1 | # -*- coding: utf-8 -*- |
---|
2 | ########### SVN repository information ################### |
---|
3 | # $Date: 2018-01-01 20:12:54 +0000 (Mon, 01 Jan 2018) $ |
---|
4 | # $Author: vondreele $ |
---|
5 | # $Revision: 3211 $ |
---|
6 | # $URL: trunk/imports/G2phase_CIF.py $ |
---|
7 | # $Id: G2phase_CIF.py 3211 2018-01-01 20:12:54Z vondreele $ |
---|
8 | ########### SVN repository information ################### |
---|
9 | ''' |
---|
10 | *Module G2phase_CIF: Coordinates from CIF* |
---|
11 | ------------------------------------------ |
---|
12 | |
---|
13 | Parses a CIF using PyCifRW from James Hester and pulls out the |
---|
14 | structural information. |
---|
15 | |
---|
16 | If a CIF generated by ISODISTORT is encountered, extra information is |
---|
17 | added to the phase entry and constraints are generated. |
---|
18 | |
---|
19 | ''' |
---|
20 | # Routines to import Phase information from CIF files |
---|
21 | from __future__ import division, print_function |
---|
22 | import sys |
---|
23 | import random as ran |
---|
24 | import numpy as np |
---|
25 | import re |
---|
26 | import GSASIIIO as G2IO |
---|
27 | import GSASIIobj as G2obj |
---|
28 | import GSASIIspc as G2spc |
---|
29 | import GSASIIElem as G2elem |
---|
30 | import GSASIIlattice as G2lat |
---|
31 | import GSASIIpy3 as G2p3 |
---|
32 | import GSASIIpath |
---|
33 | GSASIIpath.SetVersionNumber("$Revision: 3211 $") |
---|
34 | import CifFile as cif # PyCifRW from James Hester |
---|
35 | |
---|
36 | class CIFPhaseReader(G2obj.ImportPhase): |
---|
37 | 'Implements a phase importer from a possibly multi-block CIF file' |
---|
38 | def __init__(self): |
---|
39 | super(self.__class__,self).__init__( # fancy way to say ImportPhase.__init__ |
---|
40 | extensionlist=('.CIF','.cif','.mcif'), |
---|
41 | strictExtension=False, |
---|
42 | formatName = 'CIF', |
---|
43 | longFormatName = 'Crystallographic Information File import' |
---|
44 | ) |
---|
45 | |
---|
46 | def ContentsValidator(self, filename): |
---|
47 | fp = open(filename,'r') |
---|
48 | return self.CIFValidator(fp) |
---|
49 | fp.close() |
---|
50 | |
---|
51 | def Reader(self,filename, ParentFrame=None, usedRanIdList=[], **unused): |
---|
52 | self.isodistort_warnings = '' |
---|
53 | self.Phase = G2obj.SetNewPhase(Name='new phase') # create a new empty phase dict |
---|
54 | # make sure the ranId is really unique! |
---|
55 | while self.Phase['ranId'] in usedRanIdList: |
---|
56 | self.Phase['ranId'] = ran.randint(0,sys.maxsize) |
---|
57 | self.MPhase = G2obj.SetNewPhase(Name='new phase') # create a new empty phase dict |
---|
58 | # make sure the ranId is really unique! |
---|
59 | while self.MPhase['ranId'] in usedRanIdList: |
---|
60 | self.MPhase['ranId'] = ran.randint(0,sys.maxsize) |
---|
61 | returnstat = False |
---|
62 | cellitems = ( |
---|
63 | '_cell_length_a','_cell_length_b','_cell_length_c', |
---|
64 | '_cell_angle_alpha','_cell_angle_beta','_cell_angle_gamma',) |
---|
65 | # cellwaveitems = ( |
---|
66 | # '_cell_wave_vector_seq_id', |
---|
67 | # '_cell_wave_vector_x','_cell_wave_vector_y','_cell_wave_vector_z') |
---|
68 | reqitems = ( |
---|
69 | '_atom_site_fract_x', |
---|
70 | '_atom_site_fract_y', |
---|
71 | '_atom_site_fract_z', |
---|
72 | ) |
---|
73 | phasenamefields = ( |
---|
74 | '_chemical_name_common', |
---|
75 | '_pd_phase_name', |
---|
76 | '_chemical_formula_sum' |
---|
77 | ) |
---|
78 | try: |
---|
79 | cf = G2obj.ReadCIF(filename) |
---|
80 | except cif.StarError as msg: |
---|
81 | msg = 'Unreadable cif file\n'+str(msg) |
---|
82 | self.errors = msg |
---|
83 | self.warnings += msg |
---|
84 | return False |
---|
85 | # scan blocks for structural info |
---|
86 | self.errors = 'Error during scan of blocks for datasets' |
---|
87 | str_blklist = [] |
---|
88 | for blk in cf.keys(): |
---|
89 | for r in reqitems+cellitems: |
---|
90 | if r not in cf[blk].keys(): |
---|
91 | break |
---|
92 | else: |
---|
93 | str_blklist.append(blk) |
---|
94 | if not str_blklist: |
---|
95 | selblk = None # no block to choose |
---|
96 | elif len(str_blklist) == 1: # only one choice |
---|
97 | selblk = 0 |
---|
98 | else: # choose from options |
---|
99 | choice = [] |
---|
100 | for blknm in str_blklist: |
---|
101 | choice.append('') |
---|
102 | # accumumlate some info about this phase |
---|
103 | choice[-1] += blknm + ': ' |
---|
104 | for i in phasenamefields: # get a name for the phase |
---|
105 | name = cf[blknm].get(i,'phase name').strip() |
---|
106 | if name is None or name == '?' or name == '.': |
---|
107 | continue |
---|
108 | else: |
---|
109 | choice[-1] += name.strip()[:20] + ', ' |
---|
110 | break |
---|
111 | na = len(cf[blknm].get("_atom_site_fract_x")) |
---|
112 | if na == 1: |
---|
113 | choice[-1] += '1 atom' |
---|
114 | else: |
---|
115 | choice[-1] += ('%d' % na) + ' atoms' |
---|
116 | choice[-1] += ', cell: ' |
---|
117 | fmt = "%.2f," |
---|
118 | for i,key in enumerate(cellitems): |
---|
119 | if i == 3: fmt = "%.f," |
---|
120 | if i == 5: fmt = "%.f" |
