1 | # -*- coding: utf-8 -*- |
---|
2 | ''' |
---|
3 | *GSASIIstrMath - structure math routines* |
---|
4 | ----------------------------------------- |
---|
5 | ''' |
---|
6 | ########### SVN repository information ################### |
---|
7 | # $Date: 2019-03-31 23:59:15 +0000 (Sun, 31 Mar 2019) $ |
---|
8 | # $Author: vondreele $ |
---|
9 | # $Revision: 3865 $ |
---|
10 | # $URL: trunk/GSASIIstrMath.py $ |
---|
11 | # $Id: GSASIIstrMath.py 3865 2019-03-31 23:59:15Z vondreele $ |
---|
12 | ########### SVN repository information ################### |
---|
13 | from __future__ import division, print_function |
---|
14 | import time |
---|
15 | import copy |
---|
16 | import numpy as np |
---|
17 | import numpy.ma as ma |
---|
18 | import numpy.linalg as nl |
---|
19 | import scipy.stats as st |
---|
20 | import multiprocessing as mp |
---|
21 | import GSASIIpath |
---|
22 | GSASIIpath.SetVersionNumber("$Revision: 3865 $") |
---|
23 | import GSASIIElem as G2el |
---|
24 | import GSASIIlattice as G2lat |
---|
25 | import GSASIIspc as G2spc |
---|
26 | import GSASIIpwd as G2pwd |
---|
27 | import GSASIImapvars as G2mv |
---|
28 | import GSASIImath as G2mth |
---|
29 | import GSASIIobj as G2obj |
---|
30 | import GSASIImpsubs as G2mp |
---|
31 | #G2mp.InitMP(False) # This disables multiprocessing |
---|
32 | |
---|
33 | sind = lambda x: np.sin(x*np.pi/180.) |
---|
34 | cosd = lambda x: np.cos(x*np.pi/180.) |
---|
35 | tand = lambda x: np.tan(x*np.pi/180.) |
---|
36 | asind = lambda x: 180.*np.arcsin(x)/np.pi |
---|
37 | acosd = lambda x: 180.*np.arccos(x)/np.pi |
---|
38 | atan2d = lambda y,x: 180.*np.arctan2(y,x)/np.pi |
---|
39 | |
---|
40 | ateln2 = 8.0*np.log(2.0) |
---|
41 | twopi = 2.0*np.pi |
---|
42 | twopisq = 2.0*np.pi**2 |
---|
43 | nxs = np.newaxis |
---|
44 | |
---|
45 | ################################################################################ |
---|
46 | ##### Rigid Body Models |
---|
47 | ################################################################################ |
---|
48 | |
---|
49 | def ApplyRBModels(parmDict,Phases,rigidbodyDict,Update=False): |
---|
50 | ''' Takes RB info from RBModels in Phase and RB data in rigidbodyDict along with |
---|
51 | current RB values in parmDict & modifies atom contents (xyz & Uij) of parmDict |
---|
52 | ''' |
---|
53 | atxIds = ['Ax:','Ay:','Az:'] |
---|
54 | atuIds = ['AU11:','AU22:','AU33:','AU12:','AU13:','AU23:'] |
---|
55 | RBIds = rigidbodyDict.get('RBIds',{'Vector':[],'Residue':[]}) #these are lists of rbIds |
---|
56 | if not RBIds['Vector'] and not RBIds['Residue']: |
---|
57 | return |
---|
58 | VRBIds = RBIds['Vector'] |
---|
59 | RRBIds = RBIds['Residue'] |
---|
60 | if Update: |
---|
61 | RBData = rigidbodyDict |
---|
62 | else: |
---|
63 | RBData = copy.deepcopy(rigidbodyDict) # don't mess with original! |
---|
64 | if RBIds['Vector']: # first update the vector magnitudes |
---|
65 | VRBData = RBData['Vector'] |
---|
66 | for i,rbId in enumerate(VRBIds): |
---|
67 | if VRBData[rbId]['useCount']: |
---|
68 | for j in range(len(VRBData[rbId]['VectMag'])): |
---|
69 | name = '::RBV;'+str(j)+':'+str(i) |
---|
70 | VRBData[rbId]['VectMag'][j] = parmDict[name] |
---|
71 | for phase in Phases: |
---|
72 | Phase = Phases[phase] |
---|
73 | General = Phase['General'] |
---|
74 | cx,ct,cs,cia = General['AtomPtrs'] |
---|
75 | cell = General['Cell'][1:7] |
---|
76 | Amat,Bmat = G2lat.cell2AB(cell) |
---|
77 | AtLookup = G2mth.FillAtomLookUp(Phase['Atoms'],cia+8) |
---|
78 | pfx = str(Phase['pId'])+'::' |
---|
79 | if Update: |
---|
80 | RBModels = Phase['RBModels'] |
---|
81 | else: |
---|
82 | RBModels = copy.deepcopy(Phase['RBModels']) # again don't mess with original! |
---|
83 | for irb,RBObj in enumerate(RBModels.get('Vector',[])): |
---|
84 | jrb = VRBIds.index(RBObj['RBId']) |
---|
85 | rbsx = str(irb)+':'+str(jrb) |
---|
86 | for i,px in enumerate(['RBVPx:','RBVPy:','RBVPz:']): |
---|
87 | RBObj['Orig'][0][i] = parmDict[pfx+px+rbsx] |
---|
88 | for i,po in enumerate(['RBVOa:','RBVOi:','RBVOj:','RBVOk:']): |
---|
89 | RBObj['Orient'][0][i] = parmDict[pfx+po+rbsx] |
---|
90 | RBObj['Orient'][0] = G2mth.normQ(RBObj['Orient'][0]) |
---|
91 | TLS = RBObj['ThermalMotion'] |
---|
92 | if 'T' in TLS[0]: |
---|
93 | for i,pt in enumerate(['RBVT11:','RBVT22:','RBVT33:','RBVT12:','RBVT13:','RBVT23:']): |
---|
94 | TLS[1][i] = parmDict[pfx+pt+rbsx] |
---|
95 | if 'L' in TLS[0]: |
---|
96 | for i,pt in enumerate(['RBVL11:','RBVL22:','RBVL33:','RBVL12:','RBVL13:','RBVL23:']): |
---|
97 | TLS[1][i+6] = parmDict[pfx+pt+rbsx] |
---|
98 | if 'S' in TLS[0]: |
---|
99 | for i,pt in enumerate(['RBVS12:','RBVS13:','RBVS21:','RBVS23:','RBVS31:','RBVS32:','RBVSAA:','RBVSBB:']): |
---|
100 | TLS[1][i+12] = parmDict[pfx+pt+rbsx] |
---|
101 | if 'U' in TLS[0]: |
---|
102 | TLS[1][0] = parmDict[pfx+'RBVU:'+rbsx] |
---|
103 | XYZ,Cart = G2mth.UpdateRBXYZ(Bmat,RBObj,RBData,'Vector') |
---|
104 | UIJ = G2mth.UpdateRBUIJ(Bmat,Cart,RBObj) |
---|
105 | for i,x in enumerate(XYZ): |
---|
106 | atId = RBObj['Ids'][i] |
---|
107 | for j in [0,1,2]: |
---|
108 | parmDict[pfx+atxIds[j]+str(AtLookup[atId])] = x[j] |
---|
109 | if UIJ[i][0] == 'A': |
---|
110 | for j in range(6): |
---|
111 | parmDict[pfx+atuIds[j]+str(AtLookup[atId])] = UIJ[i][j+2] |
---|
112 | elif UIJ[i][0] == 'I': |
---|
113 | parmDict[pfx+'AUiso:'+str(AtLookup[atId])] = UIJ[i][1] |
---|
114 | |
---|
115 | for irb,RBObj in enumerate(RBModels.get('Residue',[])): |
---|
116 | jrb = RRBIds.index(RBObj['RBId']) |
---|
117 | rbsx = str(irb)+':'+str(jrb) |
---|
118 | for i,px in enumerate(['RBRPx:','RBRPy:','RBRPz:']): |
---|
119 | RBObj['Orig'][0][i] = parmDict[pfx+px+rbsx] |
---|
120 | for i,po in enumerate(['RBROa:','RBROi:','RBROj:','RBROk:']): |
---|
121 | RBObj['Orient'][0][i] = parmDict[pfx+po+rbsx] |
---|
122 | RBObj['Orient'][0] = G2mth.normQ(RBObj['Orient'][0]) |
---|
123 | TLS = RBObj['ThermalMotion'] |
---|
124 | if 'T' in TLS[0]: |
---|
125 | for i,pt in enumerate(['RBRT11:','RBRT22:','RBRT33:','RBRT12:','RBRT13:','RBRT23:']): |
---|
126 | RBObj['ThermalMotion'][1][i] = parmDict[pfx+pt+rbsx] |
---|
127 | if 'L' in TLS[0]: |
---|
128 | for i,pt in enumerate(['RBRL11:','RBRL22:','RBRL33:','RBRL12:','RBRL13:','RBRL23:']): |
---|
129 | RBObj['ThermalMotion'][1][i+6] = parmDict[pfx+pt+rbsx] |
---|
130 | if 'S' in TLS[0]: |
---|
131 | for i,pt in enumerate(['RBRS12:','RBRS13:','RBRS21:','RBRS23:','RBRS31:','RBRS32:','RBRSAA:','RBRSBB:']): |
---|
132 | RBObj['ThermalMotion'][1][i+12] = parmDict[pfx+pt+rbsx] |
---|
133 | if 'U' in TLS[0]: |
---|
134 | RBObj['ThermalMotion'][1][0] = parmDict[pfx+'RBRU:'+rbsx] |
---|
135 | for itors,tors in enumerate(RBObj['Torsions']): |
---|
136 | tors[0] = parmDict[pfx+'RBRTr;'+str(itors)+':'+rbsx] |
---|
137 | XYZ,Cart = G2mth.UpdateRBXYZ(Bmat,RBObj,RBData,'Residue') |
---|
138 | UIJ = G2mth.UpdateRBUIJ(Bmat,Cart,RBObj) |
---|
139 | for i,x in enumerate(XYZ): |
---|
140 | atId = RBObj['Ids'][i] |
---|
141 | for j in [0,1,2]: |
---|
142 | parmDict[pfx+atxIds[j]+str(AtLookup[atId])] = x[j] |
---|
143 | if UIJ[i][0] == 'A': |
---|
144 | for j in range(6): |
---|
145 | parmDict[pfx+atuIds[j]+str(AtLookup[atId])] = UIJ[i][j+2] |
---|
146 | elif UIJ[i][0] == 'I': |
---|
147 | parmDict[pfx+'AUiso:'+str(AtLookup[atId])] = UIJ[i][1] |
---|
148 | |
---|
149 | def ApplyRBModelDervs(dFdvDict,parmDict,rigidbodyDict,Phase): |
---|
150 | 'Needs a doc string' |
---|
151 | atxIds = ['dAx:','dAy:','dAz:'] |
---|
152 | atuIds = ['AU11:','AU22:','AU33:','AU12:','AU13:','AU23:'] |
---|
153 | OIds = ['Oa:','Oi:','Oj:','Ok:'] |
---|
154 | RBIds = rigidbodyDict.get('RBIds',{'Vector':[],'Residue':[]}) #these are lists of rbIds |
---|
155 | if not RBIds['Vector'] and not RBIds['Residue']: |
---|
156 | return |
---|
157 | VRBIds = RBIds['Vector'] |
---|
158 | RRBIds = RBIds['Residue'] |
---|
159 | RBData = rigidbodyDict |
---|
160 | for item in parmDict: |
---|
161 | if 'RB' in item: |
---|
162 | dFdvDict[item] = 0. #NB: this is a vector which is no. refl. long & must be filled! |
---|
163 | General = Phase['General'] |
---|
164 | cx,ct,cs,cia = General['AtomPtrs'] |
---|
165 | cell = General['Cell'][1:7] |
---|
166 | Amat,Bmat = G2lat.cell2AB(cell) |
---|
167 | rpd = np.pi/180. |
---|
168 | rpd2 = rpd**2 |
---|
169 | g = nl.inv(np.inner(Bmat,Bmat)) |
---|
170 | gvec = np.sqrt(np.array([g[0][0]**2,g[1][1]**2,g[2][2]**2, |
---|
171 | g[0][0]*g[1][1],g[0][0]*g[2][2],g[1][1]*g[2][2]])) |
---|
172 | AtLookup = G2mth.FillAtomLookUp(Phase['Atoms'],cia+8) |
---|
173 | pfx = str(Phase['pId'])+'::' |
---|
174 | RBModels = Phase['RBModels'] |
---|
175 | for irb,RBObj in enumerate(RBModels.get('Vector',[])): |
---|
176 | VModel = RBData['Vector'][RBObj['RBId']] |
---|
177 | Q = RBObj['Orient'][0] |
---|
178 | jrb = VRBIds.index(RBObj['RBId']) |
---|
179 | rbsx = str(irb)+':'+str(jrb) |
---|
180 | dXdv = [] |
---|
181 | for iv in range(len(VModel['VectMag'])): |
---|
182 | dCdv = [] |
---|
183 | for vec in VModel['rbVect'][iv]: |
---|
184 | dCdv.append(G2mth.prodQVQ(Q,vec)) |
---|
185 | dXdv.append(np.inner(Bmat,np.array(dCdv)).T) |
---|
186 | XYZ,Cart = G2mth.UpdateRBXYZ(Bmat,RBObj,RBData,'Vector') |
---|
187 | for ia,atId in enumerate(RBObj['Ids']): |
---|
188 | atNum = AtLookup[atId] |
---|
189 | dx = 0.00001 |
---|
190 | for iv in range(len(VModel['VectMag'])): |
---|
191 | for ix in [0,1,2]: |
---|
192 | dFdvDict['::RBV;'+str(iv)+':'+str(jrb)] += dXdv[iv][ia][ix]*dFdvDict[pfx+atxIds[ix]+str(atNum)] |
---|
193 | for i,name in enumerate(['RBVPx:','RBVPy:','RBVPz:']): |
---|
194 | dFdvDict[pfx+name+rbsx] += dFdvDict[pfx+atxIds[i]+str(atNum)] |
---|
195 | for iv in range(4): |
---|
196 | Q[iv] -= dx |
---|
197 | XYZ1 = G2mth.RotateRBXYZ(Bmat,Cart,G2mth.normQ(Q)) |
---|
198 | Q[iv] += 2.*dx |
---|
199 | XYZ2 = G2mth.RotateRBXYZ(Bmat,Cart,G2mth.normQ(Q)) |
---|
200 | Q[iv] -= dx |
---|
201 | dXdO = (XYZ2[ia]-XYZ1[ia])/(2.*dx) |
---|
202 | for ix in [0,1,2]: |
---|
203 | dFdvDict[pfx+'RBV'+OIds[iv]+rbsx] += dXdO[ix]*dFdvDict[pfx+atxIds[ix]+str(atNum)] |
---|
204 | X = G2mth.prodQVQ(Q,Cart[ia]) |
---|
205 | dFdu = np.array([dFdvDict[pfx+Uid+str(AtLookup[atId])] for Uid in atuIds]).T/gvec |
---|
206 | dFdu = G2lat.U6toUij(dFdu.T) |
---|
207 | dFdu = np.tensordot(Amat,np.tensordot(Amat,dFdu,([1,0])),([0,1])) |
---|
208 | dFdu = G2lat.UijtoU6(dFdu) |
---|
209 | atNum = AtLookup[atId] |
---|
210 | if 'T' in RBObj['ThermalMotion'][0]: |
---|
211 | for i,name in enumerate(['RBVT11:','RBVT22:','RBVT33:','RBVT12:','RBVT13:','RBVT23:']): |
---|
212 | dFdvDict[pfx+name+rbsx] += dFdu[i] |
---|
213 | if 'L' in RBObj['ThermalMotion'][0]: |
---|
214 | dFdvDict[pfx+'RBVL11:'+rbsx] += rpd2*(dFdu[1]*X[2]**2+dFdu[2]*X[1]**2-dFdu[5]*X[1]*X[2]) |
---|
215 | dFdvDict[pfx+'RBVL22:'+rbsx] += rpd2*(dFdu[0]*X[2]**2+dFdu[2]*X[0]**2-dFdu[4]*X[0]*X[2]) |
---|
216 | dFdvDict[pfx+'RBVL33:'+rbsx] += rpd2*(dFdu[0]*X[1]**2+dFdu[1]*X[0]**2-dFdu[3]*X[0]*X[1]) |
---|
217 | dFdvDict[pfx+'RBVL12:'+rbsx] += rpd2*(-dFdu[3]*X[2]**2-2.*dFdu[2]*X[0]*X[1]+ |
---|
218 | dFdu[4]*X[1]*X[2]+dFdu[5]*X[0]*X[2]) |
---|
219 | dFdvDict[pfx+'RBVL13:'+rbsx] += rpd2*(-dFdu[4]*X[1]**2-2.*dFdu[1]*X[0]*X[2]+ |
---|
220 | dFdu[3]*X[1]*X[2]+dFdu[5]*X[0]*X[1]) |
---|
221 | dFdvDict[pfx+'RBVL23:'+rbsx] += rpd2*(-dFdu[5]*X[0]**2-2.*dFdu[0]*X[1]*X[2]+ |
---|
222 | dFdu[3]*X[0]*X[2]+dFdu[4]*X[0]*X[1]) |
---|
223 | if 'S' in RBObj['ThermalMotion'][0]: |
---|
224 | dFdvDict[pfx+'RBVS12:'+rbsx] += rpd*(dFdu[5]*X[1]-2.*dFdu[1]*X[2]) |
---|
225 | dFdvDict[pfx+'RBVS13:'+rbsx] += rpd*(-dFdu[5]*X[2]+2.*dFdu[2]*X[1]) |
---|
226 | dFdvDict[pfx+'RBVS21:'+rbsx] += rpd*(-dFdu[4]*X[0]+2.*dFdu[0]*X[2]) |
---|
227 | dFdvDict[pfx+'RBVS23:'+rbsx] += rpd*(dFdu[4]*X[2]-2.*dFdu[2]*X[0]) |
---|
228 | dFdvDict[pfx+'RBVS31:'+rbsx] += rpd*(dFdu[3]*X[0]-2.*dFdu[0]*X[1]) |
---|
229 | dFdvDict[pfx+'RBVS32:'+rbsx] += rpd*(-dFdu[3]*X[1]+2.*dFdu[1]*X[0]) |
---|
230 | dFdvDict[pfx+'RBVSAA:'+rbsx] += rpd*(dFdu[4]*X[1]-dFdu[3]*X[2]) |
---|
231 | dFdvDict[pfx+'RBVSBB:'+rbsx] += rpd*(dFdu[5]*X[0]-dFdu[3]*X[2]) |
---|
232 | if 'U' in RBObj['ThermalMotion'][0]: |
---|
233 | dFdvDict[pfx+'RBVU:'+rbsx] += dFdvDict[pfx+'AUiso:'+str(AtLookup[atId])] |
---|
234 | |
---|
235 | |
---|
236 | for irb,RBObj in enumerate(RBModels.get('Residue',[])): |
---|
237 | Q = RBObj['Orient'][0] |
---|
238 | jrb = RRBIds.index(RBObj['RBId']) |
---|
239 | torData = RBData['Residue'][RBObj['RBId']]['rbSeq'] |
---|
240 | rbsx = str(irb)+':'+str(jrb) |
---|
241 | XYZ,Cart = G2mth.UpdateRBXYZ(Bmat,RBObj,RBData,'Residue') |
---|
242 | for itors,tors in enumerate(RBObj['Torsions']): #derivative error? |
---|
243 | tname = pfx+'RBRTr;'+str(itors)+':'+rbsx |
---|
244 | orId,pvId = torData[itors][:2] |
---|
245 | pivotVec = Cart[orId]-Cart[pvId] |
---|
246 | QA = G2mth.AVdeg2Q(-0.001,pivotVec) |
---|
247 | QB = G2mth.AVdeg2Q(0.001,pivotVec) |
---|
248 | for ir in torData[itors][3]: |
---|
249 | atNum = AtLookup[RBObj['Ids'][ir]] |
---|
250 | rVec = Cart[ir]-Cart[pvId] |
---|
251 | dR = G2mth.prodQVQ(QB,rVec)-G2mth.prodQVQ(QA,rVec) |
---|
252 | dRdT = np.inner(Bmat,G2mth.prodQVQ(Q,dR))/.002 |
---|
253 | for ix in [0,1,2]: |
---|
254 | dFdvDict[tname] += dRdT[ix]*dFdvDict[pfx+atxIds[ix]+str(atNum)] |
---|
255 | for ia,atId in enumerate(RBObj['Ids']): |
---|
256 | atNum = AtLookup[atId] |
---|
257 | dx = 0.00001 |
---|
258 | for i,name in enumerate(['RBRPx:','RBRPy:','RBRPz:']): |
---|
259 | dFdvDict[pfx+name+rbsx] += dFdvDict[pfx+atxIds[i]+str(atNum)] |
---|
260 | for iv in range(4): |
---|
261 | Q[iv] -= dx |
---|
262 | XYZ1 = G2mth.RotateRBXYZ(Bmat,Cart,G2mth.normQ(Q)) |
---|
263 | Q[iv] += 2.*dx |
---|
264 | XYZ2 = G2mth.RotateRBXYZ(Bmat,Cart,G2mth.normQ(Q)) |
---|
265 | Q[iv] -= dx |
---|
266 | dXdO = (XYZ2[ia]-XYZ1[ia])/(2.*dx) |
---|
267 | for ix in [0,1,2]: |
---|
268 | dFdvDict[pfx+'RBR'+OIds[iv]+rbsx] += dXdO[ix]*dFdvDict[pfx+atxIds[ix]+str(atNum)] |
---|
269 | X = G2mth.prodQVQ(Q,Cart[ia]) |
---|
270 | dFdu = np.array([dFdvDict[pfx+Uid+str(AtLookup[atId])] for Uid in atuIds]).T/gvec |
---|
271 | dFdu = G2lat.U6toUij(dFdu.T) |
---|
272 | dFdu = np.tensordot(Amat.T,np.tensordot(Amat,dFdu,([1,0])),([0,1])) |
---|
273 | dFdu = G2lat.UijtoU6(dFdu) |
---|
274 | atNum = AtLookup[atId] |
---|
275 | if 'T' in RBObj['ThermalMotion'][0]: |
---|
276 | for i,name in enumerate(['RBRT11:','RBRT22:','RBRT33:','RBRT12:','RBRT13:','RBRT23:']): |
---|
277 | dFdvDict[pfx+name+rbsx] += dFdu[i] |
---|
278 | if 'L' in RBObj['ThermalMotion'][0]: |
---|
279 | dFdvDict[pfx+'RBRL11:'+rbsx] += rpd2*(dFdu[1]*X[2]**2+dFdu[2]*X[1]**2-dFdu[5]*X[1]*X[2]) |
---|
280 | dFdvDict[pfx+'RBRL22:'+rbsx] += rpd2*(dFdu[0]*X[2]**2+dFdu[2]*X[0]**2-dFdu[4]*X[0]*X[2]) |
---|
281 | dFdvDict[pfx+'RBRL33:'+rbsx] += rpd2*(dFdu[0]*X[1]**2+dFdu[1]*X[0]**2-dFdu[3]*X[0]*X[1]) |
---|
282 | dFdvDict[pfx+'RBRL12:'+rbsx] += rpd2*(-dFdu[3]*X[2]**2-2.*dFdu[2]*X[0]*X[1]+ |
---|
283 | dFdu[4]*X[1]*X[2]+dFdu[5]*X[0]*X[2]) |
---|
284 | dFdvDict[pfx+'RBRL13:'+rbsx] += rpd2*(dFdu[4]*X[1]**2-2.*dFdu[1]*X[0]*X[2]+ |
---|
285 | dFdu[3]*X[1]*X[2]+dFdu[5]*X[0]*X[1]) |
---|
286 | dFdvDict[pfx+'RBRL23:'+rbsx] += rpd2*(dFdu[5]*X[0]**2-2.*dFdu[0]*X[1]*X[2]+ |
---|
287 | dFdu[3]*X[0]*X[2]+dFdu[4]*X[0]*X[1]) |
---|
288 | if 'S' in RBObj['ThermalMotion'][0]: |
---|
289 | dFdvDict[pfx+'RBRS12:'+rbsx] += rpd*(dFdu[5]*X[1]-2.*dFdu[1]*X[2]) |
---|
290 | dFdvDict[pfx+'RBRS13:'+rbsx] += rpd*(-dFdu[5]*X[2]+2.*dFdu[2]*X[1]) |
---|
291 | dFdvDict[pfx+'RBRS21:'+rbsx] += rpd*(-dFdu[4]*X[0]+2.*dFdu[0]*X[2]) |
---|
292 | dFdvDict[pfx+'RBRS23:'+rbsx] += rpd*(dFdu[4]*X[2]-2.*dFdu[2]*X[0]) |
---|
293 | dFdvDict[pfx+'RBRS31:'+rbsx] += rpd*(dFdu[3]*X[0]-2.*dFdu[0]*X[1]) |
---|
294 | dFdvDict[pfx+'RBRS32:'+rbsx] += rpd*(-dFdu[3]*X[1]+2.*dFdu[1]*X[0]) |
---|
295 | dFdvDict[pfx+'RBRSAA:'+rbsx] += rpd*(dFdu[4]*X[1]-dFdu[3]*X[2]) |
---|
296 | dFdvDict[pfx+'RBRSBB:'+rbsx] += rpd*(dFdu[5]*X[0]-dFdu[3]*X[2]) |
---|
297 | if 'U' in RBObj['ThermalMotion'][0]: |
---|
298 | dFdvDict[pfx+'RBRU:'+rbsx] += dFdvDict[pfx+'AUiso:'+str(AtLookup[atId])] |
---|
299 | |
---|
300 | ################################################################################ |
---|
301 | ##### Penalty & restraint functions |
---|
302 | ################################################################################ |
---|
303 | |
---|
304 | def penaltyFxn(HistoPhases,calcControls,parmDict,varyList): |
---|
305 | 'Compute user-supplied and built-in restraint functions' |
---|
306 | Histograms,Phases,restraintDict,rigidbodyDict = HistoPhases |
---|
307 | pNames = [] |
---|
308 | pVals = [] |
---|
309 | pWt = [] |
---|
310 | negWt = {} |
---|
311 | pWsum = {} |
---|
312 | pWnum = {} |
---|
313 | for phase in Phases: |
---|
314 | pId = Phases[phase]['pId'] |
---|
315 | negWt[pId] = Phases[phase]['General']['Pawley neg wt'] |
---|
316 | General = Phases[phase]['General'] |
---|
317 | cx,ct,cs,cia = General['AtomPtrs'] |
---|
318 | textureData = General['SH Texture'] |
---|
319 | SGData = General['SGData'] |
---|
320 | Atoms = Phases[phase]['Atoms'] |
---|
321 | AtLookup = G2mth.FillAtomLookUp(Phases[phase]['Atoms'],cia+8) |
---|
322 | cell = General['Cell'][1:7] |
---|
323 | Amat,Bmat = G2lat.cell2AB(cell) |
---|
324 | if phase not in restraintDict: |
---|
325 | continue |
---|
326 | phaseRest = restraintDict[phase] |
---|
327 | names = [['Bond','Bonds'],['Angle','Angles'],['Plane','Planes'], |
---|
328 | ['Chiral','Volumes'],['Torsion','Torsions'],['Rama','Ramas'], |
---|
329 | ['ChemComp','Sites'],['Texture','HKLs'],['General','General'],] |
---|
330 | for name,rest in names: |
---|
331 | pWsum[name] = 0. |
---|
332 | pWnum[name] = 0 |
---|
333 | if name not in phaseRest: |
---|
334 | continue |
---|
335 | itemRest = phaseRest[name] |
---|
336 | if itemRest[rest] and itemRest['Use']: |
---|
337 | wt = itemRest.get('wtFactor',1.) |
---|
338 | if name in ['Bond','Angle','Plane','Chiral']: |
---|
339 | for i,[indx,ops,obs,esd] in enumerate(itemRest[rest]): |
---|
340 | pNames.append(str(pId)+':'+name+':'+str(i)) |
---|
341 | XYZ = np.array(G2mth.GetAtomCoordsByID(pId,parmDict,AtLookup,indx)) |
---|
342 | XYZ = G2mth.getSyXYZ(XYZ,ops,SGData) |
---|
343 | if name == 'Bond': |
---|
344 | calc = G2mth.getRestDist(XYZ,Amat) |
---|
345 | elif name == 'Angle': |
---|
346 | calc = G2mth.getRestAngle(XYZ,Amat) |
---|
347 | elif name == 'Plane': |
---|
348 | calc = G2mth.getRestPlane(XYZ,Amat) |
---|
349 | elif name == 'Chiral': |
---|
350 | calc = G2mth.getRestChiral(XYZ,Amat) |
---|
351 | pVals.append(obs-calc) |
---|
352 | pWt.append(wt/esd**2) |
---|
353 | pWsum[name] += wt*((obs-calc)/esd)**2 |
---|
354 | pWnum[name] += 1 |
---|
355 | elif name in ['Torsion','Rama']: |
---|
356 | coeffDict = itemRest['Coeff'] |
---|
357 | for i,[indx,ops,cofName,esd] in enumerate(itemRest[rest]): |
---|
358 | pNames.append(str(pId)+':'+name+':'+str(i)) |
---|
359 | XYZ = np.array(G2mth.GetAtomCoordsByID(pId,parmDict,AtLookup,indx)) |
---|
360 | XYZ = G2mth.getSyXYZ(XYZ,ops,SGData) |
---|
361 | if name == 'Torsion': |
---|
362 | tor = G2mth.getRestTorsion(XYZ,Amat) |
---|
363 | restr,calc = G2mth.calcTorsionEnergy(tor,coeffDict[cofName]) |
---|
364 | else: |
---|
365 | phi,psi = G2mth.getRestRama(XYZ,Amat) |
---|
366 | restr,calc = G2mth.calcRamaEnergy(phi,psi,coeffDict[cofName]) |
---|
367 | pVals.append(restr) |
---|
368 | pWt.append(wt/esd**2) |
---|
369 | pWsum[name] += wt*(restr/esd)**2 |
---|
370 | pWnum[name] += 1 |
---|
371 | elif name == 'ChemComp': |
---|
372 | for i,[indx,factors,obs,esd] in enumerate(itemRest[rest]): |
---|
373 | pNames.append(str(pId)+':'+name+':'+str(i)) |
---|
374 | mul = np.array(G2mth.GetAtomItemsById(Atoms,AtLookup,indx,cs+1)) |
---|
375 | frac = np.array(G2mth.GetAtomFracByID(pId,parmDict,AtLookup,indx)) |
---|
376 | calc = np.sum(mul*frac*factors) |
---|
377 | pVals.append(obs-calc) |
---|
378 | pWt.append(wt/esd**2) |
---|
379 | pWsum[name] += wt*((obs-calc)/esd)**2 |
---|
380 | pWnum[name] += 1 |
---|
381 | elif name == 'Texture': |
---|
382 | SHkeys = list(textureData['SH Coeff'][1].keys()) |
---|
383 | SHCoef = G2mth.GetSHCoeff(pId,parmDict,SHkeys) |
---|
384 | shModels = ['cylindrical','none','shear - 2/m','rolling - mmm'] |
---|
385 | SamSym = dict(zip(shModels,['0','-1','2/m','mmm'])) |
---|
386 | for i,[hkl,grid,esd1,ifesd2,esd2] in enumerate(itemRest[rest]): |
---|
387 | PH = np.array(hkl) |
---|
388 | phi,beta = G2lat.CrsAng(np.array(hkl),cell,SGData) |
---|
389 | ODFln = G2lat.Flnh(False,SHCoef,phi,beta,SGData) |
---|
390 | R,P,Z = G2mth.getRestPolefig(ODFln,SamSym[textureData['Model']],grid) |
---|
391 | Z1 = ma.masked_greater(Z,0.0) #is this + or -? |
---|
392 | IndZ1 = np.array(ma.nonzero(Z1)) |
---|
393 | for ind in IndZ1.T: |
---|
394 | pNames.append('%d:%s:%d:%.2f:%.2f'%(pId,name,i,R[ind[0],ind[1]],P[ind[0],ind[1]])) |
---|
395 | pVals.append(Z1[ind[0]][ind[1]]) |
---|
396 | pWt.append(wt/esd1**2) |
---|
397 | pWsum[name] += wt*(-Z1[ind[0]][ind[1]]/esd1)**2 |
---|
398 | pWnum[name] += 1 |
---|
399 | if ifesd2: |
---|
400 | Z2 = 1.-Z |
---|
401 | for ind in np.ndindex(grid,grid): |
---|
402 | pNames.append('%d:%s:%d:%.2f:%.2f'%(pId,name+'-unit',i,R[ind[0],ind[1]],P[ind[0],ind[1]])) |
---|
403 | pVals.append(Z2[ind[0]][ind[1]]) |
---|
404 | pWt.append(wt/esd2**2) |
---|
405 | pWsum[name] += wt*(Z2/esd2)**2 |
---|
406 | pWnum[name] += 1 |
---|
407 | elif name == 'General': |
---|
408 | for i,(eq,obs,esd) in enumerate(itemRest[rest]): |
---|
409 | pNames.append(str(pId)+':'+name+':'+str(i)) |
---|
410 | calcobj = G2obj.ExpressionCalcObj(eq) |
---|
411 | calcobj.SetupCalc(parmDict) |
---|
412 | calc = calcobj.EvalExpression() |
---|
413 | pVals.append(obs-calc) |
---|
414 | pWt.append(wt/esd**2) |
---|
415 | pWsum[name] += wt*((obs-calc)/esd)**2 |
---|
416 | pWnum[name] += 1 |
---|
417 | |
---|
418 | for phase in Phases: |
---|
419 | name = 'SH-Pref.Ori.' |
---|
420 | pId = Phases[phase]['pId'] |
---|
421 | General = Phases[phase]['General'] |
---|
422 | SGData = General['SGData'] |
---|
423 | cell = General['Cell'][1:7] |
---|
424 | pWsum[name] = 0.0 |
---|
425 | pWnum[name] = 0 |
---|
426 | for hist in Phases[phase]['Histograms']: |
---|
427 | if not Phases[phase]['Histograms'][hist]['Use']: |
---|
428 | continue |
---|
429 | if hist in Histograms and 'PWDR' in hist: |
---|
430 | hId = Histograms[hist]['hId'] |
---|
431 | phfx = '%d:%d:'%(pId,hId) |
---|
432 | if calcControls[phfx+'poType'] == 'SH': |
---|
433 | toler = calcControls[phfx+'SHtoler'] |
---|
434 | wt = 1./toler**2 |
---|
435 | HKLs = np.array(calcControls[phfx+'SHhkl']) |
---|
436 | SHnames = calcControls[phfx+'SHnames'] |
---|
437 | SHcof = dict(zip(SHnames,[parmDict[phfx+cof] for cof in SHnames])) |
---|
438 | for i,PH in enumerate(HKLs): |
---|
439 | phi,beta = G2lat.CrsAng(PH,cell,SGData) |
---|
440 | SH3Coef = {} |
---|
441 | for item in SHcof: |
---|
442 | L,N = eval(item.strip('C')) |
---|
443 | SH3Coef['C%d,0,%d'%(L,N)] = SHcof[item] |
---|
444 | ODFln = G2lat.Flnh(False,SH3Coef,phi,beta,SGData) |
---|
445 | X = np.linspace(0,90.0,26) |
---|
446 | Y = ma.masked_greater(G2lat.polfcal(ODFln,'0',X,0.0),0.0) #+ or -? |
---|
447 | IndY = ma.nonzero(Y) |
---|
448 | for ind in IndY[0]: |
---|
449 | pNames.append('%d:%d:%s:%d:%.2f'%(pId,hId,name,i,X[ind])) |
---|
450 | pVals.append(Y[ind]) |
---|
451 | pWt.append(wt) |
---|
452 | pWsum[name] += wt*(Y[ind])**2 |
---|
