1 | #GSASIIstructure - structure computation routines |
---|
2 | ########### SVN repository information ################### |
---|
3 | # $Date: 2011-01-07 19:27:24 +0000 (Fri, 07 Jan 2011) $ |
---|
4 | # $Author: vondreele $ |
---|
5 | # $Revision: 230 $ |
---|
6 | # $URL: trunk/GSASIIstruct.py $ |
---|
7 | # $Id: GSASIIstruct.py 230 2011-01-07 19:27:24Z vondreele $ |
---|
8 | ########### SVN repository information ################### |
---|
9 | import sys |
---|
10 | import os.path as ospath |
---|
11 | import numpy as np |
---|
12 | import cPickle |
---|
13 | import time |
---|
14 | import math |
---|
15 | import GSASIIpath |
---|
16 | import GSASIIElem as G2el |
---|
17 | import GSASIIlattice as G2lat |
---|
18 | import GSASIIspc as G2spc |
---|
19 | |
---|
20 | def ShowBanner(): |
---|
21 | print 80*'*' |
---|
22 | print ' General Structure Analysis System-II Crystal Structure Refinement' |
---|
23 | print ' by Robert B. Von Dreele, Argonne National Laboratory(C), 2010' |
---|
24 | print ' This product includes software developed by the UChicago Argonne, LLC,' |
---|
25 | print ' as Operator of Argonne National Laboratory.' |
---|
26 | print 80*'*','\n' |
---|
27 | |
---|
28 | def GetControls(GPXfile): |
---|
29 | ''' Returns dictionary of control items found in GSASII gpx file |
---|
30 | input: |
---|
31 | GPXfile = .gpx full file name |
---|
32 | return: |
---|
33 | Controls = dictionary of control items |
---|
34 | ''' |
---|
35 | file = open(GPXfile,'rb') |
---|
36 | HistogramNames = [] |
---|
37 | while True: |
---|
38 | try: |
---|
39 | data = cPickle.load(file) |
---|
40 | except EOFError: |
---|
41 | break |
---|
42 | datum = data[0] |
---|
43 | if datum[0] == 'Controls': |
---|
44 | Controls = datum[1] |
---|
45 | file.close() |
---|
46 | return Controls |
---|
47 | |
---|
48 | def ShowControls(Controls): |
---|
49 | print ' Controls:' |
---|
50 | if Controls['bandWidth']: |
---|
51 | print ' Band approximated least squares matrix refinement, width: ',Controls['bandWidth'] |
---|
52 | else: |
---|
53 | print ' Full matrix least squares refinement' |
---|
54 | print ' Maximum number of refinement cycles: ',Controls['Ncycles'] |
---|
55 | print ' Minimum sum(shift/esd)^2 for convergence: ','%.2f'%(Controls['minSumShftESD']) |
---|
56 | print ' The Marquardt damping factor: ','%.2f'%(Controls['Marquardt']) |
---|
57 | print ' Maximum allowed atom shift: ','%.2f'%(Controls['maxShift']),'A' |
---|
58 | if Controls['restraintWeight']: |
---|
59 | print ' The weights of the restraint histograms will be modified to normalize their contribution','\n' |
---|
60 | else: |
---|
61 | print ' The restraint histogram weights are fixed','\n' |
---|
62 | |
---|
63 | def GetPhaseNames(GPXfile): |
---|
64 | ''' Returns a list of phase names found under 'Phases' in GSASII gpx file |
---|
65 | input: |
---|
66 | GPXfile = gpx full file name |
---|
67 | return: |
---|
68 | PhaseNames = list of phase names |
---|
69 | ''' |
---|
70 | file = open(GPXfile,'rb') |
---|
71 | PhaseNames = [] |
---|
72 | while True: |
---|
73 | try: |
---|
74 | data = cPickle.load(file) |
---|
75 | except EOFError: |
---|
76 | break |
---|
77 | datum = data[0] |
---|
78 | if 'Phases' == datum[0]: |
---|
79 | for datus in data[1:]: |
---|
80 | PhaseNames.append(datus[0]) |
---|
81 | file.close() |
---|
