1 | # -*- coding: utf-8 -*- |
---|
2 | """ |
---|
3 | *GSASIIspc: Space group module* |
---|
4 | ------------------------------- |
---|
5 | |
---|
6 | Space group interpretation routines. Note that space group information is |
---|
7 | stored in a :ref:`Space Group (SGData)<SGData_table>` object. |
---|
8 | |
---|
9 | """ |
---|
10 | ########### SVN repository information ################### |
---|
11 | # $Date: 2017-10-23 16:39:16 +0000 (Mon, 23 Oct 2017) $ |
---|
12 | # $Author: vondreele $ |
---|
13 | # $Revision: 3136 $ |
---|
14 | # $URL: trunk/GSASIIspc.py $ |
---|
15 | # $Id: GSASIIspc.py 3136 2017-10-23 16:39:16Z vondreele $ |
---|
16 | ########### SVN repository information ################### |
---|
17 | import numpy as np |
---|
18 | import numpy.linalg as nl |
---|
19 | import scipy.optimize as so |
---|
20 | import sys |
---|
21 | import copy |
---|
22 | import os.path as ospath |
---|
23 | |
---|
24 | import GSASIIpath |
---|
25 | GSASIIpath.SetVersionNumber("$Revision: 3136 $") |
---|
26 | |
---|
27 | npsind = lambda x: np.sin(x*np.pi/180.) |
---|
28 | npcosd = lambda x: np.cos(x*np.pi/180.) |
---|
29 | DEBUG = False |
---|
30 | |
---|
31 | ################################################################################ |
---|
32 | #### Space group codes |
---|
33 | ################################################################################ |
---|
34 | |
---|
35 | def SpcGroup(SGSymbol): |
---|
36 | """ |
---|
37 | Determines cell and symmetry information from a short H-M space group name |
---|
38 | |
---|
39 | :param SGSymbol: space group symbol (string) with spaces between axial fields |
---|
40 | :returns: (SGError,SGData) |
---|
41 | |
---|
42 | * SGError = 0 for no errors; >0 for errors (see SGErrors below for details) |
---|
43 | * SGData - is a dict (see :ref:`Space Group object<SGData_table>`) with entries: |
---|
44 | |
---|
45 | * 'SpGrp': space group symbol, slightly cleaned up |
---|
46 | * 'SGLaue': one of '-1', '2/m', 'mmm', '4/m', '4/mmm', '3R', |
---|
47 | '3mR', '3', '3m1', '31m', '6/m', '6/mmm', 'm3', 'm3m' |
---|
48 | * 'SGInv': boolean; True if centrosymmetric, False if not |
---|
49 | * 'SGLatt': one of 'P', 'A', 'B', 'C', 'I', 'F', 'R' |
---|
50 | * 'SGUniq': one of 'a', 'b', 'c' if monoclinic, '' otherwise |
---|
51 | * 'SGCen': cell centering vectors [0,0,0] at least |
---|
52 | * 'SGOps': symmetry operations as [M,T] so that M*x+T = x' |
---|
53 | * 'SGSys': one of 'triclinic', 'monoclinic', 'orthorhombic', |
---|
54 | 'tetragonal', 'rhombohedral', 'trigonal', 'hexagonal', 'cubic' |
---|
55 | * 'SGPolax': one of ' ', 'x', 'y', 'x y', 'z', 'x z', 'y z', |
---|
56 | 'xyz', '111' for arbitrary axes |
---|
57 | * 'SGPtGrp': one of 32 point group symbols (with some permutations), which |
---|
58 | is filled by SGPtGroup, is external (KE) part of supersymmetry point group |
---|
59 | * 'SSGKl': default internal (Kl) part of supersymmetry point group; modified |
---|
60 | in supersymmetry stuff depending on chosen modulation vector for Mono & Ortho |
---|
61 | |
---|
62 | """ |
---|
63 | LaueSym = ('-1','2/m','mmm','4/m','4/mmm','3R','3mR','3','3m1','31m','6/m','6/mmm','m3','m3m') |
---|
64 | LattSym = ('P','A','B','C','I','F','R') |
---|
65 | UniqSym = ('','','a','b','c','',) |
---|
66 | SysSym = ('triclinic','monoclinic','orthorhombic','tetragonal','rhombohedral','trigonal','hexagonal','cubic') |
---|
67 | SGData = {} |
---|
68 | if ':R' in SGSymbol: |
---|
69 | SGSymbol = SGSymbol.replace(':',' ') #get rid of ':' in R space group symbols from some cif files |
---|
70 | SGSymbol = SGSymbol.split(':')[0] #remove :1/2 setting symbol from some cif files |
---|
71 | import pyspg |
---|
72 | SGInfo = pyspg.sgforpy(SGSymbol) |
---|
73 | SGData['SpGrp'] = SGSymbol.strip().lower().capitalize() |
---|
74 | SGData['SGLaue'] = LaueSym[SGInfo[0]-1] |
---|
75 | SGData['SGInv'] = bool(SGInfo[1]) |
---|
76 | SGData['SGLatt'] = LattSym[SGInfo[2]-1] |
---|
77 | SGData['SGUniq'] = UniqSym[SGInfo[3]+1] |
---|
78 | if SGData['SGLatt'] == 'P': |
---|
79 | SGData['SGCen'] = np.array(([0,0,0],)) |
---|
80 | elif SGData['SGLatt'] == 'A': |
---|
81 | SGData['SGCen'] = np.array(([0,0,0],[0,.5,.5])) |
---|
82 | elif SGData['SGLatt'] == 'B': |
---|
83 | SGData['SGCen'] = np.array(([0,0,0],[.5,0,.5])) |
---|
84 | elif SGData['SGLatt'] == 'C': |
---|
85 | SGData['SGCen'] = np.array(([0,0,0],[.5,.5,0,])) |
---|
86 | elif SGData['SGLatt'] == 'I': |
---|
87 | SGData['SGCen'] = np.array(([0,0,0],[.5,.5,.5])) |
---|
88 | elif SGData['SGLatt'] == 'F': |
---|
89 | SGData['SGCen'] = np.array(([0,0,0],[0,.5,.5],[.5,0,.5],[.5,.5,0,])) |
---|
90 | elif SGData['SGLatt'] == 'R': |
---|
91 | SGData['SGCen'] = np.array(([0,0,0],[1./3.,2./3.,2./3.],[2./3.,1./3.,1./3.])) |
---|
92 | SGData['SGOps'] = [] |
---|
93 | SGData['SGGen'] = [] |
---|
94 | SGData['SGSpin'] = [] |
---|
95 | for i in range(SGInfo[5]): |
---|
96 | Mat = np.array(SGInfo[6][i]) |
---|
97 | Trns = np.array(SGInfo[7][i]) |
---|
98 | SGData['SGOps'].append([Mat,Trns]) |
---|
99 | if 'array' in str(type(SGInfo[8])): #patch for old fortran bin? |
---|
100 | SGData['SGGen'].append(int(SGInfo[8][i])) |
---|
101 | SGData['SGSpin'].append(1) |
---|
102 | if SGData['SGLaue'] == '2/m' and SGData['SGLatt'] != 'P' and '/' in SGData['SpGrp']: |
---|
103 | SGData['SGSpin'].append(1) #fix bug in fortran |
---|
104 | if 'F' in SGData['SpGrp']: |
---|
105 | SGData['SGSpin'] += [1,1,1,1] |
---|
106 | elif 'R' in SGData['SpGrp']: |
---|
107 | SGData['SGSpin'] += [1,1,1] |
---|
108 | elif SGData['SpGrp'][0] in ['A','B','C','I']: |
---|
109 | SGData['SGSpin'] += [1,] |
---|
110 | if SGData['SGInv']: |
---|
111 | if SGData['SGLaue'] in ['-1','2/m','mmm']: |
---|
112 | Ibar = 7 |
---|
113 | elif SGData['SGLaue'] in ['4/m','4/mmm']: |
---|
114 | Ibar = 1 |
---|
115 | elif SGData['SGLaue'] in ['3R','3mR','3','3m1','31m','6/m','6/mmm']: |
---|
116 | Ibar = 15 #8+4+2+1 |
---|
117 | else: |
---|
118 | Ibar = 4 |
---|
119 | Ibarx = Ibar&14 |
---|
120 | else: |
---|
121 | Ibarx = 8 |
---|
122 | if SGData['SGLaue'] in ['-1','2/m','mmm','m3','m3m']: |
---|
123 | Ibarx = 0 |
---|
124 | moregen = [] |
---|
125 | for i,gen in enumerate(SGData['SGGen']): |
---|
126 | if SGData['SGLaue'] in ['m3','m3m']: |
---|
127 | if gen in [1,2,4]: |
---|
128 | SGData['SGGen'][i] = 4 |
---|
129 | elif gen < 7: |
---|
130 | SGData['SGGen'][i] = 0 |
---|
131 | elif SGData['SGLaue'] in ['4/m','4/mmm','3R','3mR','3','3m1','31m','6/m','6/mmm']: |
---|
132 | if gen == 2: |
---|
133 | SGData['SGGen'][i] = 4 |
---|
134 | elif gen in [3,5]: |
---|
135 | SGData['SGGen'][i] = 3 |
---|
136 | elif gen == 6: |
---|
137 | if SGData['SGLaue'] in ['4/m','4/mmm']: |
---|
138 | SGData['SGGen'][i] = 128 |
---|
139 | else: |
---|
140 | SGData['SGGen'][i] = 16 |
---|
141 | elif not SGData['SGInv'] and gen == 12: |
---|
142 | SGData['SGGen'][i] = 8 |
---|
143 | elif (not SGData['SGInv']) and (SGData['SGLaue'] in ['3','3m1','31m','6/m','6/mmm']) and (gen == 1): |
---|
144 | SGData['SGGen'][i] = 24 |
---|
145 | gen = SGData['SGGen'][i] |
---|
146 | if gen == 99: |
---|
147 | gen = 8 |
---|
148 | if SGData['SGLaue'] in ['3m1','31m','6/m','6/mmm']: |
---|
149 | gen = 3 |
---|
150 | elif SGData['SGLaue'] == 'm3m': |
---|
151 | gen = 12 |
---|
152 | SGData['SGGen'][i] = gen |
---|
153 | elif gen == 98: |
---|
154 | gen = 8 |
---|
155 | if SGData['SGLaue'] in ['3m1','31m','6/m','6/mmm']: |
---|
156 | gen = 4 |
---|
157 | SGData['SGGen'][i] = gen |
---|
158 | elif not SGData['SGInv'] and gen in [23,] and SGData['SGLaue'] in ['m3','m3m']: |
---|
159 | SGData['SGGen'][i] = 24 |
---|
160 | elif gen >= 16 and gen != 128: |
---|
161 | if not SGData['SGInv']: |
---|
162 | gen = 31 |
---|
163 | else: |
---|
164 | gen ^= Ibarx |
---|
165 | SGData['SGGen'][i] = gen |
---|
166 | if SGData['SGInv']: |
---|
167 | if gen < 128: |
---|
168 | moregen.append(SGData['SGGen'][i]^Ibar) |
---|
169 | else: |
---|
170 | moregen.append(1) |
---|
171 | SGData['SGGen'] += moregen |
---|
172 | # GSASIIpath.IPyBreak() |
---|
173 | if SGData['SGLaue'] in '-1': |
---|
174 | SGData['SGSys'] = SysSym[0] |
---|
175 | elif SGData['SGLaue'] in '2/m': |
---|
176 | SGData['SGSys'] = SysSym[1] |
---|
177 | elif SGData['SGLaue'] in 'mmm': |
---|
178 | SGData['SGSys'] = SysSym[2] |
---|
179 | elif SGData['SGLaue'] in ['4/m','4/mmm']: |
---|
180 | SGData['SGSys'] = SysSym[3] |
---|
181 | elif SGData['SGLaue'] in ['3R','3mR']: |
---|
182 | SGData['SGSys'] = SysSym[4] |
---|
183 | elif SGData['SGLaue'] in ['3','3m1','31m']: |
---|
184 | SGData['SGSys'] = SysSym[5] |
---|
185 | elif SGData['SGLaue'] in ['6/m','6/mmm']: |
---|
186 | SGData['SGSys'] = SysSym[6] |
---|
187 | elif SGData['SGLaue'] in ['m3','m3m']: |
---|
188 | SGData['SGSys'] = SysSym[7] |
---|
189 | SGData['SGPolax'] = SGpolar(SGData) |
---|
190 | SGData['SGPtGrp'],SGData['SSGKl'] = SGPtGroup(SGData) |
---|
191 | return SGInfo[-1],SGData |
---|
192 | |
---|
193 | def SGErrors(IErr): |
---|
194 | ''' |
---|
195 | Interprets the error message code from SpcGroup. Used in SpaceGroup. |
---|
196 | |
---|
197 | :param IErr: see SGError in :func:`SpcGroup` |
---|
198 | :returns: |
---|
199 | ErrString - a string with the error message or "Unknown error" |
---|
200 | ''' |
---|
201 | |
---|
202 | ErrString = [' ', |
---|
203 | 'Less than 2 operator fields were found', |
---|
204 | 'Illegal Lattice type, not P, A, B, C, I, F or R', |
---|
205 | 'Rhombohedral lattice requires a 3-axis', |
---|
206 | 'Minus sign does not preceed 1, 2, 3, 4 or 6', |
---|
207 | 'Either a 5-axis anywhere or a 3-axis in field not allowed', |
---|
208 | ' ', |
---|
209 | 'I for COMPUTED GO TO out of range.', |
---|
210 | 'An a-glide mirror normal to A not allowed', |
---|
211 | 'A b-glide mirror normal to B not allowed', |
---|
212 | 'A c-glide mirror normal to C not allowed', |
---|
213 | 'D-glide in a primitive lattice not allowed', |
---|
214 | 'A 4-axis not allowed in the 2nd operator field', |
---|