---|
121 | choice[-1] += fmt % cif.get_number_with_esd( |
---|
122 | cf[blknm].get(key))[0] |
---|
123 | sg = cf[blknm].get("_symmetry_space_group_name_H-M",'') |
---|
124 | if not sg: sg = cf[blknm].get("_space_group_name_H-M_alt",'') |
---|
125 | if not sg: sg = cf[blknm].get("_space_group_ssg_name",'') |
---|
126 | if not sg: sg = cf[blknm].get("_space_group.magn_ssg_name_BNS",'') |
---|
127 | if not sg: sg = cf[blknm].get("_space_group.magn_ssg_name",'') |
---|
128 | #how about checking for super/magnetic ones as well? - reject 'X'? |
---|
129 | sg = sg.replace('_','') |
---|
130 | if sg: choice[-1] += ', (' + sg.strip() + ')' |
---|
131 | selblk = G2IO.PhaseSelector(choice,ParentFrame=ParentFrame, |
---|
132 | title= 'Select a phase from one the CIF data_ blocks below',size=(600,100)) |
---|
133 | self.errors = 'Error during reading of selected block' |
---|
134 | #process selected phase |
---|
135 | if selblk is None: |
---|
136 | returnstat = False # no block selected or available |
---|
137 | else: #do space group symbol & phase type first |
---|
138 | blknm = str_blklist[selblk] |
---|
139 | blk = cf[str_blklist[selblk]] |
---|
140 | E = True |
---|
141 | Super = False |
---|
142 | magnetic = False |
---|
143 | moddim = int(blk.get("_cell_modulation_dimension",'0')) |
---|
144 | if moddim: #incommensurate |
---|
145 | if moddim > 1: |
---|
146 | msg = 'more than 3+1 super symmetry is not allowed in GSAS-II' |
---|
147 | self.errors = msg |
---|
148 | self.warnings += '\n'+msg |
---|
149 | return False |
---|
150 | if blk.get('_cell_subsystems_number'): |
---|
151 | msg = 'Composite super structures not allowed in GSAS-II' |
---|
152 | self.errors = msg |
---|
153 | self.warnings += '\n'+msg |
---|
154 | return False |
---|
155 | sspgrp = blk.get("_space_group_ssg_name",'') |
---|
156 | if not sspgrp: #might be incommensurate magnetic |
---|
157 | MSSpGrp = blk.get("_space_group.magn_ssg_name_BNS",'') |
---|
158 | if not MSSpGrp: |
---|
159 | MSSpGrp = blk.get("_space_group.magn_ssg_name",'') |
---|
160 | if not MSSpGrp: |
---|
161 | msg = 'No incommensurate space group name was found in the CIF.' |
---|
162 | self.errors = msg |
---|
163 | self.warnings += '\n'+msg |
---|
164 | return False |
---|
165 | if 'X' in MSSpGrp: |
---|
166 | msg = 'Ad hoc incommensurate magnetic space group '+MSSpGrp+' is not allowed in GSAS-II' |
---|
167 | self.warnings += '\n'+msg |
---|
168 | self.errors = msg |
---|
169 | return False |
---|
170 | magnetic = True |
---|
171 | if 'X' in sspgrp: |
---|
172 | msg = 'Ad hoc incommensurate space group '+sspgrp+' is not allowed in GSAS-II' |
---|
173 | self.warnings += '\n'+msg |
---|
174 | self.errors = msg |
---|
175 | return False |
---|
176 | Super = True |
---|
177 | if magnetic: |
---|
178 | sspgrp = MSSpGrp.split('(') |
---|
179 | sspgrp[1] = "("+sspgrp[1] |
---|
180 | SpGrp = G2spc.StandardizeSpcName(sspgrp[0]) |
---|
181 | MSpGrp = sspgrp[0] |
---|
182 | self.MPhase['General']['Type'] = 'magnetic' |
---|
183 | self.MPhase['General']['AtomPtrs'] = [3,1,10,12] |
---|
184 | else: |
---|
185 | sspgrp = sspgrp.split('(') |
---|
186 | sspgrp[1] = "("+sspgrp[1] |
---|
187 | SpGrp = sspgrp[0] |
---|
188 | SpGrp = G2spc.StandardizeSpcName(SpGrp) |
---|
189 | self.Phase['General']['Type'] = 'nuclear' |
---|
190 | if not SpGrp: |
---|
191 | print (sspgrp) |
---|
192 | self.warnings += 'Space group name '+sspgrp[0]+sspgrp[1]+' not recognized by GSAS-II' |
---|
193 | return False |
---|
194 | SuperSg = sspgrp[1].replace('\\','') |
---|
195 | SuperVec = [[0,0,.1],False,4] |
---|
196 | else: #not incommensurate |
---|
197 | SpGrp = blk.get("_symmetry_space_group_name_H-M",'') |
---|
198 | if not SpGrp: |
---|
199 | SpGrp = blk.get("_space_group_name_H-M_alt",'') |
---|
200 | if not SpGrp: #try magnetic |
---|
201 | MSpGrp = blk.get("_space_group.magn_name_BNS",'') |
---|
202 | if not MSpGrp: |
---|
203 | MSpGrp = blk.get("_space_group_magn.name_BNS",'') |
---|
204 | if not MSpGrp: |
---|
205 | msg = 'No recognizable space group name was found in the CIF.' |
---|
206 | self.errors = msg |
---|
207 | self.warnings += '\n'+msg |
---|
208 | return False |
---|
209 | SpGrp = MSpGrp.replace("'",'') |
---|
210 | SpGrp = SpGrp[:2]+SpGrp[2:].replace('_','') #get rid of screw '_' |
---|
211 | if '_' in SpGrp[1]: SpGrp = SpGrp.split('_')[0]+SpGrp[3:] |
---|
212 | SpGrp = G2spc.StandardizeSpcName(SpGrp) |
---|
213 | magnetic = True |
---|
214 | self.MPhase['General']['Type'] = 'magnetic' |
---|
215 | self.MPhase['General']['AtomPtrs'] = [3,1,10,12] |
---|
216 | if not SpGrp: |
---|
217 | print (MSpGrp) |
---|
218 | self.warnings += 'No space group name was found in the CIF.' |
---|
219 | return False |
---|
220 | else: |
---|
221 | SpGrp = SpGrp.replace('_','') |
---|
222 | self.Phase['General']['Type'] = 'nuclear' |
---|
223 | #process space group symbol |
---|
224 | E,SGData = G2spc.SpcGroup(SpGrp) |
---|
225 | if E and SpGrp: |
---|
226 | SpGrpNorm = G2spc.StandardizeSpcName(SpGrp) |
---|
227 | if SpGrpNorm: |
---|
