Changeset 2467
- Timestamp:
- Sep 14, 2016 2:09:49 PM (6 years ago)
- Location:
- trunk
- Files:
-
- 4 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/GSASIIimage.py
r2425 r2467 1067 1067 else: 1068 1068 ring['ImtaCalc'] = np.array([(V+1.)*ring['Dset'],azm]) 1069 ring['Dcalc'] = np.mean(ring['ImtaCalc'][0]) 1069 dmin = np.min(ring['ImtaCalc'][0]) 1070 dmax = np.max(ring['ImtaCalc'][0]) 1071 ring['Dcalc'] = dmin+(dmax-dmin)/4. 1072 # ring['Dcalc'] = np.mean(ring['ImtaCalc'][0]) 1070 1073 1071 1074 def calcFij(omg,phi,azm,th): 1072 '''Does something... 1073 1074 Uses parameters as defined by Bob He & Kingsley Smith, Adv. in X-Ray Anal. 41, 501 (1997) 1075 ''' Uses parameters as defined by Bob He & Kingsley Smith, Adv. in X-Ray Anal. 41, 501 (1997) 1075 1076 1076 1077 :param omg: his omega = sample omega rotation; 0 when incident beam || sample surface, -
trunk/GSASIIphsGUI.py
r2464 r2467 757 757 SGData['MagSpGrp'] = MagSym 758 758 OprNames,SpnFlp = G2spc.GenMagOps(SGData) 759 SGData['OprNames'] = OprNames 760 SGData['SpnFlp'] = SpnFlp 759 761 spinSizer.Add(wx.StaticText(General,label=' OG Magnetic space group: %s '%(MagSym)),0,WACV) 760 762 showSpins = wx.CheckBox(General,label=' Show spins?') … … 1494 1496 Atoms.SetCellStyle(r,ci,WHITE,False) 1495 1497 SetupGeneral() 1496 elif Atoms.GetColLabelValue(c) in ['Mx','My','Mz']:1497 pass1498 1498 elif Atoms.GetColLabelValue(c) == 'I/A': #note use of text color to make it vanish! 1499 1499 if atomData[r][c] == 'I': … … 1636 1636 colU11 = colLabels.index('U11') 1637 1637 colUiso = colLabels.index('Uiso') 1638 colM = 0 1639 if 'Mx' in colLabels: 1640 colM = colLabels.index('Mx') 1638 1641 attr = wx.grid.GridCellAttr() 1639 1642 attr.IncRef() #fix from Jim Hester … … 1675 1678 Atoms.SetCellStyle(row,cj,VERY_LIGHT_GREY,True) 1676 1679 Atoms.SetCellTextColour(row,cj,VERY_LIGHT_GREY) 1680 if colM: 1681 CSI = G2spc.GetCSpqinel(atomData[row][colSS]) 1682 for i in range(3): 1683 ci = i+colM 1684 Atoms.SetCellStyle(row,ci,VERY_LIGHT_GREY,True) 1685 if CSI[0] and CSI[1][1][i]: 1686 Atoms.SetCellStyle(row,ci,WHITE,False) 1677 1687 if 'X' in rbExcl: 1678 1688 for c in range(0,colX+3): … … 1685 1695 SetupDrawingData() 1686 1696 generalData = data['General'] 1697 SpnFlp = generalData['SGData'].get('SpnFlp',[]) 1698 print SpnFlp 1699 OprNames = generalData['SGData'].get('OprNames',[]) 1700 print OprNames 1687 1701 atomData = data['Atoms'] 1688 1702 DData = data['Drawing'] … … 4328 4342 colLabels = [drawAtoms.GetColLabelValue(c) for c in range(drawAtoms.GetNumberCols())] 4329 4343 cx = colLabels.index('x') 4344 cs = colLabels.index('Sym Op') 4330 4345 cuia = colLabels.index('I/A') 4331 4346 cuij = cuia+2 … … 4343 4358 atom = copy.copy(atomData[ind]) 4344 4359 atom[cx:cx+3] = item[0] 4345 atom[c x+3] = str(item[2])+'+' \4360 atom[cs] = str(item[2])+'+' \ 4346 4361 +str(item[3][0])+','+str(item[3][1])+','+str(item[3][2]) 4347 4362 atom[cuij:cuij+6] = item[1] … … 4351 4366 unit = np.array(eval(key))*1.-item[3] 4352 4367 cell = '%d+%d,%d,%d'%(item[2],unit[0],unit[1],unit[2]) 4368 #transform moment here 4353 4369 atom[cx:cx+3] = Opp[key] 4354 atom[c x+3] = cell4370 atom[cs] = cell 4355 4371 atomData.append(atom[:cuij+9]) #not SS stuff 4356 4372 else: … … 4359 4375 atom = copy.copy(atomData[ind]) 4360 4376 atom[cx:cx+3] = item[0] 4361 atom[c x+3] = str(item[1])+'+' \4377 atom[cs] = str(item[1])+'+' \ 4362 4378 +str(item[2][0])+','+str(item[2][1])+','+str(item[2][2]) 4363 4379 Opp = G2spc.Opposite(item[0]) … … 4367 4383 cell = '%d+%d,%d,%d'%(item[1],unit[0],unit[1],unit[2]) 4368 4384 atom[cx:cx+3] = Opp[key] 4369 atom[cx+3] = cell 4385 #transform moment here 4386 atom[cs] = cell 4370 4387 atomData.append(atom[:cuij+9]) #not SS stuff 4371 4388 data['Drawing']['Atoms'] = atomData -
trunk/GSASIIplot.py