215 | 'A 6-axis not allowed in the 2nd operator field', |
---|
216 | 'More than 24 matrices needed to define group', |
---|
217 | ' ', |
---|
218 | 'Improper construction of a rotation operator', |
---|
219 | 'Mirror following a / not allowed', |
---|
220 | 'A translation conflict between operators', |
---|
221 | 'The 2bar operator is not allowed', |
---|
222 | '3 fields are legal only in R & m3 cubic groups', |
---|
223 | 'Syntax error. Expected I -4 3 d at this point', |
---|
224 | ' ', |
---|
225 | 'A or B centered tetragonal not allowed', |
---|
226 | ' ','unknown error in sgroup',' ',' ',' ', |
---|
227 | 'Illegal character in the space group symbol', |
---|
228 | ] |
---|
229 | try: |
---|
230 | return ErrString[IErr] |
---|
231 | except: |
---|
232 | return "Unknown error" |
---|
233 | |
---|
234 | def SGpolar(SGData): |
---|
235 | ''' |
---|
236 | Determine identity of polar axes if any |
---|
237 | ''' |
---|
238 | POL = ('','x','y','x y','z','x z','y z','xyz','111') |
---|
239 | NP = [1,2,4] |
---|
240 | NPZ = [0,1] |
---|
241 | for M,T in SGData['SGOps']: |
---|
242 | for i in range(3): |
---|
243 | if M[i][i] <= 0.: NP[i] = 0 |
---|
244 | if M[0][2] > 0: NPZ[0] = 8 |
---|
245 | if M[1][2] > 0: NPZ[1] = 0 |
---|
246 | NPol = (NP[0]+NP[1]+NP[2]+NPZ[0]*NPZ[1])*(1-int(SGData['SGInv'])) |
---|
247 | return POL[NPol] |
---|
248 | |
---|
249 | def SGPtGroup(SGData): |
---|
250 | ''' |
---|
251 | Determine point group of the space group - done after space group symbol has |
---|
252 | been evaluated by SpcGroup. Only short symbols are allowed |
---|
253 | |
---|
254 | :param SGData: from :func SpcGroup |
---|
255 | :returns: SSGPtGrp & SSGKl (only defaults for Mono & Ortho) |
---|
256 | ''' |
---|
257 | Flds = SGData['SpGrp'].split() |
---|
258 | if len(Flds) < 2: |
---|
259 | return '',[] |
---|
260 | if SGData['SGLaue'] == '-1': #triclinic |
---|
261 | if '-' in Flds[1]: |
---|
262 | return '-1',[-1,] |
---|
263 | else: |
---|
264 | return '1',[1,] |
---|
265 | elif SGData['SGLaue'] == '2/m': #monoclinic - default for 2D modulation vector |
---|
266 | if '/' in SGData['SpGrp']: |
---|
267 | return '2/m',[-1,1] |
---|
268 | elif '2' in SGData['SpGrp']: |
---|
269 | return '2',[-1,] |
---|
270 | else: |
---|
271 | return 'm',[1,] |
---|
272 | elif SGData['SGLaue'] == 'mmm': #orthorhombic |
---|
273 | if SGData['SpGrp'].count('2') == 3: |
---|
274 | return '222',[-1,-1,-1] |
---|
275 | elif SGData['SpGrp'].count('2') == 1: |
---|
276 | if SGData['SGPolax'] == 'x': |
---|
277 | return '2mm',[-1,1,1] |
---|
278 | elif SGData['SGPolax'] == 'y': |
---|
279 | return 'm2m',[1,-1,1] |
---|
280 | elif SGData['SGPolax'] == 'z': |
---|
281 | return 'mm2',[1,1,-1] |
---|
282 | else: |
---|
283 | return 'mmm',[1,1,1] |
---|
284 | elif SGData['SGLaue'] == '4/m': #tetragonal |
---|
285 | if '/' in SGData['SpGrp']: |
---|
286 | return '4/m',[1,-1] |
---|
287 | elif '-' in Flds[1]: |
---|
288 | return '-4',[-1,] |
---|
289 | else: |
---|
290 | return '4',[1,] |
---|
291 | elif SGData['SGLaue'] == '4/mmm': |
---|
292 | if '/' in SGData['SpGrp']: |
---|
293 | return '4/mmm',[1,-1,1,1] |
---|
294 | elif '-' in Flds[1]: |
---|
295 | if '2' in Flds[2]: |
---|
296 | return '-42m',[-1,-1,1] |
---|
297 | else: |
---|
298 | return '-4m2',[-1,1,-1] |
---|
299 | elif '2' in Flds[2:]: |
---|
300 | return '422',[1,-1,-1] |
---|
301 | else: |
---|
302 | return '4mm',[1,1,1] |
---|
303 | elif SGData['SGLaue'] in ['3','3R']: #trigonal/rhombohedral |
---|
304 | if '-' in Flds[1]: |
---|
305 | return '-3',[-1,] |
---|
306 | else: |
---|
307 | return '3',[1,] |
---|
308 | elif SGData['SGLaue'] == '3mR' or 'R' in Flds[0]: |
---|
309 | if '2' in Flds[2]: |
---|
310 | return '32',[1,-1] |
---|
311 | elif '-' in Flds[1]: |
---|
312 | return '-3m',[-1,1] |
---|
313 | else: |
---|
314 | return '3m',[1,1] |
---|
315 | elif SGData['SGLaue'] == '3m1': |
---|
316 | if '2' in Flds[2]: |
---|
317 | return '321',[1,-1,1] |
---|
318 | elif '-' in Flds[1]: |
---|
319 | return '-3m1',[-1,1,1] |
---|
320 | else: |
---|
321 | return '3m1',[1,1,1] |
---|
322 | elif SGData['SGLaue'] == '31m': |
---|
323 | if '2' in Flds[3]: |
---|
324 | return '312',[1,1,-1] |
---|
325 | elif '-' in Flds[1]: |
---|
326 | return '-31m',[-1,1,1] |
---|
327 | else: |
---|
328 | return '31m',[1,1,1] |
---|
329 | elif SGData['SGLaue'] == '6/m': #hexagonal |
---|
330 | if '/' in SGData['SpGrp']: |
---|
331 | return '6/m',[1,-1] |
---|
332 | elif '-' in SGData['SpGrp']: |
---|
333 | return '-6',[-1,] |
---|
334 | else: |
---|
335 | return '6',[1,] |
---|
336 | elif SGData['SGLaue'] == '6/mmm': |
---|
337 | if '/' in SGData['SpGrp']: |
---|
338 | return '6/mmm',[1,-1,1,1] |
---|
339 | elif '-' in Flds[1]: |
---|
340 | if '2' in Flds[2]: |
---|
341 | return '-62m',[-1,-1,1] |
---|
342 | else: |
---|
343 | return '-6m2',[-1,1,-1] |
---|
344 | elif '2' in Flds[2:]: |
---|
345 | return '622',[1,-1,-1] |
---|
346 | else: |
---|
347 | return '6mm',[1,1,1] |
---|
348 | elif SGData['SGLaue'] == 'm3': #cubic - no (3+1) supersymmetry |
---|
349 | if '2' in Flds[1]: |
---|
350 | return '23',[] |
---|
351 | else: |
---|
352 | return 'm3',[] |
---|
353 | elif SGData['SGLaue'] == 'm3m': |
---|
354 | if '4' in Flds[1]: |
---|
355 | if '-' in Flds[1]: |
---|
356 | return '-43m',[] |
---|
357 | else: |
---|
358 | return '432',[] |
---|
359 | else: |
---|
360 | return 'm-3m',[] |
---|
361 | |
---|
362 | def SGPrint(SGData,AddInv=False): |
---|
363 | ''' |
---|
364 | Print the output of SpcGroup in a nicely formatted way. Used in SpaceGroup |
---|
365 | |
---|
366 | :param SGData: from :func:`SpcGroup` |
---|
367 | :returns: |
---|
368 | SGText - list of strings with the space group details |
---|
369 | SGTable - list of strings for each of the operations |
---|
370 | ''' |
---|
371 | Mult = len(SGData['SGCen'])*len(SGData['SGOps'])*(int(SGData['SGInv'])+1) |
---|
372 | SGText = [] |
---|
373 | SGText.append(' Space Group: '+SGData['SpGrp']) |
---|
374 | CentStr = 'centrosymmetric' |
---|
375 | if not SGData['SGInv']: |
---|
376 | CentStr = 'non'+CentStr |
---|
377 | if SGData['SGLatt'] in 'ABCIFR': |
---|
378 | SGText.append(' The lattice is '+CentStr+' '+SGData['SGLatt']+'-centered '+SGData['SGSys'].lower()) |
---|
379 | else: |
---|
380 | SGText.append(' The lattice is '+CentStr+' '+'primitive '+SGData['SGSys'].lower()) |
---|
381 | SGText.append(' The Laue symmetry is '+SGData['SGLaue']) |
---|
382 | if 'SGPtGrp' in SGData: #patch |
---|
383 | SGText.append(' The lattice point group is '+SGData['SGPtGrp']) |
---|
384 | SGText.append(' Multiplicity of a general site is '+str(Mult)) |
---|
385 | if SGData['SGUniq'] in ['a','b','c']: |
---|
386 | SGText.append(' The unique monoclinic axis is '+SGData['SGUniq']) |
---|
387 | if SGData['SGInv']: |
---|
388 | SGText.append(' The inversion center is located at 0,0,0') |
---|
389 | if SGData['SGPolax']: |
---|
390 | SGText.append(' The location of the origin is arbitrary in '+SGData['SGPolax']) |
---|
391 | SGText.append(' ') |
---|
392 | if SGData['SGLatt'] == 'P': |
---|
393 | SGText.append(' The equivalent positions are:\n') |
---|
394 | else: |
---|
395 | SGText.append(' The equivalent positions are:') |
---|
396 | SGText.append(' ('+Latt2text(SGData['SGLatt'])+')+\n') |
---|
397 | SGTable = [] |
---|
398 | for i,Opr in enumerate(SGData['SGOps']): |
---|
399 | SGTable.append('(%2d) %s'%(i+1,MT2text(Opr))) |
---|
400 | if AddInv and SGData['SGInv']: |
---|
401 | for i,Opr in enumerate(SGData['SGOps']): |
---|
402 | IOpr = [-Opr[0],-Opr[1]] |
---|
403 | SGTable.append('(%2d) %s'%(i+1,MT2text(IOpr))) |
---|
404 | return SGText,SGTable |
---|
405 | |
---|
406 | def AllOps(SGData): |
---|
407 | ''' |
---|
408 | Returns a list of all operators for a space group, including those for |
---|
409 | centering and a center of symmetry |
---|
410 | |
---|
411 | :param SGData: from :func:`SpcGroup` |
---|
412 | :returns: (SGTextList,offsetList,symOpList,G2oprList) where |
---|
413 | |
---|
414 | * SGTextList: a list of strings with formatted and normalized |
---|
415 | symmetry operators. |
---|
416 | * offsetList: a tuple of (dx,dy,dz) offsets that relate the GSAS-II |
---|
417 | symmetry operation to the operator in SGTextList and symOpList. |
---|
418 | these dx (etc.) values are added to the GSAS-II generated |
---|
419 | positions to provide the positions that are generated |
---|
420 | by the normalized symmetry operators. |
---|
421 | * symOpList: a list of tuples with the normalized symmetry |
---|
422 | operations as (M,T) values |
---|
423 | (see ``SGOps`` in the :ref:`Space Group object<SGData_table>`) |
---|
424 | * G2oprList: The GSAS-II operations for each symmetry operation as |
---|
425 | a tuple with (center,mult,opnum,opcode), where center is (0,0,0), (0.5,0,0), |
---|
426 | (0.5,0.5,0.5),...; where mult is 1 or -1 for the center of symmetry |
---|
427 | where opnum is the number for the symmetry operation, in ``SGOps`` |
---|
428 | (starting with 0) and opcode is mult*(100*icen+j+1). |
---|
429 | ''' |
---|
430 | SGTextList = [] |
---|
431 | offsetList = [] |
---|
432 | symOpList = [] |
---|
433 | G2oprList = [] |
---|
434 | G2opcodes = [] |
---|
435 | onebar = (1,) |
---|
436 | if SGData['SGInv']: |
---|
437 | onebar += (-1,) |
---|
438 | for icen,cen in enumerate(SGData['SGCen']): |
---|
439 | for mult in onebar: |
---|
440 | for j,(M,T) in enumerate(SGData['SGOps']): |
---|
441 | offset = [0,0,0] |
---|
442 | Tprime = (mult*T)+cen |
---|
443 | for i in range(3): |
---|
444 | while Tprime[i] < 0: |
---|
445 | Tprime[i] += 1 |
---|
446 | offset[i] += 1 |
---|
447 | while Tprime[i] >= 1: |
---|
448 | Tprime[i] += -1 |
---|
449 | offset[i] += -1 |
---|
450 | Opr = [mult*M,Tprime] |
---|
451 | OPtxt = MT2text(Opr) |
---|
452 | SGTextList.append(OPtxt.replace(' ','')) |
---|
453 | offsetList.append(tuple(offset)) |
---|
454 | symOpList.append((mult*M,Tprime)) |
---|
455 | G2oprList.append((cen,mult,j)) |
---|
456 | G2opcodes.append(mult*(100*icen+j+1)) |
