source: trunk/help/Tutorials.html @ 3417

Last change on this file since 3417 was 3417, checked in by toby, 5 years ago

change order of Rietveld tutorials to make Garnet 1st, as suggested by Caitlin

  • Property svn:mime-type set to text/html
File size: 15.0 KB
1<!-- Do not edit this file. It is created by from info in --!>
2<h2>List of GSAS-II tutorials</H2><UL>
4    <p> A list of available tutorials appears below. Each tutorial is a
5    web page that can be opened using the link below, but most tutorials also need
6    to have example data files downloaded. This can also be done with links included below,
7    but it can be easier to access tutorials using
8    <b>Help/Tutorials</b> menu item.
9    When this menu entry is used from inside GSAS-II (unless "browse tutorial on web" is selected),
10    the data files are downloaded to a local directory and GSAS-II will start from that directory
11    for most file open commands.
12    </p>
13</UL><h4>Getting started</H4><UL>
14<LI><A href=" GSAS.htm">Starting GSAS-II</A>
15 [No exercise files].
16<blockquote><I>An introduction to GSAS-II with starting instructions and a brief description of the displays.</I></blockquote>
17<LI><A href="">Fitting the Starting Background using Fixed Points</A>
18 [link: <A href="">Exercise files</A>].
19<blockquote><I>This shows how to get an initial estimate of background parameters from a suite of fixed points
20     before beginning Rietveld refinement.</I></blockquote>
21</UL><h4>Rietveld refinement</H4><UL>
22<LI><A href=" CW Powder Data.htm">CW Neutron Powder fit for Yttrium-Iron Garnet</A>
23 [link: <A href="">Exercise files</A>].
24<blockquote><I>This shows a simple Rietveld refinement with constraints from CW neutron powder diffraction data.</I></blockquote>
25<LI><A href=" X.htm">Fitting laboratory X-ray powder data for fluoroapatite</A>
26 [link: <A href="">Exercise files</A>].
27<blockquote><I>This shows a simple Rietveld refinement with CuKa lab Bragg-Brentano powder data.</I></blockquote>
28<LI><A href=" refinement.htm">Combined X-ray/CW-neutron refinement of PbSO4</A>
29 [link: <A href="">Exercise files</A>].
30<blockquote><I>This shows Rietveld refinement of a structure with room temperature lab CuKa data and low temperature CW neutron data;
31     use is made of the lattice parameter offsets to account for thermal expansion.</I></blockquote>
32<LI><A href=" Joint Refinement/TOF combined XN Rietveld refinement in GSAS.htm">Combined X-ray/TOF-neutron Rietveld refinement</A>
33 [link: <A href=" Joint Refinement/data">Exercise files</A>].
34<blockquote><I>This shows Rietveld refinement with high resolution synchrotron powder data and neutron TOF data</I></blockquote>
35<LI><A href="">Simulating Powder Diffraction with GSAS-II</A>
36 [link: <A href="">Exercise files</A>].
37<blockquote><I>This show how to create a simulated powder pattern from a lab diffractometer.</I></blockquote>
38</UL><h4>Parametric sequential fitting</H4><UL>
39<LI><A href="">Sequential refinement of multiple datasets</A>
40 [link: <A href="">Exercise files</A>].
41<blockquote><I>This shows the fitting of a structural model to multiple data sets collected as a function of temperature (7-300K).
42     This tutorial is the prerequisite for the next one.</I></blockquote>
43<UL><LI><A href="">Parametric Fitting and Pseudo Variables for Sequential Fits</A> <A href="#prereq">*</A>
44 [No exercise files].
45<blockquote><I>This explores the results of the sequential refinement obtained in the previous tutorial; includes
46     plotting of variables and fitting the changes with simple equations.</I></blockquote>
48</UL><h4>Structure solution</H4><UL>
49<LI><A href=" Peaks.htm">Fitting individual peaks & autoindexing</A>
50 [link: <A href="">Exercise files</A>].