228 | E,SGData = G2spc.SpcGroup(SpGrpNorm) |
---|
229 | # nope, try the space group "out of the Box" |
---|
230 | if E: |
---|
231 | self.warnings += 'ERROR in space group symbol '+SpGrp |
---|
232 | self.warnings += '\nThe space group has been set to "P 1". ' |
---|
233 | self.warnings += "Change this in phase's General tab." |
---|
234 | self.warnings += '\nAre there spaces separating axial fields?\n\nError msg: ' |
---|
235 | self.warnings += G2spc.SGErrors(E) |
---|
236 | SGData = G2obj.P1SGData # P 1 |
---|
237 | self.Phase['General']['SGData'] = SGData |
---|
238 | |
---|
239 | if magnetic and not Super: |
---|
240 | SGData['SGFixed'] = True |
---|
241 | try: |
---|
242 | sgoploop = blk.GetLoop('_space_group_symop_magn.id') |
---|
243 | sgcenloop = blk.GetLoop('_space_group_symop_magn_centering.id') |
---|
244 | opid = sgoploop.GetItemPosition('_space_group_symop_magn_operation.xyz')[1] |
---|
245 | centid = sgcenloop.GetItemPosition('_space_group_symop_magn_centering.xyz')[1] |
---|
246 | except KeyError: #old mag cif names |
---|
247 | sgoploop = blk.GetLoop('_space_group_symop.magn_id') |
---|
248 | sgcenloop = blk.GetLoop('_space_group_symop.magn_centering_id') |
---|
249 | opid = sgoploop.GetItemPosition('_space_group_symop.magn_operation_xyz')[1] |
---|
250 | centid = sgcenloop.GetItemPosition('_space_group_symop.magn_centering_xyz')[1] |
---|
251 | SGData['SGOps'] = [] |
---|
252 | SGData['SGCen'] = [] |
---|
253 | spnflp = [] |
---|
254 | for op in sgoploop: |
---|
255 | M,T,S = G2spc.MagText2MTS(op[opid]) |
---|
256 | SGData['SGOps'].append([np.array(M,dtype=float),T]) |
---|
257 | spnflp.append(S) |
---|
258 | censpn = [] |
---|
259 | for cent in sgcenloop: |
---|
260 | M,C,S = G2spc.MagText2MTS(cent[centid]) |
---|
261 | SGData['SGCen'].append(C) |
---|
262 | censpn += list(np.array(spnflp)*S) |
---|
263 | self.MPhase['General']['SGData'] = SGData |
---|
264 | self.MPhase['General']['SGData']['SpnFlp'] = censpn |
---|
265 | self.MPhase['General']['SGData']['MagSpGrp'] = MSpGrp |
---|
266 | MagPtGp = blk.get('_space_group.magn_point_group') |
---|
267 | if not MagPtGp: |
---|
268 | MagPtGp = blk.get('_space_group_magn.point_group_name') |
---|
269 | self.MPhase['General']['SGData']['MagPtGp'] = MagPtGp |
---|
270 | # GenSym,GenFlg = G2spc.GetGenSym(SGData) |
---|
271 | # self.MPhase['General']['SGData']['GenSym'] = GenSym |
---|
272 | # self.MPhase['General']['SGData']['GenFlg'] = GenFlg |
---|
273 | |
---|
274 | if Super: |
---|
275 | E,SSGData = G2spc.SSpcGroup(SGData,SuperSg) |
---|
276 | if E: |
---|
277 | self.warnings += 'Invalid super symmetry symbol '+SpGrp+SuperSg |
---|
278 | self.warnings += '\n'+E |
---|
279 | SuperSg = SuperSg[:SuperSg.index(')')+1] |
---|
280 | self.warnings += '\nNew super symmetry symbol '+SpGrp+SuperSg |
---|
281 | E,SSGData = G2spc.SSpcGroup(SGData,SuperSg) |
---|
282 | self.Phase['General']['SSGData'] = SSGData |
---|
283 | if magnetic: |
---|
284 | self.MPhase['General']['SGData'] = SGData |
---|
285 | # self.MPhase['General']['SGData']['SpnFlp'] = censpn |
---|
286 | self.MPhase['General']['SGData']['MagSpGrp'] = MSSpGrp.replace(',','').replace('\\','') |
---|
287 | self.MPhase['General']['SGData']['MagPtGp'] = blk.get('_space_group.magn_point_group') |
---|
288 | self.MPhase['General']['SSGData'] = SSGData |
---|
289 | # GenSym,GenFlg = G2spc.GetGenSym(SGData) |
---|
290 | # self.MPhase['General']['SGData']['GenSym'] = GenSym |
---|
291 | # self.MPhase['General']['SGData']['GenFlg'] = GenFlg |
---|
292 | |
---|
293 | |
---|
294 | # cell parameters |
---|
295 | cell = [] |
---|
296 | for lbl in cellitems: |
---|
297 | cell.append(cif.get_number_with_esd(blk[lbl])[0]) |
---|
298 | Volume = G2lat.calc_V(G2lat.cell2A(cell)) |
---|
299 | self.Phase['General']['Cell'] = [False,]+cell+[Volume,] |
---|
300 | if magnetic: |
---|
301 | self.MPhase['General']['Cell'] = [False,]+cell+[Volume,] |
---|
302 | if Super: |
---|
303 | waveloop = blk.GetLoop('_cell_wave_vector_seq_id') |
---|
304 | waveDict = dict(waveloop.items()) |
---|
305 | SuperVec = [[cif.get_number_with_esd(waveDict['_cell_wave_vector_x'][0].replace('?','0'))[0], |
---|
306 | cif.get_number_with_esd(waveDict['_cell_wave_vector_y'][0].replace('?','0'))[0], |
---|
307 | cif.get_number_with_esd(waveDict['_cell_wave_vector_z'][0].replace('?','0'))[0]],False,4] |
---|
308 | |
---|
309 | # read in atoms |
---|
310 | self.errors = 'Error during reading of atoms' |
---|
311 | atomlbllist = [] # table to look up atom IDs |
---|
312 | atomloop = blk.GetLoop('_atom_site_label') |
---|
313 | atomkeys = [i.lower() for i in atomloop.keys()] |
---|
314 | if not blk.get('_atom_site_type_symbol'): |
---|
315 | self.isodistort_warnings += '\natom types are missing. \n Check & revise atom types as needed' |
---|
316 | if magnetic: |
---|
317 | try: |
---|
318 | magmoment = '_atom_site_moment.label' |
---|
319 | magatomloop = blk.GetLoop(magmoment) |
---|
320 | magatomkeys = [i.lower() for i in magatomloop.keys()] |
---|
321 | magatomlabels = blk.get(magmoment) |
---|