r2459 r2467 5470 5470 glPopMatrix() 5471 5471 glPopMatrix() 5472 5473 def RenderMoment(x,y,z,Moment,color,slice=20): 5474 Dx = Moment/2. 5475 Z = np.sqrt(np.sum(Dx**2)) 5476 glMaterialfv(GL_FRONT_AND_BACK,GL_DIFFUSE,color-Bc) 5477 glPushMatrix() 5478 glTranslate(x,y,z) 5479 glMultMatrixf(B4mat.T) 5480 if Z: 5481 glTranslate(-Dx[0],-Dx[1],-Dx[2]) 5482 azm = atan2d(-Dx[1],-Dx[0]) 5483 phi = acosd(Dx[2]/Z) 5484 glRotate(-azm,0,0,1) 5485 glRotate(phi,1,0,0) 5486 q = gluNewQuadric() 5487 gluQuadricOrientation(q,GLU_INSIDE) 5488 gluDisk(q,0.,.1,slice,1) 5489 gluQuadricOrientation(q,GLU_OUTSIDE) 5490 gluCylinder(q,.1,.1,2.*Z,slice,10) 5491 glTranslate(0,0,2*Z) 5492 gluQuadricOrientation(q,GLU_INSIDE) 5493 gluDisk(q,.1,.2,slice,1) 5494 gluQuadricOrientation(q,GLU_OUTSIDE) 5495 gluCylinder(q,.2,0.,.4,slice,10) 5496 glPopMatrix() 5472 5497 5473 5498 def RenderLines(x,y,z,Bonds,color): … … 5678 5703 glLoadName(atom[-3]) 5679 5704 except: #problem with old files - missing code 5680 pass 5705 pass 5706 if generalData['Type'] == 'magnetic': 5707 Moment = np.array(atom[cx+3:cx+6]) 5708 color = Wt 5709 RenderMoment(x,y,z,Moment,color) 5681 5710 if 'balls' in atom[cs]: 5682 5711 vdwScale = drawingData['vdwScale'] -
trunk/GSASIIspc.py
r2466 r2467 1764 1764 return False 1765 1765 return True 1766 1767 ################################################################################ 1768 #### Site symmetry tables 1769 ################################################################################ 1770 1771 OprPtrName = { 1772 '-6643':[ 2,' 1bar ', 1],'6479' :[ 10,' 2z ', 2],'-6479':[ 9,' mz ', 3], 1773 '6481' :[ 7,' my ', 4],'-6481':[ 6,' 2y ', 5],'6641' :[ 4,' mx ', 6], 1774 '-6641':[ 3,' 2x ', 7],'6591' :[ 28,' m+-0 ', 8],'-6591':[ 27,' 2+-0 ', 9], 1775 '6531' :[ 25,' m110 ',10],'-6531':[ 24,' 2110 ',11],'6537' :[ 61,' 4z ',12], 1776 '-6537':[ 62,' -4z ',13],'975' :[ 68,' 3+++1',14],'6456' :[ 114,' 3z1 ',15], 1777 '-489' :[ 73,' 3+-- ',16],'483' :[ 78,' 3-+- ',17],'-969' :[ 83,' 3--+ ',18], 1778 '819' :[ 22,' m+0- ',19],'-819' :[ 21,' 2+0- ',20],'2431' :[ 16,' m0+- ',21], 1779 '-2431':[ 15,' 20+- ',22],'-657' :[ 19,' m101 ',23],'657' :[ 18,' 2101 ',24], 1780 '1943' :[ 48,' -4x ',25],'-1943':[ 47,' 4x ',26],'-2429':[ 13,' m011 ',27], 1781 '2429' :[ 12,' 2011 ',28],'639' :[ 55,' -4y ',29],'-639' :[ 54,' 4y ',30], 1782 '-6484':[ 146,' 2010 ', 4],'6484' :[ 139,' m010 ', 5],'-6668':[ 145,' 2100 ', 6], 1783 '6668' :[ 138,' m100 ', 7],'-6454':[ 148,' 2120 ',18],'6454' :[ 141,' m120 ',19], 1784 '-6638':[ 149,' 2210 ',20],'6638' :[ 142,' m210 ',21], #search ends here 1785 '2223' :[ 68,' 3+++2',39], 1786 '6538' :[ 106,' 6z1 ',40],'-2169':[ 83,' 3--+2',41],'2151' :[ 73,' 3+--2',42], 1787 '2205' :[ 79,'-3-+-2',43],'-2205':[ 78,' 3-+-2',44],'489' :[ 74,'-3+--1',45], 1788 '801' :[ 53,' 4y1 ',46],'1945' :[ 47,' 4x3 ',47],'-6585':[ 62,' -4z3 ',48], 1789 '6585' :[ 61,' 4z3 ',49],'6584' :[ 114,' 3z2 ',50],'6666' :[ 106,' 6z5 ',51], 1790 '6643' :[ 1,' Iden ',52],'-801' :[ 55,' -4y1 ',53],'-1945':[ 48,' -4x3 ',54], 1791 '-6666':[ 105,' -6z5 ',55],'-6538':[ 105,' -6z1 ',56],'-2223':[ 69,'-3+++2',57], 1792 '-975' :[ 69,'-3+++1',58],'-6456':[ 113,' -3z1 ',59],'-483' :[ 79,'-3-+-1',60], 1793 '969' :[ 84,'-3--+1',61],'-6584':[ 113,' -3z2 ',62],'2169' :[ 84,'-3--+2',63], 1794 '-2151':[ 74,'-3+--2',64],'0':[0,' ????',0] 1795 } 1766 1796 1797 KNsym = { 1798 '0' :' 1 ','1' :' -1 ','64' :' 2(x)','32' :' m(x)', 1799 '97' :' 2/m(x)','16' :' 2(y)','8' :' m(y)','25' :' 2/m(y)', 1800 '2' :' 2(z)','4' :' m(z)','7' :' 2/m(z)','134217728' :' 2(yz)', 1801 '67108864' :' m(yz)','201326593' :' 2/m(yz)','2097152' :' 2(0+-)','1048576' :' m(0+-)', 1802 '3145729' :'2/m(0+-)','8388608' :' 2(xz)','4194304' :' m(xz)','12582913' :' 2/m(xz)', 1803 '524288' :' 2(+0-)','262144' :' m(+0-)','796433' :'2/m(+0-)','1024' :' 2(xy)', 1804 '512' :' m(xy)','1537' :' 2/m(xy)','256' :' 2(+-0)','128' :' m(+-0)', 1805 '385' :'2/m(+-0)','76' :' mm2(x)','52' :' mm2(y)','42' :' mm2(z)', 1806 '135266336' :' mm2(yz)','69206048' :'mm2(0+-)','8650760' :' mm2(xz)','4718600' :'mm2(+0-)', 1807 '1156' :' mm2(xy)','772' :'mm2(+-0)','82' :' 222 ','136314944' :' 222(x)', 1808 '8912912' :' 222(y)','1282' :' 222(z)','127' :' mmm ','204472417' :' mmm(x)', 1809 '13369369' :' mmm(y)','1927' :' mmm(z)','33554496' :' 4(100)','16777280' :' -4(100)', 1810 '50331745' :'4/m(100)','169869394' :'422(100)','84934738' :'-42m 100','101711948' :'4mm(100)', 1811 '254804095' :'4/mmm100','536870928 ':' 4(010)','268435472' :' -4(010)','805306393' :'4/m (10)', 1812 '545783890' :'422(010)','272891986' :'-42m 010','541327412' :'4mm(010)','818675839' :'4/mmm010', 1813 '2050' :' 4(001)','4098' :' -4(001)','6151' :'4/m(001)','3410' :'422(001)', 1814 '4818' :'-42m 001','2730' :'4mm(001)','8191' :'4/mmm001','8192' :' 3(111)', 1815 '8193' :' -3(111)','2629888' :' 32(111)','1319040' :' 3m(111)','3940737' :'-3m(111)', 1816 '32768' :' 3(+--)','32769' :' -3(+--)','10519552' :' 32(+--)','5276160' :' 