51<blockquote><I>This covers two examples of selecting individual powder diffraction peaks, fitting them and then
52     indexing to determine the crystal lattice and possible space group. This is the prerequisite for the next two tutorials.</I></blockquote>
53<UL><LI><A href=" Flipping in GSAS.htm">Charge Flipping structure solution for jadarite</A> <A href="#prereq">*</A>
54 [No exercise files].
55<blockquote><I>Solving the structure of jadarite (HLiNaSiB3O8) by charge flipping from Pawley extracted intensities
56     from a high resolution synchrotron powder pattern.</I></blockquote>
58<UL><LI><A href=" Flipping - sucrose.htm">Charge Flipping structure solution for sucrose</A> <A href="#prereq">*</A>
59 [No exercise files].
60<blockquote><I>Solving the structure of sucrose (C12H22O11) by charge flipping from Pawley extracted intensities
61     from a high resolution synchrotron powder pattern.</I></blockquote>
63<LI><A href="">Charge Flipping structure solution with Xray single crystal data</A>
64 [link: <A href="">Exercise files</A>].
65<blockquote><I>Solving the structure of dipyridyl disulfate by charge flipping and then refine the structure by least-squares.</I></blockquote>
66<LI><A href=" Charge Flipping/Charge Flipping with TOF single crystal data in GSASII.htm">Charge flipping with neutron TOF single crystal data</A>
67 [link: <A href=" Charge Flipping/data">Exercise files</A>].
68<blockquote><I>Solving the crystal structure or rubrene (C42H28) from single crystal neutron data via charge flipping and then refine the structure by least squares.</I></blockquote>
69<LI><A href=" in GSAS.htm">Monte-Carlo simulated annealing structure determination</A>
70 [link: <A href="">Exercise files</A>].
71<blockquote><I>Solving the structures of 3-aminoquinoline and α-d-lactose monohydrate from powder diffraction data via Monte Carlo/Simulated Annealing (MC/SA).</I></blockquote>
72</UL><h4>Stacking Fault Modeling</H4><UL>
73<LI><A href=" Faults-I.htm">Stacking fault simulations for diamond</A>
74 [No exercise files].
75<blockquote><I>This shows how to simulate the diffraction patterns from faulted diamond.</I></blockquote>
76<LI><A href=" Faults II.htm">Stacking fault simulations for Keokuk kaolinite</A>
77 [link: <A href="">Exercise files</A>].
78<blockquote><I>This shows how to simulate some diffraction patterns from well ordered Keokuk kaolinite (Al2Si2O5(OH)4) clay.</I></blockquote>
79<LI><A href=" Faults-III.htm">Stacking fault simulations for Georgia kaolinite</A>
80 [link: <A href="">Exercise files</A>].
81<blockquote><I>This shows how to simulate some diffraction patterns from poorly ordered Georgia kaolinite (Al2Si2O5(OH)4) clay.</I></blockquote>
82</UL><h4>Powder diffractometer calibration</H4><UL>
83<LI><A href="">Determining Starting Profile Parameters from a Standard</A>
84 [link: <A href="">Exercise files</A>].
85<blockquote><I>This shows how to determine profile parameters by fitting individual peaks
86        with data collected on a standard using a lab diffractometer.</I></blockquote>
87<LI><A href=" Calibration/Calibration of a TOF powder diffractometer.htm">Calibration of a Neutron TOF diffractometer</A>
88 [link: <A href=" Calibration/data">Exercise files</A>].
89<blockquote><I>This uses the fitted positions of all visible peaks in a pattern of NIST SRM 660b La11B6
90     (a=4.15689Å) obtained in a multiple single peak fit. The positions are compared to those expected from the
91     known lattice parameters to establish the diffractometer constants (difC, difA, difB and Zero) used for
92     calculating TOF peak positions from d-spacings. In addition, the peak fitting includes the various profile
93     coefficients thus fully describing the instrument contribution to the peak profiles.</I></blockquote>
94</UL><h4>2D Image Processing</H4><UL>
95<LI><A href=" of an area detector in GSAS.htm">Calibration of an area detector</A>
96 [link: <A href="">Exercise files</A>].
97<blockquote><I>A demonstration of calibrating a Perkin-Elmer area detector,  where the detector was intentionally tilted at 45 degrees.