322 | G2MagDict = {'_atom_site_moment.label': 0, |
---|
323 | '_atom_site_moment.crystalaxis_x':7, |
---|
324 | '_atom_site_moment.crystalaxis_y':8, |
---|
325 | '_atom_site_moment.crystalaxis_z':9} |
---|
326 | except KeyError: |
---|
327 | magmoment = '_atom_site_moment_label' |
---|
328 | magatomloop = blk.GetLoop(magmoment) |
---|
329 | magatomkeys = [i.lower() for i in magatomloop.keys()] |
---|
330 | magatomlabels = blk.get(magmoment) |
---|
331 | G2MagDict = {'_atom_site_moment_label': 0, |
---|
332 | '_atom_site_moment_crystalaxis_x':7, |
---|
333 | '_atom_site_moment_crystalaxis_y':8, |
---|
334 | '_atom_site_moment_crystalaxis_z':9} |
---|
335 | |
---|
336 | if blk.get('_atom_site_aniso_label'): |
---|
337 | anisoloop = blk.GetLoop('_atom_site_aniso_label') |
---|
338 | anisokeys = [i.lower() for i in anisoloop.keys()] |
---|
339 | anisolabels = blk.get('_atom_site_aniso_label') |
---|
340 | else: |
---|
341 | anisoloop = None |
---|
342 | anisokeys = [] |
---|
343 | anisolabels = [] |
---|
344 | if Super: |
---|
345 | occFloop = None |
---|
346 | occCloop = None |
---|
347 | occFdict = {} |
---|
348 | occCdict = {} |
---|
349 | displSloop = None |
---|
350 | displFloop = None |
---|
351 | MagFloop = None |
---|
352 | displSdict = {} |
---|
353 | displFdict = {} |
---|
354 | MagFdict = {} |
---|
355 | UijFloop = None |
---|
356 | UijFdict = {} |
---|
357 | if blk.get('_atom_site_occ_Fourier_atom_site_label'): |
---|
358 | occFloop = blk.GetLoop('_atom_site_occ_Fourier_atom_site_label') |
---|
359 | occFdict = dict(occFloop.items()) |
---|
360 | if blk.get('_atom_site_occ_special_func_atom_site_label'): #Crenel (i.e. Block Wave) occ |
---|
361 | occCloop = blk.GetLoop('_atom_site_occ_special_func_atom_site_label') |
---|
362 | occCdict = dict(occCloop.items()) |
---|
363 | if blk.get('_atom_site_displace_Fourier_atom_site_label'): |
---|
364 | displFloop = blk.GetLoop('_atom_site_displace_Fourier_atom_site_label') |
---|
365 | displFdict = dict(displFloop.items()) |
---|
366 | if blk.get('_atom_site_displace_special_func_atom_site_label'): #sawtooth |
---|
367 | displSloop = blk.GetLoop('_atom_site_displace_special_func_atom_site_label') |
---|
368 | displSdict = dict(displSloop.items()) |
---|
369 | if blk.get('_atom_site_U_Fourier_atom_site_label'): |
---|
370 | UijFloop = blk.GetLoop('_atom_site_U_Fourier_atom_site_label') |
---|
371 | UijFdict = dict(UijFloop.items()) |
---|
372 | if blk.get('_atom_site_moment_Fourier_atom_site_label'): |
---|
373 | MagFloop = blk.GetLoop('_atom_site_moment_Fourier_atom_site_label') |
---|
374 | MagFdict = dict(MagFloop.items()) |
---|
375 | Mnames = ['_atom_site_moment_fourier_atom_site_label', |
---|
376 | '_atom_site_moment_fourier_axis','_atom_site_moment_fourier_wave_vector_seq_id', |
---|
377 | '_atom_site_moment_fourier_param_sin','_atom_site_moment_fourier_param_cos'] |
---|
378 | elif blk.get('_atom_site_moment_Fourier.atom_site_label'): |
---|
379 | MagFloop = blk.GetLoop('_atom_site_moment_Fourier.atom_site_label') |
---|
380 | MagFdict = dict(MagFloop.items()) |
---|
381 | Mnames = ['_atom_site_moment_fourier.atom_site_label', |
---|
382 | '_atom_site_moment_fourier.axis','_atom_site_moment_fourier.wave_vector_seq_id', |
---|
383 | '_atom_site_moment_fourier_param.sin','_atom_site_moment_fourier_param.cos'] |
---|
384 | self.Phase['Atoms'] = [] |
---|
385 | if magnetic: |
---|
386 | self.MPhase['Atoms'] = [] |
---|
387 | G2AtomDict = { '_atom_site_type_symbol' : 1, |
---|
388 | '_atom_site_label' : 0, |
---|
389 | '_atom_site_fract_x' : 3, |
---|
390 | '_atom_site_fract_y' : 4, |
---|
391 | '_atom_site_fract_z' : 5, |
---|
392 | '_atom_site_occupancy' : 6, |
---|
393 | '_atom_site_aniso_u_11' : 11, |
---|
394 | '_atom_site_aniso_u_22' : 12, |
---|
395 | '_atom_site_aniso_u_33' : 13, |
---|
396 | '_atom_site_aniso_u_12' : 14, |
---|
397 | '_atom_site_aniso_u_13' : 15, |
---|
398 | '_atom_site_aniso_u_23' : 16, } |
---|
399 | |
---|
400 | ranIdlookup = {} |
---|
401 | for aitem in atomloop: |
---|
402 | atomlist = ['','','',0.,0.,0.,1.0,'',0.,'I',0.01, 0.,0.,0.,0.,0.,0.,] |
---|
403 | for val,key in zip(aitem,atomkeys): |
---|
404 | col = G2AtomDict.get(key,-1) |
---|
405 | if col >= 3: |
---|
406 | atomlist[col] = cif.get_number_with_esd(val)[0] |
---|
407 | if col >= 11: atomlist[9] = 'A' # if any Aniso term is defined, set flag |
---|
408 | elif col is not None and col != -1: |
---|
409 | atomlist[col] = val |
---|
410 | elif key in ('_atom_site_thermal_displace_type', |
---|
411 | '_atom_site_adp_type'): #Iso or Aniso? |
---|
412 | if val.lower() == 'uani': |
---|
413 | atomlist[9] = 'A' |
---|
414 | elif key == '_atom_site_u_iso_or_equiv': |
---|
415 | uisoval = cif.get_number_with_esd(val)[0] |
---|
416 | if uisoval is not None: |
---|
417 | atomlist[10] = uisoval |
---|
418 | if not atomlist[1] and atomlist[0]: |
---|
419 | typ = atomlist[0].rstrip('0123456789-+') |
---|
420 | if G2elem.CheckElement(typ): |
---|
421 | atomlist[1] = typ |
---|
422 | if not atomlist[1]: |
---|
423 | atomlist[1] = 'Xe' |