3m(+--)', 1817 '15762945' :'-3m(+--)','65536' :' 3(-+-)','65537' :' -3(-+-)','134808576' :' 32(-+-)', 1818 '67437056' :' 3m(-+-)','202180097' :'-3m(-+-)','131072' :' 3(--+)','131073' :' -3(--+)', 1819 '142737664' :' 32(--+)','71434368' :' 3m(--+)','214040961' :'-3m(--+)','237650' :' 23 ', 1820 '237695' :' m3 ','715894098' :' 432 ','358068946' :' -43m ','1073725439':' m3m ', 1821 '68157504' :' mm2d100','4456464' :' mm2d010','642' :' mm2d001','153092172' :'-4m2 100', 1822 '277348404' :'-4m2 010','5418' :'-4m2 001','1075726335':' 6/mmm ','1074414420':'-6m2 100', 1823 '1075070124':'-6m2 120','1075069650':' 6mm ','1074414890':' 622 ','1073758215':' 6/m ', 1824 '1073758212':' -6 ','1073758210':' 6 ','1073759865':'-3m(100)','1075724673':'-3m(120)', 1825 '1073758800':' 3m(100)','1075069056':' 3m(120)','1073759272':' 32(100)','1074413824':' 32(120)', 1826 '1073758209':' -3 ','1073758208':' 3 ','1074135143':'mmm(100)','1075314719':'mmm(010)', 1827 '1073743751':'mmm(110)','1074004034':' mm2z100','1074790418':' mm2z010','1073742466':' mm2z110', 1828 '1074004004':'mm2(100)','1074790412':'mm2(010)','1073742980':'mm2(110)','1073872964':'mm2(120)', 1829 '1074266132':'mm2(210)','1073742596':'mm2(+-0)','1073872930':'222(100)','1074266122':'222(010)', 1830 '1073743106':'222(110)','1073741831':'2/m(001)','1073741921':'2/m(100)','1073741849':'2/m(010)', 1831 '1073743361':'2/m(110)','1074135041':'2/m(120)','1075314689':'2/m(210)','1073742209':'2/m(+-0)', 1832 '1073741828':' m(001) ','1073741888':' m(100) ','1073741840':' m(010) ','1073742336':' m(110) ', 1833 '1074003968':' m(120) ','1074790400':' m(210) ','1073741952':' m(+-0) ','1073741826':' 2(001) ', 1834 '1073741856':' 2(100) ','1073741832':' 2(010) ','1073742848':' 2(110) ','1073872896':' 2(120) ', 1835 '1074266112':' 2(210) ','1073742080':' 2(+-0) ','1073741825':' -1 ' 1836 } 1837 1838 NXUPQsym = { 1839 ' 1 ':(28,29,28,28),' -1 ':( 1,29,28, 0),' 2(x)':(12,18,12,25),' m(x)':(25,18,12,25), 1840 ' 2/m(x)':( 1,18, 0,-1),' 2(y)':(13,17,13,24),' m(y)':(24,17,13,24),' 2/m(y)':( 1,17, 0,-1), 1841 ' 2(z)':(14,16,14,23),' m(z)':(23,16,14,23),' 2/m(z)':( 1,16, 0,-1),' 2(yz)':(10,23,10,22), 1842 ' m(yz)':(22,23,10,22),' 2/m(yz)':( 1,23, 0,-1),' 2(0+-)':(11,24,11,21),' m(0+-)':(21,24,11,21), 1843 '2/m(0+-)':( 1,24, 0,-1),' 2(xz)':( 8,21, 8,20),' m(xz)':(20,21, 8,20),' 2/m(xz)':( 1,21, 0,-1), 1844 ' 2(+0-)':( 9,22, 9,19),' m(+0-)':(19,22, 9,19),'2/m(+0-)':( 1,22, 0,-1),' 2(xy)':( 6,19, 6,18), 1845 ' m(xy)':(18,19, 6,18),' 2/m(xy)':( 1,19, 0,-1),' 2(+-0)':( 7,20, 7,17),' m(+-0)':(17,20, 7,17), 1846 '2/m(+-0)':( 1,20, 0,-1),' mm2(x)':(12,10, 0,-1),' mm2(y)':(13,10, 0,-1),' mm2(z)':(14,10, 0,-1), 1847 ' mm2(yz)':(10,13, 0,-1),'mm2(0+-)':(11,13, 0,-1),' mm2(xz)':( 8,12, 0,-1),'mm2(+0-)':( 9,12, 0,-1), 1848 ' mm2(xy)':( 6,11, 0,-1),'mm2(+-0)':( 7,11, 0,-1),' 222 ':( 1,10, 0,-1),' 222(x)':( 1,13, 0,-1), 1849 ' 222(y)':( 1,12, 0,-1),' 222(z)':( 1,11, 0,-1),' mmm ':( 1,10, 0,-1),' mmm(x)':( 1,13, 0,-1), 1850 ' mmm(y)':( 1,12, 0,-1),' mmm(z)':( 1,11, 0,-1),' 4(100)':(12, 4,12, 0),' -4(100)':( 1, 4,12, 0), 1851 '4/m(100)':( 1, 4,12,-1),'422(100)':( 1, 4, 0,-1),'-42m 100':( 1, 4, 0,-1),'4mm(100)':(12, 4, 0,-1), 1852 '4/mmm100':( 1, 4, 0,-1),' 4(010)':(13, 3,13, 0),' -4(010)':( 1, 3,13, 0),'4/m (10)':( 1, 3,13,-1), 1853 '422(010)':( 1, 3, 0,-1),'-42m 010':( 1, 3, 0,-1),'4mm(010)':(13, 3, 0,-1),'4/mmm010':(1, 3, 0,-1,), 1854 ' 4(001)':(14, 2,14, 0),' -4(001)':( 1, 2,14, 0),'4/m(001)':( 1, 2,14,-1),'422(001)':( 1, 2, 0,-1), 1855 '-42m 001':( 1, 2, 0,-1),'4mm(001)':(14, 2, 0,-1),'4/mmm001':( 1, 2, 0,-1),' 3(111)':( 2, 5, 2, 0), 1856 ' -3(111)':( 1, 5, 2, 0),' 32(111)':( 1, 5, 0, 2),' 3m(111)':( 2, 5, 0, 2),'-3m(111)':( 1, 5, 0,-1), 1857 ' 3(+--)':( 5, 8, 5, 0),' -3(+--)':( 1, 8, 5, 0),' 32(+--)':( 1, 8, 0, 5),' 3m(+--)':( 5, 8, 0, 5), 1858 '-3m(+--)':( 1, 8, 0,-1),' 3(-+-)':( 4, 7, 4, 0),' -3(-+-)':( 1, 7, 4, 0),' 32(-+-)':( 1, 7, 0, 4), 1859 ' 3m(-+-)':( 4, 7, 0, 4),'-3m(-+-)':( 1, 7, 0,-1),' 3(--+)':( 3, 6, 3, 0),' -3(--+)':( 1, 6, 3, 0), 1860 ' 32(--+)':( 1, 6, 0, 3),' 3m(--+)':( 3, 6, 0, 3),'-3m(--+)':( 1, 6, 0,-1),' 23 ':( 1, 1, 0, 0), 1861 ' m3 ':( 1, 1, 0, 0),' 432 ':( 1, 1, 0, 0),' -43m ':( 1, 1, 0, 0),' m3m ':( 1, 1, 0, 0), 1862 ' mm2d100':(12,13, 0,-1),' mm2d010':(13,12, 0,-1),' mm2d001':(14,11, 0,-1),'-4m2 100':( 1, 4, 0,-1), 1863 '-4m2 010':( 1, 3, 0,-1),'-4m2 