- Timestamp:
- May 26, 2016 10:53:56 AM (8 years ago)
- Location:
- Tutorials/MerohedralTwins
- Files:
-
- 10 added
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
Tutorials/MerohedralTwins/Merohedral twin refinement in GSAS.htm
r2293 r2294 21 21 .shape {behavior:url(#default#VML);} 22 22 </style> 23 <![endif]--> 23 <![endif]--><!--[if gte mso 9]><xml> 24 <o:DocumentProperties> 25 <o:Author>Von Dreele</o:Author> 26 <o:LastAuthor>Von Dreele</o:LastAuthor> 27 <o:Revision>2</o:Revision> 28 <o:TotalTime>0</o:TotalTime> 29 <o:Created>2016-05-26T15:52:00Z</o:Created> 30 <o:LastSaved>2016-05-26T15:52:00Z</o:LastSaved> 31 <o:Pages>1</o:Pages> 32 <o:Words>3321</o:Words> 33 <o:Characters>18934</o:Characters> 34 <o:Lines>157</o:Lines> 35 <o:Paragraphs>44</o:Paragraphs> 36 <o:CharactersWithSpaces>22211</o:CharactersWithSpaces> 37 <o:Version>16.00</o:Version> 38 </o:DocumentProperties> 39 </xml><![endif]--> 24 40 <link rel=themeData 25 41 href="Merohedral%20twin%20refinement%20in%20GSAS_files/themedata.thmx"> … … 795 811 796 812 <p class=MsoNormal>In these exercises you will use GSAS-II to refine the 797 structure of a few single crystal structures where there is merohedral 798 twinning.There is a general discussion of twinning in International Tables for813 structure of a few single crystal structures where there is merohedral twinning. 814 There is a general discussion of twinning in International Tables for 799 815 Crystallography (2006), Vol. C, Chapter 1.3, pp 10-14. Merohedral twinning 800 816 occurs when the twin operation (2, m or <span style='position:relative; 801 top:3pt'><span style='mso-no-proof:yes'><img width=9 height=19 id="_x0000_i10 64"817 top:3pt'><span style='mso-no-proof:yes'><img width=9 height=19 id="_x0000_i1058" 802 818 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image015.png"></span>) 803 819 belongs to the point group of the vector lattice but not of the crystal … … 892 908 <b><span 893 909 style='font-family:"Calibri",sans-serif'>1b.cif</span></b>) and select it. A 894 popup window will appear</p> 895 896 <p class=MsoNormal><span style='mso-no-proof:yes'><img width=445 height=249 897 id="_x0000_i1063" 898 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image005.png"></span></p> 899 900 <p class=MsoNormal>Press <b><span style='font-family:"Calibri",sans-serif'>Yes</span></b>; 910 popup window will appear. Press <b><span style='font-family:"Calibri",sans-serif'>Yes</span></b>; 901 911 a new popup will appear</p> 902 912 903 913 <p class=MsoNormal><span style='mso-no-proof:yes'><img width=336 height=137 904 id="_x0000_i10 62"914 id="_x0000_i1057" 905 915 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image006.png"></span></p> 906 916 … … 909 919 910 920 <p class=MsoNormal><span style='mso-no-proof:yes'><img width=650 height=500 911 id="_x0000_i10 61"921 id="_x0000_i1056" 912 922 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image007.png"></span></p> 913 923 914 924 <p class=MsoNormal>Next do <b><span style='font-family:"Calibri",sans-serif'>Import/Structure 915 925 Factor/from CIF file</span></b> (that is the format of a <span class=SpellE>fcf</span> 916 file); a file selection dialog box will appear with the previously selected 917 directorychosen. Select <b><span style='font-family:"Calibri",sans-serif'>1b.fcf</span></b>;926 file); a file selection dialog box will appear with the previously selected directory 927 chosen. Select <b><span style='font-family:"Calibri",sans-serif'>1b.fcf</span></b>; 918 928 a popup window will appear</p> 919 929 920 930 <p class=MsoNormal><span style='mso-no-proof:yes'><img width=447 height=249 921 id="_x0000_i10 60"931 id="_x0000_i1055" 922 932 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image008.png"></span></p> 923 933 … … 926 936 927 937 <p class=MsoNormal><span style='mso-no-proof:yes'><img width=336 height=137 928 id="_x0000_i105 9"938 id="_x0000_i1054" 929 939 