alter fast_sa schedule.
    40984066    :param float/ndarray lower,upper:
     
    41564124        x_new = x_old + xc
    41574125
    4158         c = n * exp(-n * quench)
    41594126        T_new = T0 * exp(-c * k**quench)
    41604127
    4161 
    4162     In the 'cauchy' schedule the updates are ::
    4163 
    4164         u ~ Uniform(-pi/2, pi/2, size=d)
    4165         xc = learn_rate * T * tan(u)
    4166         x_new = x_old + xc
    4167 
    4168         T_new = T0 / (1+k)
    4169 
    4170     In the 'boltzmann' schedule the updates are ::
    4171 
    4172         std = minimum( sqrt(T) * ones(d), (upper-lower) / (3*learn_rate) )
    4173         y ~ Normal(0, std, size=d)
    4174         x_new = x_old + learn_rate * y
    4175 
    4176         T_new = T0 / log(1+k)
    41774128
    41784129    """
     
    41834134    schedule = eval(schedule+'_sa()')
    41844135    #   initialize the schedule
    4185     schedule.init(dims=shape(x0),func=func,args=args,boltzmann=boltzmann,T0=T0,
    4186                   learn_rate=learn_rate, lower=lower, upper=upper,
    4187                   m=m, n=n, quench=quench, dwell=dwell, slope=slope)
     4136    schedule.init(dims=shape(x0),func=func,args=args,T0=T0,lower=lower, upper=upper,
     4137        c=c, quench=quench, dwell=dwell, slope=slope)
    41884138
    41894139    current_state, last_state, best_state = _state(), _state(), _state()
     
    42584208            if abs(af[-1]-best_state.cost) > feps*10:
    42594209                retval = 5
    4260 #                print "Warning: Cooled to %f at %s but this is not" \
    4261 #                      % (squeeze(last_state.cost), str(squeeze(last_state.x))) \
    4262 #                      + " the smallest point found."
     4210                print " Warning: Cooled to %.4f > selected Tmin %.4f"%(squeeze(last_state.cost),Tf)
    42634211            break
    42644212        if (Tf is not None) and (schedule.T < Tf):
     4213            print ' Minimum T reached'
    42654214            retval = 1
    42664215            break
     
    42694218            break
    42704219        if (iters > maxiter):
    4271             print "Warning: Maximum number of iterations exceeded."
     4220            print  " Warning: Maximum number of iterations exceeded."
    42724221            retval = 3
    42734222            break
     
    45524501        M = np.inner(refList[6],np.inner(rcov,refList[6]))
    45534502        tsum += (time.time()-t0)
    4554         return M/np.sum(refList[4]**2)
     4503        return np.sqrt(M/np.sum(refList[4]**2))
    45554504   
    45564505    def MCSAcallback(x, f, fmin,accept):
     
    45584507            newmsg='%s%8.4f%s'%('MC/SA Residual:',fmin*100,'%'))[0]
    45594508
    4560     sq8ln2 = np.sqrt(8*np.log(2))
    45614509    sq2pi = np.sqrt(2*np.pi)
    45624510    sq4pi = np.sqrt(4*np.pi)
     
    46204568            if d >= MCSA['dmin']:
    46214569                sig = np.sqrt(sig)      #var -> sig in centideg
    4622                 sig = G2pwd.getgamFW(gam,sig)/sq8ln2        #FWHM -> sig in centideg
     4570                sig = .01*G2pwd.getgamFW(gam,sig)        #sig,gam -> FWHM in deg
    46234571                SQ = 0.25/d**2
    46244572                allFF.append(allM*[G2el.getFFvalues(FFtables,SQ,True)[i] for i in allT]/np.max(allM))
     