---|
424 | self.warnings += ' Atom type '+typ+' not recognized; Xe assumed\n' |
---|
425 | if atomlist[0] in anisolabels: # does this atom have aniso values in separate loop? |
---|
426 | atomlist[9] = 'A' |
---|
427 | for val,key in zip(anisoloop.GetKeyedPacket('_atom_site_aniso_label',atomlist[0]),anisokeys): |
---|
428 | col = G2AtomDict.get(key) |
---|
429 | if col: |
---|
430 | atomlist[col] = cif.get_number_with_esd(val)[0] |
---|
431 | atomlist[7],atomlist[8] = G2spc.SytSym(atomlist[3:6],SGData)[:2] |
---|
432 | atomlist[1] = G2elem.FixValence(atomlist[1]) |
---|
433 | atomlist.append(ran.randint(0,sys.maxsize)) # add a random Id |
---|
434 | self.Phase['Atoms'].append(atomlist) |
---|
435 | ranIdlookup[atomlist[0]] = atomlist[-1] |
---|
436 | if atomlist[0] in atomlbllist: |
---|
437 | self.warnings += ' ERROR: repeated atom label: '+atomlist[0] |
---|
438 | else: |
---|
439 | atomlbllist.append(atomlist[0]) |
---|
440 | |
---|
441 | if magnetic and atomlist[0] in magatomlabels: |
---|
442 | matomlist = atomlist[:7]+[0.,0.,0.,]+atomlist[7:] |
---|
443 | for mval,mkey in zip(magatomloop.GetKeyedPacket(magmoment,atomlist[0]),magatomkeys): |
---|
444 | mcol = G2MagDict.get(mkey,-1) |
---|
445 | if mcol: |
---|
446 | matomlist[mcol] = cif.get_number_with_esd(mval)[0] |
---|
447 | self.MPhase['Atoms'].append(matomlist) |
---|
448 | if Super: |
---|
449 | Sfrac = [] |
---|
450 | Sadp = np.zeros((4,12)) |
---|
451 | Spos = np.zeros((4,6)) |
---|
452 | Smag = np.zeros((4,6)) |
---|
453 | nim = -1 |
---|
454 | waveType = 'Fourier' |
---|
455 | if displFdict: |
---|
456 | for i,item in enumerate(displFdict['_atom_site_displace_fourier_atom_site_label']): |
---|
457 | if item == atomlist[0]: |
---|
458 | waveType = 'Fourier' |
---|
459 | ix = ['x','y','z'].index(displFdict['_atom_site_displace_fourier_axis'][i]) |
---|
460 | im = int(displFdict['_atom_site_displace_fourier_wave_vector_seq_id'][i]) |
---|
461 | if im != nim: |
---|
462 | nim = im |
---|
463 | val = displFdict['_atom_site_displace_fourier_param_sin'][i] |
---|
464 | Spos[im-1][ix] = cif.get_number_with_esd(val)[0] |
---|
465 | val = displFdict['_atom_site_displace_fourier_param_cos'][i] |
---|
466 | Spos[im-1][ix+3] = cif.get_number_with_esd(val)[0] |
---|
467 | if nim >= 0: |
---|
468 | Spos = [[spos,False] for spos in Spos[:nim]] |
---|
469 | else: |
---|
470 | Spos = [] |
---|
471 | if UijFdict: |
---|
472 | nim = -1 |
---|
473 | for i,item in enumerate(UijFdict['_atom_site_u_fourier_atom_site_label']): |
---|
474 | if item == atomlist[0]: |
---|
475 | ix = ['U11','U22','U33','U12','U13','U23'].index(UijFdict['_atom_site_u_fourier_tens_elem'][i]) |
---|
476 | im = int(UijFdict['_atom_site_u_fourier_wave_vector_seq_id'][i]) |
---|
477 | if im != nim: |
---|
478 | nim = im |
---|
479 | val = UijFdict['_atom_site_u_fourier_param_sin'][i] |
---|
480 | Sadp[im-1][ix] = cif.get_number_with_esd(val)[0] |
---|
481 | val = UijFdict['_atom_site_u_fourier_param_cos'][i] |
---|
482 | Sadp[im-1][ix+6] = cif.get_number_with_esd(val)[0] |
---|
483 | if nim >= 0: |
---|
484 | Sadp = [[sadp,False] for sadp in Sadp[:nim]] |
---|
485 | else: |
---|
486 | Sadp = [] |
---|
487 | if MagFdict: |
---|
488 | nim = -1 |
---|
489 | for i,item in enumerate(MagFdict[Mnames[0]]): |
---|
490 | if item == atomlist[0]: |
---|
491 | waveType = 'Fourier' |
---|
492 | ix = ['x','y','z'].index(MagFdict[Mnames[1]][i]) |
---|
493 | im = int(MagFdict[Mnames[2]][i]) |
---|
494 | if im != nim: |
---|
495 | nim = im |
---|
496 | val = MagFdict[Mnames[3]][i] |
---|
497 | Smag[im-1][ix] = cif.get_number_with_esd(val)[0] |
---|
498 | val = MagFdict[Mnames[4]][i] |
---|
499 | Smag[im-1][ix+3] = cif.get_number_with_esd(val)[0] |
---|
500 | if nim >= 0: |
---|
501 | Smag = [[smag,False] for smag in Smag[:nim]] |
---|
502 | else: |
---|
503 | Smag = [] |
---|
504 | SSdict = {'SS1':{'waveType':waveType,'Sfrac':Sfrac,'Spos':Spos,'Sadp':Sadp,'Smag':Smag}} |
---|
505 | if magnetic and atomlist[0] in magatomlabels: |
---|
506 | matomlist.append(SSdict) |
---|
507 | atomlist.append(SSdict) |
---|
508 | if len(atomlbllist) != len(self.Phase['Atoms']): |
---|
509 | self.isodistort_warnings += '\nRepeated atom labels prevents ISODISTORT decode' |
---|
510 | for lbl in phasenamefields: # get a name for the phase |
---|
511 | name = blk.get(lbl) |
---|
512 | if name is None: |
---|
513 | continue |
---|
514 | name = name.strip() |
---|
515 | if name == '?' or name == '.': |
---|
516 | continue |
---|
517 | else: |
---|
518 | break |
---|
519 | else: # no name found, use block name for lack of a better choice |
---|
520 | name = blknm |
---|
521 | self.Phase['General']['Name'] = name.strip()[:20] |
---|
522 | self.Phase['General']['Super'] = Super |
---|
523 | if magnetic: |
---|
524 | self.MPhase['General']['Type'] = 'magnetic' |
---|
525 | self.MPhase['General']['Name'] = name.strip()[:20]+' mag' |
---|
526 | self.MPhase['General']['Super'] = Super |
---|
527 | if Super: |
---|
528 | self.MPhase['General']['Modulated'] = True |
---|