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image009.png"></span></p> 930 940 … … 933 943 934 944 <p class=MsoNormal><span style='mso-no-proof:yes'><img width=320 height=310 935 id="_x0000_i105 8"945 id="_x0000_i1053" 936 946 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image010.png"></span></p> 937 947 … … 955 965 956 966 <p class=MsoNormal><span style='mso-no-proof:yes'><img width=522 height=301 957 id="_x0000_i105 7"967 id="_x0000_i1052" 958 968 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image016.png"></span></p> 959 969 … … 966 976 967 977 <p class=MsoNormal><span style='mso-no-proof:yes'><img width=434 height=444 968 id="_x0000_i105 6"978 id="_x0000_i1051" 969 979 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image011.png"></span></p> 970 980 … … 991 1001 992 1002 <p class=MsoNormal><span style='mso-no-proof:yes'><img width=434 height=444 993 id="_x0000_i105 5"1003 id="_x0000_i1050" 994 1004 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image013.png"></span></p> 995 1005 … … 1003 1013 1004 1014 <p class=MsoNormal><span style='mso-no-proof:yes'><img width=449 height=500 1005 id="_x0000_i10 54"1015 id="_x0000_i1049" 1006 1016 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image014.png"></span></p> 1007 1017 … … 1018 1028 1019 1029 <p class=MsoNormal>In this case the data collection Laue statistics (very 1020 nearly <span style='position:relative;top:3pt'><span style='mso-no-proof:yes'><img 1021 width=9 height=19 id="_x0000_i1053" 1022 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image026.png"></span>m) 1030 nearly <span style='position:relative;top:3pt'><span style='mso-no-proof:yes'>-3</span>m) 1023 1031 and systematic extinctions indicated that the space group was either one of the 1024 1032 <span class=SpellE>enantiomorphic</span> pair P3<sub>1</sub>21 or P3<sub>2</sub>21 1025 or possibly one of the pair P3<sub>1</sub> or P3<sub>2</sub>. If the true structure 1026 was of the lower symmetry P3<sub>1</sub> or P3<sub>2</sub> then there must be 1027 Type 2 merohedral twinning to make the diffraction pattern appear to have 1028 higher symmetry (<span style='position:relative;top:3pt'><span 1029 style='mso-no-proof:yes'><img width=9 height=19 id="_x0000_i1052" 1030 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image026.png"></span>m 1031 instead of <span style='position:relative;top:3pt'><span style='mso-no-proof: 1032 yes'><img width=9 height=19 id="_x0000_i1051" 1033 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image026.png"></span>); 1034 this exercise will explore this possibility. The data were collected with <span 1035 class=SpellE>MoK</span><span style='font-family:Symbol'>a</span> radiation so 1036 there is little resonant scattering and thus the choice of hand is 1037 indeterminate. Solving the structure in P3<sub>2</sub>21 yielded a poorly 1038 fitting structure with disorder particularly in the cation. Resolving the 1039 structure in P3<sub>2</sub> gave a structure with no disorder and a better fit 1040 to the data (but still not great). As this work was done with <span 1041 class=SpellE>Shelx</span> this result is in the form of a <span class=SpellE>Shelx</span> 1042 input file (2b.ins thanks to V. Young for this example). If you have not done 1043 so already, start GSAS-II and start with a fresh project.</p> 1033 or possibly one of the pair P3<sub>1</sub> or P3<sub>2</sub>. If the true 1034 structure was of the lower symmetry P3<sub>1</sub> or P3<sub>2</sub> then there 1035 must be Type 2 merohedral twinning to make the diffraction pattern appear to 1036 have higher symmetry (<span style='position:relative;top:3pt'><span 1037 style='mso-no-proof:yes'>-3</span>m instead of <span style='position:relative; 1038 top:3pt'><span style='mso-no-proof:yes'>-3</span>); this exercise will explore 1039 this possibility. The data were collected with <span class=SpellE>MoK</span><span 1040 style='font-family:Symbol'>a</span> radiation so there is little resonant 1041 scattering and thus the choice of hand is indeterminate. Solving the 1042 structure in P3<sub>2</sub>21 yielded a poorly fitting structure with disorder 1043 particularly in the cation. Resolving the structure in P3<sub>2</sub> gave a 1044 structure with no disorder and a better fit to the data (but still not great). 