453 | pWnum[name] += 1 |
---|
454 | pWsum['PWLref'] = 0. |
---|
455 | pWnum['PWLref'] = 0 |
---|
456 | for item in varyList: |
---|
457 | if 'PWLref' in item and parmDict[item] < 0.: |
---|
458 | pId = int(item.split(':')[0]) |
---|
459 | if negWt[pId]: |
---|
460 | pNames.append(item) |
---|
461 | pVals.append(parmDict[item]) |
---|
462 | pWt.append(negWt[pId]) |
---|
463 | pWsum['PWLref'] += negWt[pId]*(parmDict[item])**2 |
---|
464 | pWnum['PWLref'] += 1 |
---|
465 | pVals = np.array(pVals) |
---|
466 | pWt = np.array(pWt) #should this be np.sqrt? |
---|
467 | return pNames,pVals,pWt,pWsum,pWnum |
---|
468 | |
---|
469 | def penaltyDeriv(pNames,pVal,HistoPhases,calcControls,parmDict,varyList): |
---|
470 | '''Compute derivatives on user-supplied and built-in restraint |
---|
471 | (penalty) functions |
---|
472 | |
---|
473 | where pNames is list of restraint labels |
---|
474 | |
---|
475 | returns pDerv with partial derivatives by variable# in varList and |
---|
476 | restraint# in pNames (pDerv[variable#][restraint#]) |
---|
477 | ''' |
---|
478 | Histograms,Phases,restraintDict,rigidbodyDict = HistoPhases |
---|
479 | pDerv = np.zeros((len(varyList),len(pVal))) |
---|
480 | for pName in pNames: # loop over restraints |
---|
481 | if 'General' == pName.split(':')[1]: |
---|
482 | # initialize for General restraint(s) here |
---|
483 | GeneralInit = True |
---|
484 | parmDict0 = parmDict.copy() |
---|
485 | # setup steps for each parameter |
---|
486 | stepDict = {} |
---|
487 | for parm in varyList: |
---|
488 | stepDict[parm] = G2obj.getVarStep(parm,parmDict) |
---|
489 | break |
---|
490 | for phase in Phases: |
---|
491 | # if phase not in restraintDict: |
---|
492 | # continue |
---|
493 | pId = Phases[phase]['pId'] |
---|
494 | General = Phases[phase]['General'] |
---|
495 | cx,ct,cs,cia = General['AtomPtrs'] |
---|
496 | SGData = General['SGData'] |
---|
497 | Atoms = Phases[phase]['Atoms'] |
---|
498 | AtLookup = G2mth.FillAtomLookUp(Phases[phase]['Atoms'],cia+8) |
---|
499 | cell = General['Cell'][1:7] |
---|
500 | Amat,Bmat = G2lat.cell2AB(cell) |
---|
501 | textureData = General['SH Texture'] |
---|
502 | |
---|
503 | SHkeys = list(textureData['SH Coeff'][1].keys()) |
---|
504 | SHCoef = G2mth.GetSHCoeff(pId,parmDict,SHkeys) |
---|
505 | shModels = ['cylindrical','none','shear - 2/m','rolling - mmm'] |
---|
506 | SamSym = dict(zip(shModels,['0','-1','2/m','mmm'])) |
---|
507 | sam = SamSym[textureData['Model']] |
---|
508 | phaseRest = restraintDict.get(phase,{}) |
---|
509 | names = {'Bond':'Bonds','Angle':'Angles','Plane':'Planes', |
---|
510 | 'Chiral':'Volumes','Torsion':'Torsions','Rama':'Ramas', |
---|
511 | 'ChemComp':'Sites','Texture':'HKLs'} |
---|
512 | lasthkl = np.array([0,0,0]) |
---|
513 | for ip,pName in enumerate(pNames): # loop over restraints |
---|
514 | pnames = pName.split(':') |
---|
515 | if pId == int(pnames[0]): |
---|
516 | name = pnames[1] |
---|
517 | if 'PWL' in pName: |
---|
518 | pDerv[varyList.index(pName)][ip] += 1. |
---|
519 | continue |
---|
520 | elif 'SH-' in pName: |
---|
521 | continue |
---|
522 | Id = int(pnames[2]) |
---|
523 | itemRest = phaseRest[name] |
---|
524 | if name in ['Bond','Angle','Plane','Chiral']: |
---|
525 | indx,ops,obs,esd = itemRest[names[name]][Id] |
---|
526 | dNames = [] |
---|
527 | for ind in indx: |
---|
528 | dNames += [str(pId)+'::dA'+Xname+':'+str(AtLookup[ind]) for Xname in ['x','y','z']] |
---|
529 | XYZ = np.array(G2mth.GetAtomCoordsByID(pId,parmDict,AtLookup,indx)) |
---|
530 | if name == 'Bond': |
---|
531 | deriv = G2mth.getRestDeriv(G2mth.getRestDist,XYZ,Amat,ops,SGData) |
---|
532 | elif name == 'Angle': |
---|
533 | deriv = G2mth.getRestDeriv(G2mth.getRestAngle,XYZ,Amat,ops,SGData) |
---|
534 | elif name == 'Plane': |
---|
535 | deriv = G2mth.getRestDeriv(G2mth.getRestPlane,XYZ,Amat,ops,SGData) |
---|
536 | elif name == 'Chiral': |
---|
537 | deriv = G2mth.getRestDeriv(G2mth.getRestChiral,XYZ,Amat,ops,SGData) |
---|
538 | elif name in ['Torsion','Rama']: |
---|
539 | coffDict = itemRest['Coeff'] |
---|
540 | indx,ops,cofName,esd = itemRest[names[name]][Id] |
---|
541 | dNames = [] |
---|
542 | for ind in indx: |
---|
543 | dNames += [str(pId)+'::dA'+Xname+':'+str(AtLookup[ind]) for Xname in ['x','y','z']] |
---|
544 | XYZ = np.array(G2mth.GetAtomCoordsByID(pId,parmDict,AtLookup,indx)) |
---|
545 | if name == 'Torsion': |
---|
546 | deriv = G2mth.getTorsionDeriv(XYZ,Amat,coffDict[cofName]) |
---|
547 | else: |
---|
548 | deriv = G2mth.getRamaDeriv(XYZ,Amat,coffDict[cofName]) |
---|
549 | elif name == 'ChemComp': |
---|
550 | indx,factors,obs,esd = itemRest[names[name]][Id] |
---|
551 | dNames = [] |
---|
552 | for ind in indx: |
---|
553 | dNames += [str(pId)+'::Afrac:'+str(AtLookup[ind])] |
---|
554 | mul = np.array(G2mth.GetAtomItemsById(Atoms,AtLookup,indx,cs+1)) |
---|
555 | deriv = mul*factors |
---|
556 | elif 'Texture' in name: |
---|
557 | deriv = [] |
---|
558 | dNames = [] |
---|
559 | hkl,grid,esd1,ifesd2,esd2 = itemRest[names[name]][Id] |
---|
560 | hkl = np.array(hkl) |
---|
561 | if np.any(lasthkl-hkl): |
---|
562 | phi,beta = G2lat.CrsAng(np.array(hkl),cell,SGData) |
---|
563 | ODFln = G2lat.Flnh(False,SHCoef,phi,beta,SGData) |
---|
564 | lasthkl = copy.copy(hkl) |
---|
565 | if 'unit' in name: |
---|
566 | pass |
---|
567 | else: |
---|
568 | gam = float(pnames[3]) |
---|
569 | psi = float(pnames[4]) |
---|
570 | for SHname in ODFln: |
---|
571 | l,m,n = eval(SHname[1:]) |
---|
572 | Ksl = G2lat.GetKsl(l,m,sam,psi,gam)[0] |
---|
573 | dNames += [str(pId)+'::'+SHname] |
---|
574 | deriv.append(-ODFln[SHname][0]*Ksl/SHCoef[SHname]) |
---|
575 | elif name == 'General': |
---|
576 | deriv = [] |
---|
577 | dNames = [] |
---|
578 | eq,obs,esd = itemRest[name][Id] |
---|
579 | calcobj = G2obj.ExpressionCalcObj(eq) |
---|
580 | parmlist = list(eq.assgnVars.values()) # parameters used in this expression |
---|
581 | for parm in parmlist: # expand list if any parms are determined by constraints |
---|
582 | if parm in G2mv.dependentVars: |
---|
583 | parmlist += G2mv.independentVars |
---|
584 | break |
---|
585 | for ind,var in enumerate(varyList): |
---|
586 | drv = 0 |
---|
587 | if var in parmlist: |
---|
588 | step = stepDict.get(var,1e-5) |
---|
589 | calc = [] |
---|
590 | # apply step to parameter |
---|
591 | oneparm = True |
---|
592 | for s in -step,2*step: |
---|
593 | parmDict[var] += s |
---|
594 | # extend shift if needed to other parameters |
---|
595 | if var in G2mv.independentVars: |
---|
596 | G2mv.Dict2Map(parmDict,[]) |
---|
597 | oneparm = False |
---|
598 | elif var in G2mv.dependentVars: |
---|
599 | G2mv.Map2Dict(parmDict,[]) |
---|
600 | oneparm = False |
---|
601 | if 'RB' in var: |
---|
602 | ApplyRBModels(parmDict,Phases,rigidbodyDict) |
---|
603 | # test |
---|
604 | oneparm = False |
---|
605 | calcobj.SetupCalc(parmDict) |
---|
606 | calc.append(calcobj.EvalExpression()) |
---|
607 | drv = (calc[1]-calc[0])*.5/step |
---|
608 | # restore the dict |
---|
609 | if oneparm: |
---|
610 | parmDict[var] = parmDict0[var] |
---|
611 | else: |
---|
612 | parmDict = parmDict0.copy() |
---|
613 | else: |
---|
614 | drv = 0 |
---|
615 | pDerv[ind][ip] = drv |
---|
616 | # Add derivatives into matrix, if needed |
---|
617 | for dName,drv in zip(dNames,deriv): |
---|
618 | try: |
---|
619 | ind = varyList.index(dName) |
---|
620 | pDerv[ind][ip] += drv |
---|
621 | except ValueError: |
---|
622 | pass |
---|
623 | |
---|
624 | lasthkl = np.array([0,0,0]) |
---|
625 | for ip,pName in enumerate(pNames): |
---|
626 | deriv = [] |
---|
627 | dNames = [] |
---|
628 | pnames = pName.split(':') |
---|
629 | if 'SH-' in pName and pId == int(pnames[0]): |
---|
630 | hId = int(pnames[1]) |
---|
631 | phfx = '%d:%d:'%(pId,hId) |
---|
632 | psi = float(pnames[4]) |
---|
633 | HKLs = calcControls[phfx+'SHhkl'] |
---|
634 | SHnames = calcControls[phfx+'SHnames'] |
---|
635 | SHcof = dict(zip(SHnames,[parmDict[phfx+cof] for cof in SHnames])) |
---|
636 | hkl = np.array(HKLs[int(pnames[3])]) |
---|
637 | if np.any(lasthkl-hkl): |
---|
638 | phi,beta = G2lat.CrsAng(np.array(hkl),cell,SGData) |
---|
639 | SH3Coef = {} |
---|
640 | for item in SHcof: |
---|
641 | L,N = eval(item.strip('C')) |
---|
642 | SH3Coef['C%d,0,%d'%(L,N)] = SHcof[item] |
---|
643 | ODFln = G2lat.Flnh(False,SH3Coef,phi,beta,SGData) |
---|
644 | lasthkl = copy.copy(hkl) |
---|
645 | for SHname in SHnames: |
---|
646 | l,n = eval(SHname[1:]) |
---|
647 | SH3name = 'C%d,0,%d'%(l,n) |
---|
648 | Ksl = G2lat.GetKsl(l,0,'0',psi,0.0)[0] |
---|
649 | dNames += [phfx+SHname] |
---|
650 | deriv.append(ODFln[SH3name][0]*Ksl/SHcof[SHname]) |
---|
651 | for dName,drv in zip(dNames,deriv): |
---|
652 | try: |
---|
653 | ind = varyList.index(dName) |
---|
654 | pDerv[ind][ip] += drv |
---|
655 | except ValueError: |
---|
656 | pass |
---|
657 | return pDerv |
---|
658 | |
---|
659 | ################################################################################ |
---|
660 | ##### Function & derivative calculations |
---|
661 | ################################################################################ |
---|
662 | |
---|
663 | def GetAtomFXU(pfx,calcControls,parmDict): |
---|
664 | 'Needs a doc string' |
---|
665 | Natoms = calcControls['Natoms'][pfx] |
---|
666 | Tdata = Natoms*[' ',] |
---|
667 | Mdata = np.zeros(Natoms) |
---|
668 | IAdata = Natoms*[' ',] |
---|
669 | Fdata = np.zeros(Natoms) |
---|
670 | Xdata = np.zeros((3,Natoms)) |
---|
671 | dXdata = np.zeros((3,Natoms)) |
---|
672 | Uisodata = np.zeros(Natoms) |
---|
673 | Uijdata = np.zeros((6,Natoms)) |
---|
674 | Gdata = np.zeros((3,Natoms)) |
---|
675 | keys = {'Atype:':Tdata,'Amul:':Mdata,'Afrac:':Fdata,'AI/A:':IAdata, |
---|
676 | 'dAx:':dXdata[0],'dAy:':dXdata[1],'dAz:':dXdata[2], |
---|
677 | 'Ax:':Xdata[0],'Ay:':Xdata[1],'Az:':Xdata[2],'AUiso:':Uisodata, |
---|
678 | 'AU11:':Uijdata[0],'AU22:':Uijdata[1],'AU33:':Uijdata[2], |
---|
679 | 'AU12:':Uijdata[3],'AU13:':Uijdata[4],'AU23:':Uijdata[5], |
---|
680 | 'AMx:':Gdata[0],'AMy:':Gdata[1],'AMz:':Gdata[2],} |
---|
681 | for iatm in range(Natoms): |
---|
682 | for key in keys: |
---|
683 | parm = pfx+key+str(iatm) |
---|
684 | if parm in parmDict: |
---|
685 | keys[key][iatm] = parmDict[parm] |
---|
686 | Fdata = np.where(Fdata,Fdata,1.e-8) #avoid divide by zero in derivative calc. |
---|
687 | Gdata = np.where(Gdata,Gdata,1.e-8) #avoid divide by zero in derivative calc. |
---|
688 | |
---|
689 | return Tdata,Mdata,Fdata,Xdata,dXdata,IAdata,Uisodata,Uijdata,Gdata |
---|
690 | |
---|
691 | def GetAtomSSFXU(pfx,calcControls,parmDict): |
---|
692 | 'Needs a doc string' |
---|
693 | Natoms = calcControls['Natoms'][pfx] |
---|
694 | maxSSwave = calcControls['maxSSwave'][pfx] |
---|
695 | Nwave = {'F':maxSSwave['Sfrac'],'X':maxSSwave['Spos'],'Y':maxSSwave['Spos'],'Z':maxSSwave['Spos'], |
---|
696 | 'U':maxSSwave['Sadp'],'M':maxSSwave['Smag'],'T':maxSSwave['Spos']} |
---|
697 | XSSdata = np.zeros((6,maxSSwave['Spos'],Natoms)) |
---|
698 | FSSdata = np.zeros((2,maxSSwave['Sfrac'],Natoms)) |
---|
699 | USSdata = np.zeros((12,maxSSwave['Sadp'],Natoms)) |
---|
700 | MSSdata = np.zeros((6,maxSSwave['Smag'],Natoms)) |
---|
701 | waveTypes = [] |
---|
702 | keys = {'Fsin:':FSSdata[0],'Fcos:':FSSdata[1],'Fzero:':FSSdata[0],'Fwid:':FSSdata[1], |
---|
703 | 'Tmin:':XSSdata[0],'Tmax:':XSSdata[1],'Xmax:':XSSdata[2],'Ymax:':XSSdata[3],'Zmax:':XSSdata[4], |
---|
704 | 'Xsin:':XSSdata[0],'Ysin:':XSSdata[1],'Zsin:':XSSdata[2],'Xcos:':XSSdata[3],'Ycos:':XSSdata[4],'Zcos:':XSSdata[5], |
---|
705 | 'U11sin:':USSdata[0],'U22sin:':USSdata[1],'U33sin:':USSdata[2],'U12sin:':USSdata[3],'U13sin:':USSdata[4],'U23sin:':USSdata[5], |
---|
706 | 'U11cos:':USSdata[6],'U22cos:':USSdata[7],'U33cos:':USSdata[8],'U12cos:':USSdata[9],'U13cos:':USSdata[10],'U23cos:':USSdata[11], |
---|
707 | 'MXsin:':MSSdata[0],'MYsin:':MSSdata[1],'MZsin:':MSSdata[2],'MXcos:':MSSdata[3],'MYcos:':MSSdata[4],'MZcos:':MSSdata[5]} |
---|
708 | for iatm in range(Natoms): |
---|
709 | wavetype = [parmDict.get(pfx+kind+'waveType:'+str(iatm),'') for kind in ['F','P','A','M']] |
---|
710 | waveTypes.append(wavetype) |
---|
711 | for key in keys: |
---|
712 | for m in range(Nwave[key[0]]): |
---|
713 | parm = pfx+key+str(iatm)+':%d'%(m) |
---|
714 | if parm in parmDict: |
---|
715 | keys[key][m][iatm] = parmDict[parm] |
---|
716 | return waveTypes,FSSdata,XSSdata,USSdata,MSSdata |
---|
717 | |
---|
718 | def StructureFactor2(refDict,G,hfx,pfx,SGData,calcControls,parmDict): |
---|
719 | ''' Compute structure factors for all h,k,l for phase |
---|
720 | puts the result, F^2, in each ref[8] in refList |
---|
721 | operates on blocks of 100 reflections for speed |
---|
722 | input: |
---|
723 | |
---|
724 | :param dict refDict: where |
---|
725 | 'RefList' list where each ref = h,k,l,it,d,... |
---|
726 | 'FF' dict of form factors - filed in below |
---|
727 | :param np.array G: reciprocal metric tensor |
---|
728 | :param str pfx: phase id string |
---|
729 | :param dict SGData: space group info. dictionary output from SpcGroup |
---|
730 | :param dict calcControls: |
---|
731 | :param dict ParmDict: |
---|
732 | |
---|
733 | ''' |
---|
734 | phfx = pfx.split(':')[0]+hfx |
---|
735 | ast = np.sqrt(np.diag(G)) |
---|
736 | Mast = twopisq*np.multiply.outer(ast,ast) |
---|
737 | SGMT = np.array([ops[0].T for ops in SGData['SGOps']]) |
---|
738 | SGT = np.array([ops[1] for ops in SGData['SGOps']]) |
---|
739 | FFtables = calcControls['FFtables'] |
---|
740 | BLtables = calcControls['BLtables'] |
---|
741 | Amat,Bmat = G2lat.Gmat2AB(G) |
---|
742 | Flack = 1.0 |
---|
743 | if not SGData['SGInv'] and 'S' in calcControls[hfx+'histType'] and phfx+'Flack' in parmDict: |
---|
744 | Flack = 1.-2.*parmDict[phfx+'Flack'] |
---|
745 | TwinLaw = np.array([[[1,0,0],[0,1,0],[0,0,1]],]) |
---|
746 | TwDict = refDict.get('TwDict',{}) |
---|
747 | if 'S' in calcControls[hfx+'histType']: |
---|
748 | NTL = calcControls[phfx+'NTL'] |
---|
749 | NM = calcControls[phfx+'TwinNMN']+1 |
---|
750 | TwinLaw = calcControls[phfx+'TwinLaw'] |
---|
751 | TwinFr = np.array([parmDict[phfx+'TwinFr:'+str(i)] for i in range(len(TwinLaw))]) |
---|
752 | TwinInv = list(np.where(calcControls[phfx+'TwinInv'],-1,1)) |
---|
753 | Tdata,Mdata,Fdata,Xdata,dXdata,IAdata,Uisodata,Uijdata,Gdata = \ |
---|
754 | GetAtomFXU(pfx,calcControls,parmDict) |
---|
755 | if not Xdata.size: #no atoms in phase! |
---|
756 | return |
---|
757 | if 'NC' in calcControls[hfx+'histType']: |
---|
758 | FP,FPP = G2el.BlenResCW(Tdata,BLtables,parmDict[hfx+'Lam']) |
---|
759 | elif 'X' in calcControls[hfx+'histType']: |
---|
760 | FP = np.array([FFtables[El][hfx+'FP'] for El in Tdata]) |
---|
761 | FPP = np.array([FFtables[El][hfx+'FPP'] for El in Tdata]) |
---|
762 | Uij = np.array(G2lat.U6toUij(Uijdata)) |
---|
763 | bij = Mast*Uij.T |
---|
764 | blkSize = 100 #no. of reflections in a block - size seems optimal |
---|
765 | nRef = refDict['RefList'].shape[0] |
---|
766 | SQ = 1./(2.*refDict['RefList'].T[4])**2 |
---|
767 | if 'N' in calcControls[hfx+'histType']: |
---|
768 | dat = G2el.getBLvalues(BLtables) |
---|
769 | refDict['FF']['El'] = list(dat.keys()) |
---|
770 | refDict['FF']['FF'] = np.ones((nRef,len(dat)))*list(dat.values()) |
---|
771 | else: #'X' |
---|
772 | dat = G2el.getFFvalues(FFtables,0.) |
---|
773 | refDict['FF']['El'] = list(dat.keys()) |
---|
774 | refDict['FF']['FF'] = np.zeros((nRef,len(dat))) |
---|
775 | for iel,El in enumerate(refDict['FF']['El']): |
---|
776 | refDict['FF']['FF'].T[iel] = G2el.ScatFac(FFtables[El],SQ) |
---|
777 | #reflection processing begins here - big arrays! |
---|
778 | iBeg = 0 |
---|
779 | while iBeg < nRef: |
---|
780 | iFin = min(iBeg+blkSize,nRef) |
---|
781 | refl = refDict['RefList'][iBeg:iFin] #array(blkSize,nItems) |
---|
782 | H = refl.T[:3] #array(blkSize,3) |
---|
783 | H = np.squeeze(np.inner(H.T,TwinLaw)) #maybe array(blkSize,nTwins,3) or (blkSize,3) |
---|
784 | TwMask = np.any(H,axis=-1) |
---|
785 | if TwinLaw.shape[0] > 1 and TwDict: #need np.inner(TwinLaw[?],TwDict[iref][i])*TwinInv[i] |
---|
786 | for ir in range(blkSize): |
---|
787 | iref = ir+iBeg |
---|
788 | if iref in TwDict: |
---|
789 | for i in TwDict[iref]: |
---|
790 | for n in range(NTL): |
---|
791 | H[ir][i+n*NM] = np.inner(TwinLaw[n*NM],np.array(TwDict[iref][i])*TwinInv[i+n*NM]) |
---|
792 | TwMask = np.any(H,axis=-1) |
---|
793 | SQ = 1./(2.*refl.T[4])**2 #array(blkSize) |
---|
794 | SQfactor = 4.0*SQ*twopisq #ditto prev. |
---|
795 | if 'T' in calcControls[hfx+'histType']: |
---|
796 | if 'P' in calcControls[hfx+'histType']: |
---|
797 | FP,FPP = G2el.BlenResTOF(Tdata,BLtables,refl.T[14]) |
---|
798 | else: |
---|
799 | FP,FPP = G2el.BlenResTOF(Tdata,BLtables,refl.T[12]) |
---|
800 | FP = np.repeat(FP.T,len(SGT)*len(TwinLaw),axis=0) |
---|
801 | FPP = np.repeat(FPP.T,len(SGT)*len(TwinLaw),axis=0) |
---|
802 | Uniq = np.inner(H,SGMT) |
---|
803 | Phi = np.inner(H,SGT) |
---|
804 | phase = twopi*(np.inner(Uniq,(dXdata+Xdata).T).T+Phi.T).T |
---|
805 | sinp = np.sin(phase) |
---|
806 | cosp = np.cos(phase) |
---|
807 | biso = -SQfactor*Uisodata[:,nxs] |
---|
808 | Tiso = np.repeat(np.where(biso<1.,np.exp(biso),1.0),len(SGT)*len(TwinLaw),axis=1).T |
---|
809 | HbH = -np.sum(Uniq.T*np.swapaxes(np.inner(bij,Uniq),2,-1),axis=1) |
---|
810 | Tuij = np.where(HbH<1.,np.exp(HbH),1.0).T |
---|
811 | Tcorr = np.reshape(Tiso,Tuij.shape)*Tuij*Mdata*Fdata/len(SGMT) |
---|
812 | Tindx = np.array([refDict['FF']['El'].index(El) for El in Tdata]) |
---|
813 | FF = np.repeat(refDict['FF']['FF'][iBeg:iFin].T[Tindx].T,len(SGT)*len(TwinLaw),axis=0) |
---|
814 | Bab = np.repeat(parmDict[phfx+'BabA']*np.exp(-parmDict[phfx+'BabU']*SQfactor),len(SGT)*len(TwinLaw)) |
---|
815 | if 'T' in calcControls[hfx+'histType']: #fa,fb are 2 X blkSize X nTwin X nOps x nAtoms |
---|
816 | fa = np.array([np.reshape(((FF+FP).T-Bab).T,cosp.shape)*cosp*Tcorr,-np.reshape(Flack*FPP,sinp.shape)*sinp*Tcorr]) |
---|
817 | fb = np.array([np.reshape(((FF+FP).T-Bab).T,sinp.shape)*sinp*Tcorr,np.reshape(Flack*FPP,cosp.shape)*cosp*Tcorr]) |
---|
818 | else: |
---|
819 | fa = np.array([np.reshape(((FF+FP).T-Bab).T,cosp.shape)*cosp*Tcorr,-Flack*FPP*sinp*Tcorr]) |
---|
820 | fb = np.array([np.reshape(((FF+FP).T-Bab).T,sinp.shape)*sinp*Tcorr,Flack*FPP*cosp*Tcorr]) |
---|
821 | fas = np.sum(np.sum(fa,axis=-1),axis=-1) #real 2 x blkSize x nTwin; sum over atoms & uniq hkl |
---|
822 | fbs = np.sum(np.sum(fb,axis=-1),axis=-1) #imag |
---|
823 | if SGData['SGInv']: #centrosymmetric; B=0 |
---|
824 | fbs[0] *= 0. |
---|
825 | fas[1] *= 0. |
---|
826 | if 'P' in calcControls[hfx+'histType']: #PXC, PNC & PNT: F^2 = A[0]^2 + A[1]^2 + B[0]^2 + B[1]^2 |
---|
827 | refl.T[9] = np.sum(fas**2,axis=0)+np.sum(fbs**2,axis=0) #add fam**2 & fbm**2 here |
---|
828 | refl.T[10] = atan2d(fbs[0],fas[0]) #ignore f' & f" |
---|
829 | else: #HKLF: F^2 = (A[0]+A[1])^2 + (B[0]+B[1])^2 |
---|
830 | if len(TwinLaw) > 1: |
---|
831 | refl.T[9] = np.sum(fas[:,:,0],axis=0)**2+np.sum(fbs[:,:,0],axis=0)**2 #FcT from primary twin element |
---|
832 | refl.T[7] = np.sum(TwinFr*TwMask*np.sum(fas,axis=0)**2,axis=-1)+ \ |
---|
833 | np.sum(TwinFr*TwMask*np.sum(fbs,axis=0)**2,axis=-1) #Fc sum over twins |
---|
834 | refl.T[10] = atan2d(fbs[0].T[0],fas[0].T[0]) #ignore f' & f" & use primary twin |
---|
835 | else: # checked correct!! |
---|
836 | refl.T[9] = np.sum(fas,axis=0)**2+np.sum(fbs,axis=0)**2 |
---|
837 | refl.T[7] = np.copy(refl.T[9]) |
---|
838 | refl.T[10] = atan2d(fbs[0],fas[0]) #ignore f' & f" |
---|
839 | # refl.T[10] = atan2d(np.sum(fbs,axis=0),np.sum(fas,axis=0)) #include f' & f" |
---|
840 | iBeg += blkSize |
---|
841 | # print 'sf time %.4f, nref %d, blkSize %d'%(time.time()-time0,nRef,blkSize) |
---|
842 | |
---|
843 | def StructureFactorDerv2(refDict,G,hfx,pfx,SGData,calcControls,parmDict): |
---|
844 | '''Compute structure factor derivatives on blocks of reflections - for powders/nontwins only |
---|
845 | faster than StructureFactorDerv - correct for powders/nontwins!! |
---|
846 | input: |
---|
847 | |
---|
848 | :param dict refDict: where |
---|
849 | 'RefList' list where each ref = h,k,l,it,d,... |
---|
850 | 'FF' dict of form factors - filled in below |
---|
851 | :param np.array G: reciprocal metric tensor |
---|
852 | :param str hfx: histogram id string |
---|
853 | :param str pfx: phase id string |
---|
854 | :param dict SGData: space group info. dictionary output from SpcGroup |
---|
855 | :param dict calcControls: |
---|
856 | :param dict parmDict: |
---|
857 | |
---|
858 | :returns: dict dFdvDict: dictionary of derivatives |
---|
859 | ''' |
---|
860 | phfx = pfx.split(':')[0]+hfx |
---|
861 | ast = np.sqrt(np.diag(G)) |
---|
862 | Mast = twopisq*np.multiply.outer(ast,ast) |
---|
863 | SGMT = np.array([ops[0] for ops in SGData['SGOps']]) |
---|
864 | SGT = np.array([ops[1] for ops in SGData['SGOps']]) |
---|
865 | FFtables = calcControls['FFtables'] |
---|
866 | BLtables = calcControls['BLtables'] |
---|
867 | Amat,Bmat = G2lat.Gmat2AB(G) |
---|
868 | nRef = len(refDict['RefList']) |
---|
869 | Tdata,Mdata,Fdata,Xdata,dXdata,IAdata,Uisodata,Uijdata,Gdata = \ |
---|
870 | GetAtomFXU(pfx,calcControls,parmDict) |
---|
871 | if not Xdata.size: #no atoms in phase! |
---|
872 | return {} |
---|
873 | mSize = len(Mdata) |
---|
874 | FF = np.zeros(len(Tdata)) |
---|
875 | if 'NC' in calcControls[hfx+'histType']: |
---|
876 | FP,FPP = G2el.BlenResCW(Tdata,BLtables,parmDict[hfx+'Lam']) |
---|
877 | elif 'X' in calcControls[hfx+'histType']: |
---|
878 | FP = np.array([FFtables[El][hfx+'FP'] for El in Tdata]) |
---|
879 | FPP = np.array([FFtables[El][hfx+'FPP'] for El in Tdata]) |
---|
880 | Uij = np.array(G2lat.U6toUij(Uijdata)) |
---|
881 | bij = Mast*Uij.T |
---|
882 | dFdvDict = {} |
---|
883 | dFdfr = np.zeros((nRef,mSize)) |
---|
884 | dFdx = np.zeros((nRef,mSize,3)) |
---|
885 | dFdui = np.zeros((nRef,mSize)) |
---|
886 | dFdua = np.zeros((nRef,mSize,6)) |
---|
887 | dFdbab = np.zeros((nRef,2)) |
---|
888 | dFdfl = np.zeros((nRef)) |
---|
889 | Flack = 1.0 |
---|
890 | if not SGData['SGInv'] and 'S' in calcControls[hfx+'histType'] and phfx+'Flack' in parmDict: |
---|
891 | Flack = 1.-2.*parmDict[phfx+'Flack'] |
---|
892 | # time0 = time.time() |
---|
893 | #reflection processing begins here - big arrays! |
---|
894 | iBeg = 0 |
---|
895 | blkSize = 32 #no. of reflections in a block - optimized for speed |
---|
896 | while iBeg < nRef: |
---|
897 | iFin = min(iBeg+blkSize,nRef) |
---|
898 | refl = refDict['RefList'][iBeg:iFin] #array(blkSize,nItems) |
---|
899 | H = refl.T[:3].T |
---|
900 | SQ = 1./(2.*refl.T[4])**2 # or (sin(theta)/lambda)**2 |
---|
901 | SQfactor = 8.0*SQ*np.pi**2 |
---|
902 | if 'T' in calcControls[hfx+'histType']: |
---|
903 | if 'P' in calcControls[hfx+'histType']: |
---|
904 | FP,FPP = G2el.BlenResTOF(Tdata,BLtables,refl.T[14]) |
---|
905 | else: |
---|
906 | FP,FPP = G2el.BlenResTOF(Tdata,BLtables,refl.T[12]) |
---|
907 | FP = np.repeat(FP.T,len(SGT),axis=0) |
---|
908 | FPP = np.repeat(FPP.T,len(SGT),axis=0) |
---|
909 | dBabdA = np.exp(-parmDict[phfx+'BabU']*SQfactor) |
---|
910 | Bab = np.repeat(parmDict[phfx+'BabA']*np.exp(-parmDict[phfx+'BabU']*SQfactor),len(SGT)) |
---|
911 | Tindx = np.array([refDict['FF']['El'].index(El) for El in Tdata]) |
---|