    46904638    x0 = [parmDict[val] for val in varyList]
    46914639    ifInv = SGData['SGInv']
     4640    bounds = np.array(zip(lower,upper))
    46924641    if MCSA['Algorithm'] == 'Basin Hopping':
    46934642        import basinhopping as bs
    4694         bounds = np.array(zip(lower,upper))
    46954643        take_step = RandomDisplacementBounds(np.array(lower), np.array(upper))
    46964644        results = bs.basinhopping(mcsaCalc,x0,take_step=take_step,disp=True,T=MCSA['Annealing'][0],
    4697                 interval=MCSA['Annealing'][2]/5,niter=MCSA['Annealing'][2],minimizer_kwargs={'method':'L-BFGS-B','bounds':bounds,
     4645                interval=MCSA['Annealing'][2]/10,niter=MCSA['Annealing'][2],minimizer_kwargs={'method':'L-BFGS-B','bounds':bounds,
    46984646                'args':(refs,rcov,cosTable,ifInv,allFF,RBdata,varyList,parmDict)},callback=MCSAcallback)
    4699         mcsaCalc(results['x'],refs,rcov,cosTable,ifInv,allFF,RBdata,varyList,parmDict)
    4700         Result = [False,False,results['fun'],0.0,]+list(results['x'])
    47014647    else:
    47024648        results = anneal(mcsaCalc,x0,args=(refs,rcov,cosTable,ifInv,allFF,RBdata,varyList,parmDict),
    4703             schedule=MCSA['Algorithm'], full_output=True,
    4704             T0=MCSA['Annealing'][0], Tf=MCSA['Annealing'][1],dwell=MCSA['Annealing'][2],
    4705             boltzmann=MCSA['boltzmann'], learn_rate=0.5, 
    4706             quench=MCSA['fast parms'][0], m=MCSA['fast parms'][1], n=MCSA['fast parms'][2],
     4649            schedule=MCSA['Algorithm'], full_output=True,dwell=MCSA['Annealing'][2],maxiter=10000,
     4650            T0=MCSA['Annealing'][0], Tf=MCSA['Annealing'][1],
     4651            quench=MCSA['fast parms'][0], c=MCSA['fast parms'][1],
    47074652            lower=lower, upper=upper, slope=MCSA['log slope'],ranStart=MCSA.get('ranStart',False),
    47084653            ranRange=MCSA.get('ranRange',10.)/100.,autoRan=MCSA.get('autoRan',False),dlg=pgbar)
    4709         mcsaCalc(results[0],refs,rcov,cosTable,ifInv,allFF,RBdata,varyList,parmDict)
    4710         Result = [False,False,results[1],results[2],]+list(results[0])
    4711 #    for ref in refs.T:
    4712 #        print ' %4d %4d %4d %10.3f %10.3f %10.3f'%(int(ref[0]),int(ref[1]),int(ref[2]),ref[4],ref[5],ref[6])
    4713 #    print np.sqrt((np.sum(refs[6]**2)/np.sum(refs[4]**2)))
     4654        results = so.minimize(mcsaCalc,results[0],method='L-BFGS-B',args=(refs,rcov,cosTable,ifInv,allFF,RBdata,varyList,parmDict),
     4655            bounds=bounds,)
     4656    mcsaCalc(results['x'],refs,rcov,cosTable,ifInv,allFF,RBdata,varyList,parmDict)
     4657    Result = [False,False,results['fun'],0.0,]+list(results['x'])
     4658#        Result = [False,False,results[1],results[2],]+list(results[0])
    47144659    Result.append(varyList)
    4715     return Result,tsum
     4660    return Result,tsum,rcov
    47164661
    47174662       
  • branch/2frame/GSASIIphsGUI.py

    r2930 r2937  
    16931693                    else:
    16941694                        gfacTxt = G2G.ValidatedTxtCtrl(General,generalData['Lande g'],ig,
    1695                             min=0.5,max=3.0,nDig=(10,2),typeHint=float)
     1695                            min=0.5,max=3.0,nDig=(10,2))
    16961696                        elemSizer.Add(gfacTxt,0,WACV)
    16971697            return elemSizer
     