98     This exercise is the prerequisite for the next one.</I></blockquote>
99<UL><LI><A href=" of area detector data in GSAS.htm">Integration of area detector data</A> <A href="#prereq">*</A>
100 [No exercise files].
101<blockquote><I>Integration of the image from a Perkin-Elmer area detector, where the detector was intentionally tilted at 45 degrees.</I></blockquote>
103<LI><A href=" fitting of 2D data in GSAS-II.htm">Strain fitting of 2D data</A>
104 [link: <A href="">Exercise files</A>].
105<blockquote><I>This show how to determine 3 strain tensor values using the method of He & Smith (Adv. in X-ray Anal. 41, 501, 1997)
106     directly froom a sequence of 2D imges from a loaded sample.</I></blockquote>
107<LI><A href=" analysis of 2D data in GSAS-II.htm">Texture analysis of 2D data</A>
108 [link: <A href="">Exercise files</A>].
109<blockquote><I>This shows 3 different methods for determining texture via spherical harmonics from 2D x-ray diffraction images. </I></blockquote>
110</UL><h4>Small-Angle Scattering</H4><UL>
111<LI><A href=" Angle Size Distribution.htm">Small angle x-ray data size distribution (alumina powder)</A>
112 [link: <A href="">Exercise files</A>].
113<blockquote><I>This shows how to determine the size distribution of particles using data from a constant
114     wavelength synchrotron X-ray USAXS instrument. This is the prerequisite for the next tutorial</I></blockquote>
115<UL><LI><A href=" Small Angle Scattering Data.htm">Fitting small angle x-ray data (alumina powder)</A> <A href="#prereq">*</A>
116 [link: <A href="">Exercise files</A>].
117<blockquote><I>This shows how to fit small angle scattering data using data from a constant wavelength synchrotron X-ray USAXS instrument. </I></blockquote>
119<LI><A href=" Angle Image Processing.htm">Image Processing of small angle x-ray data</A>
120 [link: <A href="">Exercise files</A>].
121<blockquote><I>This shows how to  reduce 2D SAXS data to create 1D absolute scaled data. </I></blockquote>
122<LI><A href=" Refinement of Small Angle Scattering Data.htm">Sequential refinement with small angle scattering data</A>
123 [link: <A href="">Exercise files</A>].
124<blockquote><I>This shows how to fit USAXS small angle scattering data for a suite of samples to demonstrate the
125     sequential refinement technique in GSAS-II for SASD and demonstrates fitting with a hard sphere structure
126     factor for non-dilute systems. </I></blockquote>
128<LI><A href=" twin refinement in GSAS.htm">Merohedral twin refinements</A>
129 [link: <A href="">Exercise files</A>].
130<blockquote><I>This shows how to use GSAS-II to refine the structure of a few single crystal structures where there is merohedral twinning. </I></blockquote>
131<LI><A href=" Single Crystal Refinement/TOF single crystal refinement in GSAS.htm">Single crystal refinement from TOF data</A>
132 [link: <A href=" Single Crystal Refinement/data">Exercise files</A>].
133<blockquote><I>This shows how to refine the structure of sapphire (really corundum, Al2O3) from single crystal diffraction data
134     collected at the SNS on the TOPAZ instrument at room temperature.  </I></blockquote>
135<LI><A href="">Scripting a GSAS-II Refinement from Python</A>
136 [link: <A href="">Exercise files</A>].
137<blockquote><I>This demonstrates the use of the GSASIIscriptable module. This uses a Python script to perform a refinement or
138     computation, but without use of the GSAS-II graphical user interface. This is a prerequisite for the next tutorial.</I></blockquote>
139<UL><LI><A href="">Running a GSAS-II Refinement from the Command Line</A> <A href="#prereq">*</A>
140 [link: <A href="">Exercise files</A>].
141<blockquote><I>This shows a unix script that duplicates the previous Python Scripting GSAS-II tutorial. </I></blockquote>
144<A name=prereq>* Indented tutorials require the previous unindented tutorial as a prerequisite
Note: See TracBrowser for help on using the repository browser.