912 | FF = np.repeat(refDict['FF']['FF'][iBeg:iFin].T[Tindx].T,len(SGT),axis=0) |
---|
913 | Uniq = np.inner(H,SGMT) # array(nSGOp,3) |
---|
914 | Phi = np.inner(H,SGT) |
---|
915 | phase = twopi*(np.inner(Uniq,(dXdata+Xdata).T).T+Phi.T).T |
---|
916 | sinp = np.sin(phase) #refBlk x nOps x nAtoms |
---|
917 | cosp = np.cos(phase) |
---|
918 | occ = Mdata*Fdata/len(SGT) |
---|
919 | biso = -SQfactor*Uisodata[:,nxs] |
---|
920 | Tiso = np.repeat(np.where(biso<1.,np.exp(biso),1.0),len(SGT),axis=1).T |
---|
921 | HbH = -np.sum(Uniq.T*np.swapaxes(np.inner(bij,Uniq),2,-1),axis=1) |
---|
922 | Tuij = np.where(HbH<1.,np.exp(HbH),1.0).T |
---|
923 | Tcorr = np.reshape(Tiso,Tuij.shape)*Tuij*Mdata*Fdata/len(SGMT) |
---|
924 | Hij = np.array([Mast*np.multiply.outer(U,U) for U in np.reshape(Uniq,(-1,3))]) #Nref*Nops,3,3 |
---|
925 | Hij = np.reshape(np.array([G2lat.UijtoU6(uij) for uij in Hij]),(-1,len(SGT),6)) #Nref,Nops,6 |
---|
926 | fot = np.reshape(((FF+FP).T-Bab).T,cosp.shape)*Tcorr |
---|
927 | if len(FPP.shape) > 1: |
---|
928 | fotp = np.reshape(FPP,cosp.shape)*Tcorr |
---|
929 | else: |
---|
930 | fotp = FPP*Tcorr |
---|
931 | if 'T' in calcControls[hfx+'histType']: |
---|
932 | fa = np.array([fot*cosp,-np.reshape(Flack*FPP,sinp.shape)*sinp*Tcorr]) |
---|
933 | fb = np.array([fot*sinp,np.reshape(Flack*FPP,cosp.shape)*cosp*Tcorr]) |
---|
934 | else: |
---|
935 | fa = np.array([fot*cosp,-Flack*FPP*sinp*Tcorr]) |
---|
936 | fb = np.array([fot*sinp,Flack*FPP*cosp*Tcorr]) |
---|
937 | fas = np.sum(np.sum(fa,axis=-1),axis=-1) #real sum over atoms & unique hkl array(2,refBlk,nTwins) |
---|
938 | fbs = np.sum(np.sum(fb,axis=-1),axis=-1) #imag sum over atoms & uniq hkl |
---|
939 | fax = np.array([-fot*sinp,-fotp*cosp]) #positions array(2,refBlk,nEqv,nAtoms) |
---|
940 | fbx = np.array([fot*cosp,-fotp*sinp]) |
---|
941 | #sum below is over Uniq |
---|
942 | dfadfr = np.sum(fa/occ,axis=-2) #array(2,refBlk,nAtom) Fdata != 0 avoids /0. problem |
---|
943 | dfadba = np.sum(-cosp*Tcorr,axis=-2) #array(refBlk,nAtom) |
---|
944 | dfadx = np.sum(twopi*Uniq[nxs,:,nxs,:,:]*np.swapaxes(fax,-2,-1)[:,:,:,:,nxs],axis=-2) |
---|
945 | dfadui = np.sum(-SQfactor[nxs,:,nxs,nxs]*fa,axis=-2) #array(Ops,refBlk,nAtoms) |
---|
946 | dfadua = np.sum(-Hij[nxs,:,nxs,:,:]*np.swapaxes(fa,-2,-1)[:,:,:,:,nxs],axis=-2) |
---|
947 | # array(2,refBlk,nAtom,3) & array(2,refBlk,nAtom,6) |
---|
948 | if not SGData['SGInv']: |
---|
949 | dfbdfr = np.sum(fb/occ,axis=-2) #Fdata != 0 avoids /0. problem |
---|
950 | dfbdba = np.sum(-sinp*Tcorr,axis=-2) |
---|
951 | dfadfl = np.sum(np.sum(-fotp*sinp,axis=-1),axis=-1) |
---|
952 | dfbdfl = np.sum(np.sum(fotp*cosp,axis=-1),axis=-1) |
---|
953 | dfbdx = np.sum(twopi*Uniq[nxs,:,nxs,:,:]*np.swapaxes(fbx,-2,-1)[:,:,:,:,nxs],axis=-2) |
---|
954 | dfbdui = np.sum(-SQfactor[nxs,:,nxs,nxs]*fb,axis=-2) |
---|
955 | dfbdua = np.sum(-Hij[nxs,:,nxs,:,:]*np.swapaxes(fb,-2,-1)[:,:,:,:,nxs],axis=-2) |
---|
956 | else: |
---|
957 | dfbdfr = np.zeros_like(dfadfr) |
---|
958 | dfbdx = np.zeros_like(dfadx) |
---|
959 | dfbdui = np.zeros_like(dfadui) |
---|
960 | dfbdua = np.zeros_like(dfadua) |
---|
961 | dfbdba = np.zeros_like(dfadba) |
---|
962 | dfadfl = 0.0 |
---|
963 | dfbdfl = 0.0 |
---|
964 | #NB: the above have been checked against PA(1:10,1:2) in strfctr.for for Al2O3! |
---|
965 | SA = fas[0]+fas[1] |
---|
966 | SB = fbs[0]+fbs[1] |
---|
967 | if 'P' in calcControls[hfx+'histType']: #checked perfect for centro & noncentro |
---|
968 | dFdfr[iBeg:iFin] = 2.*np.sum(fas[:,:,nxs]*dfadfr+fbs[:,:,nxs]*dfbdfr,axis=0)*Mdata/len(SGMT) |
---|
969 | dFdx[iBeg:iFin] = 2.*np.sum(fas[:,:,nxs,nxs]*dfadx+fbs[:,:,nxs,nxs]*dfbdx,axis=0) |
---|
970 | dFdui[iBeg:iFin] = 2.*np.sum(fas[:,:,nxs]*dfadui+fbs[:,:,nxs]*dfbdui,axis=0) |
---|
971 | dFdua[iBeg:iFin] = 2.*np.sum(fas[:,:,nxs,nxs]*dfadua+fbs[:,:,nxs,nxs]*dfbdua,axis=0) |
---|
972 | else: |
---|
973 | dFdfr[iBeg:iFin] = (2.*SA[:,nxs]*(dfadfr[0]+dfadfr[1])+2.*SB[:,nxs]*(dfbdfr[0]+dfbdfr[1]))*Mdata/len(SGMT) |
---|
974 | dFdx[iBeg:iFin] = 2.*SA[:,nxs,nxs]*(dfadx[0]+dfadx[1])+2.*SB[:,nxs,nxs]*(dfbdx[0]+dfbdx[1]) |
---|
975 | dFdui[iBeg:iFin] = 2.*SA[:,nxs]*(dfadui[0]+dfadui[1])+2.*SB[:,nxs]*(dfbdui[0]+dfbdui[1]) |
---|
976 | dFdua[iBeg:iFin] = 2.*SA[:,nxs,nxs]*(dfadua[0]+dfadua[1])+2.*SB[:,nxs,nxs]*(dfbdua[0]+dfbdua[1]) |
---|
977 | dFdfl[iBeg:iFin] = -SA*dfadfl-SB*dfbdfl #array(nRef,) |
---|
978 | dFdbab[iBeg:iFin] = 2.*(fas[0,nxs]*np.array([np.sum(dfadba.T*dBabdA,axis=0),np.sum(-dfadba.T*parmDict[phfx+'BabA']*SQfactor*dBabdA,axis=0)])+ \ |
---|
979 | fbs[0,nxs]*np.array([np.sum(dfbdba.T*dBabdA,axis=0),np.sum(-dfbdba.T*parmDict[phfx+'BabA']*SQfactor*dBabdA,axis=0)])).T |
---|
980 | iBeg += blkSize |
---|
981 | # print 'derv time %.4f, nref %d, blkSize %d'%(time.time()-time0,nRef,blkSize) |
---|
982 | #loop over atoms - each dict entry is list of derivatives for all the reflections |
---|
983 | for i in range(len(Mdata)): |
---|
984 | dFdvDict[pfx+'Afrac:'+str(i)] = dFdfr.T[i] |
---|
985 | dFdvDict[pfx+'dAx:'+str(i)] = dFdx.T[0][i] |
---|
986 | dFdvDict[pfx+'dAy:'+str(i)] = dFdx.T[1][i] |
---|
987 | dFdvDict[pfx+'dAz:'+str(i)] = dFdx.T[2][i] |
---|
988 | dFdvDict[pfx+'AUiso:'+str(i)] = dFdui.T[i] |
---|
989 | dFdvDict[pfx+'AU11:'+str(i)] = dFdua.T[0][i] |
---|
990 | dFdvDict[pfx+'AU22:'+str(i)] = dFdua.T[1][i] |
---|
991 | dFdvDict[pfx+'AU33:'+str(i)] = dFdua.T[2][i] |
---|
992 | dFdvDict[pfx+'AU12:'+str(i)] = 2.*dFdua.T[3][i] |
---|
993 | dFdvDict[pfx+'AU13:'+str(i)] = 2.*dFdua.T[4][i] |
---|
994 | dFdvDict[pfx+'AU23:'+str(i)] = 2.*dFdua.T[5][i] |
---|
995 | dFdvDict[phfx+'Flack'] = 4.*dFdfl.T |
---|
996 | dFdvDict[phfx+'BabA'] = dFdbab.T[0] |
---|
997 | dFdvDict[phfx+'BabU'] = dFdbab.T[1] |
---|
998 | return dFdvDict |
---|
999 | |
---|
1000 | def MagStructureFactor2(refDict,G,hfx,pfx,SGData,calcControls,parmDict): |
---|
1001 | ''' Compute neutron magnetic structure factors for all h,k,l for phase |
---|
1002 | puts the result, F^2, in each ref[8] in refList |
---|
1003 | operates on blocks of 100 reflections for speed |
---|
1004 | input: |
---|
1005 | |
---|
1006 | :param dict refDict: where |
---|
1007 | 'RefList' list where each ref = h,k,l,it,d,... |
---|
1008 | 'FF' dict of form factors - filed in below |
---|
1009 | :param np.array G: reciprocal metric tensor |
---|
1010 | :param str pfx: phase id string |
---|
1011 | :param dict SGData: space group info. dictionary output from SpcGroup |
---|
1012 | :param dict calcControls: |
---|
1013 | :param dict ParmDict: |
---|
1014 | |
---|
1015 | :returns: copy of new refList - used in calculating numerical derivatives |
---|
1016 | |
---|
1017 | ''' |
---|
1018 | g = nl.inv(G) |
---|
1019 | ast = np.sqrt(np.diag(G)) |
---|
1020 | ainv = np.sqrt(np.diag(g)) |
---|
1021 | GS = G/np.outer(ast,ast) |
---|
1022 | Ginv = g/np.outer(ainv,ainv) |
---|
1023 | uAmat = G2lat.Gmat2AB(GS)[0] |
---|
1024 | Mast = twopisq*np.multiply.outer(ast,ast) |
---|
1025 | SGMT = np.array([ops[0].T for ops in SGData['SGOps']]) |
---|
1026 | SGT = np.array([ops[1] for ops in SGData['SGOps']]) |
---|
1027 | Ncen = len(SGData['SGCen']) |
---|
1028 | Nops = len(SGMT)*Ncen |
---|
1029 | if not SGData['SGFixed']: |
---|
1030 | Nops *= (1+SGData['SGInv']) |
---|
1031 | MFtables = calcControls['MFtables'] |
---|
1032 | Bmat = G2lat.Gmat2AB(G)[1] |
---|
1033 | TwinLaw = np.ones(1) |
---|
1034 | # TwinLaw = np.array([[[1,0,0],[0,1,0],[0,0,1]],]) |
---|
1035 | # TwDict = refDict.get('TwDict',{}) |
---|
1036 | # if 'S' in calcControls[hfx+'histType']: |
---|
1037 | # NTL = calcControls[phfx+'NTL'] |
---|
1038 | # NM = calcControls[phfx+'TwinNMN']+1 |
---|
1039 | # TwinLaw = calcControls[phfx+'TwinLaw'] |
---|
1040 | # TwinFr = np.array([parmDict[phfx+'TwinFr:'+str(i)] for i in range(len(TwinLaw))]) |
---|
1041 | # TwinInv = list(np.where(calcControls[phfx+'TwinInv'],-1,1)) |
---|
1042 | Tdata,Mdata,Fdata,Xdata,dXdata,IAdata,Uisodata,Uijdata,Gdata = \ |
---|
1043 | GetAtomFXU(pfx,calcControls,parmDict) |
---|
1044 | if not Xdata.size: #no atoms in phase! |
---|
1045 | return |
---|
1046 | Mag = np.array([np.sqrt(np.inner(mag,np.inner(mag,Ginv))) for mag in Gdata.T]) |
---|
1047 | Gdata = np.inner(Gdata.T,np.swapaxes(SGMT,1,2)).T #apply sym. ops. |
---|
1048 | if SGData['SGInv'] and not SGData['SGFixed']: |
---|
1049 | Gdata = np.hstack((Gdata,-Gdata)) #inversion if any |
---|
1050 | Gdata = np.hstack([Gdata for icen in range(Ncen)]) #dup over cell centering--> [Mxyz,nops,natms] |
---|
1051 | Gdata = SGData['MagMom'][nxs,:,nxs]*Gdata #flip vectors according to spin flip * det(opM) |
---|
1052 | Mag = np.tile(Mag[:,nxs],Nops).T #make Mag same length as Gdata |
---|
1053 | Kdata = np.inner(Gdata.T,uAmat).T #Cartesian unit vectors |
---|
1054 | Kmean = np.mean(np.sqrt(np.sum(Kdata**2,axis=0)),axis=0) |
---|
1055 | Kdata /= Kmean |
---|
1056 | Uij = np.array(G2lat.U6toUij(Uijdata)) |
---|
1057 | bij = Mast*Uij.T |
---|
1058 | blkSize = 100 #no. of reflections in a block - size seems optimal |
---|
1059 | nRef = refDict['RefList'].shape[0] |
---|
1060 | SQ = 1./(2.*refDict['RefList'].T[4])**2 |
---|
1061 | refDict['FF']['El'] = list(MFtables.keys()) |
---|
1062 | refDict['FF']['MF'] = np.zeros((nRef,len(MFtables))) |
---|
1063 | for iel,El in enumerate(refDict['FF']['El']): |
---|
1064 | refDict['FF']['MF'].T[iel] = G2el.MagScatFac(MFtables[El],SQ) |
---|
1065 | #reflection processing begins here - big arrays! |
---|
1066 | iBeg = 0 |
---|
1067 | while iBeg < nRef: |
---|
1068 | iFin = min(iBeg+blkSize,nRef) |
---|
1069 | refl = refDict['RefList'][iBeg:iFin] #array(blkSize,nItems) |
---|
1070 | H = refl.T[:3].T #array(blkSize,3) |
---|
1071 | # H = np.squeeze(np.inner(H.T,TwinLaw)) #maybe array(blkSize,nTwins,3) or (blkSize,3) |
---|
1072 | # TwMask = np.any(H,axis=-1) |
---|
1073 | # if TwinLaw.shape[0] > 1 and TwDict: #need np.inner(TwinLaw[?],TwDict[iref][i])*TwinInv[i] |
---|
1074 | # for ir in range(blkSize): |
---|
1075 | # iref = ir+iBeg |
---|
1076 | # if iref in TwDict: |
---|
1077 | # for i in TwDict[iref]: |
---|
1078 | # for n in range(NTL): |
---|
1079 | # H[ir][i+n*NM] = np.inner(TwinLaw[n*NM],np.array(TwDict[iref][i])*TwinInv[i+n*NM]) |
---|
1080 | # TwMask = np.any(H,axis=-1) |
---|
1081 | SQ = 1./(2.*refl.T[4])**2 #array(blkSize) |
---|
1082 | SQfactor = 4.0*SQ*twopisq #ditto prev. |
---|
1083 | Uniq = np.inner(H,SGMT) |
---|
1084 | Phi = np.inner(H,SGT) |
---|
1085 | phase = twopi*(np.inner(Uniq,(dXdata+Xdata).T).T+Phi.T).T |
---|
1086 | biso = -SQfactor*Uisodata[:,nxs] |
---|
1087 | Tiso = np.repeat(np.where(biso<1.,np.exp(biso),1.0),len(SGT)*len(TwinLaw),axis=1).T |
---|
1088 | HbH = -np.sum(Uniq.T*np.swapaxes(np.inner(bij,Uniq),2,-1),axis=1) |
---|
1089 | Tuij = np.where(HbH<1.,np.exp(HbH),1.0).T |
---|
1090 | Tindx = np.array([refDict['FF']['El'].index(El) for El in Tdata]) |
---|
1091 | MF = refDict['FF']['MF'][iBeg:iFin].T[Tindx].T #Nref,Natm |
---|
1092 | TMcorr = 0.539*(np.reshape(Tiso,Tuij.shape)*Tuij)[:,0,:]*Fdata*Mdata*MF/(2*Nops) #Nref,Natm |
---|
1093 | if SGData['SGInv']: |
---|
1094 | if not SGData['SGFixed']: |
---|
1095 | mphase = np.hstack((phase,-phase)) #OK |
---|
1096 | else: |
---|
1097 | mphase = phase |
---|
1098 | else: |
---|
1099 | mphase = phase # |
---|
1100 | mphase = np.array([mphase+twopi*np.inner(cen,H)[:,nxs,nxs] for cen in SGData['SGCen']]) |
---|
1101 | mphase = np.concatenate(mphase,axis=1) #Nref,full Nop,Natm |
---|
1102 | sinm = np.sin(mphase) #ditto - match magstrfc.for |
---|
1103 | cosm = np.cos(mphase) #ditto |
---|
1104 | HM = np.inner(Bmat.T,H) #put into cartesian space |
---|
1105 | HM = HM/np.sqrt(np.sum(HM**2,axis=0)) #Kdata = MAGS & HM = UVEC in magstrfc.for both OK |
---|
1106 | eDotK = np.sum(HM[:,:,nxs,nxs]*Kdata[:,nxs,:,:],axis=0) |
---|
1107 | Q = HM[:,:,nxs,nxs]*eDotK[nxs,:,:,:]-Kdata[:,nxs,:,:] #xyz,Nref,Nop,Natm = BPM in magstrfc.for OK |
---|
1108 | fam = Q*TMcorr[nxs,:,nxs,:]*cosm[nxs,:,:,:]*Mag[nxs,nxs,:,:] #ditto |
---|
1109 | fbm = Q*TMcorr[nxs,:,nxs,:]*sinm[nxs,:,:,:]*Mag[nxs,nxs,:,:] #ditto |
---|
1110 | fams = np.sum(np.sum(fam,axis=-1),axis=-1) #Mxyz,Nref Sum(sum(fam,atoms),ops) |
---|
1111 | fbms = np.sum(np.sum(fbm,axis=-1),axis=-1) #ditto |
---|
1112 | refl.T[9] = np.sum(fams**2,axis=0)+np.sum(fbms**2,axis=0) #Sum(fams**2,Mxyz) Re + Im |
---|
1113 | refl.T[7] = np.copy(refl.T[9]) |
---|
1114 | refl.T[10] = atan2d(fbms[0],fams[0]) #- what is phase for mag refl? |
---|
1115 | # if 'P' in calcControls[hfx+'histType']: #PXC, PNC & PNT: F^2 = A[0]^2 + A[1]^2 + B[0]^2 + B[1]^2 |
---|
1116 | # refl.T[9] = np.sum(fas**2,axis=0)+np.sum(fbs**2,axis=0) #add fam**2 & fbm**2 here |
---|
1117 | # refl.T[10] = atan2d(fbs[0],fas[0]) #ignore f' & f" |
---|
1118 | # else: #HKLF: F^2 = (A[0]+A[1])^2 + (B[0]+B[1])^2 |
---|
1119 | # if len(TwinLaw) > 1: |
---|
1120 | # refl.T[9] = np.sum(fas[:,:,0],axis=0)**2+np.sum(fbs[:,:,0],axis=0)**2 #FcT from primary twin element |
---|
1121 | # refl.T[7] = np.sum(TwinFr*TwMask*np.sum(fas,axis=0)**2,axis=-1)+ \ |
---|
1122 | # np.sum(TwinFr*TwMask*np.sum(fbs,axis=0)**2,axis=-1) #Fc sum over twins |
---|
1123 | # refl.T[10] = atan2d(fbs[0].T[0],fas[0].T[0]) #ignore f' & f" & use primary twin |
---|
1124 | # else: # checked correct!! |
---|
1125 | # refl.T[9] = np.sum(fas,axis=0)**2+np.sum(fbs,axis=0)**2 |
---|
1126 | # refl.T[7] = np.copy(refl.T[9]) |
---|
1127 | # refl.T[10] = atan2d(fbs[0],fas[0]) #ignore f' & f" |
---|
1128 | ## refl.T[10] = atan2d(np.sum(fbs,axis=0),np.sum(fas,axis=0)) #include f' & f" |
---|
1129 | iBeg += blkSize |
---|
1130 | # print 'sf time %.4f, nref %d, blkSize %d'%(time.time()-time0,nRef,blkSize) |
---|
1131 | return copy.deepcopy(refDict['RefList']) |
---|
1132 | |
---|
1133 | def MagStructureFactorDerv2(refDict,G,hfx,pfx,SGData,calcControls,parmDict): |
---|
1134 | '''Compute magnetic structure factor derivatives numerically - for powders/nontwins only |
---|
1135 | input: |
---|
1136 | |
---|
1137 | :param dict refDict: where |
---|
1138 | 'RefList' list where each ref = h,k,l,it,d,... |
---|
1139 | 'FF' dict of form factors - filled in below |
---|
1140 | :param np.array G: reciprocal metric tensor |
---|
1141 | :param str hfx: histogram id string |
---|
1142 | :param str pfx: phase id string |
---|
1143 | :param dict SGData: space group info. dictionary output from SpcGroup |
---|
1144 | :param dict calcControls: |
---|
1145 | :param dict parmDict: |
---|
1146 | |
---|
1147 | :returns: dict dFdvDict: dictionary of magnetic derivatives |
---|
1148 | ''' |
---|
1149 | |
---|
1150 | trefDict = copy.deepcopy(refDict) |
---|
1151 | dM = 1.e-6 |
---|
1152 | dFdvDict = {} |
---|
1153 | for parm in parmDict: |
---|
1154 | if 'AM' in parm: |
---|
1155 | parmDict[parm] += dM |
---|
1156 | prefList = MagStructureFactor2(trefDict,G,hfx,pfx,SGData,calcControls,parmDict) |
---|
1157 | parmDict[parm] -= 2*dM |
---|
1158 | mrefList = MagStructureFactor2(trefDict,G,hfx,pfx,SGData,calcControls,parmDict) |
---|
1159 | parmDict[parm] += dM |
---|
1160 | dFdvDict[parm] = (prefList[:,9]-mrefList[:,9])/(2.*dM) |
---|
1161 | return dFdvDict |
---|
1162 | |
---|
1163 | def MagStructureFactorDerv(refDict,G,hfx,pfx,SGData,calcControls,parmDict): |
---|
1164 | '''Compute nonmagnetic structure factor derivatives on blocks of reflections in magnetic structures - for powders/nontwins only |
---|
1165 | input: |
---|
1166 | |
---|
1167 | :param dict refDict: where |
---|
1168 | 'RefList' list where each ref = h,k,l,it,d,... |
---|
1169 | 'FF' dict of form factors - filled in below |
---|
1170 | :param np.array G: reciprocal metric tensor |
---|
1171 | :param str hfx: histogram id string |
---|
1172 | :param str pfx: phase id string |
---|
1173 | :param dict SGData: space group info. dictionary output from SpcGroup |
---|
1174 | :param dict calcControls: |
---|
1175 | :param dict parmDict: |
---|
1176 | |
---|
1177 | :returns: dict dFdvDict: dictionary of derivatives |
---|
1178 | ''' |
---|
1179 | |
---|
1180 | g = nl.inv(G) |
---|
1181 | ast = np.sqrt(np.diag(G)) |
---|
1182 | ainv = np.sqrt(np.diag(g)) |
---|
1183 | GS = G/np.outer(ast,ast) |
---|
1184 | Ginv = g/np.outer(ainv,ainv) |
---|
1185 | uAmat = G2lat.Gmat2AB(GS)[0] |
---|
1186 | Mast = twopisq*np.multiply.outer(ast,ast) |
---|
1187 | SGMT = np.array([ops[0].T for ops in SGData['SGOps']]) |
---|
1188 | SGT = np.array([ops[1] for ops in SGData['SGOps']]) |
---|
1189 | Ncen = len(SGData['SGCen']) |
---|
1190 | Nops = len(SGMT)*Ncen |
---|
1191 | if not SGData['SGFixed']: |
---|
1192 | Nops *= (1+SGData['SGInv']) |
---|
1193 | Bmat = G2lat.Gmat2AB(G)[1] |
---|
1194 | nRef = len(refDict['RefList']) |
---|
1195 | Tdata,Mdata,Fdata,Xdata,dXdata,IAdata,Uisodata,Uijdata,Gdata = \ |
---|
1196 | GetAtomFXU(pfx,calcControls,parmDict) |
---|
1197 | if not Xdata.size: #no atoms in phase! |
---|
1198 | return {} |
---|
1199 | mSize = len(Mdata) |
---|
1200 | Mag = np.array([np.sqrt(np.inner(mag,np.inner(mag,Ginv))) for mag in Gdata.T]) |
---|
1201 | Gones = np.ones_like(Gdata) |
---|
1202 | Gdata = np.inner(Gdata.T,np.swapaxes(SGMT,1,2)).T #apply sym. ops. |
---|
1203 | Gones = np.inner(Gones.T,SGMT).T |
---|
1204 | if SGData['SGInv'] and not SGData['SGFixed']: |
---|
1205 | Gdata = np.hstack((Gdata,-Gdata)) #inversion if any |
---|
1206 | Gones = np.hstack((Gones,-Gones)) #inversion if any |
---|
1207 | Gdata = np.hstack([Gdata for icen in range(Ncen)]) #dup over cell centering |
---|
1208 | Gones = np.hstack([Gones for icen in range(Ncen)]) #dup over cell centering |
---|
1209 | Gdata = SGData['MagMom'][nxs,:,nxs]*Gdata #flip vectors according to spin flip |
---|
1210 | Gones = SGData['MagMom'][nxs,:,nxs]*Gones #flip vectors according to spin flip |
---|
1211 | Mag = np.tile(Mag[:,nxs],Nops).T #make Mag same length as Gdata |
---|
1212 | Kdata = np.inner(Gdata.T,uAmat).T #Cartesian unit vectors |
---|
1213 | Kmean = np.mean(np.sqrt(np.sum(Kdata**2,axis=0)),axis=0) |
---|
1214 | Kdata /= Kmean |
---|
1215 | Uij = np.array(G2lat.U6toUij(Uijdata)) |
---|
1216 | bij = Mast*Uij.T |
---|
1217 | dFdvDict = {} |
---|
1218 | dFdfr = np.zeros((nRef,mSize)) |
---|
1219 | dFdx = np.zeros((nRef,mSize,3)) |
---|
1220 | dFdui = np.zeros((nRef,mSize)) |
---|
1221 | dFdua = np.zeros((nRef,mSize,6)) |
---|
1222 | time0 = time.time() |
---|
1223 | #reflection processing begins here - big arrays! |
---|
1224 | iBeg = 0 |
---|
1225 | blkSize = 5 #no. of reflections in a block - optimized for speed |
---|
1226 | while iBeg < nRef: |
---|
1227 | iFin = min(iBeg+blkSize,nRef) |
---|
1228 | refl = refDict['RefList'][iBeg:iFin] #array(blkSize,nItems) |
---|
1229 | H = refl.T[:3].T |
---|
1230 | SQ = 1./(2.*refl.T[4])**2 # or (sin(theta)/lambda)**2 |
---|
1231 | SQfactor = 8.0*SQ*np.pi**2 |
---|
1232 | Uniq = np.inner(H,SGMT) # array(nSGOp,3) |
---|
1233 | Phi = np.inner(H,SGT) |
---|
1234 | phase = twopi*(np.inner(Uniq,(dXdata+Xdata).T).T+Phi.T).T |
---|
1235 | occ = Mdata*Fdata/Nops |
---|
1236 | biso = -SQfactor*Uisodata[:,nxs] |
---|
1237 | Tiso = np.repeat(np.where(biso<1.,np.exp(biso),1.0),len(SGT),axis=1).T |
---|
1238 | HbH = -np.sum(Uniq.T*np.swapaxes(np.inner(bij,Uniq),2,-1),axis=1) |
---|
1239 | Tuij = np.where(HbH<1.,np.exp(HbH),1.0).T |
---|
1240 | Hij = np.array([Mast*np.multiply.outer(U,U) for U in np.reshape(Uniq,(-1,3))]) |
---|
1241 | Hij = np.reshape(np.array([G2lat.UijtoU6(uij) for uij in Hij]),(-1,len(SGT),6)) |
---|
1242 | Tindx = np.array([refDict['FF']['El'].index(El) for El in Tdata]) |
---|
1243 | MF = refDict['FF']['MF'][iBeg:iFin].T[Tindx].T #Nref,Natm |
---|
1244 | TMcorr = 0.539*(np.reshape(Tiso,Tuij.shape)*Tuij)[:,0,:]*Fdata*Mdata*MF/(2*Nops) #Nref,Natm |
---|
1245 | if SGData['SGInv']: |
---|
1246 | if not SGData['SGFixed']: |
---|
1247 | mphase = np.hstack((phase,-phase)) #OK |
---|
1248 | Uniq = np.hstack((Uniq,-Uniq)) #Nref,Nops,hkl |
---|
1249 | Hij = np.hstack((Hij,Hij)) |
---|
1250 | else: |
---|
1251 | mphase = phase |
---|
1252 | else: |
---|
1253 | mphase = phase # |
---|
1254 | Hij = np.concatenate(np.array([Hij for cen in SGData['SGCen']]),axis=1) |
---|
1255 | Uniq = np.hstack([Uniq for cen in SGData['SGCen']]) |
---|
1256 | mphase = np.array([mphase+twopi*np.inner(cen,H)[:,nxs,nxs] for cen in SGData['SGCen']]) |
---|
1257 | mphase = np.concatenate(mphase,axis=1) #Nref,Nop,Natm |
---|
1258 | sinm = np.sin(mphase) #ditto - match magstrfc.for |
---|
1259 | cosm = np.cos(mphase) #ditto |
---|
1260 | HM = np.inner(Bmat.T,H) #put into cartesian space |
---|
1261 | HM = HM/np.sqrt(np.sum(HM**2,axis=0)) #unit cartesian vector for H |
---|
1262 | eDotK = np.sum(HM[:,:,nxs,nxs]*Kdata[:,nxs,:,:],axis=0) |
---|
1263 | Q = HM[:,:,nxs,nxs]*eDotK[nxs,:,:,:]-Kdata[:,nxs,:,:] #Mxyz,Nref,Nop,Natm = BPM in magstrfc.for OK |
---|
1264 | |
---|
1265 | fam = Q*TMcorr[nxs,:,nxs,:]*cosm[nxs,:,:,:]*Mag[nxs,nxs,:,:] #Mxyz,Nref,Nop,Natm |
---|
1266 | fbm = Q*TMcorr[nxs,:,nxs,:]*sinm[nxs,:,:,:]*Mag[nxs,nxs,:,:] |
---|
1267 | fams = np.sum(np.sum(fam,axis=-1),axis=-1) #Mxyz,Nref |
---|
1268 | fbms = np.sum(np.sum(fbm,axis=-1),axis=-1) |
---|
1269 | famx = -Q*TMcorr[nxs,:,nxs,:]*Mag[nxs,nxs,:,:]*sinm[nxs,:,:,:] #Mxyz,Nref,Nops,Natom |
---|
1270 | fbmx = Q*TMcorr[nxs,:,nxs,:]*Mag[nxs,nxs,:,:]*cosm[nxs,:,:,:] |
---|
1271 | #sums below are over Nops - real part |
---|
1272 | dfadfr = np.sum(fam/occ,axis=2) #array(Mxyz,refBlk,nAtom) Fdata != 0 avoids /0. problem deriv OK |
---|
1273 | dfadx = np.sum(twopi*Uniq[nxs,:,:,nxs,:]*famx[:,:,:,:,nxs],axis=2) #deriv OK |
---|
1274 | dfadui = np.sum(-SQfactor[:,nxs,nxs]*fam,axis=2) #array(Ops,refBlk,nAtoms) deriv OK |
---|
1275 | dfadua = np.sum(-Hij[nxs,:,:,nxs,:]*fam[:,:,:,:,nxs],axis=2) #deriv OK |
---|
1276 | # imaginary part; array(3,refBlk,nAtom,3) & array(3,refBlk,nAtom,6) |
---|
1277 | dfbdfr = np.sum(fbm/occ,axis=2) #array(mxyz,refBlk,nAtom) Fdata != 0 avoids /0. problem |
---|
1278 | dfbdx = np.sum(twopi*Uniq[nxs,:,:,nxs,:]*fbmx[:,:,:,:,nxs],axis=2) |
---|
1279 | dfbdui = np.sum(-SQfactor[:,nxs,nxs]*fbm,axis=2) #array(Ops,refBlk,nAtoms) |
---|
1280 | dfbdua = np.sum(-Hij[nxs,:,:,nxs,:]*fbm[:,:,:,:,nxs],axis=2) |
---|
1281 | #accumulate derivatives |
---|
1282 | dFdfr[iBeg:iFin] = 2.*np.sum((fams[:,:,nxs]*dfadfr+fbms[:,:,nxs]*dfbdfr)*Mdata/Nops,axis=0) #ok |
---|
1283 | dFdx[iBeg:iFin] = 2.*np.sum(fams[:,:,nxs,nxs]*dfadx+fbms[:,:,nxs,nxs]*dfbdx,axis=0) #ok |
---|
1284 | dFdui[iBeg:iFin] = 2.*np.sum(fams[:,:,nxs]*dfadui+fbms[:,:,nxs]*dfbdui,axis=0) #ok |
---|
1285 | dFdua[iBeg:iFin] = 2.*np.sum(fams[:,:,nxs,nxs]*dfadua+fbms[:,:,nxs,nxs]*dfbdua,axis=0) #ok |
---|
1286 | iBeg += blkSize |
---|
1287 | print (' %d derivative time %.4f\r'%(nRef,time.time()-time0)) |
---|
1288 | #loop over atoms - each dict entry is list of derivatives for all the reflections |
---|
1289 | for i in range(len(Mdata)): |
---|
1290 | dFdvDict[pfx+'Afrac:'+str(i)] = dFdfr.T[i] |
---|
1291 | dFdvDict[pfx+'dAx:'+str(i)] = dFdx.T[0][i] |
---|
1292 | dFdvDict[pfx+'dAy:'+str(i)] = dFdx.T[1][i] |
---|
1293 | dFdvDict[pfx+'dAz:'+str(i)] = dFdx.T[2][i] |
---|
1294 | dFdvDict[pfx+'AUiso:'+str(i)] = dFdui.T[i] |
---|
1295 | dFdvDict[pfx+'AU11:'+str(i)] = dFdua.T[0][i] |
---|
1296 | dFdvDict[pfx+'AU22:'+str(i)] = dFdua.T[1][i] |
---|
1297 | dFdvDict[pfx+'AU33:'+str(i)] = dFdua.T[2][i] |
---|
1298 | dFdvDict[pfx+'AU12:'+str(i)] = 2.*dFdua.T[3][i] |
---|
1299 | dFdvDict[pfx+'AU13:'+str(i)] = 2.*dFdua.T[4][i] |
---|