---|
457 | return SGTextList,offsetList,symOpList,G2oprList,G2opcodes |
---|
458 | |
---|
459 | def MT2text(Opr): |
---|
460 | "From space group matrix/translation operator returns text version" |
---|
461 | XYZ = ('-Z','-Y','-X','X-Y','ERR','Y-X','X','Y','Z') |
---|
462 | TRA = (' ','ERR','1/6','1/4','1/3','ERR','1/2','ERR','2/3','3/4','5/6','ERR') |
---|
463 | Fld = '' |
---|
464 | M,T = Opr |
---|
465 | for j in range(3): |
---|
466 | IJ = int(round(2*M[j][0]+3*M[j][1]+4*M[j][2]+4))%12 |
---|
467 | IK = int(round(T[j]*12))%12 |
---|
468 | if IK: |
---|
469 | if IJ < 3: |
---|
470 | Fld += (TRA[IK]+XYZ[IJ]).rjust(5) |
---|
471 | else: |
---|
472 | Fld += (TRA[IK]+'+'+XYZ[IJ]).rjust(5) |
---|
473 | else: |
---|
474 | Fld += XYZ[IJ].rjust(5) |
---|
475 | if j != 2: Fld += ', ' |
---|
476 | return Fld |
---|
477 | |
---|
478 | def Latt2text(Latt): |
---|
479 | "From lattice type ('P',A', etc.) returns ';' delimited cell centering vectors" |
---|
480 | lattTxt = {'A':'0,0,0; 0,1/2,1/2','B':'0,0,0; 1/2,0,1/2', |
---|
481 | 'C':'0,0,0; 1/2,1/2,0','I':'0,0,0; 1/2,1/2,1/2', |
---|
482 | 'F':'0,0,0; 0,1/2,1/2; 1/2,0,1/2; 1/2,1/2,0', |
---|
483 | 'R':'0,0,0; 1/3,2/3,2/3; 2/3,1/3,1/3','P':'0,0,0'} |
---|
484 | return lattTxt[Latt] |
---|
485 | |
---|
486 | def SpaceGroup(SGSymbol): |
---|
487 | ''' |
---|
488 | Print the output of SpcGroup in a nicely formatted way. |
---|
489 | |
---|
490 | :param SGSymbol: space group symbol (string) with spaces between axial fields |
---|
491 | :returns: nothing |
---|
492 | ''' |
---|
493 | E,A = SpcGroup(SGSymbol) |
---|
494 | if E > 0: |
---|
495 | print (SGErrors(E)) |
---|
496 | return |
---|
497 | for l in SGPrint(A): |
---|
498 | print (l) |
---|
499 | ################################################################################ |
---|
500 | #### Magnetic space group stuff |
---|
501 | ################################################################################ |
---|
502 | |
---|
503 | def GetGenSym(SGData): |
---|
504 | ''' |
---|
505 | Get the space group generator symbols |
---|
506 | :param SGData: from :func:`SpcGroup` |
---|
507 | LaueSym = ('-1','2/m','mmm','4/m','4/mmm','3R','3mR','3','3m1','31m','6/m','6/mmm','m3','m3m') |
---|
508 | LattSym = ('P','A','B','C','I','F','R') |
---|
509 | UniqSym = ('','','a','b','c','',) |
---|
510 | |
---|
511 | ''' |
---|
512 | OprNames = [GetOprPtrName(str(irtx))[1] for irtx in PackRot(SGData['SGOps'])] |
---|
513 | if SGData['SGInv']: |
---|
514 | OprNames += [GetOprPtrName(str(-irtx))[1] for irtx in PackRot(SGData['SGOps'])] |
---|
515 | Nsyms = len(SGData['SGOps']) |
---|
516 | if SGData['SGInv']: Nsyms *= 2 |
---|
517 | UsymOp = [] |
---|
518 | OprFlg = [] |
---|
519 | if Nsyms == 2: #Centric triclinic or acentric monoclinic |
---|
520 | UsymOp.append(OprNames[1]) |
---|
521 | OprFlg.append(SGData['SGGen'][1]) |
---|
522 | elif Nsyms == 4: #Point symmetry 2/m, 222, 22m, or 4 |
---|
523 | if '4z' in OprNames[1]: #Point symmetry 4 or -4 |
---|
524 | UsymOp.append(OprNames[1]) |
---|
525 | OprFlg.append(SGData['SGGen'][1]) |
---|
526 | elif not SGData['SGInv']: #Acentric Orthorhombic |
---|
527 | if 'm' in OprNames[1:4]: #22m, 2m2 or m22 |
---|
528 | if '2' in OprNames[1]: #Acentric orthorhombic, 2mm |
---|
529 | UsymOp.append(OprNames[2]) |
---|
530 | OprFlg.append(SGData['SGGen'][2]) |
---|
531 | UsymOp.append(OprNames[3]) |
---|
532 | OprFlg.append(SGData['SGGen'][3]) |
---|
533 | elif '2' in OprNames[2]: #Acentric orthorhombic, m2m |
---|
534 | UsymOp.append(OprNames[1]) |
---|
535 | OprFlg.append(SGData['SGGen'][1]) |
---|
536 | UsymOp.append(OprNames[3]) |
---|
537 | OprFlg.append(SGData['SGGen'][3]) |
---|
538 | else: #Acentric orthorhombic, mm2 |
---|
539 | UsymOp.append(OprNames[1]) |
---|
540 | OprFlg.append(SGData['SGGen'][1]) |
---|
541 | UsymOp.append(OprNames[2]) |
---|
542 | OprFlg.append(SGData['SGGen'][2]) |
---|
543 | else: #Acentric orthorhombic, 222 |
---|
544 | SGData['SGGen'][1:] = [4,2,1] |
---|
545 | UsymOp.append(OprNames[1]) |
---|
546 | OprFlg.append(SGData['SGGen'][1]) |
---|
547 | UsymOp.append(OprNames[2]) |
---|
548 | OprFlg.append(SGData['SGGen'][2]) |
---|
549 | UsymOp.append(OprNames[3]) |
---|
550 | OprFlg.append(SGData['SGGen'][3]) |
---|
551 | else: #Centric Monoclinic |
---|
552 | UsymOp.append(OprNames[1]) |
---|
553 | OprFlg.append(SGData['SGGen'][1]) |
---|
554 | UsymOp.append(OprNames[3]) |
---|
555 | OprFlg.append(SGData['SGGen'][3]) |
---|
556 | elif Nsyms == 6: #Point symmetry 32, 3m or 6 |
---|
557 | if '6' in OprNames[1]: #Hexagonal 6/m Laue symmetry |
---|
558 | UsymOp.append(OprNames[1]) |
---|
559 | OprFlg.append(SGData['SGGen'][1]) |
---|
560 | else: #Trigonal |
---|
561 | UsymOp.append(OprNames[4]) |
---|
562 | OprFlg.append(SGData['SGGen'][3]) |
---|
563 | if '2110' in OprNames[1]: UsymOp[-1] = ' 2100 ' |
---|
564 | elif Nsyms == 8: #Point symmetry mmm, 4/m, or 422, etc |
---|
565 | if '4' in OprNames[1]: #Tetragonal |
---|
566 | if SGData['SGInv']: #4/m |
---|
567 | UsymOp.append(OprNames[1]) |
---|
568 | OprFlg.append(SGData['SGGen'][1]) |
---|
569 | UsymOp.append(OprNames[6]) |
---|
570 | OprFlg.append(SGData['SGGen'][6]) |
---|
571 | else: |
---|
572 | if 'x' in OprNames[4]: #4mm type group |
---|
573 | UsymOp.append(OprNames[4]) |
---|
574 | OprFlg.append(6) |
---|
575 | UsymOp.append(OprNames[7]) |
---|
576 | OprFlg.append(8) |
---|
577 | else: #-42m, -4m2, and 422 type groups |
---|
578 | UsymOp.append(OprNames[5]) |
---|
579 | OprFlg.append(8) |
---|
580 | UsymOp.append(OprNames[6]) |
---|
581 | OprFlg.append(19) |
---|
582 | else: #Orthorhombic, mmm |
---|
583 | UsymOp.append(OprNames[1]) |
---|
584 | OprFlg.append(SGData['SGGen'][1]) |
---|
585 | UsymOp.append(OprNames[2]) |
---|
586 | OprFlg.append(SGData['SGGen'][2]) |
---|
587 | UsymOp.append(OprNames[7]) |
---|
588 | OprFlg.append(SGData['SGGen'][7]) |
---|
589 | elif Nsyms == 12 and '3' in OprNames[1] and SGData['SGSys'] != 'cubic': #Trigonal |
---|
590 | UsymOp.append(OprNames[3]) |
---|
591 | OprFlg.append(SGData['SGGen'][3]) |
---|
592 | UsymOp.append(OprNames[9]) |
---|
593 | OprFlg.append(SGData['SGGen'][9]) |
---|
594 | elif Nsyms == 12 and '6' in OprNames[1]: #Hexagonal |
---|
595 | if 'mz' in OprNames[9]: #6/m |
---|
596 | UsymOp.append(OprNames[1]) |
---|
597 | OprFlg.append(SGData['SGGen'][1]) |
---|
598 | UsymOp.append(OprNames[6]) |
---|
599 | OprFlg.append(SGData['SGGen'][6]) |
---|
600 | else: #6mm, -62m, -6m2 or 622 |
---|
601 | UsymOp.append(OprNames[6]) |
---|
602 | OprFlg.append(18) |
---|
603 | if 'm' in UsymOp[-1]: OprFlg[-1] = 20 |
---|
604 | UsymOp.append(OprNames[7]) |
---|
605 | OprFlg.append(24) |
---|
606 | elif Nsyms in [16,24]: |
---|
607 | if '3' in OprNames[1]: |
---|
608 | UsymOp.append('') |
---|
609 | OprFlg.append(SGData['SGGen'][3]) |
---|
610 | for i in range(Nsyms): |
---|
611 | if 'mx' in OprNames[i]: |
---|
612 | UsymOp[-1] = OprNames[i] |
---|
613 | elif 'm11' in OprNames[i]: |
---|
614 | UsymOp[-1] = OprNames[i] |
---|
615 | elif '211' in OprNames[i]: |
---|
616 | UsymOp[-1] = OprNames[i] |
---|
617 | OprFlg[-1] = 24 |
---|
618 | else: #4/mmm or 6/mmm |
---|
619 | UsymOp.append(' mz ') |
---|
620 | OprFlg.append(1) |
---|
621 | if '4' in OprNames[1]: #4/mmm |
---|
622 | UsymOp.append(' mx ') |
---|
623 | OprFlg.append(20) |
---|
624 | UsymOp.append(' m110 ') |
---|
625 | OprFlg.append(24) |
---|
626 | else: #6/mmm |
---|
627 | UsymOp.append(' m110 ') |
---|
628 | OprFlg.append(4) |
---|
629 | UsymOp.append(' m+-0 ') |
---|
630 | OprFlg.append(8) |
---|
631 | else: #System is cubic |
---|
632 | if Nsyms == 48: |
---|
633 | UsymOp.append(' mx ') |
---|
634 | OprFlg.append(4) |
---|
635 | UsymOp.append(' m110 ') |
---|
636 | OprFlg.append(24) |
---|
637 | ncv = len(SGData['SGCen']) |
---|
638 | if ncv > 1: |
---|
639 | for icv in range(ncv): |
---|
640 | if SGData['SpGrp'] in ['F d d 2','F d 2 d','F 2 d d','F d d d']: |
---|
641 | break |
---|
642 | if 'F' in SGData['SpGrp'] and SGData['SGSys'] == 'cubic': |
---|
643 | break |
---|
644 | if icv: |
---|
645 | if SGData['SGCen'][icv][0] == 0.5: |
---|
646 | if SGData['SGCen'][icv][1] == 0.5: |
---|
647 | if SGData['SGCen'][icv][2] == 0.5: |
---|
648 | if not SGData['SpGrp'] in ['I 41/a','I 41 m d', |
---|
649 | 'I 41 c d','I -4 2 d','I -4 3 d', |
---|
650 | 'I a 3 d','I a -3 d','I b 3 d','I b -3 d']: |
---|
651 | UsymOp.append(' Icen ') |
---|
652 | else: |
---|
653 | UsymOp.append(' Ccen ') |
---|
654 | else: |
---|
655 | UsymOp.append(' Bcen ') |
---|
656 | elif SGData['SGCen'][icv][1] == 0.5: |
---|
657 | UsymOp.append(' Acen ') |
---|
658 | return UsymOp,OprFlg |
---|
659 | |
---|
660 | def CheckSpin(isym,SGData): |
---|
661 | ''' Check for exceptions in spin rules |
---|
662 | ''' |
---|
663 | if SGData['SpGrp'] in ['C c','C 1 c 1','A a','A 1 a 1','B b 1 1','C c 1 1', |
---|
664 | 'A 1 1 a','B 1 1 b','I -4']: |
---|
665 | if SGData['SGSpin'][:2] == [-1,-1]: |
---|
666 | SGData['SGSpin'][(isym+1)%2] = 1 |
---|
667 | elif SGData['SpGrp'] in ['C 2/c','C 1 2/c 1','A 2/a','A 1 2/a 1','B 2/b 1 1','C 2/c 1 1', |
---|
668 | 'A 1 1 2/a','B 1 1 2/b']: |
---|
669 | if SGData['SGSpin'][1:3] == [-1,-1]: |
---|
670 | SGData['SGSpin'][isym%2+1] = 1 |
---|
671 | elif SGData['SGPtGrp'] in ['222','mm2','2mm','m2m']: |
---|
672 | if SGData['SGSpin'][0]*SGData['SGSpin'][1]*SGData['SGSpin'][2] < 0: |
---|
673 | SGData['SGSpin'][(isym+1)%3] *= -1 |
---|
674 | if SGData['SpGrp'][0] == 'F' and isym > 2: |
---|
675 | SGData['SGSpin'][(isym+1)%3+3] *= -1 |
---|
676 | elif SGData['SGPtGrp'] == 'mmm': |
---|
677 | if SGData['SpGrp'][0] == 'F' and isym > 2: |
---|
678 | SGData['SGSpin'][(isym+1)%3+3] *= -1 |
---|
679 | elif SGData['SGSpin'][3] < 0: |
---|
680 | if SGData['SpGrp'] in ['C m m a','A b m m','B m c m','B m a m','C m m b','A c m m', |
---|
681 | 'C c c a','A b a a','B b c b','B b a b','C c c b','A c a a','I b c a','I c a b']: |
---|
682 | for i in [0,1,2]: |
---|
683 | if i != isym and SGData['SGSpin'][i] < 0: |
---|