1045 As this work was done with <span class=SpellE>Shelx</span> this result is in 1046 the form of a <span class=SpellE>Shelx</span> input file (2b.ins thanks to V. 1047 Young for this example). If you have not done so already, start GSAS-II and 1048 start with a fresh project.</p> 1044 1049 1045 1050 <h2><span style='mso-fareast-font-family:"Times New Roman"'>Step 1. Setup for … … 1056 1061 1057 1062 <p class=MsoNormal><span style='mso-no-proof:yes'><img width=410 height=262 1058 id="_x0000_i10 50"1063 id="_x0000_i1048" 1059 1064 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image012.png"></span></p> 1060 1065 … … 1063 1068 1064 1069 <p class=MsoNormal><span style='mso-no-proof:yes'><!--[if gte vml 1]><v:shape 1065 id="Picture_x0020_39" o:spid="_x0000_i104 9" type="#_x0000_t75" style='width:371.25pt;1070 id="Picture_x0020_39" o:spid="_x0000_i1047" type="#_x0000_t75" style='width:371.25pt; 1066 1071 height:176.25pt;visibility:visible;mso-wrap-style:square'> 1067 1072 <v:imagedata src="Merohedral%20twin%20refinement%20in%20GSAS_files/image001.png" … … 1086 1091 1087 1092 <p class=MsoNormal><span style='mso-no-proof:yes'><img width=624 height=336 1088 id="_x0000_i104 8"1093 id="_x0000_i1046" 1089 1094 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image027.png"></span></p> 1090 1095 … … 1095 1100 1096 1101 <p class=MsoNormal><span style='mso-no-proof:yes'><img width=478 height=358 1097 id="_x0000_i104 7"1102 id="_x0000_i1045" 1098 1103 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image028.jpg"></span></p> 1099 1104 … … 1109 1114 1110 1115 <p class=MsoNormal><span style='mso-no-proof:yes'><img width=366 height=262 1111 id="_x0000_i104 6"1116 id="_x0000_i1044" 1112 1117 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image022.png"></span></p> 1113 1118 … … 1122 1127 1123 1128 <p class=MsoNormal><span style='mso-no-proof:yes'><img width=624 height=535 1124 id="_x0000_i104 5"1129 id="_x0000_i1043" 1125 1130 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image029.png"></span></p> 1126 1131 … … 1146 1151 1147 1152 <p class=MsoNormal><span style='mso-no-proof:yes'><img width=522 height=301 1148 id="_x0000_i104 4"1153 id="_x0000_i1042" 1149 1154 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image016.png"></span></p> 1150 1155 … … 1158 1163 1159 1164 <p class=MsoNormal><span style='mso-no-proof:yes'><img width=507 height=444 1160 id="_x0000_i104 3"1165 id="_x0000_i1041" 1161 1166 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image030.png"></span></p> 1162 1167 … … 1168 1173 structure would not be very satisfactory. However, we have suspected from the 1169 1174 equivalence of <span style='position:relative;top:3pt'><span style='mso-no-proof: 1170 yes'><img width=9 height=19 id="_x0000_i104 2"1175 yes'><img width=9 height=19 id="_x0000_i1040" 1171 1176 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image031.png"></span> and 1172 1177 <span style='position:relative;top:3pt'><span style='mso-no-proof:yes'><img 1173 width=9 height=19 id="_x0000_i10 41"1178 width=9 height=19 id="_x0000_i1039" 1174 1179 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image026.png"></span>m1 1175 Laue data symmetries that there is twinning so dont bother trying to make it 1176 b etter by refining the structure. To determine the possible twin law we refer1177 to Table 1.3.4.2 of the International Tables for Crystallography Vol C. and see 1178 that indeed Laue <span style='position:relative;top:3pt'><span 1179 style='mso-no-proof:yes'><img width=9 height=19 id="_x0000_i1040"1180 Laue data symmetries that there is twinning so dont bother trying to