1300 | dFdvDict[pfx+'AU23:'+str(i)] = 2.*dFdua.T[5][i] |
---|
1301 | return dFdvDict |
---|
1302 | |
---|
1303 | def StructureFactorDervTw2(refDict,G,hfx,pfx,SGData,calcControls,parmDict): |
---|
1304 | '''Compute structure factor derivatives on blocks of reflections - for twins only |
---|
1305 | faster than StructureFactorDervTw |
---|
1306 | input: |
---|
1307 | |
---|
1308 | :param dict refDict: where |
---|
1309 | 'RefList' list where each ref = h,k,l,it,d,... |
---|
1310 | 'FF' dict of form factors - filled in below |
---|
1311 | :param np.array G: reciprocal metric tensor |
---|
1312 | :param str hfx: histogram id string |
---|
1313 | :param str pfx: phase id string |
---|
1314 | :param dict SGData: space group info. dictionary output from SpcGroup |
---|
1315 | :param dict calcControls: |
---|
1316 | :param dict parmDict: |
---|
1317 | |
---|
1318 | :returns: dict dFdvDict: dictionary of derivatives |
---|
1319 | ''' |
---|
1320 | phfx = pfx.split(':')[0]+hfx |
---|
1321 | ast = np.sqrt(np.diag(G)) |
---|
1322 | Mast = twopisq*np.multiply.outer(ast,ast) |
---|
1323 | SGMT = np.array([ops[0].T for ops in SGData['SGOps']]) |
---|
1324 | SGT = np.array([ops[1] for ops in SGData['SGOps']]) |
---|
1325 | FFtables = calcControls['FFtables'] |
---|
1326 | BLtables = calcControls['BLtables'] |
---|
1327 | TwDict = refDict.get('TwDict',{}) |
---|
1328 | NTL = calcControls[phfx+'NTL'] |
---|
1329 | NM = calcControls[phfx+'TwinNMN']+1 |
---|
1330 | TwinLaw = calcControls[phfx+'TwinLaw'] |
---|
1331 | TwinFr = np.array([parmDict[phfx+'TwinFr:'+str(i)] for i in range(len(TwinLaw))]) |
---|
1332 | TwinInv = list(np.where(calcControls[phfx+'TwinInv'],-1,1)) |
---|
1333 | nTwin = len(TwinLaw) |
---|
1334 | nRef = len(refDict['RefList']) |
---|
1335 | Tdata,Mdata,Fdata,Xdata,dXdata,IAdata,Uisodata,Uijdata,Gdata = \ |
---|
1336 | GetAtomFXU(pfx,calcControls,parmDict) |
---|
1337 | if not Xdata.size: #no atoms in phase! |
---|
1338 | return {} |
---|
1339 | mSize = len(Mdata) |
---|
1340 | FF = np.zeros(len(Tdata)) |
---|
1341 | if 'NC' in calcControls[hfx+'histType']: |
---|
1342 | FP,FPP = G2el.BlenResCW(Tdata,BLtables,parmDict[hfx+'Lam']) |
---|
1343 | elif 'X' in calcControls[hfx+'histType']: |
---|
1344 | FP = np.array([FFtables[El][hfx+'FP'] for El in Tdata]) |
---|
1345 | FPP = np.array([FFtables[El][hfx+'FPP'] for El in Tdata]) |
---|
1346 | Uij = np.array(G2lat.U6toUij(Uijdata)) |
---|
1347 | bij = Mast*Uij.T |
---|
1348 | dFdvDict = {} |
---|
1349 | dFdfr = np.zeros((nRef,nTwin,mSize)) |
---|
1350 | dFdx = np.zeros((nRef,nTwin,mSize,3)) |
---|
1351 | dFdui = np.zeros((nRef,nTwin,mSize)) |
---|
1352 | dFdua = np.zeros((nRef,nTwin,mSize,6)) |
---|
1353 | dFdbab = np.zeros((nRef,nTwin,2)) |
---|
1354 | dFdtw = np.zeros((nRef,nTwin)) |
---|
1355 | time0 = time.time() |
---|
1356 | #reflection processing begins here - big arrays! |
---|
1357 | iBeg = 0 |
---|
1358 | blkSize = 16 #no. of reflections in a block - optimized for speed |
---|
1359 | while iBeg < nRef: |
---|
1360 | iFin = min(iBeg+blkSize,nRef) |
---|
1361 | refl = refDict['RefList'][iBeg:iFin] #array(blkSize,nItems) |
---|
1362 | H = refl.T[:3] |
---|
1363 | H = np.inner(H.T,TwinLaw) #array(3,nTwins) |
---|
1364 | TwMask = np.any(H,axis=-1) |
---|
1365 | for ir in range(blkSize): |
---|
1366 | iref = ir+iBeg |
---|
1367 | if iref in TwDict: |
---|
1368 | for i in TwDict[iref]: |
---|
1369 | for n in range(NTL): |
---|
1370 | H[ir][i+n*NM] = np.inner(TwinLaw[n*NM],np.array(TwDict[iref][i])*TwinInv[i+n*NM]) |
---|
1371 | TwMask = np.any(H,axis=-1) |
---|
1372 | SQ = 1./(2.*refl.T[4])**2 # or (sin(theta)/lambda)**2 |
---|
1373 | SQfactor = 8.0*SQ*np.pi**2 |
---|
1374 | if 'T' in calcControls[hfx+'histType']: |
---|
1375 | if 'P' in calcControls[hfx+'histType']: |
---|
1376 | FP,FPP = G2el.BlenResTOF(Tdata,BLtables,refl.T[14]) |
---|
1377 | else: |
---|
1378 | FP,FPP = G2el.BlenResTOF(Tdata,BLtables,refl.T[12]) |
---|
1379 | FP = np.repeat(FP.T,len(SGT)*len(TwinLaw),axis=0) |
---|
1380 | FPP = np.repeat(FPP.T,len(SGT)*len(TwinLaw),axis=0) |
---|
1381 | dBabdA = np.exp(-parmDict[phfx+'BabU']*SQfactor) |
---|
1382 | Bab = np.repeat(parmDict[phfx+'BabA']*dBabdA,len(SGT)*nTwin) |
---|
1383 | Tindx = np.array([refDict['FF']['El'].index(El) for El in Tdata]) |
---|
1384 | FF = np.repeat(refDict['FF']['FF'][iBeg:iFin].T[Tindx].T,len(SGT)*len(TwinLaw),axis=0) |
---|
1385 | Uniq = np.inner(H,SGMT) # (nTwin,nSGOp,3) |
---|
1386 | Phi = np.inner(H,SGT) |
---|
1387 | phase = twopi*(np.inner(Uniq,(dXdata+Xdata).T).T+Phi.T).T |
---|
1388 | sinp = np.sin(phase) |
---|
1389 | cosp = np.cos(phase) |
---|
1390 | occ = Mdata*Fdata/len(SGT) |
---|
1391 | biso = -SQfactor*Uisodata[:,nxs] |
---|
1392 | Tiso = np.repeat(np.where(biso<1.,np.exp(biso),1.0),len(SGT)*nTwin,axis=1) |
---|
1393 | HbH = -np.sum(Uniq.T*np.swapaxes(np.inner(bij,Uniq),2,-1),axis=1) |
---|
1394 | Hij = np.array([Mast*np.multiply.outer(U,U) for U in np.reshape(Uniq,(-1,3))]) |
---|
1395 | Hij = np.reshape(np.array([G2lat.UijtoU6(uij) for uij in Hij]),(-1,nTwin,len(SGT),6)) |
---|
1396 | Tuij = np.where(HbH<1.,np.exp(HbH),1.0) |
---|
1397 | Tcorr = (np.reshape(Tiso,Tuij.shape)*Tuij).T*Mdata*Fdata/len(SGMT) |
---|
1398 | fot = np.reshape(((FF+FP).T-Bab).T,cosp.shape)*Tcorr |
---|
1399 | fotp = FPP*Tcorr |
---|
1400 | if 'T' in calcControls[hfx+'histType']: #fa,fb are 2 X blkSize X nTwin X nOps x nAtoms |
---|
1401 | fa = np.array([np.reshape(((FF+FP).T-Bab).T,cosp.shape)*cosp*Tcorr,-np.reshape(FPP,sinp.shape)*sinp*Tcorr]) |
---|
1402 | fb = np.array([np.reshape(((FF+FP).T-Bab).T,sinp.shape)*sinp*Tcorr,np.reshape(FPP,cosp.shape)*cosp*Tcorr]) |
---|
1403 | else: |
---|
1404 | fa = np.array([np.reshape(((FF+FP).T-Bab).T,cosp.shape)*cosp*Tcorr,-FPP*sinp*Tcorr]) |
---|
1405 | fb = np.array([np.reshape(((FF+FP).T-Bab).T,sinp.shape)*sinp*Tcorr,FPP*cosp*Tcorr]) |
---|
1406 | fas = np.sum(np.sum(fa,axis=-1),axis=-1) #real sum over atoms & unique hkl array(2,nTwins) |
---|
1407 | fbs = np.sum(np.sum(fb,axis=-1),axis=-1) #imag sum over atoms & uniq hkl |
---|
1408 | if SGData['SGInv']: #centrosymmetric; B=0 |
---|
1409 | fbs[0] *= 0. |
---|
1410 | fas[1] *= 0. |
---|
1411 | fax = np.array([-fot*sinp,-fotp*cosp]) #positions array(2,nRef,ntwi,nEqv,nAtoms) |
---|
1412 | fbx = np.array([fot*cosp,-fotp*sinp]) |
---|
1413 | #sum below is over Uniq |
---|
1414 | dfadfr = np.sum(np.sum(fa/occ,axis=-2),axis=0) #array(2,nRef,ntwin,nAtom) Fdata != 0 avoids /0. problem |
---|
1415 | dfadba = np.sum(-cosp*Tcorr[:,nxs],axis=1) |
---|
1416 | dfadui = np.sum(np.sum(-SQfactor[nxs,:,nxs,nxs,nxs]*fa,axis=-2),axis=0) |
---|
1417 | dfadx = np.sum(np.sum(twopi*Uniq[nxs,:,:,:,nxs,:]*fax[:,:,:,:,:,nxs],axis=-3),axis=0) # nRef x nTwin x nAtoms x xyz; sum on ops & A,A' |
---|
1418 | dfadua = np.sum(np.sum(-Hij[nxs,:,:,:,nxs,:]*fa[:,:,:,:,:,nxs],axis=-3),axis=0) |
---|
1419 | if not SGData['SGInv']: |
---|
1420 | dfbdfr = np.sum(np.sum(fb/occ,axis=-2),axis=0) #Fdata != 0 avoids /0. problem |
---|
1421 | dfadba /= 2. |
---|
1422 | # dfbdba = np.sum(-sinp*Tcorr[:,nxs],axis=1)/2. |
---|
1423 | dfbdui = np.sum(np.sum(-SQfactor[nxs,:,nxs,nxs,nxs]*fb,axis=-2),axis=0) |
---|
1424 | dfbdx = np.sum(np.sum(twopi*Uniq[nxs,:,:,:,nxs,:]*fbx[:,:,:,:,:,nxs],axis=-3),axis=0) |
---|
1425 | dfbdua = np.sum(np.sum(-Hij[nxs,:,:,:,nxs,:]*fb[:,:,:,:,:,nxs],axis=-3),axis=0) |
---|
1426 | else: |
---|
1427 | dfbdfr = np.zeros_like(dfadfr) |
---|
1428 | dfbdx = np.zeros_like(dfadx) |
---|
1429 | dfbdui = np.zeros_like(dfadui) |
---|
1430 | dfbdua = np.zeros_like(dfadua) |
---|
1431 | # dfbdba = np.zeros_like(dfadba) |
---|
1432 | SA = fas[0]+fas[1] |
---|
1433 | SB = fbs[0]+fbs[1] |
---|
1434 | dFdfr[iBeg:iFin] = ((2.*TwMask*SA)[:,:,nxs]*dfadfr+(2.*TwMask*SB)[:,:,nxs]*dfbdfr)*Mdata[nxs,nxs,:]/len(SGMT) |
---|
1435 | dFdx[iBeg:iFin] = (2.*TwMask*SA)[:,:,nxs,nxs]*dfadx+(2.*TwMask*SB)[:,:,nxs,nxs]*dfbdx |
---|
1436 | dFdui[iBeg:iFin] = (2.*TwMask*SA)[:,:,nxs]*dfadui+(2.*TwMask*SB)[:,:,nxs]*dfbdui |
---|
1437 | dFdua[iBeg:iFin] = (2.*TwMask*SA)[:,:,nxs,nxs]*dfadua+(2.*TwMask*SB)[:,:,nxs,nxs]*dfbdua |
---|
1438 | if SGData['SGInv']: #centrosymmetric; B=0 |
---|
1439 | dFdtw[iBeg:iFin] = np.sum(TwMask[nxs,:]*fas,axis=0)**2 |
---|
1440 | else: |
---|
1441 | dFdtw[iBeg:iFin] = np.sum(TwMask[nxs,:]*fas,axis=0)**2+np.sum(TwMask[nxs,:]*fbs,axis=0)**2 |
---|
1442 | # dFdbab[iBeg:iFin] = fas[0,:,nxs]*np.array([np.sum(dfadba*dBabdA),np.sum(-dfadba*parmDict[phfx+'BabA']*SQfactor*dBabdA)]).T+ \ |
---|
1443 | # fbs[0,:,nxs]*np.array([np.sum(dfbdba*dBabdA),np.sum(-dfbdba*parmDict[phfx+'BabA']*SQfactor*dBabdA)]).T |
---|
1444 | iBeg += blkSize |
---|
1445 | print (' %d derivative time %.4f\r'%(len(refDict['RefList']),time.time()-time0)) |
---|
1446 | #loop over atoms - each dict entry is list of derivatives for all the reflections |
---|
1447 | for i in range(len(Mdata)): #these all OK |
---|
1448 | dFdvDict[pfx+'Afrac:'+str(i)] = np.sum(dFdfr.T[i]*TwinFr[:,nxs],axis=0) |
---|
1449 | dFdvDict[pfx+'dAx:'+str(i)] = np.sum(dFdx.T[0][i]*TwinFr[:,nxs],axis=0) |
---|
1450 | dFdvDict[pfx+'dAy:'+str(i)] = np.sum(dFdx.T[1][i]*TwinFr[:,nxs],axis=0) |
---|
1451 | dFdvDict[pfx+'dAz:'+str(i)] = np.sum(dFdx.T[2][i]*TwinFr[:,nxs],axis=0) |
---|
1452 | dFdvDict[pfx+'AUiso:'+str(i)] = np.sum(dFdui.T[i]*TwinFr[:,nxs],axis=0) |
---|
1453 | dFdvDict[pfx+'AU11:'+str(i)] = np.sum(dFdua.T[0][i]*TwinFr[:,nxs],axis=0) |
---|
1454 | dFdvDict[pfx+'AU22:'+str(i)] = np.sum(dFdua.T[1][i]*TwinFr[:,nxs],axis=0) |
---|
1455 | dFdvDict[pfx+'AU33:'+str(i)] = np.sum(dFdua.T[2][i]*TwinFr[:,nxs],axis=0) |
---|
1456 | dFdvDict[pfx+'AU12:'+str(i)] = 2.*np.sum(dFdua.T[3][i]*TwinFr[:,nxs],axis=0) |
---|
1457 | dFdvDict[pfx+'AU13:'+str(i)] = 2.*np.sum(dFdua.T[4][i]*TwinFr[:,nxs],axis=0) |
---|
1458 | dFdvDict[pfx+'AU23:'+str(i)] = 2.*np.sum(dFdua.T[5][i]*TwinFr[:,nxs],axis=0) |
---|
1459 | dFdvDict[phfx+'BabA'] = dFdbab.T[0] |
---|
1460 | dFdvDict[phfx+'BabU'] = dFdbab.T[1] |
---|
1461 | for i in range(nTwin): |
---|
1462 | dFdvDict[phfx+'TwinFr:'+str(i)] = dFdtw.T[i] |
---|
1463 | return dFdvDict |
---|
1464 | |
---|
1465 | def SStructureFactor(refDict,G,hfx,pfx,SGData,SSGData,calcControls,parmDict): |
---|
1466 | ''' |
---|
1467 | Compute super structure factors for all h,k,l,m for phase - no twins |
---|
1468 | puts the result, F^2, in each ref[9] in refList |
---|
1469 | works on blocks of 32 reflections for speed |
---|
1470 | input: |
---|
1471 | |
---|
1472 | :param dict refDict: where |
---|
1473 | 'RefList' list where each ref = h,k,l,m,it,d,... |
---|
1474 | 'FF' dict of form factors - filed in below |
---|
1475 | :param np.array G: reciprocal metric tensor |
---|
1476 | :param str pfx: phase id string |
---|
1477 | :param dict SGData: space group info. dictionary output from SpcGroup |
---|
1478 | :param dict calcControls: |
---|
1479 | :param dict ParmDict: |
---|
1480 | |
---|
1481 | ''' |
---|
1482 | phfx = pfx.split(':')[0]+hfx |
---|
1483 | ast = np.sqrt(np.diag(G)) |
---|
1484 | GS = G/np.outer(ast,ast) |
---|
1485 | uAmat = G2lat.Gmat2AB(GS)[0] |
---|
1486 | Mast = twopisq*np.multiply.outer(ast,ast) |
---|
1487 | SGInv = SGData['SGInv'] |
---|
1488 | SGMT = np.array([ops[0].T for ops in SGData['SGOps']]) |
---|
1489 | Ncen = len(SGData['SGCen']) |
---|
1490 | Nops = len(SGMT)*Ncen*(1+SGData['SGInv']) |
---|
1491 | SSGMT = np.array([ops[0].T for ops in SSGData['SSGOps']]) |
---|
1492 | SSGT = np.array([ops[1] for ops in SSGData['SSGOps']]) |
---|
1493 | SSCen = SSGData['SSGCen'] |
---|
1494 | FFtables = calcControls['FFtables'] |
---|
1495 | BLtables = calcControls['BLtables'] |
---|
1496 | MFtables = calcControls['MFtables'] |
---|
1497 | Amat,Bmat = G2lat.Gmat2AB(G) |
---|
1498 | Flack = 1.0 |
---|
1499 | if not SGData['SGInv'] and 'S' in calcControls[hfx+'histType'] and phfx+'Flack' in parmDict: |
---|
1500 | Flack = 1.-2.*parmDict[phfx+'Flack'] |
---|
1501 | Tdata,Mdata,Fdata,Xdata,dXdata,IAdata,Uisodata,Uijdata,Gdata = \ |
---|
1502 | GetAtomFXU(pfx,calcControls,parmDict) |
---|
1503 | if not Xdata.size: #no atoms in phase! |
---|
1504 | return |
---|
1505 | waveTypes,FSSdata,XSSdata,USSdata,MSSdata = GetAtomSSFXU(pfx,calcControls,parmDict) |
---|
1506 | ngl,nWaves,Fmod,Xmod,Umod,Mmod,glTau,glWt = G2mth.makeWaves(waveTypes,FSSdata,XSSdata,USSdata,MSSdata,Mast) #NB: Mmod is ReIm,Mxyz,Ntau,Natm |
---|
1507 | modQ = np.array([parmDict[pfx+'mV0'],parmDict[pfx+'mV1'],parmDict[pfx+'mV2']]) |
---|
1508 | |
---|
1509 | if parmDict[pfx+'isMag']: #This part correct for making modulated mag moments on equiv atoms |
---|
1510 | |
---|
1511 | GSdata0 = np.inner(Gdata.T,np.swapaxes(SGMT,1,2)) #apply sym. ops.--> Natm,Nops,Nxyz |
---|
1512 | if SGData['SGInv'] and not SGData['SGFixed']: #inversion if any |
---|
1513 | GSdata0 = np.hstack((GSdata0,-GSdata0)) |
---|
1514 | GSdata0 = np.hstack([GSdata0 for cen in SSCen]) #dup over cell centering - Natm,Nops,Mxyz |
---|
1515 | GSdata0 = SGData['MagMom'][nxs,:,nxs]*GSdata0 #flip vectors according to spin flip * det(opM) |
---|
1516 | GSdata0 = np.swapaxes(GSdata0,0,1) #Nop,Natm,Mxyz |
---|
1517 | GSdata0 = np.inner(GSdata0,uAmat.T) #--> cartesian |
---|
1518 | |
---|
1519 | mXYZ = np.array([[xyz[0] for xyz in list(G2spc.GenAtom(xyz,SGData,All=True,Move=True))] for xyz in (Xdata+dXdata).T])%1. #Natn,Nop,xyz |
---|
1520 | Mmod,SMag = G2mth.MagMod(ngl,mXYZ,modQ,MSSdata,SGData,SSGData) #Re cos/Im sin,Nops,Natm,Nwaves,Mxyz |
---|
1521 | # MmodA = np.inner(MmodA,uAmat.T) #make cartesian |
---|
1522 | # MmodB = np.inner(MmodB,uAmat.T) |
---|
1523 | |
---|
1524 | #from #3812 |
---|
1525 | #1st try at this |
---|
1526 | # GSdata = Gdata.T[:,nxs,:]+Mmod #Natm,ntau,Mxyz |
---|
1527 | # GSdata = np.inner(GSdata,SGMT).T #apply sym. ops.--> Mxyz,Nops,Ntau,Natm |
---|
1528 | # if SGData['SGInv'] and not SGData['SGFixed']: |
---|
1529 | # GSdata = np.hstack((GSdata,-GSdata)) #inversion if any |
---|
1530 | # GSdata = np.hstack([GSdata for icen in range(Ncen)]) #dup over cell centering |
---|
1531 | # GSdata = SGData['MagMom'][nxs,:,nxs,nxs]*GSdata #flip vectors according to spin flip * det(opM) |
---|
1532 | # Kdata = np.inner(GSdata.T,uAmat).T #Cartesian unit vectors |
---|
1533 | # SMag = np.sqrt(np.sum(Kdata**2,axis=0)) #Nops,Ntau,Natm |
---|
1534 | # Kmean = np.mean(SMag,axis=0) #normalization --> unit vectors |
---|
1535 | # Kdata /= Kmean[nxs,nxs,:,:] #mxyz,nops,ntau,natm |
---|
1536 | |
---|
1537 | FF = np.zeros(len(Tdata)) |
---|
1538 | if 'NC' in calcControls[hfx+'histType']: |
---|
1539 | FP,FPP = G2el.BlenResCW(Tdata,BLtables,parmDict[hfx+'Lam']) |
---|
1540 | elif 'X' in calcControls[hfx+'histType']: |
---|
1541 | FP = np.array([FFtables[El][hfx+'FP'] for El in Tdata]) |
---|
1542 | FPP = np.array([FFtables[El][hfx+'FPP'] for El in Tdata]) |
---|
1543 | Uij = np.array(G2lat.U6toUij(Uijdata)).T |
---|
1544 | bij = Mast*Uij |
---|
1545 | blkSize = 48 #no. of reflections in a block |
---|
1546 | nRef = refDict['RefList'].shape[0] |
---|
1547 | SQ = 1./(2.*refDict['RefList'].T[5])**2 |
---|
1548 | if 'N' in calcControls[hfx+'histType']: |
---|
1549 | dat = G2el.getBLvalues(BLtables) |
---|
1550 | refDict['FF']['El'] = list(dat.keys()) |
---|
1551 | refDict['FF']['FF'] = np.ones((nRef,len(dat)))*list(dat.values()) |
---|
1552 | refDict['FF']['MF'] = np.zeros((nRef,len(dat))) |
---|
1553 | for iel,El in enumerate(refDict['FF']['El']): |
---|
1554 | if El in MFtables: |
---|
1555 | refDict['FF']['MF'].T[iel] = G2el.MagScatFac(MFtables[El],SQ) |
---|
1556 | else: |
---|
1557 | dat = G2el.getFFvalues(FFtables,0.) |
---|
1558 | refDict['FF']['El'] = list(dat.keys()) |
---|
1559 | refDict['FF']['FF'] = np.zeros((nRef,len(dat))) |
---|
1560 | for iel,El in enumerate(refDict['FF']['El']): |
---|
1561 | refDict['FF']['FF'].T[iel] = G2el.ScatFac(FFtables[El],SQ) |
---|
1562 | # time0 = time.time() |
---|
1563 | #reflection processing begins here - big arrays! |
---|
1564 | iBeg = 0 |
---|
1565 | while iBeg < nRef: |
---|
1566 | iFin = min(iBeg+blkSize,nRef) |
---|
1567 | mRef = iFin-iBeg |
---|
1568 | refl = refDict['RefList'][iBeg:iFin] #array(blkSize,nItems) |
---|
1569 | H = refl.T[:4] #array(blkSize,4) |
---|
1570 | HP = H[:3]+modQ[:,nxs]*H[3:] #projected hklm to hkl |
---|
1571 | SQ = 1./(2.*refl.T[5])**2 #array(blkSize) |
---|
1572 | SQfactor = 4.0*SQ*twopisq #ditto prev. |
---|
1573 | Uniq = np.inner(H.T,SSGMT) |
---|
1574 | UniqP = np.inner(HP.T,SGMT) |
---|
1575 | Phi = np.inner(H.T,SSGT) |
---|
1576 | if SGInv and not SGData['SGFixed']: #if centro - expand HKL sets |
---|
1577 | Uniq = np.hstack((Uniq,-Uniq)) |
---|
1578 | Phi = np.hstack((Phi,-Phi)) |
---|
1579 | UniqP = np.hstack((UniqP,-UniqP)) |
---|
1580 | if 'T' in calcControls[hfx+'histType']: |
---|
1581 | if 'P' in calcControls[hfx+'histType']: |
---|
1582 | FP,FPP = G2el.BlenResTOF(Tdata,BLtables,refl.T[14]) |
---|
1583 | else: |
---|
1584 | FP,FPP = G2el.BlenResTOF(Tdata,BLtables,refl.T[12]) |
---|
1585 | FP = np.repeat(FP.T,Uniq.shape[1],axis=0) |
---|
1586 | FPP = np.repeat(FPP.T,Uniq.shape[1],axis=0) |
---|
1587 | Bab = 0. |
---|
1588 | if phfx+'BabA' in parmDict: |
---|
1589 | Bab = np.repeat(parmDict[phfx+'BabA']*np.exp(-parmDict[phfx+'BabU']*SQfactor),Uniq.shape[1]) |
---|
1590 | Tindx = np.array([refDict['FF']['El'].index(El) for El in Tdata]) |
---|
1591 | FF = np.repeat(refDict['FF']['FF'][iBeg:iFin].T[Tindx].T,Uniq.shape[1],axis=0) |
---|
1592 | phase = twopi*(np.inner(Uniq[:,:,:3],(dXdata.T+Xdata.T))-Phi[:,:,nxs]) |
---|
1593 | phase = np.hstack([phase for cen in SSCen]) |
---|
1594 | sinp = np.sin(phase) |
---|
1595 | cosp = np.cos(phase) |
---|
1596 | biso = -SQfactor*Uisodata[:,nxs] |
---|
1597 | Tiso = np.repeat(np.where(biso<1.,np.exp(biso),1.0),Uniq.shape[1],axis=1).T |
---|
1598 | HbH = -np.sum(UniqP[:,:,nxs,:]*np.inner(UniqP[:,:,:],bij),axis=-1) #use hklt proj to hkl |
---|
1599 | Tuij = np.where(HbH<1.,np.exp(HbH),1.0) |
---|
1600 | Tcorr = np.reshape(Tiso,Tuij.shape)*Tuij*Mdata*Fdata/Uniq.shape[1] #refBlk x ops x atoms |
---|
1601 | |
---|
1602 | if 'N' in calcControls[hfx+'histType'] and parmDict[pfx+'isMag']: #TODO: mag math here?? |
---|
1603 | phasem = twopi*np.inner(H.T[:,:3],mXYZ) |
---|
1604 | phasem = np.swapaxes(phasem,1,2) |
---|
1605 | cosm = np.cos(phasem) |
---|
1606 | sinm = np.sin(phasem) |
---|
1607 | MF = refDict['FF']['MF'][iBeg:iFin].T[Tindx].T #Nref,Natm |
---|
1608 | TMcorr = 0.539*(np.reshape(Tiso,Tuij.shape)*Tuij)[:,0,:]*Fdata*Mdata*MF/(2*Nops) #Nref,Natm |
---|
1609 | |
---|
1610 | HM = np.inner(Bmat,HP.T) #put into cartesian space |
---|
1611 | HM = HM/np.sqrt(np.sum(HM**2,axis=0)) #& normalize |
---|
1612 | #for fixed moments --> m=0 reflections |
---|
1613 | fam0 = TMcorr[:,nxs,:,nxs]*GSdata0[nxs,:,:,:]*cosm[:,:,:,nxs] #Nref,Nops,Natm,Mxyz |
---|
1614 | fbm0 = TMcorr[:,nxs,:,nxs]*GSdata0[nxs,:,:,:]*sinm[:,:,:,nxs] |
---|
1615 | |
---|
1616 | famq0 = np.sum(np.sum(fam0,axis=-2),axis=-2) #Nref,Mxyz; sum ops & atoms |
---|
1617 | fbmq0 = np.sum(np.sum(fbm0,axis=-2),axis=-2) |
---|
1618 | |
---|
1619 | fas0 = np.sum(famq0,axis=-1)**2-np.sum(HM.T*famq0,axis=-1)**2 #mag intensity calc F^2-(e.F)^2 |
---|
1620 | fbs0 = np.sum(fbmq0,axis=-1)**2-np.sum(HM.T*fbmq0,axis=-1)**2 |
---|
1621 | #for modulated moments --> m != 0 reflections |
---|
1622 | # M = np.array(np.abs(H[3]),dtype=np.int)-1 |
---|
1623 | # fam = TMcorr[:,nxs,:,nxs]*np.array([np.where(M[i]>=0,(MmodA[:,:,M[i],:]*cosm[i,:,:,nxs]-np.sign(H[3])[i,nxs,nxs,nxs]*MmodB[:,:,M[i],:]*sinm[i,:,:,nxs]),0.) for i in range(mRef)]) |
---|
1624 | # fbm = TMcorr[:,nxs,:,nxs]*np.array([np.where(M[i]>=0,(MmodA[:,:,M[i],:]*sinm[i,:,:,nxs]+np.sign(H[3])[i,nxs,nxs,nxs]*MmodB[:,:,M[i],:]*cosm[i,:,:,nxs]),0.) for i in range(mRef)]) |
---|
1625 | # |
---|
1626 | # famq = np.sum(np.sum(fam/2.,axis=-2),axis=-2) #Nref,Mxyz; sum ops & atoms |
---|
1627 | # fbmq = np.sum(np.sum(fbm/2.,axis=-2),axis=-2) |
---|
1628 | # |
---|
1629 | # fas = np.sum(famq,axis=-1)**2-np.sum(HM.T*famq,axis=-1)**2 #mag intensity calc F^2-(e.F)^2 |
---|
1630 | # fbs = np.sum(fbmq,axis=-1)**2-np.sum(HM.T*fbmq,axis=-1)**2 |
---|
1631 | #from #3812 |
---|
1632 | D = twopi*H.T[:,3:]*glTau[nxs,:] |
---|
1633 | mphase = phase[:,:,nxs,:]+D[:,nxs,:,nxs] |
---|
1634 | mphase = np.array([mphase+twopi*np.inner(cen,HP.T)[:,nxs,nxs,nxs] for cen in SGData['SGCen']]) |
---|
1635 | mphase = np.concatenate(mphase,axis=1) #remove extra axis; Nref,Nop,Natm |
---|
1636 | sinm = np.swapaxes(np.sin(mphase),2,3) #--> Nref,Nop,Natm,Ntau |
---|
1637 | cosm = np.swapaxes(np.cos(mphase),2,3) #ditto |
---|
1638 | |
---|
1639 | HM = np.inner(Bmat,HP.T) #put into cartesian space |
---|
1640 | HM = HM/np.sqrt(np.sum(HM**2,axis=0)) #Gdata = MAGS & HM = UVEC in magstrfc.for both OK |
---|
1641 | eDotK = np.sum(HM[:,:,nxs,nxs,nxs]*Kdata[:,nxs,:,:,:],axis=0) |
---|
1642 | Q = HM[:,:,nxs,nxs,nxs,nxs]*eDotK[nxs,:,:,:,:]-Kdata[:,nxs,:,:,:] #Mxyz,Nref,Nop,Ntau,Natm |
---|
1643 | |
---|
1644 | fam = (Q*TMcorr[nxs,:,nxs,:,nxs,nxs]*cosm[nxs,:,:,:,:,nxs]*SMag[nxs,nxs,:,:,:,nxs]) #Mxyz,Nref,Nop,Natm,Ntau,ReIm |
---|
1645 | fbm = (Q*TMcorr[nxs,:,nxs,:,nxs,nxs]*sinm[nxs,:,:,:,:,nxs]*SMag[nxs,nxs,:,:,:,nxs]) |
---|
1646 | |
---|
1647 | fams = np.sum(np.sum(np.sum(fam,axis=-1),axis=2),axis=2) #xyz,Nref,ntau; sum ops & atoms |
---|
1648 | fbms = np.sum(np.sum(np.sum(fbm,axis=-1),axis=2),axis=2) #ditto |
---|
1649 | |
---|
1650 | fas = np.sum(fams*glWt[nxs,nxs,:],axis=-1) |
---|
1651 | fbs = np.sum(fbms*glWt[nxs,nxs,:],axis=-1) |
---|
1652 | |
---|
1653 | refl.T[10] = np.where(H[3],fas+fbs,fas0+fbs0) |
---|
1654 | refl.T[11] = np.where(H[3],atan2d(fas,fbs),atan2d(fas0,fbs0)) |
---|
1655 | |
---|
1656 | else: |
---|
1657 | GfpuA = G2mth.Modulation(Uniq,UniqP,nWaves,Fmod,Xmod,Umod,glTau,glWt) #2 x refBlk x sym X atoms |
---|
1658 | if 'T' in calcControls[hfx+'histType']: |
---|
1659 | fa = np.array([np.reshape(((FF+FP).T-Bab).T,cosp.shape)*cosp*Tcorr,-np.reshape(Flack*FPP,sinp.shape)*sinp*Tcorr]) |
---|
1660 | fb = np.array([np.reshape(Flack*FPP,cosp.shape)*cosp*Tcorr,np.reshape(((FF+FP).T-Bab).T,sinp.shape)*sinp*Tcorr]) |
---|
1661 | else: |
---|
1662 | fa = np.array([np.reshape(((FF+FP).T-Bab).T,cosp.shape)*cosp*Tcorr,-Flack*FPP*sinp*Tcorr]) |
---|
1663 | fb = np.array([Flack*FPP*cosp*Tcorr,np.reshape(((FF+FP).T-Bab).T,sinp.shape)*sinp*Tcorr]) |
---|
1664 | fag = fa*GfpuA[0]-fb*GfpuA[1] #real; 2 x refBlk x sym x atoms |
---|
1665 | fbg = fb*GfpuA[0]+fa*GfpuA[1] |
---|
1666 | fas = np.sum(np.sum(fag,axis=-1),axis=-1) #2 x refBlk; sum sym & atoms |
---|
1667 | fbs = np.sum(np.sum(fbg,axis=-1),axis=-1) |
---|
1668 | |
---|
1669 | refl.T[10] = np.sum(fas,axis=0)**2+np.sum(fbs,axis=0)**2 #square of sums |
---|
1670 | refl.T[11] = atan2d(fbs[0],fas[0]) #ignore f' & f" |
---|
1671 | if 'P' not in calcControls[hfx+'histType']: |
---|
1672 | refl.T[8] = np.copy(refl.T[10]) |
---|
1673 | iBeg += blkSize |
---|
1674 | # print ('nRef %d time %.4f\r'%(nRef,time.time()-time0)) |
---|
1675 | return copy.deepcopy(refDict['RefList']) |
---|
1676 | |
---|
1677 | def SStructureFactorTw(refDict,G,hfx,pfx,SGData,SSGData,calcControls,parmDict): |
---|
1678 | ''' |
---|
1679 | Compute super structure factors for all h,k,l,m for phase - twins only |
---|
1680 | puts the result, F^2, in each ref[8+im] in refList |
---|
1681 | works on blocks of 32 reflections for speed |
---|
1682 | input: |
---|
1683 | |
---|
1684 | :param dict refDict: where |