001':( 1, 2, 0,-1),' 6/mmm ':( 1, 9, 0,-1),'-6m2 100':( 1, 9, 0,-1), 1864 '-6m2 120':( 1, 9, 0,-1),' 6mm ':(14, 9, 0,-1),' 622 ':( 1, 9, 0,-1),' 6/m ':( 1, 9,14,-1), 1865 ' -6 ':( 1, 9,14, 0),' 6 ':(14, 9,14, 0),'-3m(100)':( 1, 9, 0,-1),'-3m(120)':( 1, 9, 0,-1), 1866 ' 3m(100)':(14, 9, 0,14),' 3m(120)':(14, 9, 0,14),' 32(100)':( 1, 9, 0,14),' 32(120)':( 1, 9, 0,14), 1867 ' -3 ':( 1, 9,14, 0),' 3 ':(14, 9,14, 0),'mmm(100)':( 1,14, 0,-1),'mmm(010)':( 1,15, 0,-1), 1868 'mmm(110)':( 1,11, 0,-1),' mm2z100':(14,14, 0,-1),' mm2z010':(14,15, 0,-1),' mm2z110':(14,11, 0,-1), 1869 'mm2(100)':(12,14, 0,-1),'mm2(010)':(13,15, 0,-1),'mm2(110)':( 6,11, 0,-1),'mm2(120)':(15,14, 0,-1), 1870 'mm2(210)':(16,15, 0,-1),'mm2(+-0)':( 7,11, 0,-1),'222(100)':( 1,14, 0,-1),'222(010)':( 1,15, 0,-1), 1871 '222(110)':( 1,11, 0,-1),'2/m(001)':( 1,16,14,-1),'2/m(100)':( 1,25,12,-1),'2/m(010)':( 1,28,13,-1), 1872 '2/m(110)':( 1,19, 6,-1),'2/m(120)':( 1,27,15,-1),'2/m(210)':( 1,26,16,-1),'2/m(+-0)':( 1,20,17,-1), 1873 ' m(001) ':(23,16,14,23),' m(100) ':(26,25,12,26),' m(010) ':(27,28,13,27),' m(110) ':(18,19, 6,18), 1874 ' m(120) ':(24,27,15,24),' m(210) ':(25,26,16,25),' m(+-0) ':(17,20, 7,17),' 2(001) ':(14,16,14,23), 1875 ' 2(100) ':(12,25,12,26),' 2(010) ':(13,28,13,27),' 2(110) ':( 6,19, 6,18),' 2(120) ':(15,27,15,24), 1876 ' 2(210) ':(16,26,16,25),' 2(+-0) ':( 7,20, 7,17),' -1 ':( 1,29,28, 0) 1877 } 1878 1879 CSxinel = [[], # 0th empty - indices are Fortran style 1880 [[0,0,0],[ 0.0, 0.0, 0.0]], #1 0 0 0 1881 [[1,1,1],[ 1.0, 1.0, 1.0]], #2 X X X 1882 [[1,1,1],[ 1.0, 1.0,-1.0]], #3 X X -X 1883 [[1,1,1],[ 1.0,-1.0, 1.0]], #4 X -X X 1884 [[1,1,1],[ 1.0,-1.0,-1.0]], #5 -X X X 1885 [[1,1,0],[ 1.0, 1.0, 0.0]], #6 X X 0 1886 [[1,1,0],[ 1.0,-1.0, 0.0]], #7 X -X 0 1887 [[1,0,1],[ 1.0, 0.0, 1.0]], #8 X 0 X 1888 [[1,0,1],[ 1.0, 0.0,-1.0]], #9 X 0 -X 1889 [[0,1,1],[ 0.0, 1.0, 1.0]], #10 0 Y Y 1890 [[0,1,1],[ 0.0, 1.0,-1.0]], #11 0 Y -Y 1891 [[1,0,0],[ 1.0, 0.0, 0.0]], #12 X 0 0 1892 [[0,1,0],[ 0.0, 1.0, 0.0]], #13 0 Y 0 1893 [[0,0,1],[ 0.0, 0.0, 1.0]], #14 0 0 Z 1894 [[1,1,0],[ 1.0, 2.0, 0.0]], #15 X 2X 0 1895 [[1,1,0],[ 2.0, 1.0, 0.0]], #16 2X X 0 1896 [[1,1,2],[ 1.0, 1.0, 1.0]], #17 X X Z 1897 [[1,1,2],[ 1.0,-1.0, 1.0]], #18 X -X Z 1898 [[1,2,1],[ 1.0, 1.0, 1.0]], #19 X Y X 1899 [[1,2,1],[ 1.0, 1.0,-1.0]], #20 X Y -X 1900 [[1,2,2],[ 1.0, 1.0, 1.0]], #21 X Y Y 1901 [[1,2,2],[ 1.0, 1.0,-1.0]], #22 X Y -Y 1902 [[1,2,0],[ 1.0, 1.0, 0.0]], #23 X Y 0 1903 [[1,0,2],[ 1.0, 0.0, 1.0]], #24 X 0 Z 1904 [[0,1,2],[ 0.0, 1.0, 1.0]], #25 0 Y Z 1905 [[1,1,2],[ 1.0, 2.0, 1.0]], #26 X 2X Z 1906 [[1,1,2],[ 2.0, 1.0, 1.0]], #27 2X X Z 1907 [[1,2,3],[ 1.0, 1.0, 1.0]], #28 X Y Z 1908 ] 1909 1910 CSuinel = [[], # 0th empty - indices are Fortran style 1911 [[1,1,1,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,0,0,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #1 A A A 0 0 0 1912 [[1,1,2,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,0,1,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #2 A A C 0 0 0 1913 [[1,2,1,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,1,0,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #3 A B A 0 0 0 1914 [[1,2,2,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,1,0,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #4 A B B 0 0 0 1915 [[1,1,1,2,2,2],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,0,0,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #5 A A A D D D 1916 [[1,1,1,2,2,2],[ 1.0, 1.0, 1.0, 1.0,-1.0,-1.0],[1,0,0,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #6 A A A D -D -D 1917 [[1,1,1,2,2,2],[ 1.0, 1.0, 1.0, 1.0,-1.0, 1.0],[1,0,0,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #7 A A A D -D D 1918 [[1,1,1,2,2,2],[ 1.0, 1.0, 1.0, 1.0, 1.0,-1.0],[1,0,0,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #8 A A A D D -D 1919 [[1,1,2,1,0,0],[ 1.0, 1.0, 1.0, 0.5, 0.0, 0.0],[1,0,1,0,0,0],[1.0,1.0,1.0,0.5,0.0,0.0]], #9 A A C A/2 0 0 1920 [[1,2,3,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,1,1,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #10 A B C 0 0 0 1921 [[1,1,2,3,0,0],[ 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],[1,0,1,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #11 A A C D 0 0 1922 [[1,2,1,0,3,0],[ 1.0, 1.0, 1.0, 0.0, 1.0, 0.0],[1,1,0,0,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #12 A B A 0 E 0 1923 [[1,2,2,0,0,3],[ 1.0, 1.0, 1.0, 0.0, 0.0, 1.0],[1,1,0,0,0,1],[1.0,1.0,1.0,0.0,0.0,0.0]], #13 A B B 0 0 F 1924 [[1,2,3,2,0,0],[ 1.0, 1.0, 1.0, 0.5, 0.0, 0.0],[1,1,1,0,0,0],[1.0,1.0,1.0,0.0,0.5,0.0]], #14 A B C B/2 0 0 1925 [[1,2,3,1,0,0],[ 1.0, 1.0, 1.0, 0.5, 0.0, 0.0],[1,1,1,0,0,0],[1.0,1.0,1.0,0.0,0.5,0.0]], #15 A B C A/2 0 0 1926 [[1,2,3,4,0,0],[ 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],[1,1,1,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #16 A B C D 0 0 1927 [[1,2,3,0,4,0],[ 1.0, 1.0, 1.0, 0.0, 1.0, 0.0],[1,1,1,0,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #17 A B C 0 E 0 1928 [[1,2,3,0,0,4],[ 1.0, 1.0, 1.0, 0.0, 0.0, 1.0],[1,1,1,0,0,1],[1.0,1.0,1.0,0.0,0.0,0.0]], #18 A B C 0 0 F 1929 [[1,1,2,3,4,4],[ 1.0, 1.0, 1.0, 1.0, 1.0,-1.0],[1,0,1,1,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #19 A A C D E -E 1930 [[1,1,2,3,4,4],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,0,1,1,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #20 A A C D E E 1931 [[1,2,1,3,4,3],[ 1.0, 1.0, 1.0, 1.0, 1.0,-1.0],[1,1,0,1,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #21 A B A D E -D 1932 [[1,2,1,3,4,3],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,1,0,1,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #22 A B A D E D 1933 [[1,2,2,3,3,4],[ 1.0, 1.0, 1.0, 1.0,-1.0, 1.0],[1,1,0,1,0,1],[1.0,1.0,1.0,0.0,0.0,0.0]], #23 A B B D -D F 1934 [[1,2,2,3,3,4],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,1,0,1,0,1],[1.0,1.0,1.0,0.0,0.0,0.0]], #24 A B B D D F 1935 [[1,2,3,2,4,4],[ 1.0, 1.0, 1.0, 0.5, 0.5, 1.0],[1,1,1,0,0,1],[1.0,1.0,1.0,0.5,0.0,0.0]], #25 A B C B/2 F/2 F 1936 [[1,2,3,1,0,4],[ 1.0, 1.0, 1.0, 0.5, 0.0, 1.0],[1,1,1,0,0,1],[1.0,1.0,1.0,0.5,0.0,0.0]], #26 A B C A/2 0 F 1937 [[1,2,3,2,4,0],[ 1.0, 1.0, 1.0, 0.5, 1.0, 0.0],[1,1,1,0,1,0],[1.0,1.0,1.0,0.5,0.0,0.0]], #27 A B C B/2 E 0 1938 [[1,2,3,1,4,4],[ 1.0, 1.0, 1.0, 0.5, 1.0, 0.5],[1,1,1,0,1,0],[1.0,1.0,1.0,0.5,0.0,0.0]], #28 A B C A/2 E E/2 1939 [[1,2,3,4,5,6],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,1,1,1,1,1],[1.0,1.0,1.0,0.0,0.0,0.0]], #29 A B C D E F 1940 ] 1941 1942 ################################################################################ 1943 #### Site symmetry routines 1944 ################################################################################ 1945 1767 1946 def GetOprPtrName(key): 1768 1947 'Needs a doc string' 1769 OprPtrName = {1770 '-6643':[ 2,' 1bar ', 1],'6479' :[ 10,' 2z ', 2],'-6479':[ 9,' mz ', 3],1771 '6481' :[ 7,' my ', 4],'-6481':[ 6,' 2y ', 5],'6641' :[ 4,' mx ', 6],1772 '-6641':[ 3,' 2x ', 7],'6591' :[ 28,' m+-0 ', 8],'-6591':[ 27,' 2+-0 ', 9],1773 '6531' :[ 25,' m110 ',10],'-6531':[ 24,' 2110 ',11],'6537' :[ 61,' 4z ',12],1774 '-6537':[ 62,' -4z ',13],'975' :[ 68,' 3+++1',14],'6456' :[ 114,' 3z1 ',15],1775 '-489' :[ 73,' 3+-- ',16],'483' :[ 78,' 3-+- ',17],'-969' :[ 83,' 3--+ ',18],1776 '819' :[ 22,' m+0- ',19],'-819' :[ 21,' 2+0- ',20],'2431' :[ 16,' m0+- ',21],1777 '-2431':[ 15,' 20+- ',22],'-657' :[ 19,' m101 ',23],'657' :[ 18,' 2101 ',24],1778 '1943' :[ 48,' -4x ',25],'-1943':[ 47,' 4x ',26],'-2429':[ 13,' m011 ',27],1779 '2429' :[ 12,' 2011 ',28],'639' :[ 55,' -4y ',29],'-639' :[ 54,' 4y ',30],1780 '-6484':[ 146,' 2010 ', 4],'6484' :[ 139,' m010 ', 5],'-6668':[ 145,' 2100 ', 6],1781 '6668' :[ 138,' m100 ', 7],'-6454':[ 148,' 2120 ',18],'6454' :[ 141,' m120 ',19],1782 '-6638':[ 149,' 2210 ',20],'6638' :[ 142,' m210 ',21], #search ends here1783 '2223' :[ 68,' 3+++2',39],1784 '6538' :[ 106,' 6z1 ',40],'-2169':[ 83,' 3--+2',41],'2151' :[ 73,' 3+--2',42],1785 '2205' :[ 79,'-3-+-2',43],'-2205':[ 78,' 3-+-2',44],'489' :[ 74,'-3+--1',45],1786 '801' :[ 53,' 4y1 ',46],'1945' :[ 47,' 4x3 ',47],'-6585':[ 62,' -4z3 ',48],1787 '6585' :[ 61,' 4z3 ',49],'6584' :[ 114,' 3z2 ',50],'6666' :[ 106,' 6z5 ',51],1788 '6643' :[ 1,' Iden ',52],'-801' :[ 55,' -4y1 ',53],'-1945':[ 48,' -4x3 ',54],1789 '-6666':[ 105,' -6z5 ',55],'-6538':[ 105,' -6z1 ',56],'-2223':[ 69,'-3+++2',57],1790 '-975' :[ 69,'-3+++1',58],'-6456':[ 113,' -3z1 ',59],'-483' :[ 79,'-3-+-1',60],1791 '969' :[ 84,'-3--+1',61],'-6584':[ 113,' -3z2 ',62],'2169' :[ 84,'-3--+2',63],1792 '-2151':[ 74,'-3+--2',64],'0':[0,' ????',0]1793 }1794 1948 return OprPtrName[key] 1795 1949 1796 1950 def GetKNsym(key): 1797 1951 'Needs a doc string' 1798 KNsym = {1799 '0' :' 1 ','1' :' -1 ','64' :' 2(x)','32' :' m(x)',1800 '97' :' 2/m(x)','16' :' 2(y)','8' :' m(y)','25' :' 2/m(y)',1801 '2' :' 2(z)','4' :' m(z)','7' :' 2/m(z)','134217728' :' 2(yz)',1802 '67108864' :' m(yz)','201326593' :' 2/m(yz)','2097152' :' 2(0+-)','1048576' :' m(0+-)',1803 '3145729' :'2/m(0+-)','8388608' :' 2(xz)','4194304' :' m(xz)','12582913' :' 2/m(xz)',1804 '524288' :' 2(+0-)','262144' :' m(+0-)','796433' :'2/m(+0-)','1024' :' 2(xy)',1805 '512' :' m(xy)','1537' :' 2/m(xy)','256' :' 2(+-0)','128' :' m(+-0)',1806 '385' :'2/m(+-0)','76' :' mm2(x)','52' :' mm2(y)','42' :' mm2(z)',1807 '135266336' :' mm2(yz)','69206048' :'mm2(0+-)','8650760' :' mm2(xz)','4718600' :'mm2(+0-)',1808 '1156' :' mm2(xy)','772' :'mm2(+-0)','82' :' 222 ','136314944' :' 222(x)',1809 '8912912' :' 222(y)','1282' :' 222(z)','127' :' mmm ','204472417' :' mmm(x)',1810 '13369369' :' mmm(y)','1927' :' mmm(z)','33554496' :' 4(100)','16777280' :' -4(100)',1811 '50331745' :'4/m(100)','169869394' :'422(100)','84934738' :'-42m 100','101711948' :'4mm(100)',1812 '254804095' :'4/mmm100','536870928 ':' 4(010)','268435472' :' -4(010)','805306393' :'4/m (10)',1813 '545783890' :'422(010)','272891986' :'-42m 010','541327412' :'4mm(010)','818675839' :'4/mmm010',1814 '2050' :' 4(001)','4098' :' -4(001)','6151' :'4/m(001)','3410' :'422(001)',1815 '4818' :'-42m 001','2730' :'4mm(001)','8191' :'4/mmm001','8192' :' 3(111)',1816 '8193' :' -3(111)','2629888' :' 32(111)','1319040' :' 3m(111)','3940737' :'-3m(111)',1817 '32768' :' 3(+--)','32769' :' -3(+--)','10519552' :' 32(+--)','5276160' :' 3m(+--)',1818 '15762945' :'-3m(+--)','65536' :' 3(-+-)','65537' :' -3(-+-)','134808576' :' 32(-+-)',1819 '67437056' :' 3m(-+-)','202180097' :'-3m(-+-)','131072' :' 3(--+)','131073' :' -3(--+)',1820 '142737664' :' 32(--+)','71434368' :' 3m(--+)','214040961' :'-3m(--+)','237650' :' 23 ',1821 '237695' :' m3 ','715894098' :' 432 ','358068946' :' -43m ','1073725439':' m3m ',1822 '68157504' :' mm2d100','4456464' :' mm2d010','642' :' mm2d001','153092172' :'-4m2 100',1823 '277348404' :'-4m2 010','5418' :'-4m2 001','1075726335':' 6/mmm ','1074414420':'-6m2 100',1824 '1075070124':'-6m2 120','1075069650':' 6mm ','1074414890':' 622 ','1073758215':' 6/m ',1825 '1073758212':' -6 ','1073758210':' 6 ','1073759865':'-3m(100)','1075724673':'-3m(120)',1826 '1073758800':' 3m(100)','1075069056':' 3m(120)','1073759272':' 32(100)','1074413824':' 32(120)',1827 '1073758209':' -3 ','1073758208':' 3 ','1074135143':'mmm(100)','1075314719':'mmm(010)',1828 '1073743751':'mmm(110)','1074004034':' mm2z100','1074790418':' mm2z010','1073742466':' mm2z110',1829 '1074004004':'mm2(100)','1074790412':'mm2(010)','1073742980':'mm2(110)','1073872964':'mm2(120)',1830 '1074266132':'mm2(210)','1073742596':'mm2(+-0)','1073872930':'222(100)','1074266122':'222(010)',1831 '1073743106':'222(110)','1073741831':'2/m(001)','1073741921':'2/m(100)','1073741849':'2/m(010)',1832 '1073743361':'2/m(110)','1074135041':'2/m(120)','1075314689':'2/m(210)','1073742209':'2/m(+-0)',1833 '1073741828':' m(001) ','1073741888':' m(100) ','1073741840':' m(010) ','1073742336':' m(110) ',1834 '1074003968':' m(120) ','1074790400':' m(210) ','1073741952':' m(+-0) ','1073741826':' 2(001) ',1835 '1073741856':' 2(100) ','1073741832':' 2(010) ','1073742848':' 2(110) ','1073872896':' 2(120) ',1836 '1074266112':' 2(210) ','1073742080':' 2(+-0) ','1073741825':' -1 '1837 }1838 1952 return KNsym[key] 1839 1953 … … 1842 1956 The codes XUPQ are for lookup of symmetry constraints for position(X), thermal parm(U) & magnetic moments (P & Q) 1843 1957 ''' 1844 NXUPQsym = {1845 ' 1 ':(28,29,28,28),' -1 ':( 1,29,28, 0),' 2(x)':(12,18,12,25),' m(x)':(25,18,12,25),1846 ' 2/m(x)':( 1,18, 0,-1),' 2(y)':(13,17,13,24),' m(y)':(24,17,13,24),' 2/m(y)':( 1,17, 0,-1),1847 ' 2(z)':(14,16,14,23),' m(z)':(23,16,14,23),' 2/m(z)':( 1,16, 0,-1),' 2(yz)':(10,23,10,22),1848 ' m(yz)':(22,23,10,22),' 2/m(yz)':( 1,23, 0,-1),' 2(0+-)':(11,24,11,21),' m(0+-)':(21,24,11,21),1849 '2/m(0+-)':( 1,24, 0,-1),' 2(xz)':( 8,21, 8,20),' m(xz)':(20,21, 8,20),' 2/m(xz)':( 1,21, 0,-1),1850 ' 2(+0-)':( 9,22, 9,19),' m(+0-)':(19,22, 9,19),'2/m(+0-)':( 1,22, 0,-1),' 2(xy)':( 6,19, 6,18),1851 ' m(xy)':(18,19, 6,18),' 2/m(xy)':( 1,19, 0,-1),' 2(+-0)':( 7,20, 7,17),' m(+-0)':(17,20, 7,17),1852 '2/m(+-0)':( 1,20, 0,-1),' mm2(x)':(12,10, 0,-1),' mm2(y)':(13,10, 0,-1),' mm2(z)':(14,10, 0,-1),1853 ' mm2(yz)':(10,13, 0,-1),'mm2(0+-)':(11,13, 