    17811781            pawleySizer.Add(wx.StaticText(General,label=' Pawley dmin: '),0,WACV)
    17821782            pawlVal = G2G.ValidatedTxtCtrl(General,generalData,'Pawley dmin',
    1783                 min=0.25,max=20.,nDig=(10,5),typeHint=float)
     1783                min=0.25,max=20.,nDig=(10,5))
    17841784            pawleySizer.Add(pawlVal,0,WACV)
    17851785            pawleySizer.Add(wx.StaticText(General,label=' Pawley neg. wt.: '),0,WACV)
    17861786            pawlNegWt = G2G.ValidatedTxtCtrl(General,generalData,'Pawley neg wt',
    1787                 min=0.,max=1.,nDig=(10,4),typeHint=float)
     1787                min=0.,max=1.,nDig=(10,4))
    17881788            pawleySizer.Add(pawlNegWt,0,WACV)
    17891789            return pawleySizer
     
    20112011            def OnAlist(event):
    20122012                MCSAdata['Algorithm'] = Alist.GetValue()
     2013                OnShowTsched()               
    20132014                wx.CallAfter(UpdateGeneral,General.GetScrollPos(wx.VERTICAL))
    20142015               
     
    20392040                        MCSAdata['Annealing'][ind] = None                   
    20402041                        Obj.SetValue(str(MCSAdata['Annealing'][ind]))
     2042                       
     2043            def ShowTsched(invalid,value,tc):
     2044                OnShowTsched()
     2045               
     2046            def OnShowTsched():
     2047                if MCSAdata['Algorithm'] in ['fast','log']:
     2048                    Y = G2mth.makeTsched(MCSAdata)
     2049                    XY = [np.arange(len(Y)),np.log10(Y)]
     2050                    G2plt.PlotXY(G2frame,[XY,],labelX='T-step',labelY='log(T)',newPlot=True,lines=True,Title='Annealing schedule')
    20412051                       
     2052#            OnShowTsched()
    20422053            refList = []
    20432054            if len(data['Pawley ref']):
     
    20742085            line2Sizer.Add(ranRange,0,WACV)
    20752086            line2Sizer.Add(wx.StaticText(General,label='% of ranges. '),0,WACV)
    2076 #            autoRan = wx.CheckBox(General,-1,label=' Do auto range reduction? ')
    2077 #            autoRan.Bind(wx.EVT_CHECKBOX, OnAutoRan)
    2078 #            autoRan.SetValue(MCSAdata.get('autoRan',False))
    2079 #            line2Sizer.Add(autoRan,0,WACV)
    20802087            mcsaSizer.Add(line2Sizer)
    20812088            mcsaSizer.Add((5,5),)
    20822089            line3Sizer = wx.BoxSizer(wx.HORIZONTAL)
    2083             Achoice = ['log','fast','Basin Hopping']                #these work
    2084 #            Achoice = ['log','fast','cauchy','boltzmann']
     2090            Achoice = ['log','fast','Basin Hopping']                #these work not 'boltzmann','cauchy',
    20852091            line3Sizer.Add(wx.StaticText(General,label=' MC/SA schedule: '),0,WACV)
    20862092            Alist = wx.ComboBox(General,-1,value=MCSAdata['Algorithm'],choices=Achoice,
     