82 | return PhaseNames |
---|
83 | |
---|
84 | def GetPhaseData(GPXfile,PhaseName): |
---|
85 | ''' Returns the 'General' and 'Atoms' objects for PhaseName from GSASII gpx file |
---|
86 | input: |
---|
87 | GPXfile = gpx full file name |
---|
88 | PhaseName = phase name |
---|
89 | return: |
---|
90 | General = dictionary of general phase info. |
---|
91 | Atoms = list of atom parameters |
---|
92 | these are returned empty if PhaseName not found |
---|
93 | ''' |
---|
94 | file = open(GPXfile,'rb') |
---|
95 | General = {} |
---|
96 | Atoms = [] |
---|
97 | while True: |
---|
98 | try: |
---|
99 | data = cPickle.load(file) |
---|
100 | except EOFError: |
---|
101 | break |
---|
102 | datum = data[0] |
---|
103 | if 'Phases' == datum[0]: |
---|
104 | for datus in data[1:]: |
---|
105 | if datus[0] == PhaseName: |
---|
106 | General = datus[1]['General'] |
---|
107 | Atoms = datus[1]['Atoms'] |
---|
108 | file.close() |
---|
109 | return {'General':General,'Atoms':Atoms} |
---|
110 | |
---|
111 | def ShowPhaseData(phaseNames,PhaseData): |
---|
112 | print ' Phases:' |
---|
113 | for name in phaseNames: |
---|
114 | General = PhaseData[name]['General'] |
---|
115 | Atoms = PhaseData[name]['Atoms'] |
---|
116 | print '\n Phase name: ',General['Name'] |
---|
117 | SGtext = G2spc.SGPrint(General['SGData']) |
---|
118 | for line in SGtext: print line |
---|
119 | cell = General['Cell'] |
---|
120 | print '\n Unit cell: a =','%.5f'%(cell[1]),' b =','%.5f'%(cell[2]),' c =','%.5f'%(cell[3]), \ |
---|
121 | ' alpha =','%.3f'%(cell[4]),' beta =','%.3f'%(cell[5]),' gamma =','%.3f'%(cell[6]),' volume =','%.3f'%(cell[7]) |
---|
122 | print ' Refine?',cell[0] |
---|
123 | print '\n Atoms:' |
---|
124 | line = ' name type refine? x y z '+ \ |
---|
125 | ' frac site sym mult I/A Uiso U11 U22 U33 U12 U13 U23' |
---|
126 | if General['Type'] == 'magnetic': |
---|
127 | line += ' Mx My Mz' |
---|
128 | elif General['Type'] == 'macromolecular': |
---|
129 | line = ' res no residue chain '+line |
---|
130 | print line |
---|
131 | if General['Type'] == 'nuclear': |
---|
132 | print 135*'-' |
---|
133 | for at in Atoms: |
---|
134 | line = '%7s'%(at[0])+'%7s'%(at[1])+'%7s'%(at[2])+'%10.5f'%(at[3])+'%10.5f'%(at[4])+ \ |
---|
135 | '%10.5f'%(at[5])+'%8.3f'%(at[6])+'%7s'%(at[7])+'%5d'%(at[8])+'%5s'%(at[9]) |
---|
136 | if at[9] == 'I': |
---|
137 | line += '%8.4f'%(at[10])+48*' ' |
---|
138 | else: |
---|
139 | line += 8*' ' |
---|
140 | for i in range(6): |
---|
141 | line += '%8.4f'%(at[11+i]) |
---|
142 | print line |
---|
143 | # elif General['Type'] == 'magnetic': |
---|
144 | # elif General['Type'] == 'macromolecular': |
---|
145 | |
---|
146 | |
---|
147 | def GetHistogramNames(GPXfile): |
---|
148 | ''' Returns a list of histogram names found in GSASII gpx file |
---|
149 | input: |
---|
150 | GPXfile = .gpx full file name |
---|
151 | return: |
---|
152 | HistogramNames = list of histogram names (types = PWDR & HKLF) |
---|
153 | ''' |
---|
154 | file = open(GPXfile,'rb') |
---|
155 | HistogramNames = [] |
---|
156 | while True: |
---|
157 | try: |
---|
158 | data = cPickle.load(file) |
---|
159 | except EOFError: |
---|
160 | break |
---|
161 | datum = data[0] |
---|
162 | if datum[0][:4] in ['PWDR','HKLF']: |
---|
163 | HistogramNames.append(datum[0]) |
---|
164 | file.close() |
---|