---|
1685 | 'RefList' list where each ref = h,k,l,m,it,d,... |
---|
1686 | 'FF' dict of form factors - filed in below |
---|
1687 | :param np.array G: reciprocal metric tensor |
---|
1688 | :param str pfx: phase id string |
---|
1689 | :param dict SGData: space group info. dictionary output from SpcGroup |
---|
1690 | :param dict calcControls: |
---|
1691 | :param dict ParmDict: |
---|
1692 | |
---|
1693 | ''' |
---|
1694 | phfx = pfx.split(':')[0]+hfx |
---|
1695 | ast = np.sqrt(np.diag(G)) |
---|
1696 | Mast = twopisq*np.multiply.outer(ast,ast) |
---|
1697 | SGInv = SGData['SGInv'] |
---|
1698 | SGMT = np.array([ops[0].T for ops in SGData['SGOps']]) |
---|
1699 | SSGMT = np.array([ops[0].T for ops in SSGData['SSGOps']]) |
---|
1700 | SSGT = np.array([ops[1] for ops in SSGData['SSGOps']]) |
---|
1701 | FFtables = calcControls['FFtables'] |
---|
1702 | BLtables = calcControls['BLtables'] |
---|
1703 | MFtables = calcControls['MFtables'] |
---|
1704 | Flack = 1.0 |
---|
1705 | if not SGData['SGInv'] and 'S' in calcControls[hfx+'histType'] and phfx+'Flack' in parmDict: |
---|
1706 | Flack = 1.-2.*parmDict[phfx+'Flack'] |
---|
1707 | TwinLaw = np.array([[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]],]) #4D? |
---|
1708 | TwDict = refDict.get('TwDict',{}) |
---|
1709 | if 'S' in calcControls[hfx+'histType']: |
---|
1710 | NTL = calcControls[phfx+'NTL'] |
---|
1711 | NM = calcControls[phfx+'TwinNMN']+1 |
---|
1712 | TwinLaw = calcControls[phfx+'TwinLaw'] #this'll have to be 4D also... |
---|
1713 | TwinFr = np.array([parmDict[phfx+'TwinFr:'+str(i)] for i in range(len(TwinLaw))]) |
---|
1714 | TwinInv = list(np.where(calcControls[phfx+'TwinInv'],-1,1)) |
---|
1715 | Tdata,Mdata,Fdata,Xdata,dXdata,IAdata,Uisodata,Uijdata,Gdata = \ |
---|
1716 | GetAtomFXU(pfx,calcControls,parmDict) |
---|
1717 | if not Xdata.size: #no atoms in phase! |
---|
1718 | return |
---|
1719 | waveTypes,FSSdata,XSSdata,USSdata,MSSdata = GetAtomSSFXU(pfx,calcControls,parmDict) |
---|
1720 | ngl,nWaves,Fmod,Xmod,Umod,Mmod,glTau,glWt = G2mth.makeWaves(waveTypes,FSSdata,XSSdata,USSdata,Mast) |
---|
1721 | modQ = np.array([parmDict[pfx+'mV0'],parmDict[pfx+'mV1'],parmDict[pfx+'mV2']]) |
---|
1722 | FF = np.zeros(len(Tdata)) |
---|
1723 | if 'NC' in calcControls[hfx+'histType']: |
---|
1724 | FP,FPP = G2el.BlenResCW(Tdata,BLtables,parmDict[hfx+'Lam']) |
---|
1725 | elif 'X' in calcControls[hfx+'histType']: |
---|
1726 | FP = np.array([FFtables[El][hfx+'FP'] for El in Tdata]) |
---|
1727 | FPP = np.array([FFtables[El][hfx+'FPP'] for El in Tdata]) |
---|
1728 | Uij = np.array(G2lat.U6toUij(Uijdata)).T |
---|
1729 | bij = Mast*Uij |
---|
1730 | blkSize = 32 #no. of reflections in a block |
---|
1731 | nRef = refDict['RefList'].shape[0] |
---|
1732 | if not len(refDict['FF']): #no form factors - 1st time thru StructureFactor |
---|
1733 | SQ = 1./(2.*refDict['RefList'].T[5])**2 |
---|
1734 | if 'N' in calcControls[hfx+'histType']: |
---|
1735 | dat = G2el.getBLvalues(BLtables) |
---|
1736 | refDict['FF']['El'] = list(dat.keys()) |
---|
1737 | refDict['FF']['FF'] = np.ones((nRef,len(dat)))*list(dat.values()) |
---|
1738 | refDict['FF']['MF'] = np.zeros((nRef,len(dat))) |
---|
1739 | for iel,El in enumerate(refDict['FF']['El']): |
---|
1740 | if El in MFtables: |
---|
1741 | refDict['FF']['MF'].T[iel] = G2el.MagScatFac(MFtables[El],SQ) |
---|
1742 | else: |
---|
1743 | dat = G2el.getFFvalues(FFtables,0.) |
---|
1744 | refDict['FF']['El'] = list(dat.keys()) |
---|
1745 | refDict['FF']['FF'] = np.zeros((nRef,len(dat))) |
---|
1746 | for iel,El in enumerate(refDict['FF']['El']): |
---|
1747 | refDict['FF']['FF'].T[iel] = G2el.ScatFac(FFtables[El],SQ) |
---|
1748 | # time0 = time.time() |
---|
1749 | #reflection processing begins here - big arrays! |
---|
1750 | iBeg = 0 |
---|
1751 | while iBeg < nRef: |
---|
1752 | iFin = min(iBeg+blkSize,nRef) |
---|
1753 | refl = refDict['RefList'][iBeg:iFin] #array(blkSize,nItems) |
---|
1754 | H = refl[:,:4] #array(blkSize,4) |
---|
1755 | H3 = refl[:,:3] |
---|
1756 | HP = H[:,:3]+modQ[nxs,:]*H[:,3:] #projected hklm to hkl |
---|
1757 | HP = np.inner(HP,TwinLaw) #array(blkSize,nTwins,4) |
---|
1758 | H3 = np.inner(H3,TwinLaw) |
---|
1759 | TwMask = np.any(HP,axis=-1) |
---|
1760 | if TwinLaw.shape[0] > 1 and TwDict: #need np.inner(TwinLaw[?],TwDict[iref][i])*TwinInv[i] |
---|
1761 | for ir in range(blkSize): |
---|
1762 | iref = ir+iBeg |
---|
1763 | if iref in TwDict: |
---|
1764 | for i in TwDict[iref]: |
---|
1765 | for n in range(NTL): |
---|
1766 | HP[ir][i+n*NM] = np.inner(TwinLaw[n*NM],np.array(TwDict[iref][i])*TwinInv[i+n*NM]) |
---|
1767 | H3[ir][i+n*NM] = np.inner(TwinLaw[n*NM],np.array(TwDict[iref][i])*TwinInv[i+n*NM]) |
---|
1768 | TwMask = np.any(HP,axis=-1) |
---|
1769 | SQ = 1./(2.*refl.T[5])**2 #array(blkSize) |
---|
1770 | SQfactor = 4.0*SQ*twopisq #ditto prev. |
---|
1771 | Uniq = np.inner(H,SSGMT) |
---|
1772 | Uniq3 = np.inner(H3,SGMT) |
---|
1773 | UniqP = np.inner(HP,SGMT) |
---|
1774 | Phi = np.inner(H,SSGT) |
---|
1775 | if SGInv: #if centro - expand HKL sets |
---|
1776 | Uniq = np.hstack((Uniq,-Uniq)) |
---|
1777 | Uniq3 = np.hstack((Uniq3,-Uniq3)) |
---|
1778 | Phi = np.hstack((Phi,-Phi)) |
---|
1779 | UniqP = np.hstack((UniqP,-UniqP)) |
---|
1780 | if 'T' in calcControls[hfx+'histType']: |
---|
1781 | if 'P' in calcControls[hfx+'histType']: |
---|
1782 | FP,FPP = G2el.BlenResTOF(Tdata,BLtables,refl.T[14]) |
---|
1783 | else: |
---|
1784 | FP,FPP = G2el.BlenResTOF(Tdata,BLtables,refl.T[12]) |
---|
1785 | FP = np.repeat(FP.T,Uniq.shape[1]*len(TwinLaw),axis=0) |
---|
1786 | FPP = np.repeat(FPP.T,Uniq.shape[1]*len(TwinLaw),axis=0) |
---|
1787 | Bab = np.repeat(parmDict[phfx+'BabA']*np.exp(-parmDict[phfx+'BabU']*SQfactor),Uniq.shape[1]*len(TwinLaw)) |
---|
1788 | Tindx = np.array([refDict['FF']['El'].index(El) for El in Tdata]) |
---|
1789 | FF = np.repeat(refDict['FF']['FF'][iBeg:iFin].T[Tindx].T,Uniq.shape[1]*len(TwinLaw),axis=0) |
---|
1790 | phase = twopi*(np.inner(Uniq3,(dXdata.T+Xdata.T))-Phi[:,nxs,:,nxs]) |
---|
1791 | sinp = np.sin(phase) |
---|
1792 | cosp = np.cos(phase) |
---|
1793 | biso = -SQfactor*Uisodata[:,nxs] |
---|
1794 | Tiso = np.repeat(np.where(biso<1.,np.exp(biso),1.0),Uniq.shape[1]*len(TwinLaw),axis=1).T |
---|
1795 | HbH = -np.sum(UniqP[:,:,:,nxs]*np.inner(UniqP[:,:,:],bij),axis=-1) #use hklt proj to hkl |
---|
1796 | Tuij = np.where(HbH<1.,np.exp(HbH),1.0) |
---|
1797 | Tcorr = np.reshape(Tiso,Tuij.shape)*Tuij*Mdata*Fdata/Uniq.shape[1] #refBlk x ops x atoms |
---|
1798 | if 'T' in calcControls[hfx+'histType']: |
---|
1799 | fa = np.array([np.reshape(((FF+FP).T-Bab).T,cosp.shape)*cosp*Tcorr,-np.reshape(Flack*FPP,sinp.shape)*sinp*Tcorr]) |
---|
1800 | fb = np.array([np.reshape(Flack*FPP,cosp.shape)*cosp*Tcorr,np.reshape(((FF+FP).T-Bab).T,sinp.shape)*sinp*Tcorr]) |
---|
1801 | else: |
---|
1802 | fa = np.array([np.reshape(((FF+FP).T-Bab).T,cosp.shape)*cosp*Tcorr,-Flack*FPP*sinp*Tcorr]) |
---|
1803 | fb = np.array([Flack*FPP*cosp*Tcorr,np.reshape(((FF+FP).T-Bab).T,sinp.shape)*sinp*Tcorr]) |
---|
1804 | GfpuA = G2mth.ModulationTw(Uniq,UniqP,nWaves,Fmod,Xmod,Umod,glTau,glWt) #2 x refBlk x sym X atoms |
---|
1805 | fag = fa*GfpuA[0]-fb*GfpuA[1] #real; 2 x refBlk x sym x atoms |
---|
1806 | fbg = fb*GfpuA[0]+fa*GfpuA[1] |
---|
1807 | fas = np.sum(np.sum(fag,axis=-1),axis=-1) #2 x refBlk; sum sym & atoms |
---|
1808 | fbs = np.sum(np.sum(fbg,axis=-1),axis=-1) |
---|
1809 | refl.T[10] = np.sum(fas[:,:,0],axis=0)**2+np.sum(fbs[:,:,0],axis=0)**2 #FcT from primary twin element |
---|
1810 | refl.T[8] = np.sum(TwinFr*np.sum(TwMask[nxs,:,:]*fas,axis=0)**2,axis=-1)+ \ |
---|
1811 | np.sum(TwinFr*np.sum(TwMask[nxs,:,:]*fbs,axis=0)**2,axis=-1) #Fc sum over twins |
---|
1812 | refl.T[11] = atan2d(fbs[0].T[0],fas[0].T[0]) #ignore f' & f" |
---|
1813 | iBeg += blkSize |
---|
1814 | # print ('nRef %d time %.4f\r'%(nRef,time.time()-time0)) |
---|
1815 | |
---|
1816 | def SStructureFactorDerv(refDict,im,G,hfx,pfx,SGData,SSGData,calcControls,parmDict): |
---|
1817 | ''' |
---|
1818 | Compute super structure factor derivatives for all h,k,l,m for phase - no twins |
---|
1819 | Only Fourier component are done analytically here |
---|
1820 | input: |
---|
1821 | |
---|
1822 | :param dict refDict: where |
---|
1823 | 'RefList' list where each ref = h,k,l,m,it,d,... |
---|
1824 | 'FF' dict of form factors - filled in below |
---|
1825 | :param int im: = 1 (could be eliminated) |
---|
1826 | :param np.array G: reciprocal metric tensor |
---|
1827 | :param str hfx: histogram id string |
---|
1828 | :param str pfx: phase id string |
---|
1829 | :param dict SGData: space group info. dictionary output from SpcGroup |
---|
1830 | :param dict SSGData: super space group info. |
---|
1831 | :param dict calcControls: |
---|
1832 | :param dict ParmDict: |
---|
1833 | |
---|
1834 | :returns: dict dFdvDict: dictionary of derivatives |
---|
1835 | ''' |
---|
1836 | phfx = pfx.split(':')[0]+hfx |
---|
1837 | ast = np.sqrt(np.diag(G)) |
---|
1838 | Mast = twopisq*np.multiply.outer(ast,ast) |
---|
1839 | SGInv = SGData['SGInv'] |
---|
1840 | SGMT = np.array([ops[0].T for ops in SGData['SGOps']]) |
---|
1841 | SSGMT = np.array([ops[0].T for ops in SSGData['SSGOps']]) |
---|
1842 | SSGT = np.array([ops[1] for ops in SSGData['SSGOps']]) |
---|
1843 | FFtables = calcControls['FFtables'] |
---|
1844 | BLtables = calcControls['BLtables'] |
---|
1845 | nRef = len(refDict['RefList']) |
---|
1846 | Tdata,Mdata,Fdata,Xdata,dXdata,IAdata,Uisodata,Uijdata,Gdata = \ |
---|
1847 | GetAtomFXU(pfx,calcControls,parmDict) |
---|
1848 | if not Xdata.size: #no atoms in phase! |
---|
1849 | return {} |
---|
1850 | mSize = len(Mdata) #no. atoms |
---|
1851 | waveTypes,FSSdata,XSSdata,USSdata,MSSdata = GetAtomSSFXU(pfx,calcControls,parmDict) |
---|
1852 | ngl,nWaves,Fmod,Xmod,Umod,Mmod,glTau,glWt = G2mth.makeWaves(waveTypes,FSSdata,XSSdata,USSdata,MSSdata,Mast) |
---|
1853 | waveShapes,SCtauF,SCtauX,SCtauU,UmodAB = G2mth.makeWavesDerv(ngl,waveTypes,FSSdata,XSSdata,USSdata,Mast) |
---|
1854 | modQ = np.array([parmDict[pfx+'mV0'],parmDict[pfx+'mV1'],parmDict[pfx+'mV2']]) |
---|
1855 | FF = np.zeros(len(Tdata)) |
---|
1856 | if 'NC' in calcControls[hfx+'histType']: |
---|
1857 | FP,FPP = G2el.BlenResCW(Tdata,BLtables,parmDict[hfx+'Lam']) |
---|
1858 | elif 'X' in calcControls[hfx+'histType']: |
---|
1859 | FP = np.array([FFtables[El][hfx+'FP'] for El in Tdata]) |
---|
1860 | FPP = np.array([FFtables[El][hfx+'FPP'] for El in Tdata]) |
---|
1861 | Uij = np.array(G2lat.U6toUij(Uijdata)).T |
---|
1862 | bij = Mast*Uij |
---|
1863 | if not len(refDict['FF']): |
---|
1864 | if 'N' in calcControls[hfx+'histType']: |
---|
1865 | dat = G2el.getBLvalues(BLtables) #will need wave here for anom. neutron b's |
---|
1866 | else: |
---|
1867 | dat = G2el.getFFvalues(FFtables,0.) |
---|
1868 | refDict['FF']['El'] = list(dat.keys()) |
---|
1869 | refDict['FF']['FF'] = np.zeros((len(refDict['RefList']),len(dat))) |
---|
1870 | dFdvDict = {} |
---|
1871 | dFdfr = np.zeros((nRef,mSize)) |
---|
1872 | dFdx = np.zeros((nRef,mSize,3)) |
---|
1873 | dFdui = np.zeros((nRef,mSize)) |
---|
1874 | dFdua = np.zeros((nRef,mSize,6)) |
---|
1875 | dFdbab = np.zeros((nRef,2)) |
---|
1876 | dFdfl = np.zeros((nRef)) |
---|
1877 | dFdGf = np.zeros((nRef,mSize,FSSdata.shape[1],2)) |
---|
1878 | dFdGx = np.zeros((nRef,mSize,XSSdata.shape[1],6)) |
---|
1879 | dFdGu = np.zeros((nRef,mSize,USSdata.shape[1],12)) |
---|
1880 | Flack = 1.0 |
---|
1881 | if not SGData['SGInv'] and 'S' in calcControls[hfx+'histType'] and phfx+'Flack' in parmDict: |
---|
1882 | Flack = 1.-2.*parmDict[phfx+'Flack'] |
---|
1883 | time0 = time.time() |
---|
1884 | nRef = len(refDict['RefList'])/100 |
---|
1885 | for iref,refl in enumerate(refDict['RefList']): |
---|
1886 | if 'T' in calcControls[hfx+'histType']: |
---|
1887 | FP,FPP = G2el.BlenResCW(Tdata,BLtables,refl.T[12+im]) |
---|
1888 | H = np.array(refl[:4]) |
---|
1889 | HP = H[:3]+modQ*H[3:] #projected hklm to hkl |
---|
1890 | SQ = 1./(2.*refl[4+im])**2 # or (sin(theta)/lambda)**2 |
---|
1891 | SQfactor = 8.0*SQ*np.pi**2 |
---|
1892 | Bab = 0.0 |
---|
1893 | if phfx+'BabA' in parmDict: |
---|
1894 | dBabdA = np.exp(-parmDict[phfx+'BabU']*SQfactor) |
---|
1895 | Bab = parmDict[phfx+'BabA']*dBabdA |
---|
1896 | Tindx = np.array([refDict['FF']['El'].index(El) for El in Tdata]) |
---|
1897 | FF = refDict['FF']['FF'][iref].T[Tindx] |
---|
1898 | Uniq = np.inner(H,SSGMT) |
---|
1899 | Phi = np.inner(H,SSGT) |
---|
1900 | UniqP = np.inner(HP,SGMT) |
---|
1901 | if SGInv: #if centro - expand HKL sets |
---|
1902 | Uniq = np.vstack((Uniq,-Uniq)) |
---|
1903 | Phi = np.hstack((Phi,-Phi)) |
---|
1904 | UniqP = np.vstack((UniqP,-UniqP)) |
---|
1905 | phase = twopi*(np.inner(Uniq[:,:3],(dXdata+Xdata).T)+Phi[:,nxs]) |
---|
1906 | sinp = np.sin(phase) |
---|
1907 | cosp = np.cos(phase) |
---|
1908 | occ = Mdata*Fdata/Uniq.shape[0] |
---|
1909 | biso = -SQfactor*Uisodata[:,nxs] |
---|
1910 | Tiso = np.repeat(np.where(biso<1.,np.exp(biso),1.0),Uniq.shape[0],axis=1).T #ops x atoms |
---|
1911 | HbH = -np.sum(UniqP[:,nxs,:3]*np.inner(UniqP[:,:3],bij),axis=-1) #ops x atoms |
---|
1912 | Hij = np.array([Mast*np.multiply.outer(U[:3],U[:3]) for U in UniqP]) #atoms x 3x3 |
---|
1913 | Hij = np.array([G2lat.UijtoU6(uij) for uij in Hij]) #atoms x 6 |
---|
1914 | Tuij = np.where(HbH<1.,np.exp(HbH),1.0) #ops x atoms |
---|
1915 | Tcorr = np.reshape(Tiso,Tuij.shape)*Tuij*Mdata*Fdata/Uniq.shape[0] #ops x atoms |
---|
1916 | fot = (FF+FP-Bab)*Tcorr #ops x atoms |
---|
1917 | fotp = FPP*Tcorr #ops x atoms |
---|
1918 | GfpuA = G2mth.Modulation(Uniq,UniqP,nWaves,Fmod,Xmod,Umod,glTau,glWt) #2 x sym X atoms |
---|
1919 | dGdf,dGdx,dGdu = G2mth.ModulationDerv(Uniq,UniqP,Hij,nWaves,waveShapes,Fmod,Xmod,UmodAB,SCtauF,SCtauX,SCtauU,glTau,glWt) |
---|
1920 | # GfpuA is 2 x ops x atoms |
---|
1921 | # derivs are: ops x atoms x waves x 2,6,12, or 5 parms as [real,imag] parts |
---|
1922 | fa = np.array([((FF+FP).T-Bab).T*cosp*Tcorr,-Flack*FPP*sinp*Tcorr]) # array(2,nEqv,nAtoms) |
---|
1923 | fb = np.array([((FF+FP).T-Bab).T*sinp*Tcorr,Flack*FPP*cosp*Tcorr]) #or array(2,nEqv,nAtoms) |
---|
1924 | fag = fa*GfpuA[0]-fb*GfpuA[1] |
---|
1925 | fbg = fb*GfpuA[0]+fa*GfpuA[1] |
---|
1926 | |
---|
1927 | fas = np.sum(np.sum(fag,axis=1),axis=1) # 2 x twin |
---|
1928 | fbs = np.sum(np.sum(fbg,axis=1),axis=1) |
---|
1929 | fax = np.array([-fot*sinp,-fotp*cosp]) #positions; 2 x ops x atoms |
---|
1930 | fbx = np.array([fot*cosp,-fotp*sinp]) |
---|
1931 | fax = fax*GfpuA[0]-fbx*GfpuA[1] |
---|
1932 | fbx = fbx*GfpuA[0]+fax*GfpuA[1] |
---|
1933 | #sum below is over Uniq |
---|
1934 | dfadfr = np.sum(fag/occ,axis=1) #Fdata != 0 ever avoids /0. problem |
---|
1935 | dfbdfr = np.sum(fbg/occ,axis=1) #Fdata != 0 avoids /0. problem |
---|
1936 | dfadba = np.sum(-cosp*Tcorr[:,nxs],axis=1) |
---|
1937 | dfbdba = np.sum(-sinp*Tcorr[:,nxs],axis=1) |
---|
1938 | dfadui = np.sum(-SQfactor*fag,axis=1) |
---|
1939 | dfbdui = np.sum(-SQfactor*fbg,axis=1) |
---|
1940 | dfadx = np.sum(twopi*Uniq[:,:3]*np.swapaxes(fax,-2,-1)[:,:,:,nxs],axis=-2) #2 x nAtom x 3xyz; sum nOps |
---|
1941 | dfbdx = np.sum(twopi*Uniq[:,:3]*np.swapaxes(fbx,-2,-1)[:,:,:,nxs],axis=-2) |
---|
1942 | dfadua = np.sum(-Hij*np.swapaxes(fag,-2,-1)[:,:,:,nxs],axis=-2) #2 x nAtom x 6Uij; sum nOps |
---|
1943 | dfbdua = np.sum(-Hij*np.swapaxes(fbg,-2,-1)[:,:,:,nxs],axis=-2) #these are correct also for twins above |
---|
1944 | # array(2,nAtom,nWave,2) & array(2,nAtom,nWave,6) & array(2,nAtom,nWave,12); sum on nOps |
---|
1945 | dfadGf = np.sum(fa[:,:,:,nxs,nxs]*dGdf[0][nxs,:,:,:,:]-fb[:,:,:,nxs,nxs]*dGdf[1][nxs,:,:,:,:],axis=1) |
---|
1946 | dfbdGf = np.sum(fb[:,:,:,nxs,nxs]*dGdf[0][nxs,:,:,:,:]+fa[:,:,:,nxs,nxs]*dGdf[1][nxs,:,:,:,:],axis=1) |
---|
1947 | dfadGx = np.sum(fa[:,:,:,nxs,nxs]*dGdx[0][nxs,:,:,:,:]-fb[:,:,:,nxs,nxs]*dGdx[1][nxs,:,:,:,:],axis=1) |
---|
1948 | dfbdGx = np.sum(fb[:,:,:,nxs,nxs]*dGdx[0][nxs,:,:,:,:]+fa[:,:,:,nxs,nxs]*dGdx[1][nxs,:,:,:,:],axis=1) |
---|
1949 | dfadGu = np.sum(fa[:,:,:,nxs,nxs]*dGdu[0][nxs,:,:,:,:]-fb[:,:,:,nxs,nxs]*dGdu[1][nxs,:,:,:,:],axis=1) |
---|
1950 | dfbdGu = np.sum(fb[:,:,:,nxs,nxs]*dGdu[0][nxs,:,:,:,:]+fa[:,:,:,nxs,nxs]*dGdu[1][nxs,:,:,:,:],axis=1) |
---|
1951 | if not SGData['SGInv']: #Flack derivative |
---|
1952 | dfadfl = np.sum(-FPP*Tcorr*sinp) |
---|
1953 | dfbdfl = np.sum(FPP*Tcorr*cosp) |
---|
1954 | else: |
---|
1955 | dfadfl = 1.0 |
---|
1956 | dfbdfl = 1.0 |
---|
1957 | SA = fas[0]+fas[1] #float = A+A' |
---|
1958 | SB = fbs[0]+fbs[1] #float = B+B' |
---|
1959 | if 'P' in calcControls[hfx+'histType']: #checked perfect for centro & noncentro? |
---|
1960 | dFdfl[iref] = -SA*dfadfl-SB*dfbdfl #array(nRef,) |
---|
1961 | dFdfr[iref] = 2.*(fas[0]*dfadfr[0]+fas[1]*dfadfr[1])*Mdata/len(Uniq)+ \ |
---|
1962 | 2.*(fbs[0]*dfbdfr[0]-fbs[1]*dfbdfr[1])*Mdata/len(Uniq) |
---|
1963 | dFdx[iref] = 2.*(fas[0]*dfadx[0]+fas[1]*dfadx[1])+ \ |
---|
1964 | 2.*(fbs[0]*dfbdx[0]+fbs[1]*dfbdx[1]) |
---|
1965 | dFdui[iref] = 2.*(fas[0]*dfadui[0]+fas[1]*dfadui[1])+ \ |
---|
1966 | 2.*(fbs[0]*dfbdui[0]-fbs[1]*dfbdui[1]) |
---|
1967 | dFdua[iref] = 2.*(fas[0]*dfadua[0]+fas[1]*dfadua[1])+ \ |
---|
1968 | 2.*(fbs[0]*dfbdua[0]+fbs[1]*dfbdua[1]) |
---|
1969 | dFdGf[iref] = 2.*(fas[0]*dfadGf[0]+fas[1]*dfadGf[1])+ \ |
---|
1970 | 2.*(fbs[0]*dfbdGf[0]+fbs[1]*dfbdGf[1]) |
---|
1971 | dFdGx[iref] = 2.*(fas[0]*dfadGx[0]+fas[1]*dfadGx[1])+ \ |
---|
1972 | 2.*(fbs[0]*dfbdGx[0]-fbs[1]*dfbdGx[1]) |
---|
1973 | dFdGu[iref] = 2.*(fas[0]*dfadGu[0]+fas[1]*dfadGu[1])+ \ |
---|
1974 | 2.*(fbs[0]*dfbdGu[0]+fbs[1]*dfbdGu[1]) |
---|
1975 | else: #OK, I think |
---|
1976 | dFdfr[iref] = 2.*(SA*dfadfr[0]+SA*dfadfr[1]+SB*dfbdfr[0]+SB*dfbdfr[1])*Mdata/len(Uniq) #array(nRef,nAtom) |
---|
1977 | dFdx[iref] = 2.*(SA*dfadx[0]+SA*dfadx[1]+SB*dfbdx[0]+SB*dfbdx[1]) #array(nRef,nAtom,3) |
---|
1978 | dFdui[iref] = 2.*(SA*dfadui[0]+SA*dfadui[1]+SB*dfbdui[0]+SB*dfbdui[1]) #array(nRef,nAtom) |
---|
1979 | dFdua[iref] = 2.*(SA*dfadua[0]+SA*dfadua[1]+SB*dfbdua[0]+SB*dfbdua[1]) #array(nRef,nAtom,6) |
---|
1980 | dFdfl[iref] = -SA*dfadfl-SB*dfbdfl #array(nRef,) |
---|
1981 | |
---|
1982 | dFdGf[iref] = 2.*(SA*dfadGf[0]+SB*dfbdGf[1]) #array(nRef,natom,nwave,2) |
---|
1983 | dFdGx[iref] = 2.*(SA*dfadGx[0]+SB*dfbdGx[1]) #array(nRef,natom,nwave,6) |
---|
1984 | dFdGu[iref] = 2.*(SA*dfadGu[0]+SB*dfbdGu[1]) #array(nRef,natom,nwave,12) |
---|
1985 | if phfx+'BabA' in parmDict: |
---|
1986 | dFdbab[iref] = 2.*fas[0]*np.array([np.sum(dfadba*dBabdA),np.sum(-dfadba*parmDict[phfx+'BabA']*SQfactor*dBabdA)]).T+ \ |
---|
1987 | 2.*fbs[0]*np.array([np.sum(dfbdba*dBabdA),np.sum(-dfbdba*parmDict[phfx+'BabA']*SQfactor*dBabdA)]).T |
---|
1988 | #loop over atoms - each dict entry is list of derivatives for all the reflections |
---|
1989 | if not iref%100 : |
---|
1990 | print (' %d derivative time %.4f\r'%(iref,time.time()-time0),end='') |
---|
1991 | for i in range(len(Mdata)): #loop over atoms |
---|
1992 | dFdvDict[pfx+'Afrac:'+str(i)] = dFdfr.T[i] |
---|
1993 | dFdvDict[pfx+'dAx:'+str(i)] = dFdx.T[0][i] |
---|
1994 | dFdvDict[pfx+'dAy:'+str(i)] = dFdx.T[1][i] |
---|
1995 | dFdvDict[pfx+'dAz:'+str(i)] = dFdx.T[2][i] |
---|
1996 | dFdvDict[pfx+'AUiso:'+str(i)] = dFdui.T[i] |
---|
1997 | dFdvDict[pfx+'AU11:'+str(i)] = dFdua.T[0][i] |
---|
1998 | dFdvDict[pfx+'AU22:'+str(i)] = dFdua.T[1][i] |
---|
1999 | dFdvDict[pfx+'AU33:'+str(i)] = dFdua.T[2][i] |
---|
2000 | dFdvDict[pfx+'AU12:'+str(i)] = 2.*dFdua.T[3][i] |
---|
2001 | dFdvDict[pfx+'AU13:'+str(i)] = 2.*dFdua.T[4][i] |
---|
2002 | dFdvDict[pfx+'AU23:'+str(i)] = 2.*dFdua.T[5][i] |
---|
2003 | for j in range(FSSdata.shape[1]): #loop over waves Fzero & Fwid? |
---|
2004 | dFdvDict[pfx+'Fsin:'+str(i)+':'+str(j)] = dFdGf.T[0][j][i] |
---|
2005 | dFdvDict[pfx+'Fcos:'+str(i)+':'+str(j)] = dFdGf.T[1][j][i] |
---|
2006 | nx = 0 |
---|
2007 | if waveTypes[i] in ['Block','ZigZag']: |
---|
2008 | nx = 1 |
---|
2009 | for j in range(XSSdata.shape[1]-nx): #loop over waves |
---|
2010 | dFdvDict[pfx+'Xsin:'+str(i)+':'+str(j+nx)] = dFdGx.T[0][j][i] |
---|
2011 | dFdvDict[pfx+'Ysin:'+str(i)+':'+str(j+nx)] = dFdGx.T[1][j][i] |
---|
2012 | dFdvDict[pfx+'Zsin:'+str(i)+':'+str(j+nx)] = dFdGx.T[2][j][i] |
---|
2013 | dFdvDict[pfx+'Xcos:'+str(i)+':'+str(j+nx)] = dFdGx.T[3][j][i] |
---|
2014 | dFdvDict[pfx+'Ycos:'+str(i)+':'+str(j+nx)] = dFdGx.T[4][j][i] |
---|
2015 | dFdvDict[pfx+'Zcos:'+str(i)+':'+str(j+nx)] = dFdGx.T[5][j][i] |
---|
2016 | for j in range(USSdata.shape[1]): #loop over waves |
---|
2017 | dFdvDict[pfx+'U11sin:'+str(i)+':'+str(j)] = dFdGu.T[0][j][i] |
---|
2018 | dFdvDict[pfx+'U22sin:'+str(i)+':'+str(j)] = dFdGu.T[1][j][i] |
---|
2019 | dFdvDict[pfx+'U33sin:'+str(i)+':'+str(j)] = dFdGu.T[2][j][i] |
---|
2020 | dFdvDict[pfx+'U12sin:'+str(i)+':'+str(j)] = 2.*dFdGu.T[3][j][i] |
---|
2021 | dFdvDict[pfx+'U13sin:'+str(i)+':'+str(j)] = 2.*dFdGu.T[4][j][i] |
---|
2022 | dFdvDict[pfx+'U23sin:'+str(i)+':'+str(j)] = 2.*dFdGu.T[5][j][i] |
---|
2023 | dFdvDict[pfx+'U11cos:'+str(i)+':'+str(j)] = dFdGu.T[6][j][i] |
---|
2024 | dFdvDict[pfx+'U22cos:'+str(i)+':'+str(j)] = dFdGu.T[7][j][i] |
---|
2025 | dFdvDict[pfx+'U33cos:'+str(i)+':'+str(j)] = dFdGu.T[8][j][i] |
---|
2026 | dFdvDict[pfx+'U12cos:'+str(i)+':'+str(j)] = 2.*dFdGu.T[9][j][i] |
---|
2027 | dFdvDict[pfx+'U13cos:'+str(i)+':'+str(j)] = 2.*dFdGu.T[10][j][i] |
---|
2028 | dFdvDict[pfx+'U23cos:'+str(i)+':'+str(j)] = 2.*dFdGu.T[11][j][i] |
---|
2029 | |
---|
2030 | dFdvDict[phfx+'Flack'] = 4.*dFdfl.T |
---|
2031 | dFdvDict[phfx+'BabA'] = dFdbab.T[0] |
---|
2032 | dFdvDict[phfx+'BabU'] = dFdbab.T[1] |
---|
2033 | return dFdvDict |
---|
2034 | |
---|
2035 | def SStructureFactorDerv2(refDict,im,G,hfx,pfx,SGData,SSGData,calcControls,parmDict): |
---|
2036 | ''' |
---|
2037 | Compute super structure factor derivatives for all h,k,l,m for phase - no twins |
---|
2038 | input: |
---|
2039 | |
---|
2040 | :param dict refDict: where |
---|
2041 | 'RefList' list where each ref = h,k,l,m,it,d,... |
---|
2042 | 'FF' dict of form factors - filled in below |
---|
2043 | :param int im: = 1 (could be eliminated) |
---|
2044 | :param np.array G: reciprocal metric tensor |
---|
2045 | :param str hfx: histogram id string |
---|
2046 | :param str pfx: phase id string |
---|
2047 | :param dict SGData: space group info. dictionary output from SpcGroup |
---|
2048 | :param dict SSGData: super space group info. |
---|
2049 | :param dict calcControls: |
---|
2050 | :param dict ParmDict: |
---|
2051 | |
---|
2052 | :returns: dict dFdvDict: dictionary of derivatives |
---|
2053 | ''' |
---|
2054 | |
---|
2055 | trefDict = copy.deepcopy(refDict) |
---|
2056 | dM = 1.e-4 |
---|
2057 | dFdvDict = {} |
---|
2058 | for parm in parmDict: |
---|
2059 | if parm == '0': |
---|
2060 | continue |
---|
2061 | if parm.split(':')[2] in ['Tmin','Tmax','Xmax','Ymax','Zmax','Fzero','Fwid', |
---|
2062 | 'MXsin','MXcos','MYsin','MYcos','MZsin','MZcos','AMx','AMy','AMz',]: |
---|
2063 | parmDict[parm] += dM |
---|
2064 | prefList = SStructureFactor(trefDict,G,hfx,pfx,SGData,SSGData,calcControls,parmDict) |
---|
2065 | parmDict[parm] -= 2*dM |
---|
2066 | mrefList = SStructureFactor(trefDict,G,hfx,pfx,SGData,SSGData,calcControls,parmDict) |
---|
2067 | parmDict[parm] += dM |
---|