684 | SGData['SGSpin'][i] = 1 |
---|
685 | elif SGData['SpGrp'] in ['I m m a','I b m m','I m c m','I m a m','I m m b','I c m m']: |
---|
686 | if SGData['SGSpin'][0]*SGData['SGSpin'][1]*SGData['SGSpin'][2] < 0: |
---|
687 | SGData['SGSpin'][(isym+1)%3] *= -1 |
---|
688 | elif SGData['SpGrp'] in ['I -4 m 2','I -4 c 2']: |
---|
689 | if SGData['SGSpin'][2] < 0: |
---|
690 | if 'm' in SGData['SpGrp']: |
---|
691 | SGData['SGSpin'][1] = 1 |
---|
692 | elif isym < 2: |
---|
693 | if SGData['SGSpin'][isym] < 0: |
---|
694 | SGData['SGSpin'][:2] = [-1,-1] |
---|
695 | else: |
---|
696 | SGData['SGSpin'][:2] = [1,1] |
---|
697 | else: |
---|
698 | SGData['SGSpin'][:2] = [1,1] |
---|
699 | |
---|
700 | def MagSGSym(SGData): |
---|
701 | SGLaue = SGData['SGLaue'] |
---|
702 | SpnFlp = SGData['SGSpin'] |
---|
703 | GenSym = SGData['GenSym'] |
---|
704 | if not len(SpnFlp): |
---|
705 | SGLaue['MagPtGp'] = SGLaue |
---|
706 | return SGData['SpGrp'] |
---|
707 | magSym = SGData['SpGrp'].split() |
---|
708 | if SGLaue in ['-1',]: |
---|
709 | SGData['MagPtGp'] = SGLaue |
---|
710 | if SpnFlp[0] == -1: |
---|
711 | magSym[1] += "'" |
---|
712 | SGData['MagPtGp'] += "'" |
---|
713 | if magSym[0] in ['A','B','C','I'] and SGData['SpGrp'] != 'I 41/a': |
---|
714 | if SpnFlp[1] < 0: |
---|
715 | magSym[0] += '(P)' |
---|
716 | elif SGLaue in ['mmm',]: |
---|
717 | SGData['MagPtGp'] = '' |
---|
718 | for i in [0,1,2]: |
---|
719 | SGData['MagPtGp'] += 'm' |
---|
720 | if SpnFlp[i] < 0: |
---|
721 | magSym[i+1] += "'" |
---|
722 | SGData['MagPtGp'] += "'" |
---|
723 | if len(GenSym) > 3: |
---|
724 | if magSym[0] == 'F': |
---|
725 | if SpnFlp[3]+SpnFlp[4]+SpnFlp[5] < 0: |
---|
726 | if SpnFlp[3] > 0: |
---|
727 | magSym[0] += '(A)' |
---|
728 | elif SpnFlp[4] > 0: |
---|
729 | magSym[0] += '(B)' |
---|
730 | elif SpnFlp[5] > 0: |
---|
731 | magSym[0] += '(C)' |
---|
732 | else: |
---|
733 | if SpnFlp[3] < 0: |
---|
734 | magSym[0] += '(P)' |
---|
735 | elif SGLaue == '6/mmm': #ok |
---|
736 | if len(GenSym) == 2: |
---|
737 | magPtGp = ['6','m','m'] |
---|
738 | for i in [0,1]: |
---|
739 | if SpnFlp[i] < 0: |
---|
740 | magSym[i+2] += "'" |
---|
741 | magPtGp[i+1] += "'" |
---|
742 | if SpnFlp[0]*SpnFlp[1] < 0: |
---|
743 | magSym[1] += "'" |
---|
744 | magPtGp[0] += "'" |
---|
745 | else: |
---|
746 | sym = magSym[1].split('/') |
---|
747 | Ptsym = ['6','m'] |
---|
748 | magPtGp = ['','m','m'] |
---|
749 | for i in [0,1,2]: |
---|
750 | if SpnFlp[i] < 0: |
---|
751 | if i: |
---|
752 | magSym[i+1] += "'" |
---|
753 | magPtGp[i] += "'" |
---|
754 | else: |
---|
755 | sym[1] += "'" |
---|
756 | Ptsym[0] += "'" |
---|
757 | if SpnFlp[1]*SpnFlp[2] < 0: |
---|
758 | sym[0] += "'" |
---|
759 | Ptsym[0] += "'" |
---|
760 | magSym[1] = '/'.join(sym) |
---|
761 | magPtGp[0] = '/'.join(Ptsym) |
---|
762 | SGData['MagPtGp'] = ''.join(magPtGp) |
---|
763 | elif SGLaue == '4/mmm': |
---|
764 | if len(GenSym) == 2: |
---|
765 | magPtGp = ['4','m','m'] |
---|
766 | for i in [0,1]: |
---|
767 | if SpnFlp[i] < 0: |
---|
768 | magSym[i+2] += "'" |
---|
769 | magPtGp[i+1] += "'" |
---|
770 | if SpnFlp[0]*SpnFlp[1] < 0: |
---|
771 | magSym[1] += "'" |
---|
772 | magPtGp[0] += "'" |
---|
773 | else: |
---|
774 | if '/' in magSym[1]: #P 4/m m m, etc. |
---|
775 | sym = magSym[1].split('/') |
---|
776 | Ptsym = ['4','m'] |
---|
777 | magPtGp = ['','m','m'] |
---|
778 | for i in [0,1,2]: |
---|
779 | if SpnFlp[i] < 0: |
---|
780 | if i: |
---|
781 | magSym[i+1] += "'" |
---|
782 | magPtGp[i] += "'" |
---|
783 | else: |
---|
784 | sym[1] += "'" |
---|
785 | Ptsym[1] += "'" |
---|
786 | if SpnFlp[1]*SpnFlp[2] < 0: |
---|
787 | sym[0] += "'" |
---|
788 | Ptsym[0] += "'" |
---|
789 | magSym[1] = '/'.join(sym) |
---|
790 | magPtGp[0] = '/'.join(Ptsym) |
---|
791 | if SpnFlp[3] < 0: |
---|
792 | magSym[0] += '(P)' |
---|
793 | else: |
---|
794 | for i in [0,1]: |
---|
795 | if SpnFlp[i] < 0: |
---|
796 | magSym[i+2] += "'" |
---|
797 | if SpnFlp[0]*SpnFlp[1] < 0: |
---|
798 | magSym[1] += "'" |
---|
799 | if SpnFlp[2] < 0: |
---|
800 | magSym[0] += '(P)' |
---|
801 | SGData['MagPtGp'] = ''.join(magPtGp) |
---|
802 | elif SGLaue in ['2/m','4/m','6/m']: #all ok |
---|
803 | Uniq = {'a':1,'b':2,'c':3,'':1} |
---|
804 | id = [0,1] |
---|
805 | if len(magSym) > 2: |
---|
806 | id = [0,Uniq[SGData['SGUniq']]] |
---|
807 | sym = magSym[id[1]].split('/') |
---|
808 | Ptsym = SGLaue.split('/') |
---|
809 | if len(GenSym) == 3: |
---|
810 | for i in [0,1,2]: |
---|
811 | if SpnFlp[i] < 0: |
---|
812 | if i == 2: |
---|
813 | magSym[0] += '(P)' |
---|
814 | else: |
---|
815 | sym[i] += "'" |
---|
816 | Ptsym[i] += "'" |
---|
817 | else: |
---|
818 | for i in range(len(GenSym)): |
---|
819 | if SpnFlp[i] < 0: |
---|
820 | if i and magSym[0] in ['A','B','C','I'] and SGData['SpGrp'] != 'I 41/a': |
---|
821 | magSym[0] += '(P)' |
---|
822 | else: |
---|
823 | sym[i] += "'" |
---|
824 | Ptsym[i] += "'" |
---|
825 | SGData['MagPtGp'] = '/'.join(Ptsym) |
---|
826 | magSym[id[1]] = '/'.join(sym) |
---|
827 | elif SGLaue in ['3','3m1','31m']: #ok |
---|
828 | # GSASIIpath.IPyBreak() |
---|
829 | Ptsym = list(SGLaue) |
---|
830 | if len(GenSym) == 1: #all ok |
---|
831 | id = 2 |
---|
832 | if (len(magSym) == 4) and (magSym[2] == '1'): |
---|
833 | id = 3 |
---|
834 | if '3' in GenSym[0]: |
---|
835 | id = 1 |
---|
836 | magSym[id].strip("'") |
---|
837 | if SpnFlp[0] < 0: |
---|
838 | magSym[id] += "'" |
---|
839 | Ptsym[id-1] += "'" |
---|
840 | elif len(GenSym) == 2: |
---|
841 | if 'R' in GenSym[1]: |
---|
842 | magSym[-1].strip("'") |
---|
843 | if SpnFlp[0] < 0: |
---|
844 | magSym[-1] += "'" |
---|
845 | Ptsym[-1] += "'" |
---|
846 | else: |
---|
847 | i,j = [1,2] |
---|
848 | if magSym[2] == '1': |
---|
849 | i,j = [1,3] |
---|
850 | magSym[i].strip("'") |
---|
851 | Ptsym[i-1].strip("'") |
---|
852 | magSym[j].strip("'") |
---|
853 | Ptsym[j-1].strip("'") |
---|
854 | if SpnFlp[:2] == [1,-1]: |
---|
855 | magSym[i] += "'" |
---|
856 | Ptsym[i-1] += "'" |
---|
857 | elif SpnFlp[:2] == [-1,-1]: |
---|
858 | magSym[j] += "'" |
---|
859 | Ptsym[j-1] += "'" |
---|
860 | elif SpnFlp[:2] == [-1,1]: |
---|
861 | magSym[i] += "'" |
---|
862 | Ptsym[i-1] += "'" |
---|
863 | magSym[j] += "'" |
---|
864 | Ptsym[j-1] += "'" |
---|
865 | else: |
---|
866 | if 'c' not in magSym[2]: |
---|
867 | i,j = [1,2] |
---|
868 | magSym[i].strip("'") |
---|
869 | Ptsym[i-1].strip("'") |
---|
870 | magSym[j].strip("'") |
---|
871 | Ptsym[j-1].strip("'") |
---|
872 | if SpnFlp[:2] == [1,-1]: |
---|
873 | magSym[i] += "'" |
---|
874 | Ptsym[i-1] += "'" |
---|
875 | elif SpnFlp[:2] == [-1,-1]: |
---|
876 | magSym[j] += "'" |
---|
877 | Ptsym[j-1] += "'" |
---|
878 | elif SpnFlp[:2] == [-1,1]: |
---|
879 | magSym[i] += "'" |
---|
880 | Ptsym[i-1] += "'" |
---|
881 | magSym[j] += "'" |
---|
882 | Ptsym[j-1] += "'" |
---|
883 | SGData['MagPtGp'] = ''.join(Ptsym) |
---|
884 | elif SGData['SGPtGrp'] == '23' and len(magSym): |
---|
885 | SGData['MagPtGp'] = '23' |
---|
886 | if SpnFlp[0] < 0: |
---|
887 | magSym[0] += '(P)' |
---|
888 | elif SGData['SGPtGrp'] == 'm3': |
---|
889 | SGData['MagPtGp'] = "m3" |
---|
890 | if SpnFlp[0] < 0: |
---|
891 | magSym[1] += "'" |
---|
892 | magSym[2] += "'" |
---|
893 | SGData['MagPtGp'] = "m'3'" |
---|
894 | if SpnFlp[1] < 0: |
---|
895 | magSym[0] += '(P)' |
---|
896 | if not 'm' in magSym[1]: #only Ia3 |
---|
897 | magSym[1].strip("'") |
---|
898 | SGData['MagPtGp'] = "m3'" |
---|
899 | elif SGData['SGPtGrp'] in ['432','-43m']: |
---|
900 | Ptsym = SGData['SGPtGrp'].split('3') |
---|
901 | if SpnFlp[0] < 0: |
---|
902 | magSym[1] += "'" |
---|
903 | Ptsym[0] += "'" |
---|
904 | magSym[3] += "'" |
---|
905 | Ptsym[1] += "'" |
---|
906 | if SpnFlp[1] < 0: |
---|
907 | magSym[0] += '(P)' |
---|
908 | SGData['MagPtGp'] = '3'.join(Ptsym) |
---|
909 | elif SGData['SGPtGrp'] == 'm-3m': |
---|
910 | Ptsym = ['m','3','m'] |
---|
911 | if SpnFlp[:2] == [-1,1]: |
---|
912 | magSym[1] += "'" |
---|
913 | Ptsym[0] += "'" |
---|
914 | magSym[2] += "'" |
---|
915 | Ptsym[1] += "'" |
---|
916 | elif SpnFlp[:2] == [1,-1]: |
---|
917 | magSym[3] += "'" |
---|
918 | Ptsym[2] += "'" |
---|
919 | elif SpnFlp[:2] == [-1,-1]: |
---|
920 | magSym[1] += "'" |
---|
921 | Ptsym[0] += "'" |
---|
922 | magSym[2] += "'" |
---|
923 | Ptsym[1] += "'" |
---|
924 | magSym[3] += "'" |
---|
925 | Ptsym[2] += "'" |
---|
926 | if SpnFlp[2] < 0: |
---|
927 | magSym[0] += '(P)' |
---|
928 | SGData['MagPtGp'] = ''.join(Ptsym) |
---|
929 | # print SpnFlp |
---|
930 | return ' '.join(magSym) |
---|
931 | |
---|
932 | def GenMagOps(SGData): |
---|
933 | FlpSpn = SGData['SGSpin'] |
---|
934 | Nsym = len(SGData['SGOps']) |
---|
935 | Nfl = len(SGData['GenFlg']) |
---|
936 | Ncv = len(SGData['SGCen']) |
---|
937 | sgOp = [M for M,T in SGData['SGOps']] |
---|
938 | OprName = [GetOprPtrName(str(irtx))[1] for irtx in PackRot(SGData['SGOps'])] |
---|
939 | if SGData['SGInv']: |
---|
940 | Nsym *= 2 |
---|
941 | sgOp += [-M for M,T in SGData['SGOps']] |
---|
942 | OprName += [GetOprPtrName(str(-irtx))[1] for irtx in PackRot(SGData['SGOps'])] |
---|
943 | Nsyms = 0 |
---|
944 | sgOps = [] |
---|
945 | OprNames = [] |
---|
946 | for incv in range(Ncv): |
---|
947 | Nsyms += Nsym |
---|
948 | sgOps += sgOp |
---|
949 | OprNames += OprName |
---|
950 | SpnFlp = np.ones(Nsym,dtype=np.int) |
---|
951 | for ieqv in range(Nsym): |
---|
952 | for iunq in range(Nfl): |
---|
953 | if SGData['SGGen'][ieqv] & SGData['GenFlg'][iunq]: |
---|
954 | SpnFlp[ieqv] *= FlpSpn[iunq] |
---|
955 | # print '\nMagSpGrp:',SGData['MagSpGrp'],Ncv |
---|
956 | # print 'GenFlg:',SGData['GenFlg'] |
---|
957 | # print 'GenSym:',SGData['GenSym'] |
---|
958 | # print 'FlpSpn:',Nfl,FlpSpn |
---|
959 | detM = [nl.det(M) for M in sgOp] |
---|
960 | for incv in range(Ncv): |
---|
961 | if incv: |
---|
962 | SpnFlp = np.concatenate((SpnFlp,SpnFlp[:Nsym]*FlpSpn[Nfl+incv-1])) |
---|
963 | if ' 1bar ' in SGData['GenSym'][0] and FlpSpn[0] < 0: |