    20882094            Alist.Bind(wx.EVT_COMBOBOX,OnAlist)
    20892095            line3Sizer.Add(Alist,0,WACV)
    2090             if MCSAdata['Algorithm'] in ['fast','boltzmann','cauchy']:
    2091                 Names = [' A-jump: ',' B-jump: ']
    2092                 parms = 'Jump coeff'
    2093                 if MCSAdata['Algorithm'] in ['boltzmann','cauchy']:
    2094                     Names = [' A-jump: ']
    2095                 elif 'fast' in MCSAdata['Algorithm']:
    2096                     Names = [' quench: ',' m-factor: ',' n-factor: ']
    2097                     parms = 'fast parms'
     2096            if MCSAdata['Algorithm'] in ['fast',]:
     2097                Names = [' quench: ',' c-factor: ']
     2098                parms = 'fast parms'
    20982099                for i,name in enumerate(Names):
    20992100                    line3Sizer.Add(wx.StaticText(General,label=name),0,WACV)
    2100                     Ajump = G2G.ValidatedTxtCtrl(General,MCSAdata[parms],i,nDig=(10,2),min=0.,max=1.)
     2101                    Ajump = G2G.ValidatedTxtCtrl(General,MCSAdata[parms],i,nDig=(10,2),min=0.1,max=1.,OnLeave=ShowTsched)
    21012102                    line3Sizer.Add(Ajump,0,WACV)
    21022103            elif 'log' in MCSAdata['Algorithm']:
    21032104                line3Sizer.Add(wx.StaticText(General,label=' slope: '),0,WACV)
    2104                 slope = G2G.ValidatedTxtCtrl(General,MCSAdata,'log slope',nDig=(10,3),min=0.25,max=1.0)
     2105                slope = G2G.ValidatedTxtCtrl(General,MCSAdata,'log slope',nDig=(10,3),min=0.25,max=1.0,OnLeave=ShowTsched)
    21052106                line3Sizer.Add(slope,0,WACV)
    21062107            elif 'Basin Hopping' in MCSAdata['Algorithm']:
     
    21152116            else:
    21162117                line3Sizer.Add(wx.StaticText(General,label=' Start temp: '),0,WACV)
    2117                 line3Sizer.Add(G2G.ValidatedTxtCtrl(General,MCSAdata['Annealing'],0,nDig=(10,5)),0,WACV)
     2118                line3Sizer.Add(G2G.ValidatedTxtCtrl(General,MCSAdata['Annealing'],0,nDig=(10,5),OnLeave=ShowTsched),0,WACV)
    21182119                line3Sizer.Add(wx.StaticText(General,label=' Final temp: '),0,WACV)
    2119                 line3Sizer.Add(G2G.ValidatedTxtCtrl(General,MCSAdata['Annealing'],1,nDig=(10,5)),0,WACV)
     2120                line3Sizer.Add(G2G.ValidatedTxtCtrl(General,MCSAdata['Annealing'],1,nDig=(10,5),OnLeave=ShowTsched),0,WACV)
    21202121            line3Sizer.Add(wx.StaticText(General,label=' No. trials: '),0,WACV)
    21212122            line3Sizer.Add(G2G.ValidatedTxtCtrl(General,MCSAdata['Annealing'],2),0,WACV)
     
    67006701            for itors,tors in enumerate(RBObj['Torsions']):
    67016702                torSizer.Add(wx.StaticText(RigidBodies,-1,'Torsion '+'%d'%(itors)),0,WACV)
    6702                 torsTxt = G2G.ValidatedTxtCtrl(RigidBodies,RBObj['Torsions'][tors],0,nDig=(10,3),OnLeave=OnTorsion)
     6703                torsTxt = G2G.ValidatedTxtCtrl(RigidBodies,RBObj['Torsions'][itors],0,nDig=(10,3),OnLeave=OnTorsion)
    67036704                torSizer.Add(torsTxt)
    67046705                torCheck = wx.CheckBox(RigidBodies,-1,'Refine?')
     
    70547055                val = float(Obj.GetValue())/10.
    70557056                Tors[0] = val
    7056                 ang.SetValue('%8.3f'%(val))
     7057                ang.SetValue(val)
    70577058                G2plt.PlotStructure(G2frame,data)
    70587059
     
    74427443                    ObjV.SetValue('%.3f %.3f %.3f'%(V[0],V[1],V[2]))
    74437444                G2plt.PlotStructure(G2frame,data)
    7444 #                UpdateMCSA()
    74457445
    74467446            def OnMolCent(event):
     
    76347634            resultsGrid.Bind(wg.EVT_GRID_CELL_LEFT_CLICK, OnCellChange)
    76357635            resultsGrid.AutoSizeColumns(True)
     7636            resultsGrid.SetMargins(0,0)
    76367637            for r in range(resultsGrid.GetNumberRows()):
    76377638                for c in range(resultsGrid.GetNumberCols()):
     