2068 | dFdvDict[parm] = (prefList[:,9+im]-mrefList[:,9+im])/(2.*dM) |
---|
2069 | return dFdvDict |
---|
2070 | |
---|
2071 | def SStructureFactorDervTw(refDict,im,G,hfx,pfx,SGData,SSGData,calcControls,parmDict): |
---|
2072 | 'Needs a doc string' |
---|
2073 | phfx = pfx.split(':')[0]+hfx |
---|
2074 | ast = np.sqrt(np.diag(G)) |
---|
2075 | Mast = twopisq*np.multiply.outer(ast,ast) |
---|
2076 | SGInv = SGData['SGInv'] |
---|
2077 | SGMT = np.array([ops[0].T for ops in SGData['SGOps']]) |
---|
2078 | SSGMT = np.array([ops[0].T for ops in SSGData['SSGOps']]) |
---|
2079 | SSGT = np.array([ops[1] for ops in SSGData['SSGOps']]) |
---|
2080 | FFtables = calcControls['FFtables'] |
---|
2081 | BLtables = calcControls['BLtables'] |
---|
2082 | TwinLaw = np.array([[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]],]) |
---|
2083 | TwDict = refDict.get('TwDict',{}) |
---|
2084 | if 'S' in calcControls[hfx+'histType']: |
---|
2085 | NTL = calcControls[phfx+'NTL'] |
---|
2086 | NM = calcControls[phfx+'TwinNMN']+1 |
---|
2087 | TwinLaw = calcControls[phfx+'TwinLaw'] |
---|
2088 | TwinInv = list(np.where(calcControls[phfx+'TwinInv'],-1,1)) |
---|
2089 | nTwin = len(TwinLaw) |
---|
2090 | nRef = len(refDict['RefList']) |
---|
2091 | Tdata,Mdata,Fdata,Xdata,dXdata,IAdata,Uisodata,Uijdata,Gdata = \ |
---|
2092 | GetAtomFXU(pfx,calcControls,parmDict) |
---|
2093 | if not Xdata.size: #no atoms in phase! |
---|
2094 | return {} |
---|
2095 | mSize = len(Mdata) #no. atoms |
---|
2096 | waveTypes,FSSdata,XSSdata,USSdata,MSSdata = GetAtomSSFXU(pfx,calcControls,parmDict) |
---|
2097 | ngl,nWaves,Fmod,Xmod,Umod,Mmod,glTau,glWt = G2mth.makeWaves(waveTypes,FSSdata,XSSdata,USSdata,MSSdata,Mast) #NB: Mmod is ReIm,Mxyz,Ntau,Natm |
---|
2098 | waveShapes,SCtauF,SCtauX,SCtauU,UmodAB = G2mth.makeWavesDerv(ngl,waveTypes,FSSdata,XSSdata,USSdata,Mast) |
---|
2099 | modQ = np.array([parmDict[pfx+'mV0'],parmDict[pfx+'mV1'],parmDict[pfx+'mV2']]) |
---|
2100 | FF = np.zeros(len(Tdata)) |
---|
2101 | if 'NC' in calcControls[hfx+'histType']: |
---|
2102 | FP,FPP = G2el.BlenResCW(Tdata,BLtables,parmDict[hfx+'Lam']) |
---|
2103 | elif 'X' in calcControls[hfx+'histType']: |
---|
2104 | FP = np.array([FFtables[El][hfx+'FP'] for El in Tdata]) |
---|
2105 | FPP = np.array([FFtables[El][hfx+'FPP'] for El in Tdata]) |
---|
2106 | Uij = np.array(G2lat.U6toUij(Uijdata)).T |
---|
2107 | bij = Mast*Uij |
---|
2108 | if not len(refDict['FF']): |
---|
2109 | if 'N' in calcControls[hfx+'histType']: |
---|
2110 | dat = G2el.getBLvalues(BLtables) #will need wave here for anom. neutron b's |
---|
2111 | else: |
---|
2112 | dat = G2el.getFFvalues(FFtables,0.) |
---|
2113 | refDict['FF']['El'] = list(dat.keys()) |
---|
2114 | refDict['FF']['FF'] = np.zeros((len(refDict['RefList']),len(dat))) |
---|
2115 | dFdvDict = {} |
---|
2116 | dFdfr = np.zeros((nRef,nTwin,mSize)) |
---|
2117 | dFdx = np.zeros((nRef,nTwin,mSize,3)) |
---|
2118 | dFdui = np.zeros((nRef,nTwin,mSize)) |
---|
2119 | dFdua = np.zeros((nRef,nTwin,mSize,6)) |
---|
2120 | dFdbab = np.zeros((nRef,nTwin,2)) |
---|
2121 | dFdtw = np.zeros((nRef,nTwin)) |
---|
2122 | dFdGf = np.zeros((nRef,nTwin,mSize,FSSdata.shape[1])) |
---|
2123 | dFdGx = np.zeros((nRef,nTwin,mSize,XSSdata.shape[1],3)) |
---|
2124 | dFdGz = np.zeros((nRef,nTwin,mSize,5)) |
---|
2125 | dFdGu = np.zeros((nRef,nTwin,mSize,USSdata.shape[1],6)) |
---|
2126 | Flack = 1.0 |
---|
2127 | if not SGData['SGInv'] and 'S' in calcControls[hfx+'histType'] and phfx+'Flack' in parmDict: |
---|
2128 | Flack = 1.-2.*parmDict[phfx+'Flack'] |
---|
2129 | time0 = time.time() |
---|
2130 | nRef = len(refDict['RefList'])/100 |
---|
2131 | for iref,refl in enumerate(refDict['RefList']): |
---|
2132 | if 'T' in calcControls[hfx+'histType']: |
---|
2133 | FP,FPP = G2el.BlenResCW(Tdata,BLtables,refl.T[12+im]) |
---|
2134 | H = np.array(refl[:4]) |
---|
2135 | HP = H[:3]+modQ*H[3:] #projected hklm to hkl |
---|
2136 | H = np.inner(H.T,TwinLaw) #maybe array(4,nTwins) or (4) |
---|
2137 | TwMask = np.any(H,axis=-1) |
---|
2138 | if TwinLaw.shape[0] > 1 and TwDict: |
---|
2139 | if iref in TwDict: |
---|
2140 | for i in TwDict[iref]: |
---|
2141 | for n in range(NTL): |
---|
2142 | H[i+n*NM] = np.inner(TwinLaw[n*NM],np.array(TwDict[iref][i])*TwinInv[i+n*NM]) |
---|
2143 | TwMask = np.any(H,axis=-1) |
---|
2144 | SQ = 1./(2.*refl[4+im])**2 # or (sin(theta)/lambda)**2 |
---|
2145 | SQfactor = 8.0*SQ*np.pi**2 |
---|
2146 | dBabdA = np.exp(-parmDict[phfx+'BabU']*SQfactor) |
---|
2147 | Bab = parmDict[phfx+'BabA']*dBabdA |
---|
2148 | Tindx = np.array([refDict['FF']['El'].index(El) for El in Tdata]) |
---|
2149 | FF = refDict['FF']['FF'][iref].T[Tindx] |
---|
2150 | Uniq = np.inner(H,SSGMT) |
---|
2151 | Phi = np.inner(H,SSGT) |
---|
2152 | UniqP = np.inner(HP,SGMT) |
---|
2153 | if SGInv: #if centro - expand HKL sets |
---|
2154 | Uniq = np.vstack((Uniq,-Uniq)) |
---|
2155 | Phi = np.hstack((Phi,-Phi)) |
---|
2156 | UniqP = np.vstack((UniqP,-UniqP)) |
---|
2157 | phase = twopi*(np.inner(Uniq[:,:3],(dXdata+Xdata).T)+Phi[:,nxs]) |
---|
2158 | sinp = np.sin(phase) |
---|
2159 | cosp = np.cos(phase) |
---|
2160 | occ = Mdata*Fdata/Uniq.shape[0] |
---|
2161 | biso = -SQfactor*Uisodata[:,nxs] |
---|
2162 | Tiso = np.repeat(np.where(biso<1.,np.exp(biso),1.0),Uniq.shape[0]*len(TwinLaw),axis=1).T #ops x atoms |
---|
2163 | HbH = -np.sum(UniqP[:,nxs,:3]*np.inner(UniqP[:,:3],bij),axis=-1) #ops x atoms |
---|
2164 | Hij = np.array([Mast*np.multiply.outer(U[:3],U[:3]) for U in UniqP]) #atoms x 3x3 |
---|
2165 | Hij = np.squeeze(np.reshape(np.array([G2lat.UijtoU6(uij) for uij in Hij]),(nTwin,-1,6))) |
---|
2166 | Tuij = np.where(HbH<1.,np.exp(HbH),1.0) #ops x atoms |
---|
2167 | Tcorr = np.reshape(Tiso,Tuij.shape)*Tuij*Mdata*Fdata/Uniq.shape[0] #ops x atoms |
---|
2168 | fot = (FF+FP-Bab)*Tcorr #ops x atoms |
---|
2169 | fotp = FPP*Tcorr #ops x atoms |
---|
2170 | GfpuA = G2mth.Modulation(Uniq,UniqP,nWaves,Fmod,Xmod,Umod,glTau,glWt) #2 x sym X atoms |
---|
2171 | dGdf,dGdx,dGdu,dGdz = G2mth.ModulationDerv(Uniq,UniqP,Hij,nWaves,waveShapes,Fmod,Xmod,UmodAB,SCtauF,SCtauX,SCtauU,glTau,glWt) |
---|
2172 | # GfpuA is 2 x ops x atoms |
---|
2173 | # derivs are: ops x atoms x waves x 2,6,12, or 5 parms as [real,imag] parts |
---|
2174 | fa = np.array([((FF+FP).T-Bab).T*cosp*Tcorr,-Flack*FPP*sinp*Tcorr]) # array(2,nTwin,nEqv,nAtoms) |
---|
2175 | fb = np.array([((FF+FP).T-Bab).T*sinp*Tcorr,Flack*FPP*cosp*Tcorr]) #or array(2,nEqv,nAtoms) |
---|
2176 | fag = fa*GfpuA[0]-fb*GfpuA[1] |
---|
2177 | fbg = fb*GfpuA[0]+fa*GfpuA[1] |
---|
2178 | |
---|
2179 | fas = np.sum(np.sum(fag,axis=1),axis=1) # 2 x twin |
---|
2180 | fbs = np.sum(np.sum(fbg,axis=1),axis=1) |
---|
2181 | fax = np.array([-fot*sinp,-fotp*cosp]) #positions; 2 x twin x ops x atoms |
---|
2182 | fbx = np.array([fot*cosp,-fotp*sinp]) |
---|
2183 | fax = fax*GfpuA[0]-fbx*GfpuA[1] |
---|
2184 | fbx = fbx*GfpuA[0]+fax*GfpuA[1] |
---|
2185 | #sum below is over Uniq |
---|
2186 | dfadfr = np.sum(fag/occ,axis=1) #Fdata != 0 ever avoids /0. problem |
---|
2187 | dfbdfr = np.sum(fbg/occ,axis=1) #Fdata != 0 avoids /0. problem |
---|
2188 | dfadba = np.sum(-cosp*Tcorr[:,nxs],axis=1) |
---|
2189 | dfbdba = np.sum(-sinp*Tcorr[:,nxs],axis=1) |
---|
2190 | dfadui = np.sum(-SQfactor*fag,axis=1) |
---|
2191 | dfbdui = np.sum(-SQfactor*fbg,axis=1) |
---|
2192 | dfadx = np.array([np.sum(twopi*Uniq[it,:,:3]*np.swapaxes(fax,-2,-1)[:,it,:,:,nxs],axis=-2) for it in range(nTwin)]) |
---|
2193 | dfbdx = np.array([np.sum(twopi*Uniq[it,:,:3]*np.swapaxes(fbx,-2,-1)[:,it,:,:,nxs],axis=-2) for it in range(nTwin)]) |
---|
2194 | dfadua = np.array([np.sum(-Hij[it]*np.swapaxes(fag,-2,-1)[:,it,:,:,nxs],axis=-2) for it in range(nTwin)]) |
---|
2195 | dfbdua = np.array([np.sum(-Hij[it]*np.swapaxes(fbg,-2,-1)[:,it,:,:,nxs],axis=-2) for it in range(nTwin)]) |
---|
2196 | # array(2,nTwin,nAtom,3) & array(2,nTwin,nAtom,6) & array(2,nTwin,nAtom,12) |
---|
2197 | dfadGf = np.sum(fa[:,it,:,:,nxs,nxs]*dGdf[0][nxs,nxs,:,:,:,:]-fb[:,it,:,:,nxs,nxs]*dGdf[1][nxs,nxs,:,:,:,:],axis=1) |
---|
2198 | dfbdGf = np.sum(fb[:,it,:,:,nxs,nxs]*dGdf[0][nxs,nxs,:,:,:,:]+fa[:,it,:,:,nxs,nxs]*dGdf[1][nxs,nxs,:,:,:,:],axis=1) |
---|
2199 | dfadGx = np.sum(fa[:,it,:,:,nxs,nxs]*dGdx[0][nxs,nxs,:,:,:,:]-fb[:,it,:,:,nxs,nxs]*dGdx[1][nxs,nxs,:,:,:,:],axis=1) |
---|
2200 | dfbdGx = np.sum(fb[:,it,:,:,nxs,nxs]*dGdx[0][nxs,nxs,:,:,:,:]+fa[:,it,:,:,nxs,nxs]*dGdx[1][nxs,nxs,:,:,:,:],axis=1) |
---|
2201 | dfadGz = np.sum(fa[:,it,:,0,nxs,nxs]*dGdz[0][nxs,nxs,:,:,:]-fb[:,it,:,0,nxs,nxs]*dGdz[1][nxs,nxs,:,:,:],axis=1) |
---|
2202 | dfbdGz = np.sum(fb[:,it,:,0,nxs,nxs]*dGdz[0][nxs,nxs,:,:,:]+fa[:,it,:,0,nxs,nxs]*dGdz[1][nxs,nxs,:,:,:],axis=1) |
---|
2203 | dfadGu = np.sum(fa[:,it,:,:,nxs,nxs]*dGdu[0][nxs,nxs,:,:,:,:]-fb[:,it,:,:,nxs,nxs]*dGdu[1][nxs,nxs,:,:,:,:],axis=1) |
---|
2204 | dfbdGu = np.sum(fb[:,it,:,:,nxs,nxs]*dGdu[0][nxs,nxs,:,:,:,:]+fa[:,it,:,:,nxs,nxs]*dGdu[1][nxs,nxs,:,:,:,:],axis=1) |
---|
2205 | # GSASIIpath.IPyBreak() |
---|
2206 | #NB: the above have been checked against PA(1:10,1:2) in strfctr.for for Al2O3! |
---|
2207 | SA = fas[0]+fas[1] #float = A+A' (might be array[nTwin]) |
---|
2208 | SB = fbs[0]+fbs[1] #float = B+B' (might be array[nTwin]) |
---|
2209 | dFdfr[iref] = [2.*TwMask[it]*(SA[it]*dfadfr[0][it]+SA[it]*dfadfr[1][it]+SB[it]*dfbdfr[0][it]+SB[it]*dfbdfr[1][it])*Mdata/len(Uniq[it]) for it in range(nTwin)] |
---|
2210 | dFdx[iref] = [2.*TwMask[it]*(SA[it]*dfadx[it][0]+SA[it]*dfadx[it][1]+SB[it]*dfbdx[it][0]+SB[it]*dfbdx[it][1]) for it in range(nTwin)] |
---|
2211 | dFdui[iref] = [2.*TwMask[it]*(SA[it]*dfadui[it][0]+SA[it]*dfadui[it][1]+SB[it]*dfbdui[it][0]+SB[it]*dfbdui[it][1]) for it in range(nTwin)] |
---|
2212 | dFdua[iref] = [2.*TwMask[it]*(SA[it]*dfadua[it][0]+SA[it]*dfadua[it][1]+SB[it]*dfbdua[it][0]+SB[it]*dfbdua[it][1]) for it in range(nTwin)] |
---|
2213 | dFdtw[iref] = np.sum(TwMask*fas,axis=0)**2+np.sum(TwMask*fbs,axis=0)**2 |
---|
2214 | |
---|
2215 | dFdGf[iref] = [2.*TwMask[it]*(SA[it]*dfadGf[1]+SB[it]*dfbdGf[1]) for it in range(nTwin)] |
---|
2216 | dFdGx[iref] = [2.*TwMask[it]*(SA[it]*dfadGx[1]+SB[it]*dfbdGx[1]) for it in range(nTwin)] |
---|
2217 | dFdGz[iref] = [2.*TwMask[it]*(SA[it]*dfadGz[1]+SB[it]*dfbdGz[1]) for it in range(nTwin)] |
---|
2218 | dFdGu[iref] = [2.*TwMask[it]*(SA[it]*dfadGu[1]+SB[it]*dfbdGu[1]) for it in range(nTwin)] |
---|
2219 | # GSASIIpath.IPyBreak() |
---|
2220 | dFdbab[iref] = 2.*fas[0]*np.array([np.sum(dfadba*dBabdA),np.sum(-dfadba*parmDict[phfx+'BabA']*SQfactor*dBabdA)]).T+ \ |
---|
2221 | 2.*fbs[0]*np.array([np.sum(dfbdba*dBabdA),np.sum(-dfbdba*parmDict[phfx+'BabA']*SQfactor*dBabdA)]).T |
---|
2222 | #loop over atoms - each dict entry is list of derivatives for all the reflections |
---|
2223 | if not iref%100 : |
---|
2224 | print (' %d derivative time %.4f\r'%(iref,time.time()-time0),end='') |
---|
2225 | for i in range(len(Mdata)): #loop over atoms |
---|
2226 | dFdvDict[pfx+'Afrac:'+str(i)] = dFdfr.T[i] |
---|
2227 | dFdvDict[pfx+'dAx:'+str(i)] = dFdx.T[0][i] |
---|
2228 | dFdvDict[pfx+'dAy:'+str(i)] = dFdx.T[1][i] |
---|
2229 | dFdvDict[pfx+'dAz:'+str(i)] = dFdx.T[2][i] |
---|
2230 | dFdvDict[pfx+'AUiso:'+str(i)] = dFdui.T[i] |
---|
2231 | dFdvDict[pfx+'AU11:'+str(i)] = dFdua.T[0][i] |
---|
2232 | dFdvDict[pfx+'AU22:'+str(i)] = dFdua.T[1][i] |
---|
2233 | dFdvDict[pfx+'AU33:'+str(i)] = dFdua.T[2][i] |
---|
2234 | dFdvDict[pfx+'AU12:'+str(i)] = 2.*dFdua.T[3][i] |
---|
2235 | dFdvDict[pfx+'AU13:'+str(i)] = 2.*dFdua.T[4][i] |
---|
2236 | dFdvDict[pfx+'AU23:'+str(i)] = 2.*dFdua.T[5][i] |
---|
2237 | for j in range(FSSdata.shape[1]): #loop over waves Fzero & Fwid? |
---|
2238 | dFdvDict[pfx+'Fsin:'+str(i)+':'+str(j)] = dFdGf.T[0][j][i] |
---|
2239 | dFdvDict[pfx+'Fcos:'+str(i)+':'+str(j)] = dFdGf.T[1][j][i] |
---|
2240 | nx = 0 |
---|
2241 | if waveTypes[i] in ['Block','ZigZag']: |
---|
2242 | nx = 1 |
---|
2243 | dFdvDict[pfx+'Tmin:'+str(i)+':0'] = dFdGz.T[0][i] #ZigZag/Block waves (if any) |
---|
2244 | dFdvDict[pfx+'Tmax:'+str(i)+':0'] = dFdGz.T[1][i] |
---|
2245 | dFdvDict[pfx+'Xmax:'+str(i)+':0'] = dFdGz.T[2][i] |
---|
2246 | dFdvDict[pfx+'Ymax:'+str(i)+':0'] = dFdGz.T[3][i] |
---|
2247 | dFdvDict[pfx+'Zmax:'+str(i)+':0'] = dFdGz.T[4][i] |
---|
2248 | for j in range(XSSdata.shape[1]-nx): #loop over waves |
---|
2249 | dFdvDict[pfx+'Xsin:'+str(i)+':'+str(j+nx)] = dFdGx.T[0][j][i] |
---|
2250 | dFdvDict[pfx+'Ysin:'+str(i)+':'+str(j+nx)] = dFdGx.T[1][j][i] |
---|
2251 | dFdvDict[pfx+'Zsin:'+str(i)+':'+str(j+nx)] = dFdGx.T[2][j][i] |
---|
2252 | dFdvDict[pfx+'Xcos:'+str(i)+':'+str(j+nx)] = dFdGx.T[3][j][i] |
---|
2253 | dFdvDict[pfx+'Ycos:'+str(i)+':'+str(j+nx)] = dFdGx.T[4][j][i] |
---|
2254 | dFdvDict[pfx+'Zcos:'+str(i)+':'+str(j+nx)] = dFdGx.T[5][j][i] |
---|
2255 | for j in range(USSdata.shape[1]): #loop over waves |
---|
2256 | dFdvDict[pfx+'U11sin:'+str(i)+':'+str(j)] = dFdGu.T[0][j][i] |
---|
2257 | dFdvDict[pfx+'U22sin:'+str(i)+':'+str(j)] = dFdGu.T[1][j][i] |
---|
2258 | dFdvDict[pfx+'U33sin:'+str(i)+':'+str(j)] = dFdGu.T[2][j][i] |
---|
2259 | dFdvDict[pfx+'U12sin:'+str(i)+':'+str(j)] = 2.*dFdGu.T[3][j][i] |
---|
2260 | dFdvDict[pfx+'U13sin:'+str(i)+':'+str(j)] = 2.*dFdGu.T[4][j][i] |
---|
2261 | dFdvDict[pfx+'U23sin:'+str(i)+':'+str(j)] = 2.*dFdGu.T[5][j][i] |
---|
2262 | dFdvDict[pfx+'U11cos:'+str(i)+':'+str(j)] = dFdGu.T[6][j][i] |
---|
2263 | dFdvDict[pfx+'U22cos:'+str(i)+':'+str(j)] = dFdGu.T[7][j][i] |
---|
2264 | dFdvDict[pfx+'U33cos:'+str(i)+':'+str(j)] = dFdGu.T[8][j][i] |
---|
2265 | dFdvDict[pfx+'U12cos:'+str(i)+':'+str(j)] = 2.*dFdGu.T[9][j][i] |
---|
2266 | dFdvDict[pfx+'U13cos:'+str(i)+':'+str(j)] = 2.*dFdGu.T[10][j][i] |
---|
2267 | dFdvDict[pfx+'U23cos:'+str(i)+':'+str(j)] = 2.*dFdGu.T[11][j][i] |
---|
2268 | |
---|
2269 | # GSASIIpath.IPyBreak() |
---|
2270 | dFdvDict[phfx+'BabA'] = dFdbab.T[0] |
---|
2271 | dFdvDict[phfx+'BabU'] = dFdbab.T[1] |
---|
2272 | return dFdvDict |
---|
2273 | |
---|
2274 | def SCExtinction(ref,im,phfx,hfx,pfx,calcControls,parmDict,varyList): |
---|
2275 | ''' Single crystal extinction function; returns extinction & derivative |
---|
2276 | ''' |
---|
2277 | extCor = 1.0 |
---|
2278 | dervDict = {} |
---|
2279 | dervCor = 1.0 |
---|
2280 | if calcControls[phfx+'EType'] != 'None': |
---|
2281 | SQ = 1/(4.*ref[4+im]**2) |
---|
2282 | if 'C' in parmDict[hfx+'Type']: |
---|
2283 | cos2T = 1.0-2.*SQ*parmDict[hfx+'Lam']**2 #cos(2theta) |
---|
2284 | else: #'T' |
---|
2285 | cos2T = 1.0-2.*SQ*ref[12+im]**2 #cos(2theta) |
---|
2286 | if 'SXC' in parmDict[hfx+'Type']: |
---|
2287 | AV = 7.9406e5/parmDict[pfx+'Vol']**2 |
---|
2288 | PL = np.sqrt(1.0-cos2T**2)/parmDict[hfx+'Lam'] |
---|
2289 | P12 = (calcControls[phfx+'Cos2TM']+cos2T**4)/(calcControls[phfx+'Cos2TM']+cos2T**2) |
---|
2290 | PLZ = AV*P12*ref[9+im]*parmDict[hfx+'Lam']**2 |
---|
2291 | elif 'SNT' in parmDict[hfx+'Type']: |
---|
2292 | AV = 1.e7/parmDict[pfx+'Vol']**2 |
---|
2293 | PL = SQ |
---|
2294 | PLZ = AV*ref[9+im]*ref[12+im]**2 |
---|
2295 | elif 'SNC' in parmDict[hfx+'Type']: |
---|
2296 | AV = 1.e7/parmDict[pfx+'Vol']**2 |
---|
2297 | PL = np.sqrt(1.0-cos2T**2)/parmDict[hfx+'Lam'] |
---|
2298 | PLZ = AV*ref[9+im]*parmDict[hfx+'Lam']**2 |
---|
2299 | |
---|
2300 | if 'Primary' in calcControls[phfx+'EType']: |
---|
2301 | PLZ *= 1.5 |
---|
2302 | else: |
---|
2303 | if 'C' in parmDict[hfx+'Type']: |
---|
2304 | PLZ *= calcControls[phfx+'Tbar'] |
---|
2305 | else: #'T' |
---|
2306 | PLZ *= ref[13+im] #t-bar |
---|
2307 | if 'Primary' in calcControls[phfx+'EType']: |
---|
2308 | PLZ *= 1.5 |
---|
2309 | PSIG = parmDict[phfx+'Ep'] |
---|
2310 | elif 'I & II' in calcControls[phfx+'EType']: |
---|
2311 | PSIG = parmDict[phfx+'Eg']/np.sqrt(1.+(parmDict[phfx+'Es']*PL/parmDict[phfx+'Eg'])**2) |
---|
2312 | elif 'Type II' in calcControls[phfx+'EType']: |
---|
2313 | PSIG = parmDict[phfx+'Es'] |
---|
2314 | else: # 'Secondary Type I' |
---|
2315 | PSIG = parmDict[phfx+'Eg']/PL |
---|
2316 | |
---|
2317 | AG = 0.58+0.48*cos2T+0.24*cos2T**2 |
---|
2318 | AL = 0.025+0.285*cos2T |
---|
2319 | BG = 0.02-0.025*cos2T |
---|
2320 | BL = 0.15-0.2*(0.75-cos2T)**2 |
---|
2321 | if cos2T < 0.: |
---|
2322 | BL = -0.45*cos2T |
---|
2323 | CG = 2. |
---|
2324 | CL = 2. |
---|
2325 | PF = PLZ*PSIG |
---|
2326 | |
---|
2327 | if 'Gaussian' in calcControls[phfx+'EApprox']: |
---|
2328 | PF4 = 1.+CG*PF+AG*PF**2/(1.+BG*PF) |
---|
2329 | extCor = np.sqrt(PF4) |
---|
2330 | PF3 = 0.5*(CG+2.*AG*PF/(1.+BG*PF)-AG*PF**2*BG/(1.+BG*PF)**2)/(PF4*extCor) |
---|
2331 | else: |
---|
2332 | PF4 = 1.+CL*PF+AL*PF**2/(1.+BL*PF) |
---|
2333 | extCor = np.sqrt(PF4) |
---|
2334 | PF3 = 0.5*(CL+2.*AL*PF/(1.+BL*PF)-AL*PF**2*BL/(1.+BL*PF)**2)/(PF4*extCor) |
---|
2335 | |
---|
2336 | dervCor = (1.+PF)*PF3 #extinction corr for other derivatives |
---|
2337 | if 'Primary' in calcControls[phfx+'EType'] and phfx+'Ep' in varyList: |
---|
2338 | dervDict[phfx+'Ep'] = -ref[7+im]*PLZ*PF3 |
---|
2339 | if 'II' in calcControls[phfx+'EType'] and phfx+'Es' in varyList: |
---|
2340 | dervDict[phfx+'Es'] = -ref[7+im]*PLZ*PF3*(PSIG/parmDict[phfx+'Es'])**3 |
---|
2341 | if 'I' in calcControls[phfx+'EType'] and phfx+'Eg' in varyList: |
---|
2342 | dervDict[phfx+'Eg'] = -ref[7+im]*PLZ*PF3*(PSIG/parmDict[phfx+'Eg'])**3*PL**2 |
---|
2343 | |
---|
2344 | return 1./extCor,dervDict,dervCor |
---|
2345 | |
---|
2346 | def Dict2Values(parmdict, varylist): |
---|
2347 | '''Use before call to leastsq to setup list of values for the parameters |
---|
2348 | in parmdict, as selected by key in varylist''' |
---|
2349 | return [parmdict[key] for key in varylist] |
---|
2350 | |
---|
2351 | def Values2Dict(parmdict, varylist, values): |
---|
2352 | ''' Use after call to leastsq to update the parameter dictionary with |
---|
2353 | values corresponding to keys in varylist''' |
---|
2354 | parmdict.update(zip(varylist,values)) |
---|
2355 | |
---|
2356 | def GetNewCellParms(parmDict,varyList): |
---|
2357 | '''Compute unit cell tensor terms from varied Aij and Dij values. |
---|
2358 | Terms are included in the dict only if Aij or Dij is varied. |
---|
2359 | ''' |
---|
2360 | newCellDict = {} |
---|
2361 | Anames = ['A'+str(i) for i in range(6)] |
---|
2362 | Ddict = dict(zip(['D11','D22','D33','D12','D13','D23'],Anames)) |
---|
2363 | for item in varyList: |
---|
2364 | keys = item.split(':') |
---|
2365 | if keys[2] in Ddict: |
---|
2366 | key = keys[0]+'::'+Ddict[keys[2]] #key is e.g. '0::A0' |
---|
2367 | parm = keys[0]+'::'+keys[2] #parm is e.g. '0::D11' |
---|
2368 | newCellDict[parm] = [key,parmDict[key]+parmDict[item]] |
---|
2369 | return newCellDict # is e.g. {'0::D11':A0-D11} |
---|
2370 | |
---|
2371 | def ApplyXYZshifts(parmDict,varyList): |
---|
2372 | ''' |
---|
2373 | takes atom x,y,z shift and applies it to corresponding atom x,y,z value |
---|
2374 | |
---|
2375 | :param dict parmDict: parameter dictionary |
---|
2376 | :param list varyList: list of variables (not used!) |
---|
2377 | :returns: newAtomDict - dictionary of new atomic coordinate names & values; key is parameter shift name |
---|
2378 | |
---|
2379 | ''' |
---|
2380 | newAtomDict = {} |
---|
2381 | for item in parmDict: |
---|
2382 | if 'dA' in item: |
---|
2383 | parm = ''.join(item.split('d')) |
---|
2384 | parmDict[parm] += parmDict[item] |
---|
2385 | newAtomDict[item] = [parm,parmDict[parm]] |
---|
2386 | return newAtomDict |
---|
2387 | |
---|
2388 | def SHTXcal(refl,im,g,pfx,hfx,SGData,calcControls,parmDict): |
---|
2389 | 'Spherical harmonics texture' |
---|
2390 | IFCoup = 'Bragg' in calcControls[hfx+'instType'] |
---|
2391 | if 'T' in calcControls[hfx+'histType']: |
---|
2392 | tth = parmDict[hfx+'2-theta'] |
---|
2393 | else: |
---|
2394 | tth = refl[5+im] |
---|
2395 | odfCor = 1.0 |
---|
2396 | H = refl[:3] |
---|
2397 | cell = G2lat.Gmat2cell(g) |
---|
2398 | Sangls = [parmDict[pfx+'SH omega'],parmDict[pfx+'SH chi'],parmDict[pfx+'SH phi']] |
---|
2399 | Gangls = [parmDict[hfx+'Phi'],parmDict[hfx+'Chi'],parmDict[hfx+'Omega'],parmDict[hfx+'Azimuth']] |
---|
2400 | phi,beta = G2lat.CrsAng(H,cell,SGData) |
---|
2401 | psi,gam,x,x = G2lat.SamAng(tth/2.,Gangls,Sangls,IFCoup) #ignore 2 sets of angle derivs. |
---|
2402 | SHnames = G2lat.GenSHCoeff(SGData['SGLaue'],parmDict[pfx+'SHmodel'],parmDict[pfx+'SHorder']) |
---|
2403 | for item in SHnames: |
---|
2404 | L,M,N = eval(item.strip('C')) |
---|
2405 | Kcl = G2lat.GetKcl(L,N,SGData['SGLaue'],phi,beta) |
---|
2406 | Ksl,x,x = G2lat.GetKsl(L,M,parmDict[pfx+'SHmodel'],psi,gam) |
---|
2407 | Lnorm = G2lat.Lnorm(L) |
---|
2408 | odfCor += parmDict[pfx+item]*Lnorm*Kcl*Ksl |
---|
2409 | return odfCor |
---|
2410 | |
---|
2411 | def SHTXcalDerv(refl,im,g,pfx,hfx,SGData,calcControls,parmDict): |
---|
2412 | 'Spherical harmonics texture derivatives' |
---|
2413 | if 'T' in calcControls[hfx+'histType']: |
---|
2414 | tth = parmDict[hfx+'2-theta'] |
---|
2415 | else: |
---|
2416 | tth = refl[5+im] |
---|
2417 | IFCoup = 'Bragg' in calcControls[hfx+'instType'] |
---|
2418 | odfCor = 1.0 |
---|
2419 | dFdODF = {} |
---|
2420 | dFdSA = [0,0,0] |
---|
2421 | H = refl[:3] |
---|
2422 | cell = G2lat.Gmat2cell(g) |
---|
2423 | Sangls = [parmDict[pfx+'SH omega'],parmDict[pfx+'SH chi'],parmDict[pfx+'SH phi']] |
---|
2424 | Gangls = [parmDict[hfx+'Phi'],parmDict[hfx+'Chi'],parmDict[hfx+'Omega'],parmDict[hfx+'Azimuth']] |
---|
2425 | phi,beta = G2lat.CrsAng(H,cell,SGData) |
---|
2426 | psi,gam,dPSdA,dGMdA = G2lat.SamAng(tth/2.,Gangls,Sangls,IFCoup) |
---|
2427 | SHnames = G2lat.GenSHCoeff(SGData['SGLaue'],parmDict[pfx+'SHmodel'],parmDict[pfx+'SHorder']) |
---|
2428 | for item in SHnames: |
---|
2429 | L,M,N = eval(item.strip('C')) |
---|
2430 | Kcl = G2lat.GetKcl(L,N,SGData['SGLaue'],phi,beta) |
---|
2431 | Ksl,dKsdp,dKsdg = G2lat.GetKsl(L,M,parmDict[pfx+'SHmodel'],psi,gam) |
---|
2432 | Lnorm = G2lat.Lnorm(L) |
---|
2433 | odfCor += parmDict[pfx+item]*Lnorm*Kcl*Ksl |
---|
2434 | dFdODF[pfx+item] = Lnorm*Kcl*Ksl |
---|
2435 | for i in range(3): |
---|
2436 | dFdSA[i] += parmDict[pfx+item]*Lnorm*Kcl*(dKsdp*dPSdA[i]+dKsdg*dGMdA[i]) |
---|
2437 | return odfCor,dFdODF,dFdSA |
---|
2438 | |
---|
2439 | def SHPOcal(refl,im,g,phfx,hfx,SGData,calcControls,parmDict): |
---|
2440 | 'spherical harmonics preferred orientation (cylindrical symmetry only)' |
---|
2441 | if 'T' in calcControls[hfx+'histType']: |
---|
2442 | tth = parmDict[hfx+'2-theta'] |
---|
2443 | else: |
---|
2444 | tth = refl[5+im] |
---|
2445 | odfCor = 1.0 |
---|
2446 | H = refl[:3] |
---|
2447 | cell = G2lat.Gmat2cell(g) |
---|
2448 | Sangls = [0.,0.,0.] |
---|
2449 | if 'Bragg' in calcControls[hfx+'instType']: |
---|
2450 | Gangls = [0.,90.,0.,parmDict[hfx+'Azimuth']] |
---|
2451 | IFCoup = True |
---|
2452 | else: |
---|
2453 | Gangls = [parmDict[hfx+'Phi'],parmDict[hfx+'Chi'],parmDict[hfx+'Omega'],parmDict[hfx+'Azimuth']] |
---|
2454 | IFCoup = False |
---|
2455 | phi,beta = G2lat.CrsAng(H,cell,SGData) |
---|
2456 | psi,gam,x,x = G2lat.SamAng(tth/2.,Gangls,Sangls,IFCoup) #ignore 2 sets of angle derivs. |
---|
2457 | SHnames = calcControls[phfx+'SHnames'] |
---|
2458 | for item in SHnames: |
---|
2459 | L,N = eval(item.strip('C')) |
---|
2460 | Kcl = G2lat.GetKcl(L,N,SGData['SGLaue'],phi,beta) |
---|
2461 | Ksl,x,x = G2lat.GetKsl(L,0,'0',psi,gam) |
---|
2462 | Lnorm = G2lat.Lnorm(L) |
---|
2463 | odfCor += parmDict[phfx+item]*Lnorm*Kcl*Ksl |