529 | self.MPhase['General']['SuperVec'] = SuperVec |
---|
530 | self.MPhase['General']['SuperSg'] = SuperSg |
---|
531 | self.MPhase['General']['SSGData'] = G2spc.SSpcGroup(SGData,SuperSg)[1] |
---|
532 | else: |
---|
533 | self.MPhase = None |
---|
534 | if Super: |
---|
535 | self.Phase['General']['Modulated'] = True |
---|
536 | self.Phase['General']['SuperVec'] = SuperVec |
---|
537 | self.Phase['General']['SuperSg'] = SuperSg |
---|
538 | self.Phase['General']['SSGData'] = G2spc.SSpcGroup(SGData,SuperSg)[1] |
---|
539 | if not self.isodistort_warnings: |
---|
540 | if blk.get('_iso_displacivemode_label') or blk.get('_iso_occupancymode_label'): |
---|
541 | self.errors = "Error while processing ISODISTORT constraints" |
---|
542 | self.ISODISTORT_proc(blk,atomlbllist,ranIdlookup) |
---|
543 | else: |
---|
544 | self.warnings += self.isodistort_warnings |
---|
545 | returnstat = True |
---|
546 | return returnstat |
---|
547 | |
---|
548 | def ISODISTORT_proc(self,blk,atomlbllist,ranIdlookup): |
---|
549 | 'Process ISODISTORT items to create constraints etc.' |
---|
550 | varLookup = {'dx':'dAx','dy':'dAy','dz':'dAz','do':'Afrac'} |
---|
551 | 'Maps ISODISTORT parm names to GSAS-II names' |
---|
552 | #---------------------------------------------------------------------- |
---|
553 | # read in the ISODISTORT displacement modes |
---|
554 | #---------------------------------------------------------------------- |
---|
555 | self.Constraints = [] |
---|
556 | explaination = {} |
---|
557 | if blk.get('_iso_displacivemode_label'): |
---|
558 | modelist = [] |
---|
559 | shortmodelist = [] |
---|
560 | for lbl in blk.get('_iso_displacivemode_label'): |
---|
561 | modelist.append(lbl) |
---|
562 | # assume lbl is of form SSSSS[x,y,z]AAAA(a,b,...)BBBBB |
---|
563 | # where SSSSS is the parent spacegroup, [x,y,z] is a location |
---|
564 | regexp = re.match(r'.*?\[.*?\](.*?)\(.*?\)(.*)',lbl) |
---|
565 | # this extracts the AAAAA and BBBBB parts of the string |
---|
566 | if regexp: |
---|
567 | lbl = regexp.expand(r'\1\2') # parse succeeded, make a short version |
---|
568 | G2obj.MakeUniqueLabel(lbl,shortmodelist) # make unique and add to list |
---|
569 | # read in the coordinate offset variables names and map them to G2 names/objects |
---|
570 | coordVarLbl = [] |
---|
571 | G2varLbl = [] |
---|
572 | G2varObj = [] |
---|
573 | error = False |
---|
574 | for lbl in blk.get('_iso_deltacoordinate_label'): |
---|
575 | coordVarLbl.append(lbl) |
---|
576 | if '_' in lbl: |
---|
577 | albl = lbl[:lbl.rfind('_')] |
---|
578 | vlbl = lbl[lbl.rfind('_')+1:] |
---|
579 | else: |
---|
580 | self.warnings += ' ERROR: _iso_deltacoordinate_label not parsed: '+lbl |
---|
581 | error = True |
---|
582 | continue |
---|
583 | if albl not in atomlbllist: |
---|
584 | self.warnings += ' ERROR: _iso_deltacoordinate_label atom not found: '+lbl |
---|
585 | error = True |
---|
586 | continue |
---|
587 | else: |
---|
588 | anum = atomlbllist.index(albl) |
---|
589 | var = varLookup.get(vlbl) |
---|
590 | if not var: |
---|
591 | self.warnings += ' ERROR: _iso_deltacoordinate_label variable not found: '+lbl |
---|
592 | error = True |
---|
593 | continue |
---|
594 | G2varLbl.append('::'+var+':'+str(anum)) # variable name, less phase ID |
---|
595 | G2varObj.append(G2obj.G2VarObj( |
---|
596 | (self.Phase['ranId'],None,var,ranIdlookup[albl]) |
---|
597 | )) |
---|
598 | if error: |
---|
599 | raise Exception("Error decoding variable labels") |
---|
600 | |
---|
601 | if len(G2varObj) != len(modelist): |
---|
602 | print ("non-square input") |
---|
603 | raise Exception("Rank of _iso_displacivemode != _iso_deltacoordinate") |
---|
604 | |
---|
605 | error = False |
---|
606 | ParentCoordinates = {} |
---|
607 | for lbl,exp in zip( |
---|
608 | blk.get('_iso_coordinate_label'), |
---|
609 | blk.get('_iso_coordinate_formula'), |
---|
610 | ): |
---|
611 | if '_' in lbl: |
---|
612 | albl = lbl[:lbl.rfind('_')] |
---|
613 | vlbl = lbl[lbl.rfind('_')+1:] |
---|
614 | else: |
---|
615 | self.warnings += ' ERROR: _iso_coordinate_label not parsed: '+lbl |
---|
616 | error = True |
---|
617 | continue |
---|
618 | if vlbl not in 'xyz' or len(vlbl) != 1: |
---|
619 | self.warnings += ' ERROR: _iso_coordinate_label coordinate not parsed: '+lbl |
---|
620 | error = True |
---|
621 | continue |
---|
622 | i = 'xyz'.index(vlbl) |
---|
623 | if not ParentCoordinates.get(albl): |
---|
624 | ParentCoordinates[albl] = [None,None,None] |
---|
625 | if '+' in exp: |
---|
626 | val = exp.split('+')[0].strip() |
---|
627 | val = G2p3.FormulaEval(val) |
---|
628 | if val is None: |
---|
629 | self.warnings += ' ERROR: _iso_coordinate_formula coordinate not interpreted: '+lbl |
---|
630 | error = True |
---|
631 | continue |
---|
632 | ParentCoordinates[albl][i] = val |
---|
633 | else: |
---|
634 | ParentCoordinates[albl][i] = G2p3.FormulaEval(exp) |
---|
635 | if error: |
---|
636 | print (self.warnings) |
---|
637 | raise Exception("Error decoding variable labels") |
---|