---|
964 | detM[1] = 1. |
---|
965 | MagMom = SpnFlp*np.array(Ncv*detM) |
---|
966 | SGData['MagMom'] = MagMom |
---|
967 | # print 'SgOps:',OprNames |
---|
968 | # print 'SGGen:',SGData['SGGen'] |
---|
969 | # print 'SpnFlp:',SpnFlp |
---|
970 | # print 'MagMom:',MagMom |
---|
971 | return OprNames,SpnFlp |
---|
972 | |
---|
973 | def GetOpNum(Opr,SGData): |
---|
974 | Nops = len(SGData['SGOps']) |
---|
975 | opNum = abs(Opr)%100 |
---|
976 | cent = abs(Opr)//100 |
---|
977 | if Opr < 0: |
---|
978 | opNum += Nops |
---|
979 | if SGData['SGInv']: |
---|
980 | Nops *= 2 |
---|
981 | opNum += cent*Nops |
---|
982 | return opNum |
---|
983 | |
---|
984 | ################################################################################ |
---|
985 | #### Superspace group codes |
---|
986 | ################################################################################ |
---|
987 | |
---|
988 | def SSpcGroup(SGData,SSymbol): |
---|
989 | """ |
---|
990 | Determines supersymmetry information from superspace group name; currently only for (3+1) superlattices |
---|
991 | |
---|
992 | :param SGData: space group data structure as defined in SpcGroup above (see :ref:`SGData<SGData_table>`). |
---|
993 | :param SSymbol: superspace group symbol extension (string) defining modulation direction & generator info. |
---|
994 | :returns: (SSGError,SSGData) |
---|
995 | |
---|
996 | * SGError = 0 for no errors; >0 for errors (see SGErrors below for details) |
---|
997 | * SSGData - is a dict (see :ref:`Superspace Group object<SSGData_table>`) with entries: |
---|
998 | |
---|
999 | * 'SSpGrp': superspace group symbol extension to space group symbol, accidental spaces removed |
---|
1000 | * 'SSGCen': 4D cell centering vectors [0,0,0,0] at least |
---|
1001 | * 'SSGOps': 4D symmetry operations as [M,T] so that M*x+T = x' |
---|
1002 | |
---|
1003 | """ |
---|
1004 | |
---|
1005 | def checkModSym(): |
---|
1006 | ''' |
---|
1007 | Checks to see if proposed modulation form is allowed for Laue group |
---|
1008 | ''' |
---|
1009 | if LaueId in [0,] and LaueModId in [0,]: |
---|
1010 | return True |
---|
1011 | elif LaueId in [1,]: |
---|
1012 | try: |
---|
1013 | if modsym.index('1/2') != ['A','B','C'].index(SGData['SGLatt']): |
---|
1014 | return False |
---|
1015 | if 'I'.index(SGData['SGLatt']) and modsym.count('1/2') not in [0,2]: |
---|
1016 | return False |
---|
1017 | except ValueError: |
---|
1018 | pass |
---|
1019 | if SGData['SGUniq'] == 'a' and LaueModId in [5,6,7,8,9,10,]: |
---|
1020 | return True |
---|
1021 | elif SGData['SGUniq'] == 'b' and LaueModId in [3,4,13,14,15,16,]: |
---|
1022 | return True |
---|
1023 | elif SGData['SGUniq'] == 'c' and LaueModId in [1,2,19,20,21,22,]: |
---|
1024 | return True |
---|
1025 | elif LaueId in [2,] and LaueModId in [i+7 for i in range(18)]: |
---|
1026 | try: |
---|
1027 | if modsym.index('1/2') != ['A','B','C'].index(SGData['SGLatt']): |
---|
1028 | return False |
---|
1029 | if SGData['SGLatt'] in ['I','F',] and modsym.index('1/2'): |
---|
1030 | return False |
---|
1031 | except ValueError: |
---|
1032 | pass |
---|
1033 | return True |
---|
1034 | elif LaueId in [3,4,] and LaueModId in [19,22,]: |
---|
1035 | try: |
---|
1036 | if SGData['SGLatt'] == 'I' and modsym.count('1/2'): |
---|
1037 | return False |
---|
1038 | except ValueError: |
---|
1039 | pass |
---|
1040 | return True |
---|
1041 | elif LaueId in [7,8,9,] and LaueModId in [19,25,]: |
---|
1042 | if (SGData['SGLatt'] == 'R' or SGData['SGPtGrp'] in ['3m1','-3m1']) and modsym.count('1/3'): |
---|
1043 | return False |
---|
1044 | return True |
---|
1045 | elif LaueId in [10,11,] and LaueModId in [19,]: |
---|
1046 | return True |
---|
1047 | return False |
---|
1048 | |
---|
1049 | def fixMonoOrtho(): |
---|
1050 | mod = ''.join(modsym).replace('1/2','0').replace('1','0') |
---|
1051 | if SGData['SGPtGrp'] in ['2','m']: #OK |
---|
1052 | if mod in ['a00','0b0','00g']: |
---|
1053 | result = [i*-1 for i in SGData['SSGKl']] |
---|
1054 | else: |
---|
1055 | result = SGData['SSGKl'][:] |
---|
1056 | if '/' in mod: |
---|
1057 | return [i*-1 for i in result] |
---|
1058 | else: |
---|
1059 | return result |
---|
1060 | elif SGData['SGPtGrp'] == '2/m': #OK |
---|
1061 | if mod in ['a00','0b0','00g']: |
---|
1062 | result = SGData['SSGKl'][:] |
---|
1063 | else: |
---|
1064 | result = [i*-1 for i in SGData['SSGKl']] |
---|
1065 | if '/' in mod: |
---|
1066 | return [i*-1 for i in result] |
---|
1067 | else: |
---|
1068 | return result |
---|
1069 | else: #orthorhombic |
---|
1070 | return [-SSGKl[i] if mod[i] in ['a','b','g'] else SSGKl[i] for i in range(3)] |
---|
1071 | |
---|
1072 | def extendSSGOps(SSGOps): |
---|
1073 | for OpA in SSGOps: |
---|
1074 | OpAtxt = SSMT2text(OpA) |
---|
1075 | if 't' not in OpAtxt: |
---|
1076 | continue |
---|
1077 | for OpB in SSGOps: |
---|
1078 | OpBtxt = SSMT2text(OpB) |
---|
1079 | if 't' not in OpBtxt: |
---|
1080 | continue |
---|
1081 | OpC = list(SGProd(OpB,OpA)) |
---|
1082 | OpC[1] %= 1. |
---|
1083 | OpCtxt = SSMT2text(OpC) |
---|
1084 | # print OpAtxt.replace(' ','')+' * '+OpBtxt.replace(' ','')+' = '+OpCtxt.replace(' ','') |
---|
1085 | for k,OpD in enumerate(SSGOps): |
---|
1086 | OpDtxt = SSMT2text(OpD) |
---|
1087 | if 't' in OpDtxt: |
---|
1088 | continue |
---|
1089 | # print ' ('+OpCtxt.replace(' ','')+' = ? '+OpDtxt.replace(' ','')+')' |
---|
1090 | if OpCtxt == OpDtxt: |
---|
1091 | continue |
---|
1092 | elif OpCtxt.split(',')[:3] == OpDtxt.split(',')[:3]: |
---|
1093 | if 't' not in OpDtxt: |
---|
1094 | SSGOps[k] = OpC |
---|
1095 | # print k,' new:',OpCtxt.replace(' ','') |
---|
1096 | break |
---|
1097 | else: |
---|
1098 | OpCtxt = OpCtxt.replace(' ','') |
---|
1099 | OpDtxt = OpDtxt.replace(' ','') |
---|
1100 | Txt = OpCtxt+' conflict with '+OpDtxt |
---|
1101 | print (Txt) |
---|
1102 | return False,Txt |
---|
1103 | return True,SSGOps |
---|
1104 | |
---|
1105 | def findMod(modSym): |
---|
1106 | for a in ['a','b','g']: |
---|
1107 | if a in modSym: |
---|
1108 | return a |
---|
1109 | |
---|
1110 | def genSSGOps(): |
---|
1111 | SSGOps = SSGData['SSGOps'][:] |
---|
1112 | iFrac = {} |
---|
1113 | for i,frac in enumerate(SSGData['modSymb']): |
---|
1114 | if frac in ['1/2','1/3','1/4','1/6','1']: |
---|
1115 | iFrac[i] = frac+'.' |
---|
1116 | # print SGData['SpGrp']+SSymbol |
---|
1117 | # print 'SSGKl',SSGKl,'genQ',genQ,'iFrac',iFrac,'modSymb',SSGData['modSymb'] |
---|
1118 | # set identity & 1,-1; triclinic |
---|
1119 | SSGOps[0][0][3,3] = 1. |
---|
1120 | ## expand if centrosymmetric |
---|
1121 | # if SGData['SGInv']: |
---|
1122 | # SSGOps += [[-1*M,V] for M,V in SSGOps[:]] |
---|
1123 | # monoclinic - all done & all checked |
---|
1124 | if SGData['SGPtGrp'] in ['2','m']: #OK |
---|
1125 | SSGOps[1][0][3,3] = SSGKl[0] |
---|
1126 | SSGOps[1][1][3] = genQ[0] |
---|
1127 | for i in iFrac: |
---|
1128 | SSGOps[1][0][3,i] = -SSGKl[0] |
---|
1129 | elif SGData['SGPtGrp'] == '2/m': #OK |
---|
1130 | SSGOps[1][0][3,3] = SSGKl[1] |
---|
1131 | if gensym: |
---|
1132 | SSGOps[1][1][3] = 0.5 |
---|
1133 | for i in iFrac: |
---|
1134 | SSGOps[1][0][3,i] = SSGKl[0] |
---|
1135 | |
---|
1136 | # orthorhombic - all OK not fully checked |
---|
1137 | elif SGData['SGPtGrp'] in ['222','mm2','m2m','2mm']: #OK |
---|
1138 | if SGData['SGPtGrp'] == '222': |
---|
1139 | OrOps = {'g':{0:[1,3],1:[2,3]},'a':{1:[1,2],2:[1,3]},'b':{2:[3,2],0:[1,2]}} #OK |
---|
1140 | elif SGData['SGPtGrp'] == 'mm2': |
---|
1141 | OrOps = {'g':{0:[1,3],1:[2,3]},'a':{1:[2,1],2:[3,1]},'b':{0:[1,2],2:[3,2]}} #OK |
---|
1142 | elif SGData['SGPtGrp'] == 'm2m': |
---|
1143 | OrOps = {'b':{0:[1,2],2:[3,2]},'g':{0:[1,3],1:[2,3]},'a':{1:[2,1],2:[3,1]}} #OK |
---|
1144 | elif SGData['SGPtGrp'] == '2mm': |
---|
1145 | OrOps = {'a':{1:[2,1],2:[3,1]},'b':{0:[1,2],2:[3,2]},'g':{0:[1,3],1:[2,3]}} #OK |
---|
1146 | a = findMod(SSGData['modSymb']) |
---|
1147 | OrFrac = OrOps[a] |
---|
1148 | for j in iFrac: |
---|
1149 | for i in OrFrac[j]: |
---|
1150 | SSGOps[i][0][3,j] = -2.*eval(iFrac[j])*SSGKl[i-1] |
---|
1151 | for i in [0,1,2]: |
---|
1152 | SSGOps[i+1][0][3,3] = SSGKl[i] |
---|
1153 | SSGOps[i+1][1][3] = genQ[i] |
---|
1154 | E,SSGOps = extendSSGOps(SSGOps) |
---|
1155 | if not E: |
---|
1156 | return E,SSGOps |
---|
1157 | elif SGData['SGPtGrp'] == 'mmm': #OK |
---|
1158 | OrOps = {'g':{0:[1,3],1:[2,3]},'a':{1:[2,1],2:[3,1]},'b':{0:[1,2],2:[3,2]}} |
---|
1159 | a = findMod(SSGData['modSymb']) |
---|
1160 | if a == 'g': |
---|
1161 | SSkl = [1,1,1] |
---|
1162 | elif a == 'a': |
---|
1163 | SSkl = [-1,1,-1] |
---|
1164 | else: |
---|
1165 | SSkl = [1,-1,-1] |
---|
1166 | OrFrac = OrOps[a] |
---|
1167 | for j in iFrac: |
---|
1168 | for i in OrFrac[j]: |
---|
1169 | SSGOps[i][0][3,j] = -2.*eval(iFrac[j])*SSkl[i-1] |
---|
1170 | for i in [0,1,2]: |
---|
1171 | SSGOps[i+1][0][3,3] = SSkl[i] |
---|
1172 | SSGOps[i+1][1][3] = genQ[i] |
---|
1173 | E,SSGOps = extendSSGOps(SSGOps) |
---|
1174 | if not E: |
---|
1175 | return E,SSGOps |
---|
1176 | # tetragonal - all done & checked |
---|
1177 | elif SGData['SGPtGrp'] == '4': #OK |
---|
1178 | SSGOps[1][0][3,3] = SSGKl[0] |
---|
1179 | SSGOps[1][1][3] = genQ[0] |
---|
1180 | if '1/2' in SSGData['modSymb']: |
---|
1181 | SSGOps[1][0][3,1] = -1 |
---|
1182 | elif SGData['SGPtGrp'] == '-4': #OK |
---|
1183 | SSGOps[1][0][3,3] = SSGKl[0] |
---|
1184 | if '1/2' in SSGData['modSymb']: |
---|
1185 | SSGOps[1][0][3,1] = 1 |
---|
1186 | elif SGData['SGPtGrp'] in ['4/m',]: #OK |
---|
1187 | if '1/2' in SSGData['modSymb']: |
---|
1188 | SSGOps[1][0][3,1] = -SSGKl[0] |
---|
1189 | for i,j in enumerate([1,3]): |
---|
1190 | SSGOps[j][0][3,3] = 1 |
---|
1191 | if genQ[i]: |
---|
1192 | SSGOps[j][1][3] = genQ[i] |
---|
1193 | E,SSGOps = extendSSGOps(SSGOps) |
---|
1194 | if not E: |
---|
1195 | return E,SSGOps |
---|
1196 | elif SGData['SGPtGrp'] in ['422','4mm','-42m','-4m2',]: #OK |
---|
1197 | iGens = [1,4,5] |
---|
1198 | if SGData['SGPtGrp'] in ['4mm','-4m2',]: |