0,-1),' mm2(xz)':( 8,12, 0,-1),'mm2(+0-)':( 9,12, 0,-1),1854 ' mm2(xy)':( 6,11, 0,-1),'mm2(+-0)':( 7,11, 0,-1),' 222 ':( 1,10, 0,-1),' 222(x)':( 1,13, 0,-1),1855 ' 222(y)':( 1,12, 0,-1),' 222(z)':( 1,11, 0,-1),' mmm ':( 1,10, 0,-1),' mmm(x)':( 1,13, 0,-1),1856 ' mmm(y)':( 1,12, 0,-1),' mmm(z)':( 1,11, 0,-1),' 4(100)':(12, 4,12, 0),' -4(100)':( 1, 4,12, 0),1857 '4/m(100)':( 1, 4,12,-1),'422(100)':( 1, 4, 0,-1),'-42m 100':( 1, 4, 0,-1),'4mm(100)':(12, 4, 0,-1),1858 '4/mmm100':( 1, 4, 0,-1),' 4(010)':(13, 3,13, 0),' -4(010)':( 1, 3,13, 0),'4/m (10)':( 1, 3,13,-1),1859 '422(010)':( 1, 3, 0,-1),'-42m 010':( 1, 3, 0,-1),'4mm(010)':(13, 3, 0,-1),'4/mmm010':(1, 3, 0,-1,),1860 ' 4(001)':(14, 2,14, 0),' -4(001)':( 1, 2,14, 0),'4/m(001)':( 1, 2,14,-1),'422(001)':( 1, 2, 0,-1),1861 '-42m 001':( 1, 2, 0,-1),'4mm(001)':(14, 2, 0,-1),'4/mmm001':( 1, 2, 0,-1),' 3(111)':( 2, 5, 2, 0),1862 ' -3(111)':( 1, 5, 2, 0),' 32(111)':( 1, 5, 0, 2),' 3m(111)':( 2, 5, 0, 2),'-3m(111)':( 1, 5, 0,-1),1863 ' 3(+--)':( 5, 8, 5, 0),' -3(+--)':( 1, 8, 5, 0),' 32(+--)':( 1, 8, 0, 5),' 3m(+--)':( 5, 8, 0, 5),1864 '-3m(+--)':( 1, 8, 0,-1),' 3(-+-)':( 4, 7, 4, 0),' -3(-+-)':( 1, 7, 4, 0),' 32(-+-)':( 1, 7, 0, 4),1865 ' 3m(-+-)':( 4, 7, 0, 4),'-3m(-+-)':( 1, 7, 0,-1),' 3(--+)':( 3, 6, 3, 0),' -3(--+)':( 1, 6, 3, 0),1866 ' 32(--+)':( 1, 6, 0, 3),' 3m(--+)':( 3, 6, 0, 3),'-3m(--+)':( 1, 6, 0,-1),' 23 ':( 1, 1, 0, 0),1867 ' m3 ':( 1, 1, 0, 0),' 432 ':( 1, 1, 0, 0),' -43m ':( 1, 1, 0, 0),' m3m ':( 1, 1, 0, 0),1868 ' mm2d100':(12,13, 0,-1),' mm2d010':(13,12, 0,-1),' mm2d001':(14,11, 0,-1),'-4m2 100':( 1, 4, 0,-1),1869 '-4m2 010':( 1, 3, 0,-1),'-4m2 001':( 1, 2, 0,-1),' 6/mmm ':( 1, 9, 0,-1),'-6m2 100':( 1, 9, 0,-1),1870 '-6m2 120':( 1, 9, 0,-1),' 6mm ':(14, 9, 0,-1),' 622 ':( 1, 9, 0,-1),' 6/m ':( 1, 9,14,-1),1871 ' -6 ':( 1, 9,14, 0),' 6 ':(14, 9,14, 0),'-3m(100)':( 1, 9, 0,-1),'-3m(120)':( 1, 9, 0,-1),1872 ' 3m(100)':(14, 9, 0,14),' 3m(120)':(14, 9, 0,14),' 32(100)':( 1, 9, 0,14),' 32(120)':( 1, 9, 0,14),1873 ' -3 ':( 1, 9,14, 0),' 3 ':(14, 9,14, 0),'mmm(100)':( 1,14, 0,-1),'mmm(010)':( 1,15, 0,-1),1874 'mmm(110)':( 1,11, 0,-1),' mm2z100':(14,14, 0,-1),' mm2z010':(14,15, 0,-1),' mm2z110':(14,11, 0,-1),1875 'mm2(100)':(12,14, 0,-1),'mm2(010)':(13,15, 0,-1),'mm2(110)':( 6,11, 0,-1),'mm2(120)':(15,14, 0,-1),1876 'mm2(210)':(16,15, 0,-1),'mm2(+-0)':( 7,11, 0,-1),'222(100)':( 1,14, 0,-1),'222(010)':( 1,15, 0,-1),1877 '222(110)':( 1,11, 0,-1),'2/m(001)':( 1,16,14,-1),'2/m(100)':( 1,25,12,-1),'2/m(010)':( 1,28,13,-1),1878 '2/m(110)':( 1,19, 6,-1),'2/m(120)':( 1,27,15,-1),'2/m(210)':( 1,26,16,-1),'2/m(+-0)':( 1,20,17,-1),1879 ' m(001) ':(23,16,14,23),' m(100) ':(26,25,12,26),' m(010) ':(27,28,13,27),' m(110) ':(18,19, 6,18),1880 ' m(120) ':(24,27,15,24),' m(210) ':(25,26,16,25),' m(+-0) ':(17,20, 7,17),' 2(001) ':(14,16,14,23),1881 ' 2(100) ':(12,25,12,26),' 2(010) ':(13,28,13,27),' 2(110) ':( 6,19, 6,18),' 2(120) ':(15,27,15,24),1882 ' 2(210) ':(16,26,16,25),' 2(+-0) ':( 7,20, 7,17),' -1 ':( 1,29,28, 0)1883 }1884 1958 return NXUPQsym[siteSym] 1885 1959 1886 1960 def GetCSxinel(siteSym): 1887 'Needs a doc string' 1888 CSxinel = [[], # 0th empty - indices are Fortran style 1889 [[0,0,0],[ 0.0, 0.0, 0.0]], #1 0 0 0 1890 [[1,1,1],[ 1.0, 1.0, 1.0]], #2 X X X 1891 [[1,1,1],[ 1.0, 1.0,-1.0]], #3 X X -X 1892 [[1,1,1],[ 1.0,-1.0, 1.0]], #4 X -X X 1893 [[1,1,1],[ 1.0,-1.0,-1.0]], #5 -X X X 1894 [[1,1,0],[ 1.0, 1.0, 0.0]], #6 X X 0 1895 [[1,1,0],[ 1.0,-1.0, 0.0]], #7 X -X 0 1896 [[1,0,1],[ 1.0, 0.0, 1.0]], #8 X 0 X 1897 [[1,0,1],[ 1.0, 0.0,-1.0]], #9 X 0 -X 1898 [[0,1,1],[ 0.0, 1.0, 1.0]], #10 0 Y Y 1899 [[0,1,1],[ 0.0, 1.0,-1.0]], #11 0 Y -Y 1900 [[1,0,0],[ 1.0, 0.0, 0.0]], #12 X 0 0 1901 [[0,1,0],[ 0.0, 1.0, 0.0]], #13 0 Y 0 1902 [[0,0,1],[ 0.0, 0.0, 1.0]], #14 0 0 Z 1903 [[1,1,0],[ 1.0, 2.0, 0.0]], #15 X 2X 0 1904 [[1,1,0],[ 2.0, 1.0, 0.0]], #16 2X X 0 1905 [[1,1,2],[ 1.0, 1.0, 1.0]], #17 X X Z 1906 [[1,1,2],[ 1.0,-1.0, 1.0]], #18 X -X Z 1907 [[1,2,1],[ 1.0, 1.0, 1.0]], #19 X Y X 1908 [[1,2,1],[ 1.0, 1.0,-1.0]], #20 X Y -X 1909 [[1,2,2],[ 1.0, 1.0, 1.0]], #21 X Y Y 1910 [[1,2,2],[ 1.0, 1.0,-1.0]], #22 X Y -Y 1911 [[1,2,0],[ 1.0, 1.0, 0.0]], #23 X Y 0 1912 [[1,0,2],[ 1.0, 0.0, 1.0]], #24 X 0 Z 1913 [[0,1,2],[ 0.0, 1.0, 1.0]], #25 0 Y Z 1914 [[1,1,2],[ 1.0, 2.0, 1.0]], #26 X 2X Z 1915 [[1,1,2],[ 2.0, 1.0, 1.0]], #27 2X X Z 1916 [[1,2,3],[ 1.0, 1.0, 