make it better 1181 by refining the structure. To determine the possible twin law we refer to Table 1182 1.3.4.2 of the International Tables for Crystallography Vol C. and see that 1183 indeed Laue <span style='position:relative;top:3pt'><span style='mso-no-proof: 1184 yes'><img width=9 height=19 id="_x0000_i1038" 1180 1185 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image026.png"></span>m1 1181 1186 as P3<sub>2</sub>21 can be simulated by twinned Laue <span style='position: 1182 1187 relative;top:3pt'><span style='mso-no-proof:yes'><img width=9 height=19 1183 id="_x0000_i103 9"1188 id="_x0000_i1037" 1184 1189 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image026.png"></span> crystals 1185 1190 in P3<sub>2</sub>; the possible operator is shown in Table 1.3.4.1 (reproduced … … 1188 1193 specifics. See P3m1 and P3<sub>2</sub>21 space groups in International Tables 1189 1194 for Crystallography, Vol A for the operations m as <span style='position:relative; 1190 top:3pt'><span style='mso-no-proof:yes'><img width=26 height=19 1191 id="_x0000_i1038" 1192 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image032.png"></span> or 1193 2 as <span style='position:relative;top:3pt'><span style='mso-no-proof:yes'><img 1194 width=26 height=19 id="_x0000_i1037" 1195 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image033.png"></span>; we 1196 will use the 2-fold since the m inverts the structure which we are not 1195 top:3pt'><span style='mso-no-proof:yes'>-y-xz</span> or 2 as <span 1196 style='position:relative;top:3pt'><span style='mso-no-proof:yes'>yx-z</span>; 1197 we will use the 2-fold since the m inverts the structure which we are not 1197 1198 sensitive to in this experiment.</p> 1198 1199 … … 1221 1222 for <span class=SpellE>MoKa</span> radiation allowing detection of Type 1 <span 1222 1223 class=SpellE>merohedry</span>. The data set has apparent 6/m Laue symmetry but 1223 may be 6/mmm for the space groups P6 1/P65 or P6122/P6522. The combination of1224 T ype 1 and Type 2 twins requires 4 twin laws to be explored for this <span1225 class=SpellE>pentamethylcyclopentadienyl</span> Cs complex. As this work was1226 done with <span class=SpellE>Shelx</span> this result is in the form of a <span 1227 class=SpellE>Shelx</span> input file (3a.ins thanks to V. Young for this 1228 example). If you have not done so already, start GSAS-II and start with a fresh 1229 project.</p>1224 may be 6/mmm for the space groups P6<sub>1</sub>/P6<sub>5</sub> or P6<sub>1</sub>22/P6<sub>5</sub>22. 1225 The combination of Type 1 and Type 2 twins requires 4 twin laws to be explored 1226 for this <span class=SpellE>pentamethylcyclopentadienyl</span> Cs complex. As 1227 this work was done with <span class=SpellE>Shelx</span> this result is in the 1228 form of a <span class=SpellE>Shelx</span> input file (3a.ins thanks to V. 1229 Young for this example). If you have not done so already, start GSAS-II and 1230 start with a fresh project.</p> 1230 1231 1231 1232 <h2><span style='mso-fareast-font-family:"Times New Roman"'>Step 1. Setup for … … 1247 1248 <p class=MsoNormal>It is; press the <b><span style='font-family:"Calibri",sans-serif'>Yes</span></b> 1248 1249 button. You will then see the SHELX Read Warning; you will have to change the 1249 space group to P6 1in a bit. Press <b><span style='font-family:"Calibri",sans-serif'>OK</span></b>1250 space group to P6<sub>1</sub> in a bit. Press <b><span style='font-family:"Calibri",sans-serif'>OK</span></b> 1250 1251 and leave the name alone (press <b><span style='font-family:"Calibri",sans-serif'>OK</span></b> 1251 1252 again). Change the Space group to <b><span style='font-family:"Calibri",sans-serif'>P … … 1313 1314 To determine the possible twin <span class=GramE>laws</span> we again refer to 1314 1315 Table 1.3.4.2 of the International Tables for Crystallography Vol C. and see 1315 that indeed Laue 6/mmm as P6 122 can be simulated by twinned Laue 6/m crystals1316 in P61; the possible operator is shown in Table 1.3.4.1 (reproduced above) as 1317 either a mirror or a 2-fold. The detailed symbolism in the table (m.., 1318 ..2/.2.) indicates (perhaps obscurely) the operator specifics; they are m as <span 1319 s tyle='position:relative;top:3pt'><!