165 | return HistogramNames |
---|
166 | |
---|
167 | def GetPWDRdata(GPXfile,PWDRname): |
---|
168 | ''' Returns powder data from GSASII gpx file |
---|
169 | input: |
---|
170 | GPXfile = .gpx full file name |
---|
171 | PWDRname = powder histogram name as obtained from GetHistogramNames |
---|
172 | return: |
---|
173 | PWDRdata = powder data list: |
---|
174 | |
---|
175 | ''' |
---|
176 | file = open(GPXfile,'rb') |
---|
177 | PWDRdata = [] |
---|
178 | while True: |
---|
179 | try: |
---|
180 | data = cPickle.load(file) |
---|
181 | except EOFError: |
---|
182 | break |
---|
183 | datum = data[0] |
---|
184 | if datum[0] == PWDRname: |
---|
185 | PWDRdata = datum[1:][0] |
---|
186 | |
---|
187 | |
---|
188 | file.close() |
---|
189 | return PWDRdata#,Limits,InstrumentParms |
---|
190 | |
---|
191 | def GetHKLFdata(GPXfile,HKLFname): |
---|
192 | ''' Returns single crystal data from GSASII gpx file |
---|
193 | input: |
---|
194 | GPXfile = .gpx full file name |
---|
195 | HKLFname = single crystal histogram name as obtained from GetHistogramNames |
---|
196 | return: |
---|
197 | HKLFdata = single crystal data list of reflections: for each reflection: |
---|
198 | HKLF = [np.array([h,k,l]),FoSq,sigFoSq,FcSq,Fcp,Fcpp,phase] |
---|
199 | ''' |
---|
200 | file = open(GPXfile,'rb') |
---|
201 | HKLFdata = [] |
---|
202 | while True: |
---|
203 | try: |
---|
204 | data = cPickle.load(file) |
---|
205 | except EOFError: |
---|
206 | break |
---|
207 | datum = data[0] |
---|
208 | if datum[0] == HKLFname: |
---|
209 | HKLFdata = datum[1:][0] |
---|
210 | file.close() |
---|
211 | return HKLFdata |
---|
212 | |
---|
213 | def GetFFtable(General): |
---|
214 | ''' returns a dictionary of form factor data for atom types found in General |
---|
215 | input: |
---|
216 | General = dictionary of phase info.; includes AtomTypes |
---|
217 | return: |
---|
218 | FFtable = dictionary of form factor data; key is atom type |
---|
219 | ''' |
---|
220 | atomTypes = General['AtomTypes'] |
---|
221 | FFtable = {} |
---|
222 | for El in atomTypes: |
---|
223 | FFs = G2el.GetFormFactorCoeff(El.split('+')[0].split('-')[0]) |
---|
224 | for item in FFs: |
---|
225 | if item['Symbol'] == El: |
---|
226 | FFtable[El] = item |
---|
227 | return FFtable |
---|
228 | |
---|
229 | def SetupSFcalc(General,Atoms): |
---|
230 | ''' setup data for use in StructureFactor; mostly rearranging arrays |
---|
231 | input: |
---|
232 | General = dictionary of general phase info. |
---|
233 | Atoms = list of atom parameters |
---|
234 | returns: |
---|
235 | G = reciprocal metric tensor |
---|
236 | StrData = list of arrays; one entry per atom: |
---|
237 | T = atom types |
---|
238 | R = refinement flags, e.g. 'FXU' |
---|
239 | F = site fractions |
---|
240 | X = atom coordinates as numpy array |
---|
241 | M = atom multiplicities |
---|
242 | IA = isotropic/anisotropic thermal flags |
---|
243 | Uiso = isotropic thermal parameters if IA = 'I'; else = 0 |
---|
244 | Uij = numpy array of 6 anisotropic thermal parameters if IA='A'; else = zeros |
---|
245 | ''' |
---|
246 | SGData = General['SGData'] |
---|
247 | Cell = General['Cell'] |
---|
248 | G,g = G2lat.cell2Gmat(Cell[1:7]) #skip refine & volume; get recip & real metric tensors |
---|
249 | cx,ct,cs,cia = General['AtomPtrs'] |
---|
250 | X = [];F = [];T = [];IA = [];Uiso = [];Uij = [];R = [];M = [] |