---|
1199 | iGens = [1,6,7] |
---|
1200 | for i,j in enumerate(iGens): |
---|
1201 | if '1/2' in SSGData['modSymb'] and i < 2: |
---|
1202 | SSGOps[j][0][3,1] = SSGKl[i] |
---|
1203 | SSGOps[j][0][3,3] = SSGKl[i] |
---|
1204 | if genQ[i]: |
---|
1205 | if 's' in gensym and j == 6: |
---|
1206 | SSGOps[j][1][3] = -genQ[i] |
---|
1207 | else: |
---|
1208 | SSGOps[j][1][3] = genQ[i] |
---|
1209 | E,SSGOps = extendSSGOps(SSGOps) |
---|
1210 | if not E: |
---|
1211 | return E,SSGOps |
---|
1212 | elif SGData['SGPtGrp'] in ['4/mmm',]:#OK |
---|
1213 | if '1/2' in SSGData['modSymb']: |
---|
1214 | SSGOps[1][0][3,1] = -SSGKl[0] |
---|
1215 | SSGOps[6][0][3,1] = SSGKl[1] |
---|
1216 | if modsym: |
---|
1217 | SSGOps[1][1][3] = -genQ[3] |
---|
1218 | for i,j in enumerate([1,2,6,7]): |
---|
1219 | SSGOps[j][0][3,3] = 1 |
---|
1220 | SSGOps[j][1][3] = genQ[i] |
---|
1221 | E,Result = extendSSGOps(SSGOps) |
---|
1222 | if not E: |
---|
1223 | return E,Result |
---|
1224 | else: |
---|
1225 | SSGOps = Result |
---|
1226 | |
---|
1227 | # trigonal - all done & checked |
---|
1228 | elif SGData['SGPtGrp'] == '3': #OK |
---|
1229 | SSGOps[1][0][3,3] = SSGKl[0] |
---|
1230 | if '1/3' in SSGData['modSymb']: |
---|
1231 | SSGOps[1][0][3,1] = -1 |
---|
1232 | SSGOps[1][1][3] = genQ[0] |
---|
1233 | elif SGData['SGPtGrp'] == '-3': #OK |
---|
1234 | SSGOps[1][0][3,3] = -SSGKl[0] |
---|
1235 | if '1/3' in SSGData['modSymb']: |
---|
1236 | SSGOps[1][0][3,1] = -1 |
---|
1237 | SSGOps[1][1][3] = genQ[0] |
---|
1238 | elif SGData['SGPtGrp'] in ['312','3m','-3m','-3m1','3m1']: #OK |
---|
1239 | if '1/3' in SSGData['modSymb']: |
---|
1240 | SSGOps[1][0][3,1] = -1 |
---|
1241 | for i,j in enumerate([1,5]): |
---|
1242 | if SGData['SGPtGrp'] in ['3m','-3m']: |
---|
1243 | SSGOps[j][0][3,3] = 1 |
---|
1244 | else: |
---|
1245 | SSGOps[j][0][3,3] = SSGKl[i+1] |
---|
1246 | if genQ[i]: |
---|
1247 | SSGOps[j][1][3] = genQ[i] |
---|
1248 | elif SGData['SGPtGrp'] in ['321','32']: #OK |
---|
1249 | for i,j in enumerate([1,4]): |
---|
1250 | SSGOps[j][0][3,3] = SSGKl[i] |
---|
1251 | if genQ[i]: |
---|
1252 | SSGOps[j][1][3] = genQ[i] |
---|
1253 | elif SGData['SGPtGrp'] in ['31m','-31m']: #OK |
---|
1254 | ids = [1,3] |
---|
1255 | if SGData['SGPtGrp'] == '-31m': |
---|
1256 | ids = [1,3] |
---|
1257 | if '1/3' in SSGData['modSymb']: |
---|
1258 | SSGOps[ids[0]][0][3,1] = -SSGKl[0] |
---|
1259 | for i,j in enumerate(ids): |
---|
1260 | SSGOps[j][0][3,3] = 1 |
---|
1261 | if genQ[i+1]: |
---|
1262 | SSGOps[j][1][3] = genQ[i+1] |
---|
1263 | |
---|
1264 | # hexagonal all done & checked |
---|
1265 | elif SGData['SGPtGrp'] == '6': #OK |
---|
1266 | SSGOps[1][0][3,3] = SSGKl[0] |
---|
1267 | SSGOps[1][1][3] = genQ[0] |
---|
1268 | elif SGData['SGPtGrp'] == '-6': #OK |
---|
1269 | SSGOps[1][0][3,3] = SSGKl[0] |
---|
1270 | elif SGData['SGPtGrp'] in ['6/m',]: #OK |
---|
1271 | SSGOps[1][0][3,3] = -SSGKl[1] |
---|
1272 | SSGOps[1][1][3] = genQ[0] |
---|
1273 | SSGOps[2][1][3] = genQ[1] |
---|
1274 | elif SGData['SGPtGrp'] in ['622',]: #OK |
---|
1275 | for i,j in enumerate([1,8,9]): |
---|
1276 | SSGOps[j][0][3,3] = SSGKl[i] |
---|
1277 | if genQ[i]: |
---|
1278 | SSGOps[j][1][3] = genQ[i] |
---|
1279 | E,SSGOps = extendSSGOps(SSGOps) |
---|
1280 | |
---|
1281 | elif SGData['SGPtGrp'] in ['6mm','-62m','-6m2',]: #OK |
---|
1282 | for i,j in enumerate([1,6,7]): |
---|
1283 | SSGOps[j][0][3,3] = SSGKl[i] |
---|
1284 | if genQ[i]: |
---|
1285 | SSGOps[j][1][3] = genQ[i] |
---|
1286 | E,SSGOps = extendSSGOps(SSGOps) |
---|
1287 | elif SGData['SGPtGrp'] in ['6/mmm',]: # OK |
---|
1288 | for i,j in enumerate([1,2,10,11]): |
---|
1289 | SSGOps[j][0][3,3] = 1 |
---|
1290 | if genQ[i]: |
---|
1291 | SSGOps[j][1][3] = genQ[i] |
---|
1292 | E,SSGOps = extendSSGOps(SSGOps) |
---|
1293 | elif SGData['SGPtGrp'] in ['1','-1']: #triclinic - done |
---|
1294 | return True,SSGOps |
---|
1295 | E,SSGOps = extendSSGOps(SSGOps) |
---|
1296 | return E,SSGOps |
---|
1297 | |
---|
1298 | def specialGen(gensym,modsym): |
---|
1299 | sym = ''.join(gensym) |
---|
1300 | if SGData['SGPtGrp'] in ['2/m',] and 'n' in SGData['SpGrp']: |
---|
1301 | if 's' in sym: |
---|
1302 | gensym = 'ss' |
---|
1303 | if SGData['SGPtGrp'] in ['-62m',] and sym == '00s': |
---|
1304 | gensym = '0ss' |
---|
1305 | elif SGData['SGPtGrp'] in ['222',]: |
---|
1306 | if sym == '00s': |
---|
1307 | gensym = '0ss' |
---|
1308 | elif sym == '0s0': |
---|
1309 | gensym = 'ss0' |
---|
1310 | elif sym == 's00': |
---|
1311 | gensym = 's0s' |
---|
1312 | elif SGData['SGPtGrp'] in ['mmm',]: |
---|
1313 | if 'g' in modsym: |
---|
1314 | if sym == 's00': |
---|
1315 | gensym = 's0s' |
---|
1316 | elif sym == '0s0': |
---|
1317 | gensym = '0ss' |
---|
1318 | elif 'a' in modsym: |
---|
1319 | if sym == '0s0': |
---|
1320 | gensym = 'ss0' |
---|
1321 | elif sym == '00s': |
---|
1322 | gensym = 's0s' |
---|
1323 | elif 'b' in modsym: |
---|
1324 | if sym == '00s': |
---|
1325 | gensym = '0ss' |
---|
1326 | elif sym == 's00': |
---|
1327 | gensym = 'ss0' |
---|
1328 | return gensym |
---|
1329 | |
---|
1330 | def checkGen(gensym): |
---|
1331 | ''' |
---|
1332 | GenSymList = ['','s','0s','s0', '00s','0s0','s00','s0s','ss0','0ss','q00','0q0','00q','qq0','q0q', '0qq', |
---|
1333 | 'q','qqs','s0s0','00ss','s00s','t','t00','t0','h','h00','000s'] |
---|
1334 | ''' |
---|
1335 | sym = ''.join(gensym) |
---|
1336 | # monoclinic - all done |
---|
1337 | if str(SSGKl) == '[-1]' and sym == 's': |
---|
1338 | return False |
---|
1339 | elif SGData['SGPtGrp'] in ['2/m',]: |
---|
1340 | if str(SSGKl) == '[-1, 1]' and sym == '0s': |
---|
1341 | return False |
---|
1342 | elif str(SSGKl) == '[1, -1]' and sym == 's0': |
---|
1343 | return False |
---|
1344 | #orthorhombic - all |
---|
1345 | elif SGData['SGPtGrp'] in ['222',] and sym not in ['','s00','0s0','00s']: |
---|
1346 | return False |
---|
1347 | elif SGData['SGPtGrp'] in ['2mm','m2m','mm2','mmm'] and sym not in ['',]+GenSymList[4:16]: |
---|
1348 | return False |
---|
1349 | #tetragonal - all done |
---|
1350 | elif SGData['SGPtGrp'] in ['4',] and sym not in ['','s','q']: |
---|
1351 | return False |
---|
1352 | elif SGData['SGPtGrp'] in ['-4',] and sym not in ['',]: |
---|
1353 | return False |
---|
1354 | elif SGData['SGPtGrp'] in ['4/m',] and sym not in ['','s0','q0']: |
---|
1355 | return False |
---|
1356 | elif SGData['SGPtGrp'] in ['422',] and sym not in ['','q00','s00']: |
---|
1357 | return False |
---|
1358 | elif SGData['SGPtGrp'] in ['4mm',] and sym not in ['','ss0','s0s','0ss','00s','qq0','qqs']: |
---|
1359 | return False |
---|
1360 | elif SGData['SGPtGrp'] in ['-4m2',] and sym not in ['','0s0','0q0']: |
---|
1361 | return False |
---|
1362 | elif SGData['SGPtGrp'] in ['-42m',] and sym not in ['','0ss','00q',]: |
---|
1363 | return False |
---|
1364 | elif SGData['SGPtGrp'] in ['4/mmm',] and sym not in ['','s00s','s0s0','00ss','000s',]: |
---|
1365 | return False |
---|
1366 | #trigonal/rhombohedral - all done |
---|
1367 | elif SGData['SGPtGrp'] in ['3',] and sym not in ['','t']: |
---|
1368 | return False |
---|
1369 | elif SGData['SGPtGrp'] in ['-3',] and sym not in ['',]: |
---|
1370 | return False |
---|
1371 | elif SGData['SGPtGrp'] in ['32',] and sym not in ['','t0']: |
---|
1372 | return False |
---|
1373 | elif SGData['SGPtGrp'] in ['321','312'] and sym not in ['','t00']: |
---|
1374 | return False |
---|
1375 | elif SGData['SGPtGrp'] in ['3m','-3m'] and sym not in ['','0s']: |
---|
1376 | return False |
---|
1377 | elif SGData['SGPtGrp'] in ['3m1','-3m1'] and sym not in ['','0s0']: |
---|
1378 | return False |
---|
1379 | elif SGData['SGPtGrp'] in ['31m','-31m'] and sym not in ['','00s']: |
---|
1380 | return False |
---|
1381 | #hexagonal - all done |
---|
1382 | elif SGData['SGPtGrp'] in ['6',] and sym not in ['','s','h','t']: |
---|
1383 | return False |
---|
1384 | elif SGData['SGPtGrp'] in ['-6',] and sym not in ['',]: |
---|
1385 | return False |
---|
1386 | elif SGData['SGPtGrp'] in ['6/m',] and sym not in ['','s0']: |
---|
1387 | return False |
---|
1388 | elif SGData['SGPtGrp'] in ['622',] and sym not in ['','h00','t00','s00']: |
---|
1389 | return False |
---|
1390 | elif SGData['SGPtGrp'] in ['6mm',] and sym not in ['','ss0','s0s','0ss']: |
---|
1391 | return False |
---|
1392 | elif SGData['SGPtGrp'] in ['-6m2',] and sym not in ['','0s0']: |
---|
1393 | return False |
---|
1394 | elif SGData['SGPtGrp'] in ['-62m',] and sym not in ['','00s']: |
---|
1395 | return False |
---|
1396 | elif SGData['SGPtGrp'] in ['6/mmm',] and sym not in ['','s00s','s0s0','00ss']: |
---|
1397 | return False |
---|
1398 | return True |
---|
1399 | |
---|
1400 | LaueModList = [ |
---|
1401 | 'abg','ab0','ab1/2','a0g','a1/2g', '0bg','1/2bg','a00','a01/2','a1/20', |
---|
1402 | 'a1/21/2','a01','a10','0b0','0b1/2', '1/2b0','1/2b1/2','0b1','1b0','00g', |
---|
1403 | '01/2g','1/20g','1/21/2g','01g','10g', '1/31/3g'] |
---|
1404 | LaueList = ['-1','2/m','mmm','4/m','4/mmm','3R','3mR','3','3m1','31m','6/m','6/mmm','m3','m3m'] |
---|
1405 | GenSymList = ['','s','0s','s0', '00s','0s0','s00','s0s','ss0','0ss','q00','0q0','00q','qq0','q0q', '0qq', |
---|
1406 | 'q','qqs','s0s0','00ss','s00s','t','t00','t0','h','h00','000s'] |
---|
1407 | Fracs = {'1/2':0.5,'1/3':1./3,'1':1.0,'0':0.,'s':.5,'t':1./3,'q':.25,'h':1./6,'a':0.,'b':0.,'g':0.} |
---|
1408 | LaueId = LaueList.index(SGData['SGLaue']) |
---|
1409 | if SGData['SGLaue'] in ['m3','m3m']: |
---|
1410 | return '(3+1) superlattices not defined for cubic space groups',None |
---|
1411 | elif SGData['SGLaue'] in ['3R','3mR']: |
---|
1412 | return '(3+1) superlattices not defined for rhombohedral settings - use hexagonal setting',None |
---|
1413 | try: |
---|
1414 | modsym,gensym = splitSSsym(SSymbol) |
---|
1415 | except ValueError: |
---|
1416 | return 'Error in superspace symbol '+SSymbol,None |
---|
1417 | if ''.join(gensym) not in GenSymList: |
---|
1418 | return 'unknown generator symbol '+''.join(gensym),None |