638 | # get mapping of modes to atomic coordinate displacements |
---|
639 | displacivemodematrix = np.zeros((len(G2varObj),len(G2varObj))) |
---|
640 | for row,col,val in zip( |
---|
641 | blk.get('_iso_displacivemodematrix_row'), |
---|
642 | blk.get('_iso_displacivemodematrix_col'), |
---|
643 | blk.get('_iso_displacivemodematrix_value'),): |
---|
644 | displacivemodematrix[int(row)-1,int(col)-1] = float(val) |
---|
645 | # Invert to get mapping of atom displacements to modes |
---|
646 | displacivemodeInvmatrix = np.linalg.inv(displacivemodematrix) |
---|
647 | # create the constraints |
---|
648 | for i,row in enumerate(displacivemodeInvmatrix): |
---|
649 | constraint = [] |
---|
650 | for j,(lbl,k) in enumerate(zip(coordVarLbl,row)): |
---|
651 | if k == 0: continue |
---|
652 | constraint.append([k,G2varObj[j]]) |
---|
653 | constraint += [shortmodelist[i],False,'f'] |
---|
654 | self.Constraints.append(constraint) |
---|
655 | #---------------------------------------------------------------------- |
---|
656 | # save the ISODISTORT info for "mode analysis" |
---|
657 | if 'ISODISTORT' not in self.Phase: self.Phase['ISODISTORT'] = {} |
---|
658 | self.Phase['ISODISTORT'].update({ |
---|
659 | 'IsoModeList' : modelist, |
---|
660 | 'G2ModeList' : shortmodelist, |
---|
661 | 'IsoVarList' : coordVarLbl, |
---|
662 | 'G2VarList' : G2varObj, |
---|
663 | 'ParentStructure' : ParentCoordinates, |
---|
664 | 'Var2ModeMatrix' : displacivemodeInvmatrix, |
---|
665 | 'Mode2VarMatrix' : displacivemodematrix, |
---|
666 | }) |
---|
667 | # make explaination dictionary |
---|
668 | for mode,shortmode in zip(modelist,shortmodelist): |
---|
669 | explaination[shortmode] = "ISODISTORT full name "+str(mode) |
---|
670 | #---------------------------------------------------------------------- |
---|
671 | # now read in the ISODISTORT occupancy modes |
---|
672 | #---------------------------------------------------------------------- |
---|
673 | if blk.get('_iso_occupancymode_label'): |
---|
674 | modelist = [] |
---|
675 | shortmodelist = [] |
---|
676 | for lbl in blk.get('_iso_occupancymode_label'): |
---|
677 | modelist.append(lbl) |
---|
678 | # assume lbl is of form SSSSS[x,y,z]AAAA(a,b,...)BBBBB |
---|
679 | # where SSSSS is the parent spacegroup, [x,y,z] is a location |
---|
680 | regexp = re.match(r'.*?\[.*?\](.*?)\(.*?\)(.*)',lbl) |
---|
681 | # this extracts the AAAAA and BBBBB parts of the string |
---|
682 | if regexp: |
---|
683 | lbl = regexp.expand(r'\1\2') # parse succeeded, make a short version |
---|
684 | lbl = lbl.replace('order','o') |
---|
685 | G2obj.MakeUniqueLabel(lbl,shortmodelist) # make unique and add to list |
---|
686 | # read in the coordinate offset variables names and map them to G2 names/objects |
---|
687 | occVarLbl = [] |
---|
688 | G2varLbl = [] |
---|
689 | G2varObj = [] |
---|
690 | error = False |
---|
691 | for lbl in blk.get('_iso_deltaoccupancy_label'): |
---|
692 | occVarLbl.append(lbl) |
---|
693 | if '_' in lbl: |
---|
694 | albl = lbl[:lbl.rfind('_')] |
---|
695 | vlbl = lbl[lbl.rfind('_')+1:] |
---|
696 | else: |
---|
697 | self.warnings += ' ERROR: _iso_deltaoccupancy_label not parsed: '+lbl |
---|
698 | error = True |
---|
699 | continue |
---|
700 | if albl not in atomlbllist: |
---|
701 | self.warnings += ' ERROR: _iso_deltaoccupancy_label atom not found: '+lbl |
---|
702 | error = True |
---|
703 | continue |
---|
704 | else: |
---|
705 | anum = atomlbllist.index(albl) |
---|
706 | var = varLookup.get(vlbl) |
---|
707 | if not var: |
---|
708 | self.warnings += ' ERROR: _iso_deltaoccupancy_label variable not found: '+lbl |
---|
709 | error = True |
---|
710 | continue |
---|
711 | G2varLbl.append('::'+var+':'+str(anum)) # variable name, less phase ID |
---|
712 | G2varObj.append(G2obj.G2VarObj( |
---|
713 | (self.Phase['ranId'],None,var,ranIdlookup[albl]) |
---|
714 | )) |
---|
715 | if error: |
---|
716 | raise Exception("Error decoding variable labels") |
---|
717 | |
---|
718 | if len(G2varObj) != len(modelist): |
---|
719 | print ("non-square input") |
---|
720 | raise Exception("Rank of _iso_occupancymode != _iso_deltaoccupancy") |
---|
721 | |
---|
722 | error = False |
---|
723 | ParentCoordinates = {} |
---|
724 | for lbl,exp in zip( |
---|
725 | blk.get('_iso_occupancy_label'), |
---|
726 | blk.get('_iso_occupancy_formula'), |
---|
727 | ): |
---|
728 | if '_' in lbl: |
---|
729 | albl = lbl[:lbl.rfind('_')] |
---|
730 | vlbl = lbl[lbl.rfind('_')+1:] |
---|
731 | else: |
---|
732 | self.warnings += ' ERROR: _iso_occupancy_label not parsed: '+lbl |
---|
733 | error = True |
---|
734 | continue |
---|
735 | if vlbl != 'occ': |
---|
736 | self.warnings += ' ERROR: _iso_occupancy_label coordinate not parsed: '+lbl |
---|
737 | error = True |
---|
738 | continue |
---|
739 | if '+' in exp: |
---|
740 | val = exp.split('+')[0].strip() |
---|
741 | val = G2p3.FormulaEval(val) |
---|
742 | if val is None: |
---|
743 | self.warnings += ' ERROR: _iso_occupancy_formula coordinate not interpreted: '+lbl |
---|
744 | error = True |