---|
251 | for atom in Atoms: |
---|
252 | T.append(atom[ct]) |
---|
253 | R.append(atom[ct+1]) |
---|
254 | F.append(atom[cx+3]) |
---|
255 | X.append(np.array(atom[cx:cx+3])) |
---|
256 | M.append(atom[cia-1]) |
---|
257 | IA.append(atom[cia]) |
---|
258 | Uiso.append(atom[cia+1]) |
---|
259 | Uij.append(np.array(atom[cia+2:cia+8])) |
---|
260 | return G,[T,R,np.array(F),np.array(X),np.array(M),IA,np.array(Uiso),np.array(Uij)] |
---|
261 | |
---|
262 | def StructureFactor(H,G,SGData,StrData,FFtable): |
---|
263 | ''' Compute structure factor for a single h,k,l |
---|
264 | H = np.array(h,k,l) |
---|
265 | G = reciprocal metric tensor |
---|
266 | SGData = space group info. dictionary output from SpcGroup |
---|
267 | StrData = [ |
---|
268 | [atom types], |
---|
269 | [refinement flags], |
---|
270 | [site fractions], |
---|
271 | np.array(coordinates), |
---|
272 | [multiplicities], |
---|
273 | [I/A flag], |
---|
274 | [Uiso], |
---|
275 | np.array(Uij)] |
---|
276 | FFtable = dictionary of form factor coeff. for atom types used in StrData |
---|
277 | ''' |
---|
278 | twopi = 2.0*math.pi |
---|
279 | twopisq = 2.0*math.pi**2 |
---|
280 | SQ = G2lat.calc_rDsq2(H,G)/4.0 # SQ = (sin(theta)/lambda)**2 |
---|
281 | SQfactor = 8.0*SQ*math.pi**2 |
---|
282 | print 'SQ',SQfactor |
---|
283 | FF = {} |
---|
284 | for type in FFtable.keys(): |
---|
285 | FF[type] = G2el.ScatFac(FFtable[type],SQ) |
---|
286 | print 'FF',FF |
---|
287 | iabsnt,mulp,Uniq,Phs = G2spc.GenHKL(H,SGData,False) |
---|
288 | fa = [0,0,0] #real |
---|
289 | fb = [0,0,0] #imaginary |
---|
290 | if not iabsnt: |
---|
291 | phase = twopi*np.inner(Uniq,StrData[3]) #2pi[hx+ky+lz] for each atom in each equiv. hkl |
---|
292 | sinp = np.sin(phase) |
---|
293 | cosp = np.cos(phase) |
---|
294 | occ = StrData[2]*StrData[4]/mulp |
---|
295 | Tiso = np.multiply(StrData[6],SQfactor) |
---|
296 | Tuij = np.multiply(-SQfactor,np.inner(H,np.inner(G2spc.Uij2U(StrData[7]),H))) |
---|
297 | print 'sinp',sinp |
---|
298 | print 'cosp',cosp |
---|
299 | print 'occ',occ |
---|
300 | print 'Tiso',Tiso |
---|
301 | print 'Tuij',Tuij |
---|
302 | else: |
---|
303 | print 'Absent' |
---|
304 | |
---|
305 | def Refine(GPXfile): |
---|
306 | ShowBanner() |
---|
307 | Controls = GetControls(GPXfile) |
---|
308 | ShowControls(Controls) |
---|
309 | |
---|
310 | phaseNames = GetPhaseNames(GPXfile) |
---|
311 | phaseData = {} |
---|
312 | for name in phaseNames: |
---|
313 | phaseData[name] = GetPhaseData(GPXfile,name) |
---|
314 | ShowPhaseData(phaseNames,phaseData) |
---|
315 | |
---|
316 | histograms = GetHistogramNames(GPXfile) |
---|
317 | for hist in histograms: |
---|
318 | if 'PWDR' in hist[:4]: |
---|
319 | print hist |
---|
320 | PWDRdata = GetPWDRdata(GPXfile,hist) |
---|
321 | print PWDRdata |
---|
322 | |
---|
323 | def main(): |
---|
324 | arg = sys.argv |
---|
325 | if len(arg) > 1: |
---|
326 | GPXfile = arg[1] |
---|
327 | if not ospath.exists(GPXfile): |
---|
328 | print 'ERROR - ',GPXfile," doesn't exist!" |
---|
329 | exit() |
---|
330 | GPXpath = ospath.dirname(arg[1]) |
---|
331 | Refine(GPXfile) |
---|
332 | else: |
---|
333 | print 'ERROR - missing filename' |
---|
334 | exit() |
---|
335 | print "Done" |
---|
336 | |
---|
337 | if __name__ == '__main__': |
---|
338 | main() |
---|