1.0]], #28 X Y Z 1917 ] 1961 "returns Xyz terms, multipliers, GUI flags" 1918 1962 indx = GetNXUPQsym(siteSym) 1919 1963 return CSxinel[indx[0]] … … 1921 1965 def GetCSuinel(siteSym): 1922 1966 "returns Uij terms, multipliers, GUI flags & Uiso2Uij multipliers" 1923 CSuinel = [[], # 0th empty - indices are Fortran style1924 [[1,1,1,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,0,0,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #1 A A A 0 0 01925 [[1,1,2,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,0,1,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #2 A A C 0 0 01926 [[1,2,1,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,1,0,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #3 A B A 0 0 01927 [[1,2,2,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,1,0,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #4 A B B 0 0 01928 [[1,1,1,2,2,2],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,0,0,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #5 A A A D D D1929 [[1,1,1,2,2,2],[ 1.0, 1.0, 1.0, 1.0,-1.0,-1.0],[1,0,0,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #6 A A A D -D -D1930 [[1,1,1,2,2,2],[ 1.0, 1.0, 1.0, 1.0,-1.0, 1.0],[1,0,0,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #7 A A A D -D D1931 [[1,1,1,2,2,2],[ 1.0, 1.0, 1.0, 1.0, 1.0,-1.0],[1,0,0,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #8 A A A D D -D1932 [[1,1,2,1,0,0],[ 1.0, 1.0, 1.0, 0.5, 0.0, 0.0],[1,0,1,0,0,0],[1.0,1.0,1.0,0.5,0.0,0.0]], #9 A A C A/2 0 01933 [[1,2,3,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,1,1,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #10 A B C 0 0 01934 [[1,1,2,3,0,0],[ 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],[1,0,1,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #11 A A C D 0 01935 [[1,2,1,0,3,0],[ 1.0, 1.0, 1.0, 0.0, 1.0, 0.0],[1,1,0,0,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #12 A B A 0 E 01936 [[1,2,2,0,0,3],[ 1.0, 1.0, 1.0, 0.0, 0.0, 1.0],[1,1,0,0,0,1],[1.0,1.0,1.0,0.0,0.0,0.0]], #13 A B B 0 0 F1937 [[1,2,3,2,0,0],[ 1.0, 1.0, 1.0, 0.5, 0.0, 0.0],[1,1,1,0,0,0],[1.0,1.0,1.0,0.0,0.5,0.0]], #14 A B C B/2 0 01938 [[1,2,3,1,0,0],[ 1.0, 1.0, 1.0, 0.5, 0.0, 0.0],[1,1,1,0,0,0],[1.0,1.0,1.0,0.0,0.5,0.0]], #15 A B C A/2 0 01939 [[1,2,3,4,0,0],[ 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],[1,1,1,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #16 A B C D 0 01940 [[1,2,3,0,4,0],[ 1.0, 1.0, 1.0, 0.0, 1.0, 0.0],[1,1,1,0,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #17 A B C 0 E 01941 [[1,2,3,0,0,4],[ 1.0, 1.0, 1.0, 0.0, 0.0, 1.0],[1,1,1,0,0,1],[1.0,1.0,1.0,0.0,0.0,0.0]], #18 A B C 0 0 F1942 [[1,1,2,3,4,4],[ 1.0, 1.0, 1.0, 1.0, 1.0,-1.0],[1,0,1,1,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #19 A A C D E -E1943 [[1,1,2,3,4,4],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,0,1,1,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #20 A A C D E E1944 [[1,2,1,3,4,3],[ 1.0, 1.0, 1.0, 1.0, 1.0,-1.0],[1,1,0,1,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #21 A B A D E -D1945 [[1,2,1,3,4,3],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,1,0,1,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #22 A B A D E D1946 [[1,2,2,3,3,4],[ 1.0, 1.0, 1.0, 1.0,-1.0, 1.0],[1,1,0,1,0,1],[1.0,1.0,1.0,0.0,0.0,0.0]], #23 A B B D -D F1947 [[1,2,2,3,3,4],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,1,0,1,0,1],[1.0,1.0,1.0,0.0,0.0,0.0]], #24 A B B D D F1948 [[1,2,3,2,4,4],[ 1.0, 1.0, 1.0, 0.5, 0.5, 1.0],[1,1,1,0,0,1],[1.0,1.0,1.0,0.5,0.0,0.0]], #25 A B C B/2 F/2 F1949 [[1,2,3,1,0,4],[ 1.0, 1.0, 1.0, 0.5, 0.0, 1.0],[1,1,1,0,0,1],[1.0,1.0,1.0,0.5,0.0,0.0]], #26 A B C A/2 0 F1950 [[1,2,3,2,4,0],[ 1.0, 1.0, 1.0, 0.5, 1.0, 0.0],[1,1,1,0,1,0],[1.0,1.0,1.0,0.5,0.0,0.0]], #27 A B C B/2 E 01951 [[1,2,3,1,4,4],[ 1.0, 1.0, 1.0, 0.5, 1.0, 0.5],[1,1,1,0,1,0],[1.0,1.0,1.0,0.5,0.0,0.0]], #28 A B C A/2 E E/21952 [[1,2,3,4,5,6],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,1,1,1,1,1],[1.0,1.0,1.0,0.0,0.0,0.0]], #29 A B C D E F1953 ]1954 1967 indx = GetNXUPQsym(siteSym) 1955 1968 return CSuinel[indx[1]] 1969 1970 def GetCSpqinel(siteSym): 1971 "returns Mxyz terms, multipliers, GUI flags" 1972 indx = GetNXUPQsym(siteSym) 1973 return CSxinel[indx[2]],CSxinel[indx[3]] 1956 1974 1957 1975 def getTauT(tau,sop,ssop,XYZ):
Note: See TracChangeset
for help on using the changeset viewer.