---|
2464 | return np.squeeze(odfCor) |
---|
2465 | |
---|
2466 | def SHPOcalDerv(refl,im,g,phfx,hfx,SGData,calcControls,parmDict): |
---|
2467 | 'spherical harmonics preferred orientation derivatives (cylindrical symmetry only)' |
---|
2468 | if 'T' in calcControls[hfx+'histType']: |
---|
2469 | tth = parmDict[hfx+'2-theta'] |
---|
2470 | else: |
---|
2471 | tth = refl[5+im] |
---|
2472 | odfCor = 1.0 |
---|
2473 | dFdODF = {} |
---|
2474 | H = refl[:3] |
---|
2475 | cell = G2lat.Gmat2cell(g) |
---|
2476 | Sangls = [0.,0.,0.] |
---|
2477 | if 'Bragg' in calcControls[hfx+'instType']: |
---|
2478 | Gangls = [0.,90.,0.,parmDict[hfx+'Azimuth']] |
---|
2479 | IFCoup = True |
---|
2480 | else: |
---|
2481 | Gangls = [parmDict[hfx+'Phi'],parmDict[hfx+'Chi'],parmDict[hfx+'Omega'],parmDict[hfx+'Azimuth']] |
---|
2482 | IFCoup = False |
---|
2483 | phi,beta = G2lat.CrsAng(H,cell,SGData) |
---|
2484 | psi,gam,x,x = G2lat.SamAng(tth/2.,Gangls,Sangls,IFCoup) #ignore 2 sets of angle derivs. |
---|
2485 | SHnames = calcControls[phfx+'SHnames'] |
---|
2486 | for item in SHnames: |
---|
2487 | L,N = eval(item.strip('C')) |
---|
2488 | Kcl = G2lat.GetKcl(L,N,SGData['SGLaue'],phi,beta) |
---|
2489 | Ksl,x,x = G2lat.GetKsl(L,0,'0',psi,gam) |
---|
2490 | Lnorm = G2lat.Lnorm(L) |
---|
2491 | odfCor += parmDict[phfx+item]*Lnorm*Kcl*Ksl |
---|
2492 | dFdODF[phfx+item] = Kcl*Ksl*Lnorm |
---|
2493 | return odfCor,dFdODF |
---|
2494 | |
---|
2495 | def GetPrefOri(uniq,G,g,phfx,hfx,SGData,calcControls,parmDict): |
---|
2496 | 'March-Dollase preferred orientation correction' |
---|
2497 | POcorr = 1.0 |
---|
2498 | MD = parmDict[phfx+'MD'] |
---|
2499 | if MD != 1.0: |
---|
2500 | MDAxis = calcControls[phfx+'MDAxis'] |
---|
2501 | sumMD = 0 |
---|
2502 | for H in uniq: |
---|
2503 | cosP,sinP = G2lat.CosSinAngle(H,MDAxis,G) |
---|
2504 | A = 1.0/np.sqrt((MD*cosP)**2+sinP**2/MD) |
---|
2505 | sumMD += A**3 |
---|
2506 | POcorr = sumMD/len(uniq) |
---|
2507 | return POcorr |
---|
2508 | |
---|
2509 | def GetPrefOriDerv(refl,im,uniq,G,g,phfx,hfx,SGData,calcControls,parmDict): |
---|
2510 | 'Needs a doc string' |
---|
2511 | POcorr = 1.0 |
---|
2512 | POderv = {} |
---|
2513 | if calcControls[phfx+'poType'] == 'MD': |
---|
2514 | MD = parmDict[phfx+'MD'] |
---|
2515 | MDAxis = calcControls[phfx+'MDAxis'] |
---|
2516 | sumMD = 0 |
---|
2517 | sumdMD = 0 |
---|
2518 | for H in uniq: |
---|
2519 | cosP,sinP = G2lat.CosSinAngle(H,MDAxis,G) |
---|
2520 | A = 1.0/np.sqrt((MD*cosP)**2+sinP**2/MD) |
---|
2521 | sumMD += A**3 |
---|
2522 | sumdMD -= (1.5*A**5)*(2.0*MD*cosP**2-(sinP/MD)**2) |
---|
2523 | POcorr = sumMD/len(uniq) |
---|
2524 | POderv[phfx+'MD'] = sumdMD/len(uniq) |
---|
2525 | else: #spherical harmonics |
---|
2526 | if calcControls[phfx+'SHord']: |
---|
2527 | POcorr,POderv = SHPOcalDerv(refl,im,g,phfx,hfx,SGData,calcControls,parmDict) |
---|
2528 | return POcorr,POderv |
---|
2529 | |
---|
2530 | def GetAbsorb(refl,im,hfx,calcControls,parmDict): |
---|
2531 | 'Needs a doc string' |
---|
2532 | if 'Debye' in calcControls[hfx+'instType']: |
---|
2533 | if 'T' in calcControls[hfx+'histType']: |
---|
2534 | return G2pwd.Absorb('Cylinder',parmDict[hfx+'Absorption']*refl[14+im],abs(parmDict[hfx+'2-theta']),0,0) |
---|
2535 | else: |
---|
2536 | return G2pwd.Absorb('Cylinder',parmDict[hfx+'Absorption'],refl[5+im],0,0) |
---|
2537 | else: |
---|
2538 | return G2pwd.SurfaceRough(parmDict[hfx+'SurfRoughA'],parmDict[hfx+'SurfRoughB'],refl[5+im]) |
---|
2539 | |
---|
2540 | def GetAbsorbDerv(refl,im,hfx,calcControls,parmDict): |
---|
2541 | 'Needs a doc string' |
---|
2542 | if 'Debye' in calcControls[hfx+'instType']: |
---|
2543 | if 'T' in calcControls[hfx+'histType']: |
---|
2544 | return G2pwd.AbsorbDerv('Cylinder',parmDict[hfx+'Absorption']*refl[14+im],abs(parmDict[hfx+'2-theta']),0,0) |
---|
2545 | else: |
---|
2546 | return G2pwd.AbsorbDerv('Cylinder',parmDict[hfx+'Absorption'],refl[5+im],0,0) |
---|
2547 | else: |
---|
2548 | return np.array(G2pwd.SurfaceRoughDerv(parmDict[hfx+'SurfRoughA'],parmDict[hfx+'SurfRoughB'],refl[5+im])) |
---|
2549 | |
---|
2550 | def GetPwdrExt(refl,im,pfx,phfx,hfx,calcControls,parmDict): |
---|
2551 | 'Needs a doc string' |
---|
2552 | coef = np.array([-0.5,0.25,-0.10416667,0.036458333,-0.0109375,2.8497409E-3]) |
---|
2553 | pi2 = np.sqrt(2./np.pi) |
---|
2554 | if 'T' in calcControls[hfx+'histType']: |
---|
2555 | sth2 = sind(abs(parmDict[hfx+'2-theta'])/2.)**2 |
---|
2556 | wave = refl[14+im] |
---|
2557 | else: #'C'W |
---|
2558 | sth2 = sind(refl[5+im]/2.)**2 |
---|
2559 | wave = parmDict.get(hfx+'Lam',parmDict.get(hfx+'Lam1',1.0)) |
---|
2560 | c2th = 1.-2.0*sth2 |
---|
2561 | flv2 = refl[9+im]*(wave/parmDict[pfx+'Vol'])**2 |
---|
2562 | if 'X' in calcControls[hfx+'histType']: |
---|
2563 | flv2 *= 0.079411*(1.0+c2th**2)/2.0 |
---|
2564 | xfac = flv2*parmDict[phfx+'Extinction'] |
---|
2565 | exb = 1.0 |
---|
2566 | if xfac > -1.: |
---|
2567 | exb = 1./np.sqrt(1.+xfac) |
---|
2568 | exl = 1.0 |
---|
2569 | if 0 < xfac <= 1.: |
---|
2570 | xn = np.array([xfac**(i+1) for i in range(6)]) |
---|
2571 | exl += np.sum(xn*coef) |
---|
2572 | elif xfac > 1.: |
---|
2573 | xfac2 = 1./np.sqrt(xfac) |
---|
2574 | exl = pi2*(1.-0.125/xfac)*xfac2 |
---|
2575 | return exb*sth2+exl*(1.-sth2) |
---|
2576 | |
---|
2577 | def GetPwdrExtDerv(refl,im,pfx,phfx,hfx,calcControls,parmDict): |
---|
2578 | 'Needs a doc string' |
---|
2579 | coef = np.array([-0.5,0.25,-0.10416667,0.036458333,-0.0109375,2.8497409E-3]) |
---|
2580 | pi2 = np.sqrt(2./np.pi) |
---|
2581 | if 'T' in calcControls[hfx+'histType']: |
---|
2582 | sth2 = sind(abs(parmDict[hfx+'2-theta'])/2.)**2 |
---|
2583 | wave = refl[14+im] |
---|
2584 | else: #'C'W |
---|
2585 | sth2 = sind(refl[5+im]/2.)**2 |
---|
2586 | wave = parmDict.get(hfx+'Lam',parmDict.get(hfx+'Lam1',1.0)) |
---|
2587 | c2th = 1.-2.0*sth2 |
---|
2588 | flv2 = refl[9+im]*(wave/parmDict[pfx+'Vol'])**2 |
---|
2589 | if 'X' in calcControls[hfx+'histType']: |
---|
2590 | flv2 *= 0.079411*(1.0+c2th**2)/2.0 |
---|
2591 | xfac = flv2*parmDict[phfx+'Extinction'] |
---|
2592 | dbde = -500.*flv2 |
---|
2593 | if xfac > -1.: |
---|
2594 | dbde = -0.5*flv2/np.sqrt(1.+xfac)**3 |
---|
2595 | dlde = 0. |
---|
2596 | if 0 < xfac <= 1.: |
---|
2597 | xn = np.array([i*flv2*xfac**i for i in [1,2,3,4,5,6]]) |
---|
2598 | dlde = np.sum(xn*coef) |
---|
2599 | elif xfac > 1.: |
---|
2600 | xfac2 = 1./np.sqrt(xfac) |
---|
2601 | dlde = flv2*pi2*xfac2*(-1./xfac+0.375/xfac**2) |
---|
2602 | |
---|
2603 | return dbde*sth2+dlde*(1.-sth2) |
---|
2604 | |
---|
2605 | def GetIntensityCorr(refl,im,uniq,G,g,pfx,phfx,hfx,SGData,calcControls,parmDict): |
---|
2606 | 'Needs a doc string' #need powder extinction! |
---|
2607 | Icorr = parmDict[phfx+'Scale']*parmDict[hfx+'Scale']*refl[3+im] #scale*multiplicity |
---|
2608 | if 'X' in parmDict[hfx+'Type']: |
---|
2609 | Icorr *= G2pwd.Polarization(parmDict[hfx+'Polariz.'],refl[5+im],parmDict[hfx+'Azimuth'])[0] |
---|
2610 | POcorr = 1.0 |
---|
2611 | if pfx+'SHorder' in parmDict: #generalized spherical harmonics texture - takes precidence |
---|
2612 | POcorr = SHTXcal(refl,im,g,pfx,hfx,SGData,calcControls,parmDict) |
---|
2613 | elif calcControls[phfx+'poType'] == 'MD': #March-Dollase |
---|
2614 | POcorr = GetPrefOri(uniq,G,g,phfx,hfx,SGData,calcControls,parmDict) |
---|
2615 | elif calcControls[phfx+'SHord']: #cylindrical spherical harmonics |
---|
2616 | POcorr = SHPOcal(refl,im,g,phfx,hfx,SGData,calcControls,parmDict) |
---|
2617 | Icorr *= POcorr |
---|
2618 | AbsCorr = 1.0 |
---|
2619 | AbsCorr = GetAbsorb(refl,im,hfx,calcControls,parmDict) |
---|
2620 | Icorr *= AbsCorr |
---|
2621 | ExtCorr = GetPwdrExt(refl,im,pfx,phfx,hfx,calcControls,parmDict) |
---|
2622 | Icorr *= ExtCorr |
---|
2623 | return Icorr,POcorr,AbsCorr,ExtCorr |
---|
2624 | |
---|
2625 | def GetIntensityDerv(refl,im,wave,uniq,G,g,pfx,phfx,hfx,SGData,calcControls,parmDict): |
---|
2626 | 'Needs a doc string' #need powder extinction derivs! |
---|
2627 | dIdsh = 1./parmDict[hfx+'Scale'] |
---|
2628 | dIdsp = 1./parmDict[phfx+'Scale'] |
---|
2629 | if 'X' in parmDict[hfx+'Type']: |
---|
2630 | pola,dIdPola = G2pwd.Polarization(parmDict[hfx+'Polariz.'],refl[5+im],parmDict[hfx+'Azimuth']) |
---|
2631 | dIdPola /= pola |
---|
2632 | else: #'N' |
---|
2633 | dIdPola = 0.0 |
---|
2634 | dFdODF = {} |
---|
2635 | dFdSA = [0,0,0] |
---|
2636 | dIdPO = {} |
---|
2637 | if pfx+'SHorder' in parmDict: |
---|
2638 | odfCor,dFdODF,dFdSA = SHTXcalDerv(refl,im,g,pfx,hfx,SGData,calcControls,parmDict) |
---|
2639 | for iSH in dFdODF: |
---|
2640 | dFdODF[iSH] /= odfCor |
---|
2641 | for i in range(3): |
---|
2642 | dFdSA[i] /= odfCor |
---|
2643 | elif calcControls[phfx+'poType'] == 'MD' or calcControls[phfx+'SHord']: |
---|
2644 | POcorr,dIdPO = GetPrefOriDerv(refl,im,uniq,G,g,phfx,hfx,SGData,calcControls,parmDict) |
---|
2645 | for iPO in dIdPO: |
---|
2646 | dIdPO[iPO] /= POcorr |
---|
2647 | if 'T' in parmDict[hfx+'Type']: |
---|
2648 | dFdAb = GetAbsorbDerv(refl,im,hfx,calcControls,parmDict)*wave/refl[16+im] #wave/abs corr |
---|
2649 | dFdEx = GetPwdrExtDerv(refl,im,pfx,phfx,hfx,calcControls,parmDict)/refl[17+im] #/ext corr |
---|
2650 | else: |
---|
2651 | dFdAb = GetAbsorbDerv(refl,im,hfx,calcControls,parmDict)*wave/refl[13+im] #wave/abs corr |
---|
2652 | dFdEx = GetPwdrExtDerv(refl,im,pfx,phfx,hfx,calcControls,parmDict)/refl[14+im] #/ext corr |
---|
2653 | return dIdsh,dIdsp,dIdPola,dIdPO,dFdODF,dFdSA,dFdAb,dFdEx |
---|
2654 | |
---|
2655 | def GetSampleSigGam(refl,im,wave,G,GB,SGData,hfx,phfx,calcControls,parmDict): |
---|
2656 | 'Needs a doc string' |
---|
2657 | if 'C' in calcControls[hfx+'histType']: #All checked & OK |
---|
2658 | costh = cosd(refl[5+im]/2.) |
---|
2659 | #crystallite size |
---|
2660 | if calcControls[phfx+'SizeType'] == 'isotropic': |
---|
2661 | Sgam = 1.8*wave/(np.pi*parmDict[phfx+'Size;i']*costh) |
---|
2662 | elif calcControls[phfx+'SizeType'] == 'uniaxial': |
---|
2663 | H = np.array(refl[:3]) |
---|
2664 | P = np.array(calcControls[phfx+'SizeAxis']) |
---|
2665 | cosP,sinP = G2lat.CosSinAngle(H,P,G) |
---|
2666 | Sgam = (1.8*wave/np.pi)/(parmDict[phfx+'Size;i']*parmDict[phfx+'Size;a']*costh) |
---|
2667 | Sgam *= np.sqrt((sinP*parmDict[phfx+'Size;a'])**2+(cosP*parmDict[phfx+'Size;i'])**2) |
---|
2668 | else: #ellipsoidal crystallites |
---|
2669 | Sij =[parmDict[phfx+'Size;%d'%(i)] for i in range(6)] |
---|
2670 | H = np.array(refl[:3]) |
---|
2671 | lenR = G2pwd.ellipseSize(H,Sij,GB) |
---|
2672 | Sgam = 1.8*wave/(np.pi*costh*lenR) |
---|
2673 | #microstrain |
---|
2674 | if calcControls[phfx+'MustrainType'] == 'isotropic': |
---|
2675 | Mgam = 0.018*parmDict[phfx+'Mustrain;i']*tand(refl[5+im]/2.)/np.pi |
---|
2676 | elif calcControls[phfx+'MustrainType'] == 'uniaxial': |
---|
2677 | H = np.array(refl[:3]) |
---|
2678 | P = np.array(calcControls[phfx+'MustrainAxis']) |
---|
2679 | cosP,sinP = G2lat.CosSinAngle(H,P,G) |
---|
2680 | Si = parmDict[phfx+'Mustrain;i'] |
---|
2681 | Sa = parmDict[phfx+'Mustrain;a'] |
---|
2682 | Mgam = 0.018*Si*Sa*tand(refl[5+im]/2.)/(np.pi*np.sqrt((Si*cosP)**2+(Sa*sinP)**2)) |
---|
2683 | else: #generalized - P.W. Stephens model |
---|
2684 | Strms = G2spc.MustrainCoeff(refl[:3],SGData) |
---|
2685 | Sum = 0 |
---|
2686 | for i,strm in enumerate(Strms): |
---|
2687 | Sum += parmDict[phfx+'Mustrain;'+str(i)]*strm |
---|
2688 | Mgam = 0.018*refl[4+im]**2*tand(refl[5+im]/2.)*np.sqrt(Sum)/np.pi |
---|
2689 | elif 'T' in calcControls[hfx+'histType']: #All checked & OK |
---|
2690 | #crystallite size |
---|
2691 | if calcControls[phfx+'SizeType'] == 'isotropic': #OK |
---|
2692 | Sgam = 1.e-4*parmDict[hfx+'difC']*refl[4+im]**2/parmDict[phfx+'Size;i'] |
---|
2693 | elif calcControls[phfx+'SizeType'] == 'uniaxial': #OK |
---|
2694 | H = np.array(refl[:3]) |
---|
2695 | P = np.array(calcControls[phfx+'SizeAxis']) |
---|
2696 | cosP,sinP = G2lat.CosSinAngle(H,P,G) |
---|
2697 | Sgam = 1.e-4*parmDict[hfx+'difC']*refl[4+im]**2/(parmDict[phfx+'Size;i']*parmDict[phfx+'Size;a']) |
---|
2698 | Sgam *= np.sqrt((sinP*parmDict[phfx+'Size;a'])**2+(cosP*parmDict[phfx+'Size;i'])**2) |
---|
2699 | else: #ellipsoidal crystallites #OK |
---|
2700 | Sij =[parmDict[phfx+'Size;%d'%(i)] for i in range(6)] |
---|
2701 | H = np.array(refl[:3]) |
---|
2702 | lenR = G2pwd.ellipseSize(H,Sij,GB) |
---|
2703 | Sgam = 1.e-4*parmDict[hfx+'difC']*refl[4+im]**2/lenR |
---|
2704 | #microstrain |
---|
2705 | if calcControls[phfx+'MustrainType'] == 'isotropic': #OK |
---|
2706 | Mgam = 1.e-6*parmDict[hfx+'difC']*refl[4+im]*parmDict[phfx+'Mustrain;i'] |
---|
2707 | elif calcControls[phfx+'MustrainType'] == 'uniaxial': #OK |
---|
2708 | H = np.array(refl[:3]) |
---|
2709 | P = np.array(calcControls[phfx+'MustrainAxis']) |
---|
2710 | cosP,sinP = G2lat.CosSinAngle(H,P,G) |
---|
2711 | Si = parmDict[phfx+'Mustrain;i'] |
---|
2712 | Sa = parmDict[phfx+'Mustrain;a'] |
---|
2713 | Mgam = 1.e-6*parmDict[hfx+'difC']*refl[4+im]*Si*Sa/np.sqrt((Si*cosP)**2+(Sa*sinP)**2) |
---|
2714 | else: #generalized - P.W. Stephens model OK |
---|
2715 | Strms = G2spc.MustrainCoeff(refl[:3],SGData) |
---|
2716 | Sum = 0 |
---|
2717 | for i,strm in enumerate(Strms): |
---|
2718 | Sum += parmDict[phfx+'Mustrain;'+str(i)]*strm |
---|
2719 | Mgam = 1.e-6*parmDict[hfx+'difC']*np.sqrt(Sum)*refl[4+im]**3 |
---|
2720 | |
---|
2721 | gam = Sgam*parmDict[phfx+'Size;mx']+Mgam*parmDict[phfx+'Mustrain;mx'] |
---|
2722 | sig = (Sgam*(1.-parmDict[phfx+'Size;mx']))**2+(Mgam*(1.-parmDict[phfx+'Mustrain;mx']))**2 |
---|
2723 | sig /= ateln2 |
---|
2724 | return sig,gam |
---|
2725 | |
---|
2726 | def GetSampleSigGamDerv(refl,im,wave,G,GB,SGData,hfx,phfx,calcControls,parmDict): |
---|
2727 | 'Needs a doc string' |
---|
2728 | gamDict = {} |
---|
2729 | sigDict = {} |
---|
2730 | if 'C' in calcControls[hfx+'histType']: #All checked & OK |
---|
2731 | costh = cosd(refl[5+im]/2.) |
---|
2732 | tanth = tand(refl[5+im]/2.) |
---|
2733 | #crystallite size derivatives |
---|
2734 | if calcControls[phfx+'SizeType'] == 'isotropic': |
---|
2735 | Sgam = 1.8*wave/(np.pi*costh*parmDict[phfx+'Size;i']) |
---|
2736 | gamDict[phfx+'Size;i'] = -1.8*wave*parmDict[phfx+'Size;mx']/(np.pi*costh*parmDict[phfx+'Size;i']**2) |
---|
2737 | sigDict[phfx+'Size;i'] = -3.6*Sgam*wave*(1.-parmDict[phfx+'Size;mx'])**2/(np.pi*costh*ateln2) |
---|
2738 | elif calcControls[phfx+'SizeType'] == 'uniaxial': |
---|
2739 | H = np.array(refl[:3]) |
---|
2740 | P = np.array(calcControls[phfx+'SizeAxis']) |
---|
2741 | cosP,sinP = G2lat.CosSinAngle(H,P,G) |
---|
2742 | Si = parmDict[phfx+'Size;i'] |
---|
2743 | Sa = parmDict[phfx+'Size;a'] |
---|
2744 | gami = 1.8*wave/(costh*np.pi*Si*Sa) |
---|
2745 | sqtrm = np.sqrt((sinP*Sa)**2+(cosP*Si)**2) |
---|
2746 | Sgam = gami*sqtrm |
---|
2747 | dsi = gami*Si*cosP**2/sqtrm-Sgam/Si |
---|
2748 | dsa = gami*Sa*sinP**2/sqtrm-Sgam/Sa |
---|
2749 | gamDict[phfx+'Size;i'] = dsi*parmDict[phfx+'Size;mx'] |
---|
2750 | gamDict[phfx+'Size;a'] = dsa*parmDict[phfx+'Size;mx'] |
---|
2751 | sigDict[phfx+'Size;i'] = 2.*dsi*Sgam*(1.-parmDict[phfx+'Size;mx'])**2/ateln2 |
---|
2752 | sigDict[phfx+'Size;a'] = 2.*dsa*Sgam*(1.-parmDict[phfx+'Size;mx'])**2/ateln2 |
---|
2753 | else: #ellipsoidal crystallites |
---|
2754 | const = 1.8*wave/(np.pi*costh) |
---|
2755 | Sij =[parmDict[phfx+'Size;%d'%(i)] for i in range(6)] |
---|
2756 | H = np.array(refl[:3]) |
---|
2757 | lenR,dRdS = G2pwd.ellipseSizeDerv(H,Sij,GB) |
---|
2758 | Sgam = const/lenR |
---|
2759 | for i,item in enumerate([phfx+'Size;%d'%(j) for j in range(6)]): |
---|
2760 | gamDict[item] = -(const/lenR**2)*dRdS[i]*parmDict[phfx+'Size;mx'] |
---|
2761 | sigDict[item] = -2.*Sgam*(const/lenR**2)*dRdS[i]*(1.-parmDict[phfx+'Size;mx'])**2/ateln2 |
---|
2762 | gamDict[phfx+'Size;mx'] = Sgam |
---|
2763 | sigDict[phfx+'Size;mx'] = -2.*Sgam**2*(1.-parmDict[phfx+'Size;mx'])/ateln2 |
---|
2764 | |
---|
2765 | #microstrain derivatives |
---|
2766 | if calcControls[phfx+'MustrainType'] == 'isotropic': |
---|
2767 | Mgam = 0.018*parmDict[phfx+'Mustrain;i']*tand(refl[5+im]/2.)/np.pi |
---|
2768 | gamDict[phfx+'Mustrain;i'] = 0.018*tanth*parmDict[phfx+'Mustrain;mx']/np.pi |
---|
2769 | sigDict[phfx+'Mustrain;i'] = 0.036*Mgam*tanth*(1.-parmDict[phfx+'Mustrain;mx'])**2/(np.pi*ateln2) |
---|
2770 | elif calcControls[phfx+'MustrainType'] == 'uniaxial': |
---|
2771 | H = np.array(refl[:3]) |
---|
2772 | P = np.array(calcControls[phfx+'MustrainAxis']) |
---|
2773 | cosP,sinP = G2lat.CosSinAngle(H,P,G) |
---|
2774 | Si = parmDict[phfx+'Mustrain;i'] |
---|
2775 | Sa = parmDict[phfx+'Mustrain;a'] |
---|
2776 | gami = 0.018*Si*Sa*tanth/np.pi |
---|
2777 | sqtrm = np.sqrt((Si*cosP)**2+(Sa*sinP)**2) |
---|
2778 | Mgam = gami/sqtrm |
---|
2779 | dsi = -gami*Si*cosP**2/sqtrm**3 |
---|
2780 | dsa = -gami*Sa*sinP**2/sqtrm**3 |
---|
2781 | gamDict[phfx+'Mustrain;i'] = (Mgam/Si+dsi)*parmDict[phfx+'Mustrain;mx'] |
---|
2782 | gamDict[phfx+'Mustrain;a'] = (Mgam/Sa+dsa)*parmDict[phfx+'Mustrain;mx'] |
---|
2783 | sigDict[phfx+'Mustrain;i'] = 2*(Mgam/Si+dsi)*Mgam*(1.-parmDict[phfx+'Mustrain;mx'])**2/ateln2 |
---|
2784 | sigDict[phfx+'Mustrain;a'] = 2*(Mgam/Sa+dsa)*Mgam*(1.-parmDict[phfx+'Mustrain;mx'])**2/ateln2 |
---|
2785 | else: #generalized - P.W. Stephens model |
---|
2786 | const = 0.018*refl[4+im]**2*tanth/np.pi |
---|
2787 | Strms = G2spc.MustrainCoeff(refl[:3],SGData) |
---|
2788 | Sum = 0 |
---|
2789 | for i,strm in enumerate(Strms): |
---|
2790 | Sum += parmDict[phfx+'Mustrain;'+str(i)]*strm |
---|
2791 | gamDict[phfx+'Mustrain;'+str(i)] = strm*parmDict[phfx+'Mustrain;mx']/2. |
---|
2792 | sigDict[phfx+'Mustrain;'+str(i)] = strm*(1.-parmDict[phfx+'Mustrain;mx'])**2 |
---|
2793 | Mgam = const*np.sqrt(Sum) |
---|
2794 | for i in range(len(Strms)): |
---|
2795 | gamDict[phfx+'Mustrain;'+str(i)] *= Mgam/Sum |
---|
2796 | sigDict[phfx+'Mustrain;'+str(i)] *= const**2/ateln2 |
---|
2797 | gamDict[phfx+'Mustrain;mx'] = Mgam |
---|
2798 | sigDict[phfx+'Mustrain;mx'] = -2.*Mgam**2*(1.-parmDict[phfx+'Mustrain;mx'])/ateln2 |
---|
2799 | else: #'T'OF - All checked & OK |
---|
2800 | if calcControls[phfx+'SizeType'] == 'isotropic': #OK |
---|
2801 | Sgam = 1.e-4*parmDict[hfx+'difC']*refl[4+im]**2/parmDict[phfx+'Size;i'] |
---|
2802 | gamDict[phfx+'Size;i'] = -Sgam*parmDict[phfx+'Size;mx']/parmDict[phfx+'Size;i'] |
---|
2803 | sigDict[phfx+'Size;i'] = -2.*Sgam**2*(1.-parmDict[phfx+'Size;mx'])**2/(ateln2*parmDict[phfx+'Size;i']) |
---|
2804 | elif calcControls[phfx+'SizeType'] == 'uniaxial': #OK |
---|
2805 | const = 1.e-4*parmDict[hfx+'difC']*refl[4+im]**2 |
---|
2806 | H = np.array(refl[:3]) |
---|
2807 | P = np.array(calcControls[phfx+'SizeAxis']) |
---|
2808 | cosP,sinP = G2lat.CosSinAngle(H,P,G) |
---|
2809 | Si = parmDict[phfx+'Size;i'] |
---|
2810 | Sa = parmDict[phfx+'Size;a'] |
---|
2811 | gami = const/(Si*Sa) |
---|
2812 | sqtrm = np.sqrt((sinP*Sa)**2+(cosP*Si)**2) |
---|
2813 | Sgam = gami*sqtrm |
---|
2814 | dsi = gami*Si*cosP**2/sqtrm-Sgam/Si |
---|
2815 | dsa = gami*Sa*sinP**2/sqtrm-Sgam/Sa |
---|
2816 | gamDict[phfx+'Size;i'] = dsi*parmDict[phfx+'Size;mx'] |
---|
2817 | gamDict[phfx+'Size;a'] = dsa*parmDict[phfx+'Size;mx'] |
---|
2818 | sigDict[phfx+'Size;i'] = 2.*dsi*Sgam*(1.-parmDict[phfx+'Size;mx'])**2/ateln2 |
---|
2819 | sigDict[phfx+'Size;a'] = 2.*dsa*Sgam*(1.-parmDict[phfx+'Size;mx'])**2/ateln2 |
---|
2820 | else: #OK ellipsoidal crystallites |
---|
2821 | const = 1.e-4*parmDict[hfx+'difC']*refl[4+im]**2 |
---|
2822 | Sij =[parmDict[phfx+'Size;%d'%(i)] for i in range(6)] |
---|
2823 | H = np.array(refl[:3]) |
---|
2824 | lenR,dRdS = G2pwd.ellipseSizeDerv(H,Sij,GB) |
---|
2825 | Sgam = const/lenR |
---|
2826 | for i,item in enumerate([phfx+'Size;%d'%(j) for j in range(6)]): |
---|
2827 | gamDict[item] = -(const/lenR**2)*dRdS[i]*parmDict[phfx+'Size;mx'] |
---|
2828 | sigDict[item] = -2.*Sgam*(const/lenR**2)*dRdS[i]*(1.-parmDict[phfx+'Size;mx'])**2/ateln2 |
---|
2829 | gamDict[phfx+'Size;mx'] = Sgam #OK |
---|
2830 | sigDict[phfx+'Size;mx'] = -2.*Sgam**2*(1.-parmDict[phfx+'Size;mx'])/ateln2 #OK |
---|
2831 | |
---|
2832 | #microstrain derivatives |
---|
2833 | if calcControls[phfx+'MustrainType'] == 'isotropic': |
---|
2834 | Mgam = 1.e-6*parmDict[hfx+'difC']*refl[4+im]*parmDict[phfx+'Mustrain;i'] |
---|
2835 | gamDict[phfx+'Mustrain;i'] = 1.e-6*refl[4+im]*parmDict[hfx+'difC']*parmDict[phfx+'Mustrain;mx'] #OK |
---|
2836 | sigDict[phfx+'Mustrain;i'] = 2.*Mgam**2*(1.-parmDict[phfx+'Mustrain;mx'])**2/(ateln2*parmDict[phfx+'Mustrain;i']) |
---|
2837 | elif calcControls[phfx+'MustrainType'] == 'uniaxial': |
---|
2838 | H = np.array(refl[:3]) |
---|
2839 | P = np.array(calcControls[phfx+'MustrainAxis']) |
---|
2840 | cosP,sinP = G2lat.CosSinAngle(H,P,G) |
---|
2841 | Si = parmDict[phfx+'Mustrain;i'] |
---|
2842 | Sa = parmDict[phfx+'Mustrain;a'] |
---|
2843 | gami = 1.e-6*parmDict[hfx+'difC']*refl[4+im]*Si*Sa |
---|
2844 | sqtrm = np.sqrt((Si*cosP)**2+(Sa*sinP)**2) |
---|
2845 | Mgam = gami/sqtrm |
---|
2846 | dsi = -gami*Si*cosP**2/sqtrm**3 |
---|
2847 | dsa = -gami*Sa*sinP**2/sqtrm**3 |
---|
2848 | gamDict[phfx+'Mustrain;i'] = (Mgam/Si+dsi)*parmDict[phfx+'Mustrain;mx'] |
---|
2849 | gamDict[phfx+'Mustrain;a'] = (Mgam/Sa+dsa)*parmDict[phfx+'Mustrain;mx'] |
---|
2850 | sigDict[phfx+'Mustrain;i'] = 2*(Mgam/Si+dsi)*Mgam*(1.-parmDict[phfx+'Mustrain;mx'])**2/ateln2 |
---|
2851 | sigDict[phfx+'Mustrain;a'] = 2*(Mgam/Sa+dsa)*Mgam*(1.-parmDict[phfx+'Mustrain;mx'])**2/ateln2 |
---|
2852 | else: #generalized - P.W. Stephens model OK |
---|
2853 | Strms = G2spc.MustrainCoeff(refl[:3],SGData) |
---|
2854 | const = 1.e-6*parmDict[hfx+'difC']*refl[4+im]**3 |
---|
2855 | Sum = 0 |
---|
2856 | for i,strm in enumerate(Strms): |
---|
2857 | Sum += parmDict[phfx+'Mustrain;'+str(i)]*strm |
---|
2858 | gamDict[phfx+'Mustrain;'+str(i)] = strm*parmDict[phfx+'Mustrain;mx']/2. |
---|
2859 | sigDict[phfx+'Mustrain;'+str(i)] = strm*(1.-parmDict[phfx+'Mustrain;mx'])**2 |
---|
2860 | Mgam = const*np.sqrt(Sum) |
---|
2861 | for i in range(len(Strms)): |
---|
2862 | gamDict[phfx+'Mustrain;'+str(i)] *= Mgam/Sum |
---|
2863 | sigDict[phfx+'Mustrain;'+str(i)] *= const**2/ateln2 |
---|
2864 | gamDict[phfx+'Mustrain;mx'] = Mgam |
---|
2865 | sigDict[phfx+'Mustrain;mx'] = -2.*Mgam**2*(1.-parmDict[phfx+'Mustrain;mx'])/ateln2 |
---|
2866 | |
---|
2867 | return sigDict,gamDict |
---|
2868 | |
---|
2869 | def GetReflPos(refl,im,wave,A,pfx,hfx,calcControls,parmDict): |
---|
2870 | 'Needs a doc string' |
---|
2871 | if im: |
---|
2872 | h,k,l,m = refl[:4] |
---|
2873 | vec = np.array([parmDict[pfx+'mV0'],parmDict[pfx+'mV1'],parmDict[pfx+'mV2']]) |
---|
2874 | d = 1./np.sqrt(G2lat.calc_rDsqSS(np.array([h,k,l,m]),A,vec)) |
---|
2875 | else: |
---|
2876 | h,k,l = refl[:3] |
---|
2877 | d = 1./np.sqrt(G2lat.calc_rDsq(np.array([h,k,l]),A)) |
---|
2878 | refl[4+im] = d |
---|
2879 | if 'C' in calcControls[hfx+'histType']: |
---|
2880 | pos = 2.0*asind(wave/(2.0*d))+parmDict[hfx+'Zero'] |
---|
2881 | const = 9.e-2/(np.pi*parmDict[hfx+'Gonio. radius']) #shifts in microns |
---|
2882 | if 'Bragg' in calcControls[hfx+'instType']: |
---|
2883 | pos -= const*(4.*parmDict[hfx+'Shift']*cosd(pos/2.0)+ \ |
---|
2884 | parmDict[hfx+'Transparency']*sind(pos)*100.0) #trans(=1/mueff) in cm |
---|
2885 | else: #Debye-Scherrer - simple but maybe not right |
---|