---|
1419 | try: |
---|
1420 | LaueModId = LaueModList.index(''.join(modsym)) |
---|
1421 | except ValueError: |
---|
1422 | return 'Unknown modulation symbol '+''.join(modsym),None |
---|
1423 | if not checkModSym(): |
---|
1424 | return 'Modulation '+''.join(modsym)+' not consistent with space group '+SGData['SpGrp'],None |
---|
1425 | modQ = [Fracs[mod] for mod in modsym] |
---|
1426 | SSGKl = SGData['SSGKl'][:] |
---|
1427 | if SGData['SGLaue'] in ['2/m','mmm']: |
---|
1428 | SSGKl = fixMonoOrtho() |
---|
1429 | if len(gensym) and len(gensym) != len(SSGKl): |
---|
1430 | return 'Wrong number of items in generator symbol '+''.join(gensym),None |
---|
1431 | if not checkGen(gensym): |
---|
1432 | return 'Generator '+''.join(gensym)+' not consistent with space group '+SGData['SpGrp'],None |
---|
1433 | gensym = specialGen(gensym,modsym) |
---|
1434 | genQ = [Fracs[mod] for mod in gensym] |
---|
1435 | if not genQ: |
---|
1436 | genQ = [0,0,0,0] |
---|
1437 | SSGData = {'SSpGrp':SGData['SpGrp']+SSymbol,'modQ':modQ,'modSymb':modsym,'SSGKl':SSGKl} |
---|
1438 | SSCen = np.zeros((len(SGData['SGCen']),4)) |
---|
1439 | for icen,cen in enumerate(SGData['SGCen']): |
---|
1440 | SSCen[icen,0:3] = cen |
---|
1441 | SSCen[0] = np.zeros(4) |
---|
1442 | SSGData['SSGCen'] = SSCen |
---|
1443 | SSGData['SSGOps'] = [] |
---|
1444 | for iop,op in enumerate(SGData['SGOps']): |
---|
1445 | T = np.zeros(4) |
---|
1446 | ssop = np.zeros((4,4)) |
---|
1447 | ssop[:3,:3] = op[0] |
---|
1448 | T[:3] = op[1] |
---|
1449 | SSGData['SSGOps'].append([ssop,T]) |
---|
1450 | E,Result = genSSGOps() |
---|
1451 | if E: |
---|
1452 | SSGData['SSGOps'] = Result |
---|
1453 | if DEBUG: |
---|
1454 | print ('Super spacegroup operators for '+SSGData['SSpGrp']) |
---|
1455 | for Op in Result: |
---|
1456 | print (SSMT2text(Op).replace(' ','')) |
---|
1457 | if SGData['SGInv']: |
---|
1458 | for Op in Result: |
---|
1459 | Op = [-Op[0],-Op[1]%1.] |
---|
1460 | print (SSMT2text(Op).replace(' ','')) |
---|
1461 | return None,SSGData |
---|
1462 | else: |
---|
1463 | return Result+'\nOperator conflict - incorrect superspace symbol',None |
---|
1464 | |
---|
1465 | def splitSSsym(SSymbol): |
---|
1466 | ''' |
---|
1467 | Splits supersymmetry symbol into two lists of strings |
---|
1468 | ''' |
---|
1469 | modsym,gensym = SSymbol.replace(' ','').split(')') |
---|
1470 | if gensym in ['0','00','000','0000']: #get rid of extraneous symbols |
---|
1471 | gensym = '' |
---|
1472 | nfrac = modsym.count('/') |
---|
1473 | modsym = modsym.lstrip('(') |
---|
1474 | if nfrac == 0: |
---|
1475 | modsym = list(modsym) |
---|
1476 | elif nfrac == 1: |
---|
1477 | pos = modsym.find('/') |
---|
1478 | if pos == 1: |
---|
1479 | modsym = [modsym[:3],modsym[3],modsym[4]] |
---|
1480 | elif pos == 2: |
---|
1481 | modsym = [modsym[0],modsym[1:4],modsym[4]] |
---|
1482 | else: |
---|
1483 | modsym = [modsym[0],modsym[1],modsym[2:]] |
---|
1484 | else: |
---|
1485 | lpos = modsym.find('/') |
---|
1486 | rpos = modsym.rfind('/') |
---|
1487 | if lpos == 1 and rpos == 4: |
---|
1488 | modsym = [modsym[:3],modsym[3:6],modsym[6]] |
---|
1489 | elif lpos == 1 and rpos == 5: |
---|
1490 | modsym = [modsym[:3],modsym[3],modsym[4:]] |
---|
1491 | else: |
---|
1492 | modsym = [modsym[0],modsym[1:4],modsym[4:]] |
---|
1493 | gensym = list(gensym) |
---|
1494 | return modsym,gensym |
---|
1495 | |
---|
1496 | def SSGPrint(SGData,SSGData): |
---|
1497 | ''' |
---|
1498 | Print the output of SSpcGroup in a nicely formatted way. Used in SSpaceGroup |
---|
1499 | |
---|
1500 | :param SGData: space group data structure as defined in SpcGroup above. |
---|
1501 | :param SSGData: from :func:`SSpcGroup` |
---|
1502 | :returns: |
---|
1503 | SSGText - list of strings with the superspace group details |
---|
1504 | SGTable - list of strings for each of the operations |
---|
1505 | ''' |
---|
1506 | Mult = len(SSGData['SSGCen'])*len(SSGData['SSGOps'])*(int(SGData['SGInv'])+1) |
---|
1507 | SSGText = [] |
---|
1508 | SSGText.append(' Superspace Group: '+SSGData['SSpGrp']) |
---|
1509 | CentStr = 'centrosymmetric' |
---|
1510 | if not SGData['SGInv']: |
---|
1511 | CentStr = 'non'+CentStr |
---|
1512 | if SGData['SGLatt'] in 'ABCIFR': |
---|
1513 | SSGText.append(' The lattice is '+CentStr+' '+SGData['SGLatt']+'-centered '+SGData['SGSys'].lower()) |
---|
1514 | else: |
---|
1515 | SSGText.append(' The superlattice is '+CentStr+' '+'primitive '+SGData['SGSys'].lower()) |
---|
1516 | SSGText.append(' The Laue symmetry is '+SGData['SGLaue']) |
---|
1517 | SSGText.append(' The superlattice point group is '+SGData['SGPtGrp']+', '+''.join([str(i) for i in SSGData['SSGKl']])) |
---|
1518 | SSGText.append(' The number of superspace group generators is '+str(len(SGData['SSGKl']))) |
---|
1519 | SSGText.append(' Multiplicity of a general site is '+str(Mult)) |
---|
1520 | if SGData['SGUniq'] in ['a','b','c']: |
---|
1521 | SSGText.append(' The unique monoclinic axis is '+SGData['SGUniq']) |
---|
1522 | if SGData['SGInv']: |
---|
1523 | SSGText.append(' The inversion center is located at 0,0,0') |
---|
1524 | if SGData['SGPolax']: |
---|
1525 | SSGText.append(' The location of the origin is arbitrary in '+SGData['SGPolax']) |
---|
1526 | SSGText.append(' ') |
---|
1527 | if len(SSGData['SSGCen']) > 1: |
---|
1528 | SSGText.append(' The equivalent positions are:') |
---|
1529 | SSGText.append(' ('+SSLatt2text(SSGData['SSGCen'])+')+\n') |
---|
1530 | else: |
---|
1531 | SSGText.append(' The equivalent positions are:\n') |
---|
1532 | SSGTable = [] |
---|
1533 | for i,Opr in enumerate(SSGData['SSGOps']): |
---|
1534 | SSGTable.append('(%2d) %s'%(i+1,SSMT2text(Opr))) |
---|
1535 | return SSGText,SSGTable |
---|
1536 | |
---|
1537 | def SSGModCheck(Vec,modSymb,newMod=True): |
---|
1538 | ''' Checks modulation vector compatibility with supersymmetry space group symbol. |
---|
1539 | if newMod: Superspace group symbol takes precidence & the vector will be modified accordingly |
---|
1540 | ''' |
---|
1541 | Fracs = {'1/2':0.5,'1/3':1./3,'1':1.0,'0':0.,'a':0.,'b':0.,'g':0.} |
---|
1542 | modQ = [Fracs[mod] for mod in modSymb] |
---|
1543 | if newMod: |
---|
1544 | newVec = [0.1 if (vec == 0.0 and mod in ['a','b','g']) else vec for [vec,mod] in zip(Vec,modSymb)] |
---|
1545 | return [Q if mod not in ['a','b','g'] and vec != Q else vec for [vec,mod,Q] in zip(newVec,modSymb,modQ)], \ |
---|
1546 | [True if mod in ['a','b','g'] else False for mod in modSymb] |
---|
1547 | else: |
---|
1548 | return Vec,[True if mod in ['a','b','g'] else False for mod in modSymb] |
---|
1549 | |
---|
1550 | def SSMT2text(Opr): |
---|
1551 | "From superspace group matrix/translation operator returns text version" |
---|
1552 | XYZS = ('x','y','z','t') #Stokes, Campbell & van Smaalen notation |
---|
1553 | TRA = (' ','ERR','1/6','1/4','1/3','ERR','1/2','ERR','2/3','3/4','5/6','ERR') |
---|
1554 | Fld = '' |
---|
1555 | M,T = Opr |
---|
1556 | for j in range(4): |
---|
1557 | IJ = '' |
---|
1558 | for k in range(4): |
---|
1559 | txt = str(int(round(M[j][k]))) |
---|
1560 | txt = txt.replace('1',XYZS[k]).replace('0','') |
---|
1561 | if '2' in txt: |
---|
1562 | txt += XYZS[k] |
---|
1563 | if IJ and M[j][k] > 0: |
---|
1564 | IJ += '+'+txt |
---|
1565 | else: |
---|
1566 | IJ += txt |
---|
1567 | IK = int(round(T[j]*12))%12 |
---|
1568 | if IK: |
---|
1569 | if not IJ: |
---|
1570 | break |
---|
1571 | if IJ[0] == '-': |
---|
1572 | Fld += (TRA[IK]+IJ).rjust(8) |
---|
1573 | else: |
---|
1574 | Fld += (TRA[IK]+'+'+IJ).rjust(8) |
---|
1575 | else: |
---|
1576 | Fld += IJ.rjust(8) |
---|
1577 | if j != 3: Fld += ', ' |
---|
1578 | return Fld |
---|
1579 | |
---|
1580 | def SSLatt2text(SSGCen): |
---|
1581 | "Lattice centering vectors to text" |
---|
1582 | lattTxt = '' |
---|
1583 | lattDir = {4:'1/3',6:'1/2',8:'2/3',0:'0'} |
---|
1584 | for vec in SSGCen: |
---|
1585 | lattTxt += ' ' |
---|
1586 | for item in vec: |
---|
1587 | lattTxt += '%s,'%(lattDir[int(item*12)]) |
---|
1588 | lattTxt = lattTxt.rstrip(',') |
---|
1589 | lattTxt += ';' |
---|
1590 | lattTxt = lattTxt.rstrip(';').lstrip(' ') |
---|
1591 | return lattTxt |
---|
1592 | |
---|
1593 | def SSpaceGroup(SGSymbol,SSymbol): |
---|
1594 | ''' |
---|
1595 | Print the output of SSpcGroup in a nicely formatted way. |
---|
1596 | |
---|
1597 | :param SGSymbol: space group symbol with spaces between axial fields. |
---|
1598 | :param SSymbol: superspace group symbol extension (string). |
---|
1599 | :returns: nothing |
---|
1600 | ''' |
---|
1601 | |
---|
1602 | E,A = SpcGroup(SGSymbol) |
---|
1603 | if E > 0: |
---|
1604 | print (SGErrors(E)) |
---|
1605 | return |
---|
1606 | E,B = SSpcGroup(A,SSymbol) |
---|
1607 | if E > 0: |
---|
1608 | print (E) |
---|
1609 | return |
---|
1610 | for l in SSGPrint(B): |
---|
1611 | print (l) |
---|
1612 | |
---|
1613 | def SGProd(OpA,OpB): |
---|
1614 | ''' |
---|
1615 | Form space group operator product. OpA & OpB are [M,V] pairs; |
---|
1616 | both must be of same dimension (3 or 4). Returns [M,V] pair |
---|
1617 | ''' |
---|
1618 | A,U = OpA |
---|
1619 | B,V = OpB |
---|
1620 | M = np.inner(B,A.T) |
---|
1621 | W = np.inner(B,U)+V |
---|
1622 | return M,W |
---|
1623 | |
---|
1624 | def MoveToUnitCell(xyz): |
---|
1625 | ''' |
---|
1626 | Translates a set of coordinates so that all values are >=0 and < 1 |
---|
1627 | |
---|
1628 | :param xyz: a list or numpy array of fractional coordinates |
---|
1629 | :returns: XYZ - numpy array of new coordinates now 0 or greater and less than 1 |
---|
1630 | ''' |
---|
1631 | XYZ = (np.array(xyz)+10.)%1. |
---|
1632 | cell = np.asarray(np.rint(xyz-XYZ),dtype=np.int32) |
---|
1633 | return XYZ,cell |
---|
1634 | |
---|
1635 | def Opposite(XYZ,toler=0.0002): |
---|
1636 | ''' |
---|
1637 | Gives opposite corner, edge or face of unit cell for position within tolerance. |
---|
1638 | Result may be just outside the cell within tolerance |
---|
1639 | |
---|