--[if gte msEquation 12]><m:oMath><m:acc><m:accPr><m:chr1316 that indeed Laue 6/mmm as P6<sub>1</sub>22 can be simulated by twinned Laue 6/m 1317 crystals in P6<sub>1</sub>; the possible operator is shown in Table 1.3.4.1 1318 (reproduced above) as either a mirror or a 2-fold. The detailed symbolism in 1319 the table (m.., ..2/.2.) indicates (perhaps obscurely) the operator 1320 specifics; they are m as <span style='position:relative;top:3pt'><!--[if gte msEquation 12]><m:oMath><m:acc><m:accPr><m:chr 1320 1321 m:val="̅"/><span style='font-family:"Cambria Math",serif;mso-ascii-font-family: 1321 1322 "Cambria Math";mso-hansi-font-family:"Cambria Math";font-style:italic; … … 1337 1338 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image004.gif" v:shapes="_x0000_i1025"><![endif]></span><![endif]> or 1338 1339 2 as <!--[if gte msEquation 12]><m:oMath><i style='mso-bidi-font-style:normal'><span 1339 style='font-family:"Cambria Math",serif'>< m:r><span style='position:relative;1340 top:3pt'>yx</m:r></span></i><m:acc><m:accPr><m:chr m:val="̅"/><span1341 style='font-family:"Cambria Math",serif;mso-ascii-font-family:"Cambria Math";1342 mso-hansi-font-family:"Cambria Math";font-style:italic;mso-bidi-font-style:1343 normal'><m:ctrlPr></m:ctrlPr></span></m:accPr><m:e><i style='mso-bidi-font-style:1344 normal'><span style='font-family:"Cambria Math",serif'><m:r>z</m:r></span></i></m:e></m:acc></m:oMath><![endif]--><![if !msEquation]><span1340 style='font-family:"Cambria Math",serif'><span style='position:relative; 1341 top:3pt'><m:r>y</m:r><m:r>x</span></m:r></span></i><m:acc><m:accPr><m:chr 1342 m:val="̅"/><span style='font-family:"Cambria Math",serif;mso-ascii-font-family: 1343 "Cambria Math";mso-hansi-font-family:"Cambria Math";font-style:italic; 1344 mso-bidi-font-style:normal'><m:ctrlPr></m:ctrlPr></span></m:accPr><m:e><i 1345 style='mso-bidi-font-style:normal'><span style='font-family:"Cambria Math",serif'><m:r>z</m:r></span></i></m:e></m:acc></m:oMath><![endif]--><![if !msEquation]><span 1345 1346 style='font-size:12.0pt;font-family:"Times New Roman",serif;mso-fareast-font-family: 1346 1347 "Times New Roman";mso-fareast-theme-font:minor-fareast;position:relative; … … 1351 1352 o:title="" chromakey="white"/> 1352 1353 </v:shape><![endif]--><![if !vml]><img width=26 height=19 1353 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image006.gif" v:shapes="_x0000_i1025"><![endif]></span><![endif]>; 1354 we will use the 2-fold, m and inversion operators to fully test for presence of 1355 the 4 possible twin laws. Press the <b><span style='font-family:"Calibri",sans-serif'>Add 1356 Twin Law</span></b> button <b><span style='font-family:"Calibri",sans-serif'>3 1357 times</span></b>; each time the window will be redrawn. When done you should 1358 see.</p> 1354 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image006.gif" v:shapes="_x0000_i1025"><![endif]></span><![endif]><span 1355 style='font-family:"Cambria Math",serif'>; we will use the 2-fold, m and 1356 inversion operators to fully test for presence of the 4 possible twin laws. 1357 Press the </span><b><span style='font-family:"Calibri",sans-serif'>Add Twin Law</span></b><span 1358 style='font-family:"Cambria Math",serif'> button </span><b><span 1359 style='font-family:"Calibri",sans-serif'>3 times</span></b><span 1360 style='font-family:"Cambria Math",serif'>; each time the window will be 1361 redrawn. When done you should see.