2886 | pos -= const*(parmDict[hfx+'DisplaceX']*cosd(pos)+parmDict[hfx+'DisplaceY']*sind(pos)) |
---|
2887 | elif 'T' in calcControls[hfx+'histType']: |
---|
2888 | pos = parmDict[hfx+'difC']*d+parmDict[hfx+'difA']*d**2+parmDict[hfx+'difB']/d+parmDict[hfx+'Zero'] |
---|
2889 | #do I need sample position effects - maybe? |
---|
2890 | return pos |
---|
2891 | |
---|
2892 | def GetReflPosDerv(refl,im,wave,A,pfx,hfx,calcControls,parmDict): |
---|
2893 | 'Needs a doc string' |
---|
2894 | dpr = 180./np.pi |
---|
2895 | if im: |
---|
2896 | h,k,l,m = refl[:4] |
---|
2897 | vec = np.array([parmDict[pfx+'mV0'],parmDict[pfx+'mV1'],parmDict[pfx+'mV2']]) |
---|
2898 | dstsq = G2lat.calc_rDsqSS(np.array([h,k,l,m]),A,vec) |
---|
2899 | h,k,l = [h+m*vec[0],k+m*vec[1],l+m*vec[2]] #do proj of hklm to hkl so dPdA & dPdV come out right |
---|
2900 | else: |
---|
2901 | m = 0 |
---|
2902 | h,k,l = refl[:3] |
---|
2903 | dstsq = G2lat.calc_rDsq(np.array([h,k,l]),A) |
---|
2904 | dst = np.sqrt(dstsq) |
---|
2905 | dsp = 1./dst |
---|
2906 | if 'C' in calcControls[hfx+'histType']: |
---|
2907 | pos = refl[5+im]-parmDict[hfx+'Zero'] |
---|
2908 | const = dpr/np.sqrt(1.0-wave**2*dstsq/4.0) |
---|
2909 | dpdw = const*dst |
---|
2910 | dpdA = np.array([h**2,k**2,l**2,h*k,h*l,k*l])*const*wave/(2.0*dst) |
---|
2911 | dpdZ = 1.0 |
---|
2912 | dpdV = np.array([2.*h*A[0]+k*A[3]+l*A[4],2*k*A[1]+h*A[3]+l*A[5], |
---|
2913 | 2*l*A[2]+h*A[4]+k*A[5]])*m*const*wave/(2.0*dst) |
---|
2914 | shft = 9.e-2/(np.pi*parmDict[hfx+'Gonio. radius']) #shifts in microns |
---|
2915 | if 'Bragg' in calcControls[hfx+'instType']: |
---|
2916 | dpdSh = -4.*shft*cosd(pos/2.0) |
---|
2917 | dpdTr = -shft*sind(pos)*100.0 |
---|
2918 | return dpdA,dpdw,dpdZ,dpdSh,dpdTr,0.,0.,dpdV |
---|
2919 | else: #Debye-Scherrer - simple but maybe not right |
---|
2920 | dpdXd = -shft*cosd(pos) |
---|
2921 | dpdYd = -shft*sind(pos) |
---|
2922 | return dpdA,dpdw,dpdZ,0.,0.,dpdXd,dpdYd,dpdV |
---|
2923 | elif 'T' in calcControls[hfx+'histType']: |
---|
2924 | dpdA = -np.array([h**2,k**2,l**2,h*k,h*l,k*l])*parmDict[hfx+'difC']*dsp**3/2. |
---|
2925 | dpdZ = 1.0 |
---|
2926 | dpdDC = dsp |
---|
2927 | dpdDA = dsp**2 |
---|
2928 | dpdDB = 1./dsp |
---|
2929 | dpdV = np.array([2.*h*A[0]+k*A[3]+l*A[4],2*k*A[1]+h*A[3]+l*A[5], |
---|
2930 | 2*l*A[2]+h*A[4]+k*A[5]])*m*parmDict[hfx+'difC']*dsp**3/2. |
---|
2931 | return dpdA,dpdZ,dpdDC,dpdDA,dpdDB,dpdV |
---|
2932 | |
---|
2933 | def GetHStrainShift(refl,im,SGData,phfx,hfx,calcControls,parmDict): |
---|
2934 | 'Needs a doc string' |
---|
2935 | laue = SGData['SGLaue'] |
---|
2936 | uniq = SGData['SGUniq'] |
---|
2937 | h,k,l = refl[:3] |
---|
2938 | if laue in ['m3','m3m']: |
---|
2939 | Dij = parmDict[phfx+'D11']*(h**2+k**2+l**2)+ \ |
---|
2940 | refl[4+im]**2*parmDict[phfx+'eA']*((h*k)**2+(h*l)**2+(k*l)**2)/(h**2+k**2+l**2)**2 |
---|
2941 | elif laue in ['6/m','6/mmm','3m1','31m','3']: |
---|
2942 | Dij = parmDict[phfx+'D11']*(h**2+k**2+h*k)+parmDict[phfx+'D33']*l**2 |
---|
2943 | elif laue in ['3R','3mR']: |
---|
2944 | Dij = parmDict[phfx+'D11']*(h**2+k**2+l**2)+parmDict[phfx+'D12']*(h*k+h*l+k*l) |
---|
2945 | elif laue in ['4/m','4/mmm']: |
---|
2946 | Dij = parmDict[phfx+'D11']*(h**2+k**2)+parmDict[phfx+'D33']*l**2 |
---|
2947 | elif laue in ['mmm']: |
---|
2948 | Dij = parmDict[phfx+'D11']*h**2+parmDict[phfx+'D22']*k**2+parmDict[phfx+'D33']*l**2 |
---|
2949 | elif laue in ['2/m']: |
---|
2950 | Dij = parmDict[phfx+'D11']*h**2+parmDict[phfx+'D22']*k**2+parmDict[phfx+'D33']*l**2 |
---|
2951 | if uniq == 'a': |
---|
2952 | Dij += parmDict[phfx+'D23']*k*l |
---|
2953 | elif uniq == 'b': |
---|
2954 | Dij += parmDict[phfx+'D13']*h*l |
---|
2955 | elif uniq == 'c': |
---|
2956 | Dij += parmDict[phfx+'D12']*h*k |
---|
2957 | else: |
---|
2958 | Dij = parmDict[phfx+'D11']*h**2+parmDict[phfx+'D22']*k**2+parmDict[phfx+'D33']*l**2+ \ |
---|
2959 | parmDict[phfx+'D12']*h*k+parmDict[phfx+'D13']*h*l+parmDict[phfx+'D23']*k*l |
---|
2960 | if 'C' in calcControls[hfx+'histType']: |
---|
2961 | return -180.*Dij*refl[4+im]**2*tand(refl[5+im]/2.0)/np.pi |
---|
2962 | else: |
---|
2963 | return -Dij*parmDict[hfx+'difC']*refl[4+im]**2/2. |
---|
2964 | |
---|
2965 | def GetHStrainShiftDerv(refl,im,SGData,phfx,hfx,calcControls,parmDict): |
---|
2966 | 'Needs a doc string' |
---|
2967 | laue = SGData['SGLaue'] |
---|
2968 | uniq = SGData['SGUniq'] |
---|
2969 | h,k,l = refl[:3] |
---|
2970 | if laue in ['m3','m3m']: |
---|
2971 | dDijDict = {phfx+'D11':h**2+k**2+l**2, |
---|
2972 | phfx+'eA':refl[4+im]**2*((h*k)**2+(h*l)**2+(k*l)**2)/(h**2+k**2+l**2)**2} |
---|
2973 | elif laue in ['6/m','6/mmm','3m1','31m','3']: |
---|
2974 | dDijDict = {phfx+'D11':h**2+k**2+h*k,phfx+'D33':l**2} |
---|
2975 | elif laue in ['3R','3mR']: |
---|
2976 | dDijDict = {phfx+'D11':h**2+k**2+l**2,phfx+'D12':h*k+h*l+k*l} |
---|
2977 | elif laue in ['4/m','4/mmm']: |
---|
2978 | dDijDict = {phfx+'D11':h**2+k**2,phfx+'D33':l**2} |
---|
2979 | elif laue in ['mmm']: |
---|
2980 | dDijDict = {phfx+'D11':h**2,phfx+'D22':k**2,phfx+'D33':l**2} |
---|
2981 | elif laue in ['2/m']: |
---|
2982 | dDijDict = {phfx+'D11':h**2,phfx+'D22':k**2,phfx+'D33':l**2} |
---|
2983 | if uniq == 'a': |
---|
2984 | dDijDict[phfx+'D23'] = k*l |
---|
2985 | elif uniq == 'b': |
---|
2986 | dDijDict[phfx+'D13'] = h*l |
---|
2987 | elif uniq == 'c': |
---|
2988 | dDijDict[phfx+'D12'] = h*k |
---|
2989 | else: |
---|
2990 | dDijDict = {phfx+'D11':h**2,phfx+'D22':k**2,phfx+'D33':l**2, |
---|
2991 | phfx+'D12':h*k,phfx+'D13':h*l,phfx+'D23':k*l} |
---|
2992 | if 'C' in calcControls[hfx+'histType']: |
---|
2993 | for item in dDijDict: |
---|
2994 | dDijDict[item] *= 180.0*refl[4+im]**2*tand(refl[5+im]/2.0)/np.pi |
---|
2995 | else: |
---|
2996 | for item in dDijDict: |
---|
2997 | dDijDict[item] *= -parmDict[hfx+'difC']*refl[4+im]**3/2. |
---|
2998 | return dDijDict |
---|
2999 | |
---|
3000 | def GetDij(phfx,SGData,parmDict): |
---|
3001 | HSvals = [parmDict[phfx+name] for name in G2spc.HStrainNames(SGData)] |
---|
3002 | return G2spc.HStrainVals(HSvals,SGData) |
---|
3003 | |
---|
3004 | def GetFobsSq(Histograms,Phases,parmDict,calcControls): |
---|
3005 | '''Compute the observed structure factors for Powder histograms and store in reflection array |
---|
3006 | Multiprocessing support added |
---|
3007 | ''' |
---|
3008 | if GSASIIpath.GetConfigValue('Show_timing',False): |
---|
3009 | starttime = time.time() #; print 'start GetFobsSq' |
---|
3010 | histoList = list(Histograms.keys()) |
---|
3011 | histoList.sort() |
---|
3012 | Ka2 = shl = lamRatio = kRatio = None |
---|
3013 | for histogram in histoList: |
---|
3014 | if 'PWDR' in histogram[:4]: |
---|
3015 | Histogram = Histograms[histogram] |
---|
3016 | hId = Histogram['hId'] |
---|
3017 | hfx = ':%d:'%(hId) |
---|
3018 | Limits = calcControls[hfx+'Limits'] |
---|
3019 | if 'C' in calcControls[hfx+'histType']: |
---|
3020 | shl = max(parmDict[hfx+'SH/L'],0.0005) |
---|
3021 | Ka2 = False |
---|
3022 | kRatio = 0.0 |
---|
3023 | if hfx+'Lam1' in list(parmDict.keys()): |
---|
3024 | Ka2 = True |
---|
3025 | lamRatio = 360*(parmDict[hfx+'Lam2']-parmDict[hfx+'Lam1'])/(np.pi*parmDict[hfx+'Lam1']) |
---|
3026 | kRatio = parmDict[hfx+'I(L2)/I(L1)'] |
---|
3027 | x,y,w,yc,yb,yd = Histogram['Data'] |
---|
3028 | xMask = ma.getmaskarray(x) |
---|
3029 | xB = np.searchsorted(x,Limits[0]) |
---|
3030 | xF = np.searchsorted(x,Limits[1]) |
---|
3031 | ymb = np.array(y-yb) |
---|
3032 | ymb = np.where(ymb,ymb,1.0) |
---|
3033 | ycmb = np.array(yc-yb) |
---|
3034 | ratio = 1./np.where(ycmb,ycmb/ymb,1.e10) |
---|
3035 | refLists = Histogram['Reflection Lists'] |
---|
3036 | for phase in refLists: |
---|
3037 | if phase not in Phases: #skips deleted or renamed phases silently! |
---|
3038 | continue |
---|
3039 | Phase = Phases[phase] |
---|
3040 | im = 0 |
---|
3041 | if Phase['General'].get('Modulated',False): |
---|
3042 | im = 1 |
---|
3043 | pId = Phase['pId'] |
---|
3044 | phfx = '%d:%d:'%(pId,hId) |
---|
3045 | refDict = refLists[phase] |
---|
3046 | sumFo = 0.0 |
---|
3047 | sumdF = 0.0 |
---|
3048 | sumFosq = 0.0 |
---|
3049 | sumdFsq = 0.0 |
---|
3050 | sumInt = 0.0 |
---|
3051 | nExcl = 0 |
---|
3052 | # test to see if we are using multiprocessing below |
---|
3053 | useMP,ncores = G2mp.InitMP() |
---|
3054 | if len(refDict['RefList']) < 100: useMP = False |
---|
3055 | if useMP: # multiprocessing: create a set of initialized Python processes |
---|
3056 | MPpool = mp.Pool(G2mp.ncores,G2mp.InitFobsSqGlobals, |
---|
3057 | [x,ratio,shl,xB,xF,im,lamRatio,kRatio,xMask,Ka2]) |
---|
3058 | profArgs = [[] for i in range(G2mp.ncores)] |
---|
3059 | else: |
---|
3060 | G2mp.InitFobsSqGlobals(x,ratio,shl,xB,xF,im,lamRatio,kRatio,xMask,Ka2) |
---|
3061 | if 'C' in calcControls[hfx+'histType']: |
---|
3062 | # are we multiprocessing? |
---|
3063 | for iref,refl in enumerate(refDict['RefList']): |
---|
3064 | if useMP: |
---|
3065 | profArgs[iref%G2mp.ncores].append((refl,iref)) |
---|
3066 | else: |
---|
3067 | icod= G2mp.ComputeFobsSqCW(refl,iref) |
---|
3068 | if type(icod) is tuple: |
---|
3069 | refl[8+im] = icod[0] |
---|
3070 | sumInt += icod[1] |
---|
3071 | if parmDict[phfx+'LeBail']: refl[9+im] = refl[8+im] |
---|
3072 | elif icod == -1: |
---|
3073 | refl[3+im] *= -1 |
---|
3074 | nExcl += 1 |
---|
3075 | elif icod == -2: |
---|
3076 | break |
---|
3077 | if useMP: |
---|
3078 | for sInt,resList in MPpool.imap_unordered(G2mp.ComputeFobsSqCWbatch,profArgs): |
---|
3079 | sumInt += sInt |
---|
3080 | for refl8im,irefl in resList: |
---|
3081 | if refl8im is None: |
---|
3082 | refDict['RefList'][irefl][3+im] *= -1 |
---|
3083 | nExcl += 1 |
---|
3084 | else: |
---|
3085 | refDict['RefList'][irefl][8+im] = refl8im |
---|
3086 | if parmDict[phfx+'LeBail']: |
---|
3087 | refDict['RefList'][irefl][9+im] = refDict['RefList'][irefl][8+im] |
---|
3088 | elif 'T' in calcControls[hfx+'histType']: |
---|
3089 | for iref,refl in enumerate(refDict['RefList']): |
---|
3090 | if useMP: |
---|
3091 | profArgs[iref%G2mp.ncores].append((refl,iref)) |
---|
3092 | else: |
---|
3093 | icod= G2mp.ComputeFobsSqTOF(refl,iref) |
---|
3094 | if type(icod) is tuple: |
---|
3095 | refl[8+im] = icod[0] |
---|
3096 | sumInt += icod[1] |
---|
3097 | if parmDict[phfx+'LeBail']: refl[9+im] = refl[8+im] |
---|
3098 | elif icod == -1: |
---|
3099 | refl[3+im] *= -1 |
---|
3100 | nExcl += 1 |
---|
3101 | elif icod == -2: |
---|
3102 | break |
---|
3103 | if useMP: |
---|
3104 | for sInt,resList in MPpool.imap_unordered(G2mp.ComputeFobsSqTOFbatch,profArgs): |
---|
3105 | sumInt += sInt |
---|
3106 | for refl8im,irefl in resList: |
---|
3107 | if refl8im is None: |
---|
3108 | refDict['RefList'][irefl][3+im] *= -1 |
---|
3109 | nExcl += 1 |
---|
3110 | else: |
---|
3111 | refDict['RefList'][irefl][8+im] = refl8im |
---|
3112 | if parmDict[phfx+'LeBail']: |
---|
3113 | refDict['RefList'][irefl][9+im] = refDict['RefList'][irefl][8+im] |
---|
3114 | if useMP: MPpool.terminate() |
---|
3115 | sumFo = 0.0 |
---|
3116 | sumdF = 0.0 |
---|
3117 | sumFosq = 0.0 |
---|
3118 | sumdFsq = 0.0 |
---|
3119 | for iref,refl in enumerate(refDict['RefList']): |
---|
3120 | Fo = np.sqrt(np.abs(refl[8+im])) |
---|
3121 | Fc = np.sqrt(np.abs(refl[9]+im)) |
---|
3122 | sumFo += Fo |
---|
3123 | sumFosq += refl[8+im]**2 |
---|
3124 | sumdF += np.abs(Fo-Fc) |
---|
3125 | sumdFsq += (refl[8+im]-refl[9+im])**2 |
---|
3126 | if sumFo: |
---|
3127 | Histogram['Residuals'][phfx+'Rf'] = min(100.,(sumdF/sumFo)*100.) |
---|
3128 | Histogram['Residuals'][phfx+'Rf^2'] = min(100.,np.sqrt(sumdFsq/sumFosq)*100.) |
---|
3129 | else: |
---|
3130 | Histogram['Residuals'][phfx+'Rf'] = 100. |
---|
3131 | Histogram['Residuals'][phfx+'Rf^2'] = 100. |
---|
3132 | Histogram['Residuals'][phfx+'sumInt'] = sumInt |
---|
3133 | Histogram['Residuals'][phfx+'Nref'] = len(refDict['RefList'])-nExcl |
---|
3134 | Histogram['Residuals']['hId'] = hId |
---|
3135 | elif 'HKLF' in histogram[:4]: |
---|
3136 | Histogram = Histograms[histogram] |
---|
3137 | Histogram['Residuals']['hId'] = Histograms[histogram]['hId'] |
---|
3138 | if GSASIIpath.GetConfigValue('Show_timing',False): |
---|
3139 | print ('GetFobsSq t=',time.time()-starttime) |
---|
3140 | |
---|
3141 | def getPowderProfile(parmDict,x,varylist,Histogram,Phases,calcControls,pawleyLookup): |
---|
3142 | 'Computes the powder pattern for a histogram based on contributions from all used phases' |
---|
3143 | if GSASIIpath.GetConfigValue('Show_timing',False): starttime = time.time() |
---|
3144 | |
---|
3145 | def GetReflSigGamCW(refl,im,wave,G,GB,phfx,calcControls,parmDict): |
---|
3146 | U = parmDict[hfx+'U'] |
---|
3147 | V = parmDict[hfx+'V'] |
---|
3148 | W = parmDict[hfx+'W'] |
---|
3149 | X = parmDict[hfx+'X'] |
---|
3150 | Y = parmDict[hfx+'Y'] |
---|
3151 | Z = parmDict[hfx+'Z'] |
---|
3152 | tanPos = tand(refl[5+im]/2.0) |
---|
3153 | Ssig,Sgam = GetSampleSigGam(refl,im,wave,G,GB,SGData,hfx,phfx,calcControls,parmDict) |
---|
3154 | sig = U*tanPos**2+V*tanPos+W+Ssig #save peak sigma |
---|
3155 | sig = max(0.001,sig) |
---|
3156 | gam = X/cosd(refl[5+im]/2.0)+Y*tanPos+Sgam+Z #save peak gamma |
---|
3157 | gam = max(0.001,gam) |
---|
3158 | return sig,gam |
---|
3159 | |
---|
3160 | def GetReflSigGamTOF(refl,im,G,GB,phfx,calcControls,parmDict): |
---|
3161 | sig = parmDict[hfx+'sig-0']+parmDict[hfx+'sig-1']*refl[4+im]**2+ \ |
---|
3162 | parmDict[hfx+'sig-2']*refl[4+im]**4+parmDict[hfx+'sig-q']*refl[4+im] |
---|
3163 | gam = parmDict[hfx+'X']*refl[4+im]+parmDict[hfx+'Y']*refl[4+im]**2+parmDict[hfx+'Z'] |
---|
3164 | Ssig,Sgam = GetSampleSigGam(refl,im,0.0,G,GB,SGData,hfx,phfx,calcControls,parmDict) |
---|
3165 | sig += Ssig |
---|
3166 | gam += Sgam |
---|
3167 | return sig,gam |
---|
3168 | |
---|
3169 | def GetReflAlpBet(refl,im,hfx,parmDict): |
---|
3170 | alp = parmDict[hfx+'alpha']/refl[4+im] |
---|
3171 | bet = parmDict[hfx+'beta-0']+parmDict[hfx+'beta-1']/refl[4+im]**4+parmDict[hfx+'beta-q']/refl[4+im]**2 |
---|
3172 | return alp,bet |
---|
3173 | |
---|
3174 | hId = Histogram['hId'] |
---|
3175 | hfx = ':%d:'%(hId) |
---|
3176 | bakType = calcControls[hfx+'bakType'] |
---|
3177 | yb,Histogram['sumBk'] = G2pwd.getBackground(hfx,parmDict,bakType,calcControls[hfx+'histType'],x) |
---|
3178 | yc = np.zeros_like(yb) |
---|
3179 | cw = np.diff(ma.getdata(x)) |
---|
3180 | cw = np.append(cw,cw[-1]) |
---|
3181 | |
---|
3182 | if 'C' in calcControls[hfx+'histType']: |
---|
3183 | shl = max(parmDict[hfx+'SH/L'],0.002) |
---|
3184 | Ka2 = False |
---|
3185 | if hfx+'Lam1' in (parmDict.keys()): |
---|
3186 | wave = parmDict[hfx+'Lam1'] |
---|
3187 | Ka2 = True |
---|
3188 | lamRatio = 360*(parmDict[hfx+'Lam2']-parmDict[hfx+'Lam1'])/(np.pi*parmDict[hfx+'Lam1']) |
---|
3189 | kRatio = parmDict[hfx+'I(L2)/I(L1)'] |
---|
3190 | else: |
---|
3191 | wave = parmDict[hfx+'Lam'] |
---|
3192 | else: |
---|
3193 | shl = 0. |
---|
3194 | for phase in Histogram['Reflection Lists']: |
---|
3195 | refDict = Histogram['Reflection Lists'][phase] |
---|
3196 | if phase not in Phases: #skips deleted or renamed phases silently! |
---|
3197 | continue |
---|
3198 | Phase = Phases[phase] |
---|
3199 | pId = Phase['pId'] |
---|
3200 | pfx = '%d::'%(pId) |
---|
3201 | phfx = '%d:%d:'%(pId,hId) |
---|
3202 | hfx = ':%d:'%(hId) |
---|
3203 | SGData = Phase['General']['SGData'] |
---|
3204 | SGMT = np.array([ops[0].T for ops in SGData['SGOps']]) |
---|
3205 | im = 0 |
---|
3206 | if Phase['General'].get('Modulated',False): |
---|
3207 | SSGData = Phase['General']['SSGData'] |
---|
3208 | im = 1 #offset in SS reflection list |
---|
3209 | #?? |
---|
3210 | Dij = GetDij(phfx,SGData,parmDict) |
---|
3211 | A = [parmDict[pfx+'A%d'%(i)]+Dij[i] for i in range(6)] #TODO: need to do someting if Dij << 0. |
---|
3212 | G,g = G2lat.A2Gmat(A) #recip & real metric tensors |
---|
3213 | if np.any(np.diag(G)<0.) or np.any(np.isnan(A)): |
---|
3214 | raise G2obj.G2Exception('invalid metric tensor \n cell/Dij refinement not advised') |
---|
3215 | GA,GB = G2lat.Gmat2AB(G) #Orthogonalization matricies |
---|
3216 | Vst = np.sqrt(nl.det(G)) #V* |
---|
3217 | if not Phase['General'].get('doPawley') and not parmDict[phfx+'LeBail']: |
---|
3218 | if im: |
---|
3219 | SStructureFactor(refDict,G,hfx,pfx,SGData,SSGData,calcControls,parmDict) |
---|
3220 | elif parmDict[pfx+'isMag'] and 'N' in calcControls[hfx+'histType']: |
---|
3221 | MagStructureFactor2(refDict,G,hfx,pfx,SGData,calcControls,parmDict) |
---|
3222 | else: |
---|
3223 | StructureFactor2(refDict,G,hfx,pfx,SGData,calcControls,parmDict) |
---|
3224 | badPeak = False |
---|
3225 | # test to see if we are using multiprocessing here |
---|
3226 | useMP,ncores = G2mp.InitMP() |
---|
3227 | if len(refDict['RefList']) < 100: useMP = False |
---|
3228 | if useMP: # multiprocessing: create a set of initialized Python processes |
---|
3229 | MPpool = mp.Pool(ncores,G2mp.InitPwdrProfGlobals,[im,shl,x]) |
---|
3230 | profArgs = [[] for i in range(ncores)] |
---|
3231 | if 'C' in calcControls[hfx+'histType']: |
---|
3232 | for iref,refl in enumerate(refDict['RefList']): |
---|
3233 | if im: |
---|
3234 | h,k,l,m = refl[:4] |
---|
3235 | else: |
---|
3236 | h,k,l = refl[:3] |
---|
3237 | Uniq = np.inner(refl[:3],SGMT) |
---|
3238 | refl[5+im] = GetReflPos(refl,im,wave,A,pfx,hfx,calcControls,parmDict) #corrected reflection position |
---|
3239 | Lorenz = 1./(2.*sind(refl[5+im]/2.)**2*cosd(refl[5+im]/2.)) #Lorentz correction |
---|
3240 | refl[6+im:8+im] = GetReflSigGamCW(refl,im,wave,G,GB,phfx,calcControls,parmDict) #peak sig & gam |
---|
3241 | refl[11+im:15+im] = GetIntensityCorr(refl,im,Uniq,G,g,pfx,phfx,hfx,SGData,calcControls,parmDict) |
---|
3242 | refl[11+im] *= Vst*Lorenz |
---|
3243 | |
---|
3244 | if Phase['General'].get('doPawley'): |
---|
3245 | try: |
---|
3246 | if im: |
---|
3247 | pInd = pfx+'PWLref:%d'%(pawleyLookup[pfx+'%d,%d,%d,%d'%(h,k,l,m)]) |
---|
3248 | else: |
---|
3249 | pInd = pfx+'PWLref:%d'%(pawleyLookup[pfx+'%d,%d,%d'%(h,k,l)]) |
---|
3250 | refl[9+im] = parmDict[pInd] |
---|
3251 | except KeyError: |
---|
3252 | # print ' ***Error %d,%d,%d missing from Pawley reflection list ***'%(h,k,l) |
---|
3253 | continue |
---|
3254 | Wd,fmin,fmax = G2pwd.getWidthsCW(refl[5+im],refl[6+im],refl[7+im],shl) |
---|
3255 | iBeg = np.searchsorted(x,refl[5+im]-fmin) |
---|
3256 | iFin = np.searchsorted(x,refl[5+im]+fmax) |
---|
3257 | if not iBeg+iFin: #peak below low limit - skip peak |
---|
3258 | continue |
---|
3259 | elif not iBeg-iFin: #peak above high limit - done |
---|
3260 | break |
---|
3261 | elif iBeg > iFin: #bad peak coeff - skip |
---|
3262 | badPeak = True |
---|
3263 | continue |
---|
3264 | if useMP: |
---|
3265 | profArgs[iref%ncores].append((refl[5+im],refl,iBeg,iFin,1.)) |
---|
3266 | else: |
---|
3267 | yc[iBeg:iFin] += refl[11+im]*refl[9+im]*G2pwd.getFCJVoigt3(refl[5+im],refl[6+im],refl[7+im],shl,ma.getdata(x[iBeg:iFin])) #>90% of time spent here |
---|
3268 | if Ka2: |
---|
3269 | pos2 = refl[5+im]+lamRatio*tand(refl[5+im]/2.0) # + 360/pi * Dlam/lam * tan(th) |
---|
3270 | Wd,fmin,fmax = G2pwd.getWidthsCW(pos2,refl[6+im],refl[7+im],shl) |
---|
3271 | iBeg = np.searchsorted(x,pos2-fmin) |
---|
3272 | iFin = np.searchsorted(x,pos2+fmax) |
---|
3273 | if not iBeg+iFin: #peak below low limit - skip peak |
---|
3274 | continue |
---|
3275 | elif not iBeg-iFin: #peak above high limit - done |
---|
3276 | return yc,yb |
---|
3277 | elif iBeg > iFin: #bad peak coeff - skip |
---|
3278 | continue |
---|
3279 | if useMP: |
---|
3280 | profArgs[iref%ncores].append((pos2,refl,iBeg,iFin,kRatio)) |
---|
3281 | else: |
---|
3282 | yc[iBeg:iFin] += refl[11+im]*refl[9+im]*kRatio*G2pwd.getFCJVoigt3(pos2,refl[6+im],refl[7+im],shl,ma.getdata(x[iBeg:iFin])) #and here |
---|
3283 | elif 'T' in calcControls[hfx+'histType']: |
---|
3284 | for iref,refl in enumerate(refDict['RefList']): |
---|
3285 | if im: |
---|
3286 | h,k,l,m = refl[:4] |
---|
3287 | else: |
---|
3288 | h,k,l = refl[:3] |
---|
3289 | Uniq = np.inner(refl[:3],SGMT) |
---|
3290 | refl[5+im] = GetReflPos(refl,im,0.0,A,pfx,hfx,calcControls,parmDict) #corrected reflection position - #TODO - what about tabluated offset? |
---|
3291 | Lorenz = sind(abs(parmDict[hfx+'2-theta'])/2)*refl[4+im]**4 #TOF Lorentz correction |
---|
3292 | # refl[5+im] += GetHStrainShift(refl,im,SGData,phfx,hfx,calcControls,parmDict) #apply hydrostatic strain shift |
---|
3293 | refl[6+im:8+im] = GetReflSigGamTOF(refl,im,G,GB,phfx,calcControls,parmDict) #peak sig & gam |
---|
3294 | refl[12+im:14+im] = GetReflAlpBet(refl,im,hfx,parmDict) #TODO - skip if alp, bet tabulated? |
---|
3295 | refl[11+im],refl[15+im],refl[16+im],refl[17+im] = GetIntensityCorr(refl,im,Uniq,G,g,pfx,phfx,hfx,SGData,calcControls,parmDict) |
---|
3296 | refl[11+im] *= Vst*Lorenz |
---|
3297 | if Phase['General'].get('doPawley'): |
---|
3298 | try: |
---|
3299 | if im: |
---|
3300 | pInd =pfx+'PWLref:%d'%(pawleyLookup[pfx+'%d,%d,%d,%d'%(h,k,l,m)]) |
---|
3301 | else: |
---|
3302 | pInd =pfx+'PWLref:%d'%(pawleyLookup[pfx+'%d,%d,%d'%(h,k,l)]) |
---|
3303 | refl[9+im] = parmDict[pInd] |
---|
3304 | except KeyError: |
---|
3305 | # print ' ***Error %d,%d,%d missing from Pawley reflection list ***'%(h,k,l) |
---|
3306 | continue |
---|
3307 | Wd,fmin,fmax = G2pwd.getWidthsTOF(refl[5+im],refl[12+im],refl[13+im],refl[6+im],refl[7+im]) |
---|
3308 | iBeg = np.searchsorted(x,refl[5+im]-fmin) |
---|
3309 | iFin = np.searchsorted(x,refl[5+im]+fmax) |
---|
3310 | if not iBeg+iFin: #peak below low limit - skip peak |
---|
3311 | continue |
---|
3312 | elif not iBeg-iFin: #peak above high limit - done |
---|
3313 | break |
---|
3314 | elif iBeg > iFin: #bad peak coeff - skip |
---|
3315 | badPeak = True |
---|
3316 | continue |
---|
3317 | if useMP: |
---|
3318 | profArgs[iref%ncores].append((refl[5+im],refl,iBeg,iFin)) |
---|
3319 | else: |
---|
3320 | yc[iBeg:iFin] += refl[11+im]*refl[9+im]*G2pwd.getEpsVoigt(refl[5+im],refl[12+im],refl[13+im],refl[6+im],refl[7+im],ma.getdata(x[iBeg:iFin]))/cw[iBeg:iFin] |
---|
3321 | # print 'profile calc time: %.3fs'%(time.time()-time0) |
---|
3322 | if useMP and 'C' in calcControls[hfx+'histType']: |
---|
3323 | for y in MPpool.imap_unordered(G2mp.ComputePwdrProfCW,profArgs): |
---|
3324 | yc += y |
---|
3325 | MPpool.terminate() |
---|
3326 | elif useMP: |
---|
3327 | for y in MPpool.imap_unordered(G2mp.ComputePwdrProfTOF,profArgs): |
---|
3328 | yc += y |
---|
3329 | MPpool.terminate() |
---|
3330 | if badPeak: |
---|
3331 | print ('ouch #4 bad profile coefficients yield negative peak width; some reflections skipped') |
---|
3332 | if GSASIIpath.GetConfigValue('Show_timing',False): |
---|
3333 | print ('getPowderProfile t=%.3f'%(time.time()-starttime)) |
---|
3334 | return yc,yb |
---|
3335 | |
---|
3336 | def getPowderProfileDervMP(args): |
---|
3337 | '''Computes the derivatives of the computed powder pattern with respect to all |
---|
3338 | refined parameters. |
---|
3339 | Multiprocessing version. |
---|
3340 | ''' |
---|
3341 | import pytexture as ptx |
---|
3342 | ptx.pyqlmninit() #initialize fortran arrays for spherical harmonics for each processor |
---|
3343 | parmDict,x,varylist,Histogram,Phases,rigidbodyDict,calcControls,pawleyLookup,dependentVars = args[:9] |
---|
3344 | prc=0 |
---|
3345 | tprc=1 |
---|
3346 | if len(args) |
---|