---|
745 | continue |
---|
746 | ParentCoordinates[albl] = val |
---|
747 | if error: |
---|
748 | raise Exception("Error decoding occupancy labels") |
---|
749 | # get mapping of modes to atomic coordinate displacements |
---|
750 | occupancymodematrix = np.zeros((len(G2varObj),len(G2varObj))) |
---|
751 | for row,col,val in zip( |
---|
752 | blk.get('_iso_occupancymodematrix_row'), |
---|
753 | blk.get('_iso_occupancymodematrix_col'), |
---|
754 | blk.get('_iso_occupancymodematrix_value'),): |
---|
755 | occupancymodematrix[int(row)-1,int(col)-1] = float(val) |
---|
756 | # Invert to get mapping of atom displacements to modes |
---|
757 | occupancymodeInvmatrix = np.linalg.inv(occupancymodematrix) |
---|
758 | # create the constraints |
---|
759 | for i,row in enumerate(occupancymodeInvmatrix): |
---|
760 | constraint = [] |
---|
761 | for j,(lbl,k) in enumerate(zip(occVarLbl,row)): |
---|
762 | if k == 0: continue |
---|
763 | constraint.append([k,G2varObj[j]]) |
---|
764 | constraint += [shortmodelist[i],False,'f'] |
---|
765 | self.Constraints.append(constraint) |
---|
766 | #---------------------------------------------------------------------- |
---|
767 | # save the ISODISTORT info for "mode analysis" |
---|
768 | if 'ISODISTORT' not in self.Phase: self.Phase['ISODISTORT'] = {} |
---|
769 | self.Phase['ISODISTORT'].update({ |
---|
770 | 'OccModeList' : modelist, |
---|
771 | 'G2OccModeList' : shortmodelist, |
---|
772 | 'OccVarList' : occVarLbl, |
---|
773 | 'G2OccVarList' : G2varObj, |
---|
774 | 'BaseOcc' : ParentCoordinates, |
---|
775 | 'Var2OccMatrix' : occupancymodeInvmatrix, |
---|
776 | 'Occ2VarMatrix' : occupancymodematrix, |
---|
777 | }) |
---|
778 | # make explaination dictionary |
---|
779 | for mode,shortmode in zip(modelist,shortmodelist): |
---|
780 | explaination[shortmode] = "ISODISTORT full name "+str(mode) |
---|
781 | #---------------------------------------------------------------------- |
---|
782 | # done with read |
---|
783 | #---------------------------------------------------------------------- |
---|
784 | if explaination: self.Constraints.append(explaination) |
---|
785 | |
---|
786 | # # debug: show the mode var to mode relations |
---|
787 | # for i,row in enumerate(displacivemodeInvmatrix): |
---|
788 | # l = '' |
---|
789 | # for j,(lbl,k) in enumerate(zip(coordVarLbl,row)): |
---|
790 | # if k == 0: continue |
---|
791 | # if l: l += ' + ' |
---|
792 | # #l += lbl+' * '+str(k) |
---|
793 | # l += G2varLbl[j]+' * '+str(k) |
---|
794 | # print str(i) + ': '+shortmodelist[i]+' = '+l |
---|
795 | # print 70*'=' |
---|
796 | |
---|
797 | # # debug: Get the ISODISTORT offset values |
---|
798 | # coordVarDelta = {} |
---|
799 | # for lbl,val in zip( |
---|
800 | # blk.get('_iso_deltacoordinate_label'), |
---|
801 | # blk.get('_iso_deltacoordinate_value'),): |
---|
802 | # coordVarDelta[lbl] = float(val) |
---|
803 | # modeVarDelta = {} |
---|
804 | # for lbl,val in zip( |
---|
805 | # blk.get('_iso_displacivemode_label'), |
---|
806 | # blk.get('_iso_displacivemode_value'),): |
---|
807 | # modeVarDelta[lbl] = cif.get_number_with_esd(val)[0] |
---|
808 | |
---|
809 | # print 70*'=' |
---|
810 | # # compute the mode values from the reported coordinate deltas |
---|
811 | # for i,row in enumerate(displacivemodeInvmatrix): |
---|
812 | # l = '' |
---|
813 | # sl = '' |
---|
814 | # s = 0. |
---|
815 | # for lbl,k in zip(coordVarLbl,row): |
---|
816 | # if k == 0: continue |
---|
817 | # if l: l += ' + ' |
---|
818 | # l += lbl+' * '+str(k) |
---|
819 | # if sl: sl += ' + ' |
---|
820 | # sl += str(coordVarDelta[lbl])+' * '+str(k) |
---|
821 | # s += coordVarDelta[lbl] * k |
---|
822 | # print 'a'+str(i)+' = '+l |
---|
823 | # print '\t= '+sl |
---|
824 | # print modelist[i],shortmodelist[i],modeVarDelta[modelist[i]],s |
---|
825 | # print |
---|
826 | |
---|
827 | # print 70*'=' |
---|
828 | # # compute the coordinate displacements from the reported mode values |
---|
829 | # for i,lbl,row in zip(range(len(coordVarLbl)),coordVarLbl,displacivemodematrix): |
---|
830 | # l = '' |
---|
831 | # sl = '' |
---|
832 | # s = 0.0 |
---|
833 | # for j,k in enumerate(row): |
---|
834 | # if k == 0: continue |
---|
835 | # if l: l += ' + ' |
---|
836 | # l += 'a'+str(j+1)+' * '+str(k) |
---|
837 | # if sl: sl += ' + ' |
---|
838 | # sl += str(shortmodelist[j]) +' = '+ str(modeVarDelta[modelist[j]]) + ' * '+str(k) |
---|
839 | # s += modeVarDelta[modelist[j]] * k |
---|
840 | # print lbl+' = '+l |
---|
841 | # print '\t= '+sl |
---|
842 | # print lbl,G2varLbl[i],coordVarDelta[lbl],s |
---|
843 | # print |
---|
844 | |
---|
845 | # determine the coordinate delta values from deviations from the parent structure |
---|
846 | # for atmline in self.Phase['Atoms']: |
---|
847 | # lbl = atmline[0] |
---|
848 | # x,y,z = atmline[3:6] |
---|
849 | # if lbl not in ParentCoordinates: |
---|
850 | # print lbl,x,y,z |
---|
851 | # continue |
---|
852 | # px,py,pz = ParentCoordinates[lbl] |
---|
853 | # print lbl,x,y,z,x-px,y-py,z-pz |
---|