<o:p></o:p></span></p> 1359 1362 1360 1363 <p class=MsoNormal><span style='mso-no-proof:yes'><img width=434 height=444 … … 1419 1422 style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif; 1420 1423 mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin'>Edit/Insert 1421 H atoms</span></b>; a Distance Angle Controls will appear. Occasionally these values1422 may need to be changed but not this time; press <b style='mso-bidi-font-weight:1424 H atoms</span></b>; a Distance Angle Controls will appear. Occasionally these 1425 values may need to be changed but not this time; press <b style='mso-bidi-font-weight: 1423 1426 normal'><span style='font-family:"Calibri",sans-serif;mso-ascii-theme-font: 1424 1427 minor-latin;mso-hansi-theme-font:minor-latin'>Ok</span></b>. The next popup is … … 1433 1436 src="Merohedral%20twin%20refinement%20in%20GSAS_files/image012.gif" v:shapes="Picture_x0020_42"><![endif]></span></p> 1434 1437 1435 <p class=MsoNormal>It specifies the expected geometry around each C-atom for 1436 H-atom placement. As expected we want 3 H-atoms on the terminal CH<sub>3</sub> 1437 groups on the <span class=SpellE>Cp</span>* ring and one for each C-atom for 1438 the NC<sub>5</sub>H<sub>5</sub> molecule. Press <b style='mso-bidi-font-weight: 1438 <p class=MsoNormal>It specifies the expected geometry around each C-atom for H-atom 1439 placement. As expected we want 3 H-atoms on the terminal CH<sub>3</sub> groups 1440 on the <span class=SpellE>Cp</span>* ring and one for each C-atom for the NC<sub>5</sub>H<sub>5</sub> 1441 molecule. Press <b style='mso-bidi-font-weight:normal'><span style='font-family: 1442 "Calibri",sans-serif;mso-ascii-theme-font:minor-latin;mso-hansi-theme-font: 1443 minor-latin'>Ok</span></b>; you will see the H-atoms added in turn to the 1444 structure and they will be inserted immediately after their respective C-atom. 1445 Their positions and thermal parameters are tied to the C-atoms so that after 1446 refinement of the structure they can be shifted to the <span class=SpellE>stereochemically</span> 1447 best positions. For the refinement, double click the <b style='mso-bidi-font-weight: 1439 1448 normal'><span style='font-family:"Calibri",sans-serif;mso-ascii-theme-font: 1440 minor-latin;mso-hansi-theme-font:minor-latin'>Ok</span></b>; you will see the 1441 H-atoms added in turn to the structure and they will be inserted immediately 1442 after their respective C-atom. Their positions and thermal parameters are tied 1443 to the C-atoms so that after refinement of the structure they can be shifted to 1444 the <span class=SpellE>stereochemically</span> best positions. For the 1445 refinement, double click the <b style='mso-bidi-font-weight:normal'><span 1449 minor-latin;mso-hansi-theme-font:minor-latin'>Refine</span></b> column heading 1450 and select <b style='mso-bidi-font-weight:normal'><span style='font-family: 1451 "Calibri",sans-serif;mso-ascii-theme-font:minor-latin;mso-hansi-theme-font: 1452 minor-latin'>X</span></b> and <b style='mso-bidi-font-weight:normal'><span 1446 1453 style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin; 1447 mso-hansi-theme-font:minor-latin'> Refine</span></b> column heading and select<b1454 mso-hansi-theme-font:minor-latin'>U</span></b> from the popup; press <b 1448 1455 style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif; 1449 mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin'>X</span></b> 1450 and <b style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif; 1451 mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin'>U</span></b> 1452 from the popup; press <b style='mso-bidi-font-weight:normal'><span 1456 mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin'>OK</span></b>. 