    77787779                for i in range(nCyc):
    77797780                    pgbar.SetTitle('MC/SA run '+str(i+1)+' of '+str(nCyc))
    7780                     Result,tsum = G2mth.mcsaSearch(data,RBdata,reflType,reflData,covData,pgbar)
     7781                    Result,tsum,rcov = G2mth.mcsaSearch(data,RBdata,reflType,reflData,covData,pgbar)
    77817782                    MCSAdata['Results'].append(Result)
    77827783                    print ' MC/SA run completed: %d residual: %.3f%% SFcalc time: %.2fs'%(i,100*Result[2],tsum)
    77837784                    tsf += tsum
    77847785                print ' Structure factor time: %.2f'%(tsf)
     7786                XY = np.mgrid[0:rcov.shape[0],0:rcov.shape[1]]
     7787                G2plt.PlotXYZ(G2frame,XY,rcov,labelX='ref No.',labelY='ref No.',newPlot=False,Title='Reflection covariance matrix')
    77857788            else:
    77867789                MCSAdata['Results'] = G2mth.MPmcsaSearch(nCyc,data,RBdata,reflType,reflData,covData)
  • branch/2frame/GSASIIplot.py

    r2931 r2937  
    30673067    acolor = mpl.cm.get_cmap(G2frame.ContourColor)
    30683068    Img = Plot.imshow(Z.T,cmap=acolor,interpolation=G2frame.Interpolate,origin='lower', \
    3069         aspect='auto',extent=[Xmin-Dx,Xmax-Dx,Ymin+Dy,Ymax+Dy],vmin=0,vmax=Zmax*G2frame.Cmax)
     3069        aspect='equal',extent=[Xmin,Xmax,Ymin,Ymax],vmin=0,vmax=Zmax*G2frame.Cmax)
     3070#        aspect='equal',extent=[Xmin-Dx,Xmax-Dx,Ymin+Dy,Ymax+Dy],vmin=0,vmax=Zmax*G2frame.Cmax)
    30703071    Page.figure.colorbar(Img)
    30713072    if not newPlot:
  • branch/2frame/GSASIIpwdGUI.py

    r2934 r2937  
    25262526        peaks = G2frame.IndexPeaksTable.GetData()
    25272527        if c == 2:
    2528             if peaks[r][c]:
    2529                 peaks[r][c] = False
    2530             else:
    2531                 peaks[r][c] = True
     2528            peaks[r][c] = not peaks[r][c]
    25322529            G2frame.IndexPeaksTable.SetData(peaks)
    2533             G2frame.GPXtree.SetItemPyData(IndexId,[peaks,data[1]])
    25342530            G2frame.indxPeaks.ForceRefresh()
    25352531            if 'PKS' in G2frame.GPXtree.GetItemText(G2frame.PatternId):
     
    26552651    mainSizer = G2frame.dataWindow.GetSizer()
    26562652    mainSizer.Add(G2frame.indxPeaks,0,wx.ALL|wx.EXPAND,1)
    2657     G2frame.dataWindowSetAutoLayout(1)
    26582653    G2frame.dataWindow.SetDataSize()
    26592654
     
    48704865            ModelPlot(data,x,xr,y)
    48714866           
    4872         def OnQ4fftplot(event):
    4873             q4fft.SetValue(False)
    4874             R,F = G2pwd.makeRefdFFT(Limits,Profile)
    4875             XY = [[R[:2500],F[:2500]],]
    4876             G2plt.PlotXY(G2frame,XY,labelX='thickness',labelY='F(R)',newPlot=True,
    4877                 Title='Fourier transform',lines=True)
     4867#        def OnQ4fftplot(event):
     4868#            q4fft.SetValue(False)
     4869#            R,F = G2pwd.makeRefdFFT(Limits,Profile)
     4870#            XY = [[R[:2500],F[:2500]],]
     4871#            G2plt.PlotXY(G2frame,XY,labelX='thickness',labelY='F(R)',newPlot=True,
     4872#                Title='Fourier transform',lines=True)
    48784873           
    48794874        def OndQSel(event):
Note: See TracChangeset for help on using the changeset viewer.