1457 The Atom table will be redrawn with XU in every entry under Refine. Now do <b 1458 style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif; 1459 mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin'>Calculate/Refine</span></b> 1460 from the main GSASII data tree window; the <span class=SpellE>Rw</span> will 1461 drop to ~1.92%. If you look at the <b style='mso-bidi-font-weight:normal'><span 1453 1462 style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin; 1454 mso-hansi-theme-font:minor-latin'>OK</span></b>. The Atom table will be redrawn 1455 with XU in every entry under Refine. Now do <b style='mso-bidi-font-weight: 1456 normal'><span style='font-family:"Calibri",sans-serif;mso-ascii-theme-font: 1457 minor-latin;mso-hansi-theme-font:minor-latin'>Calculate/Refine</span></b> from the 1458 main GSASII data tree window; the <span class=SpellE>Rw</span> will drop to 1459 ~1.92%. If you look at the <b style='mso-bidi-font-weight:normal'><span 1460 style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin; 1461 mso-hansi-theme-font:minor-latin'>Data</span></b> tab the Twin element fractions 1462 are much clearer.</p> 1463 mso-hansi-theme-font:minor-latin'>Data</span></b> tab the Twin element 1464 fractions are much clearer.</p> 1463 1465 1464 1466 <p class=MsoNormal><span style='mso-no-proof:yes'><!--[if gte vml 1]><v:shape … … 1491 1493 normal'><span style='font-family:"Calibri",sans-serif;mso-ascii-theme-font: 1492 1494 minor-latin;mso-hansi-theme-font:minor-latin'>Edit/Update H atoms</span></b> to 1493 put them in their best positions. <span style='mso-spacerun:yes'></span>Next1495 put them in their best positions.<span style='mso-spacerun:yes'> </span>Next 1494 1496 select all the atoms by double clicking the empty box in upper left corner of 1495 1497 the table; all atoms will be highlighted & plotted green. Do <b … … 1508 1510 <p class=MsoNormal>Check the <b style='mso-bidi-font-weight:normal'><span 1509 1511 style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin; 1510 mso-hansi-theme-font:minor-latin'>Choose inversion</span></b> box and 1511 (important) set <b style='mso-bidi-font-weight:normal'><span style='font-family: 1512 "Calibri",sans-serif;mso-ascii-theme-font:minor-latin;mso-hansi-theme-font: 1513 minor-latin'>Choose unit cell</span></b> to <b style='mso-bidi-font-weight: 1514 normal'><span style='font-family:"Calibri",sans-serif;mso-ascii-theme-font: 1515 m inor-latin;mso-hansi-theme-font:minor-latin'>1 1 1</span></b>; this will put1516 the inverted structure back inside the unit cell. Press <b style='mso-bidi-font-weight: 1517 normal'><span style='font-family:"Calibri",sans-serif;mso-ascii-theme-font: 1518 m inor-latin;mso-hansi-theme-font:minor-latin'>Ok</span></b>; the table and plot1519 will bothbe redrawn. Now do <b style='mso-bidi-font-weight:normal'><span1512 mso-hansi-theme-font:minor-latin'>Choose inversion</span></b> box and (important) 1513 set <b style='mso-bidi-font-weight:normal'><span style='font-family:"Calibri",sans-serif; 1514 mso-ascii-theme-font:minor-latin;mso-hansi-theme-font:minor-latin'>Choose unit 1515 cell</span></b> to <b style='mso-bidi-font-weight:normal'><span 1516 style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin; 1517 mso-hansi-theme-font:minor-latin'>1 1 1</span></b>; this will put the inverted 1518 structure back inside the unit cell. Press <b style='mso-bidi-font-weight:normal'><span 1519 style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin; 1520 mso-hansi-theme-font:minor-latin'>Ok</span></b>; the table and plot will both 1521 be redrawn. Now do <b style='mso-bidi-font-weight:normal'><span 1520 1522 style='font-family:"Calibri",sans-serif;mso-ascii-theme-font:minor-latin; 1521 1523 mso-hansi-theme-font:minor-latin'>Calculate/Refine</span></b>; the <span … … 1536 1538 the other ~1/3 while the other two are ~zero. You can delete them and repeat 1537 1539 the refinement; <span class=SpellE>Rw</span> ~1.7%. This completed the 1538 merohedral twin exercises. You can save this project if desired.< o:p></o:p></p>1540 merohedral twin exercises. You can save this project if desired.</p> 1539 1541 1540 1542 <p class=MsoNormal><o:p> </o:p></p> 1541 1543 1542 </ div>1544 </span></span></span></span></span></span></span></span></span></span></span></div> 1543 1545 1544 1546 </body>
Note: See TracChangeset
for help on using the changeset viewer.