1640 | :param XYZ: 0 >= np.array[x,y,z] > 1 as by MoveToUnitCell |
---|
1641 | :param toler: unit cell fraction tolerance making opposite |
---|
1642 | :returns: |
---|
1643 | XYZ: dict of opposite positions; key=unit cell & always contains XYZ |
---|
1644 | ''' |
---|
1645 | perm3 = [[1,1,1],[0,1,1],[1,0,1],[1,1,0],[1,0,0],[0,1,0],[0,0,1],[0,0,0]] |
---|
1646 | TB = np.where(abs(XYZ-1)<toler,-1,0)+np.where(abs(XYZ)<toler,1,0) |
---|
1647 | perm = TB*perm3 |
---|
1648 | cperm = ['%d,%d,%d'%(i,j,k) for i,j,k in perm] |
---|
1649 | D = dict(zip(cperm,perm)) |
---|
1650 | new = {} |
---|
1651 | for key in D: |
---|
1652 | new[key] = np.array(D[key])+np.array(XYZ) |
---|
1653 | return new |
---|
1654 | |
---|
1655 | def GenAtom(XYZ,SGData,All=False,Uij=[],Move=True): |
---|
1656 | ''' |
---|
1657 | Generates the equivalent positions for a specified coordinate and space group |
---|
1658 | |
---|
1659 | :param XYZ: an array, tuple or list containing 3 elements: x, y & z |
---|
1660 | :param SGData: from :func:`SpcGroup` |
---|
1661 | :param All: True return all equivalent positions including duplicates; |
---|
1662 | False return only unique positions |
---|
1663 | :param Uij: [U11,U22,U33,U12,U13,U23] or [] if no Uij |
---|
1664 | :param Move: True move generated atom positions to be inside cell |
---|
1665 | False do not move atoms |
---|
1666 | :return: [[XYZEquiv],Idup,[UijEquiv]] |
---|
1667 | |
---|
1668 | * [XYZEquiv] is list of equivalent positions (XYZ is first entry) |
---|
1669 | * Idup = [-][C]SS where SS is the symmetry operator number (1-24), C (if not 0,0,0) |
---|
1670 | * is centering operator number (1-4) and - is for inversion |
---|
1671 | Cell = unit cell translations needed to put new positions inside cell |
---|
1672 | [UijEquiv] - equivalent Uij; absent if no Uij given |
---|
1673 | |
---|
1674 | ''' |
---|
1675 | XYZEquiv = [] |
---|
1676 | UijEquiv = [] |
---|
1677 | Idup = [] |
---|
1678 | Cell = [] |
---|
1679 | X = np.array(XYZ) |
---|
1680 | if Move: |
---|
1681 | X = MoveToUnitCell(X)[0] |
---|
1682 | for ic,cen in enumerate(SGData['SGCen']): |
---|
1683 | C = np.array(cen) |
---|
1684 | for invers in range(int(SGData['SGInv']+1)): |
---|
1685 | for io,[M,T] in enumerate(SGData['SGOps']): |
---|
1686 | idup = ((io+1)+100*ic)*(1-2*invers) |
---|
1687 | XT = np.inner(M,X)+T |
---|
1688 | if len(Uij): |
---|
1689 | U = Uij2U(Uij) |
---|
1690 | U = np.inner(M,np.inner(U,M).T) |
---|
1691 | newUij = U2Uij(U) |
---|
1692 | if invers: |
---|
1693 | XT = -XT |
---|
1694 | XT += C |
---|
1695 | cell = np.zeros(3,dtype=np.int32) |
---|
1696 | cellj = np.zeros(3,dtype=np.int32) |
---|
1697 | if Move: |
---|
1698 | newX,cellj = MoveToUnitCell(XT) |
---|
1699 | else: |
---|
1700 | newX = XT |
---|
1701 | cell += cellj |
---|
1702 | if All: |
---|
1703 | if np.allclose(newX,X,atol=0.0002): |
---|
1704 | idup = False |
---|
1705 | else: |
---|
1706 | if True in [np.allclose(newX,oldX,atol=0.0002) for oldX in XYZEquiv]: |
---|
1707 | idup = False |
---|
1708 | if All or idup: |
---|
1709 | XYZEquiv.append(newX) |
---|
1710 | Idup.append(idup) |
---|
1711 | Cell.append(cell) |
---|
1712 | if len(Uij): |
---|
1713 | UijEquiv.append(newUij) |
---|
1714 | if len(Uij): |
---|
1715 | return list(zip(XYZEquiv,UijEquiv,Idup,Cell)) |
---|
1716 | else: |
---|
1717 | return list(zip(XYZEquiv,Idup,Cell)) |
---|
1718 | |
---|
1719 | def GenHKL(HKL,SGData): |
---|
1720 | ''' Generates all equivlent reflections including Friedel pairs |
---|
1721 | :param HKL: [h,k,l] must be integral values |
---|
1722 | :param SGData: space group data obtained from SpcGroup |
---|
1723 | :returns: array Uniq: equivalent reflections |
---|
1724 | ''' |
---|
1725 | |
---|
1726 | Ops = SGData['SGOps'] |
---|
1727 | OpM = np.array([op[0] for op in Ops]) |
---|
1728 | Uniq = np.inner(OpM,HKL) |
---|
1729 | Uniq = list(Uniq)+list(-1*Uniq) |
---|
1730 | return np.array(Uniq) |
---|
1731 | |
---|
1732 | def GenHKLf(HKL,SGData): |
---|
1733 | ''' |
---|
1734 | Uses old GSAS Fortran routine genhkl.for |
---|
1735 | |
---|
1736 | :param HKL: [h,k,l] must be integral values for genhkl.for to work |
---|
1737 | :param SGData: space group data obtained from SpcGroup |
---|
1738 | :returns: iabsnt,mulp,Uniq,phi |
---|
1739 | |
---|
1740 | * iabsnt = True if reflection is forbidden by symmetry |
---|
1741 | * mulp = reflection multiplicity including Friedel pairs |
---|
1742 | * Uniq = numpy array of equivalent hkl in descending order of h,k,l |
---|
1743 | * phi = phase offset for each equivalent h,k,l |
---|
1744 | |
---|
1745 | ''' |
---|
1746 | hklf = list(HKL)+[0,] #could be numpy array! |
---|
1747 | Ops = SGData['SGOps'] |
---|
1748 | OpM = np.array([op[0] for op in Ops],order='F') |
---|
1749 | OpT = np.array([op[1] for op in Ops]) |
---|
1750 | Cen = np.array([cen for cen in SGData['SGCen']],order='F') |
---|
1751 | |
---|
1752 | import pyspg |
---|
1753 | Nuniq,Uniq,iabsnt,mulp = pyspg.genhklpy(hklf,len(Ops),OpM,OpT,SGData['SGInv'],len(Cen),Cen) |
---|
1754 | h,k,l,f = Uniq |
---|
1755 | Uniq=np.array(list(zip(h[:Nuniq],k[:Nuniq],l[:Nuniq]))) |
---|
1756 | phi = f[:Nuniq] |
---|
1757 | return iabsnt,mulp,Uniq,phi |
---|
1758 | |
---|
1759 | def checkSSLaue(HKL,SGData,SSGData): |
---|
1760 | #Laue check here - Toss HKL if outside unique Laue part |
---|
1761 | h,k,l,m = HKL |
---|
1762 | if SGData['SGLaue'] == '2/m': |
---|
1763 | if SGData['SGUniq'] == 'a': |
---|
1764 | if 'a' in SSGData['modSymb'] and h == 0 and m < 0: |
---|
1765 | return False |
---|
1766 | elif 'b' in SSGData['modSymb'] and k == 0 and l ==0 and m < 0: |
---|
1767 | return False |
---|
1768 | else: |
---|
1769 | return True |
---|
1770 | elif SGData['SGUniq'] == 'b': |
---|
1771 | if 'b' in SSGData['modSymb'] and k == 0 and m < 0: |
---|
1772 | return False |
---|
1773 | elif 'a' in SSGData['modSymb'] and h == 0 and l ==0 and m < 0: |
---|
1774 | return False |
---|
1775 | else: |
---|
1776 | return True |
---|
1777 | elif SGData['SGUniq'] == 'c': |
---|
1778 | if 'g' in SSGData['modSymb'] and l == 0 and m < 0: |
---|
1779 | return False |
---|
1780 | elif 'a' in SSGData['modSymb'] and h == 0 and k ==0 and m < 0: |
---|
1781 | return False |
---|
1782 | else: |
---|
1783 | return True |
---|
1784 | elif SGData['SGLaue'] == 'mmm': |
---|
1785 | if 'a' in SSGData['modSymb']: |
---|
1786 | if h == 0 and m < 0: |
---|
1787 | return False |
---|
1788 | else: |
---|
1789 | return True |
---|
1790 | elif 'b' in SSGData['modSymb']: |
---|
1791 | if k == 0 and m < 0: |
---|
1792 | return False |
---|
1793 | else: |
---|
1794 | return True |
---|
1795 | elif 'g' in SSGData['modSymb']: |
---|
1796 | if l == 0 and m < 0: |
---|
1797 | return False |
---|
1798 | else: |
---|
1799 | return True |
---|
1800 | else: #tetragonal, trigonal, hexagonal (& triclinic?) |
---|
1801 | if l == 0 and m < 0: |
---|
1802 | return False |
---|
1803 | else: |
---|
1804 | return True |
---|
1805 | |
---|
1806 | |
---|
1807 | def checkSSextc(HKL,SSGData): |
---|
1808 | Ops = SSGData['SSGOps'] |
---|
1809 | OpM = np.array([op[0] for op in Ops]) |
---|
1810 | OpT = np.array([op[1] for op in Ops]) |
---|
1811 | HKLS = np.array([HKL,-HKL]) #Freidel's Law |
---|
1812 | DHKL = np.reshape(np.inner(HKLS,OpM)-HKL,(-1,4)) |
---|
1813 | PHKL = np.reshape(np.inner(HKLS,OpT),(-1,)) |
---|
1814 | for dhkl,phkl in zip(DHKL,PHKL)[1:]: #skip identity |
---|
1815 | if dhkl.any(): |
---|
1816 | continue |
---|
1817 | else: |
---|
1818 | if phkl%1.: |
---|
1819 | return False |
---|
1820 | return True |
---|
1821 | |
---|
1822 | ################################################################################ |
---|
1823 | #### Site symmetry tables |
---|
1824 | ################################################################################ |
---|
1825 | |
---|
1826 | OprPtrName = { |
---|
1827 | '-6643':[ 2,' 1bar ', 1],'6479' :[ 10,' 2z ', 2],'-6479':[ 9,' mz ', 3], |
---|
1828 | '6481' :[ 7,' my ', 4],'-6481':[ 6,' 2y ', 5],'6641' :[ 4,' mx ', 6], |
---|
1829 | '-6641':[ 3,' 2x ', 7],'6591' :[ 28,' m+-0 ', 8],'-6591':[ 27,' 2+-0 ', 9], |
---|
1830 | '6531' :[ 25,' m110 ',10],'-6531':[ 24,' 2110 ',11],'6537' :[ 61,' 4z ',12], |
---|
1831 | '-6537':[ 62,' -4z ',13],'975' :[ 68,' 3+++1',14],'6456' :[ 114,' 3z1 ',15], |
---|
1832 | '-489' :[ 73,' 3+-- ',16],'483' :[ 78,' 3-+- ',17],'-969' :[ 83,' 3--+ ',18], |
---|
1833 | '819' :[ 22,' m+0- ',19],'-819' :[ 21,' 2+0- ',20],'2431' :[ 16,' m0+- ',21], |
---|
1834 | '-2431':[ 15,' 20+- ',22],'-657' :[ 19,' m101 ',23],'657' :[ 18,' 2101 ',24], |
---|
1835 | '1943' :[ 48,' -4x ',25],'-1943':[ 47,' 4x ',26],'-2429':[ 13,' m011 ',27], |
---|
1836 | '2429' :[ 12,' 2011 ',28],'639' :[ 55,' -4y ',29],'-639' :[ 54,' 4y ',30], |
---|
1837 | '-6484':[ 146,' 2010 ', 4],'6484' :[ 139,' m010 ', 5],'-6668':[ 145,' 2100 ', 6], |
---|
1838 | '6668' :[ 138,' m100 ', 7],'-6454':[ 148,' 2120 ',18],'6454' :[ 141,' m120 ',19], |
---|
1839 | '-6638':[ 149,' 2210 ',20],'6638' :[ 142,' m210 ',21], #search ends here |
---|
1840 | '2223' :[ 68,' 3+++2',39], |
---|
1841 | '6538' :[ 106,' 6z1 ',40],'-2169':[ 83,' 3--+2',41],'2151' :[ 73,' 3+--2',42], |
---|
1842 | '2205' :[ 79,'-3-+-2',43],'-2205':[ 78,' 3-+-2',44],'489' :[ 74,'-3+--1',45], |
---|
1843 | '801' :[ 53,' 4y1 ',46],'1945' :[ 47,' 4x3 ',47],'-6585':[ 62,' -4z3 ',48], |
---|
1844 | '6585' :[ 61,' 4z3 ',49],'6584' :[ 114,' 3z2 ',50],'6666' :[ 106,' 6z5 ',51], |
---|
1845 | '6643' :[ 1,' Iden ',52],'-801' :[ 55,' -4y1 ',53],'-1945':[ 48,' -4x3 ',54], |
---|
1846 | '-6666':[ 105,' -6z5 ',55],'-6538':[ 105,' -6z1 ',56],'-2223':[ 69,'-3+++2',57], |
---|
1847 | '-975' :[ 69,'-3+++1',58],'-6456':[ 113,' -3z1 ',59],'-483' :[ 79,'-3-+-1',60], |
---|
1848 | '969' :[ 84,'-3--+1',61],'-6584':[ 113,' -3z2 ',62],'2169' :[ 84,'-3--+2',63], |
---|
1849 | '-2151':[ 74,'-3+--2',64],'0':[0,' ????',0] |
---|
1850 | } |
---|
1851 | |
---|
1852 | OprName = { |
---|
1853 | '-6643':' -1 ','6479' :' 2(z)','-6479':' m(z)', |
---|
1854 | '6481' :' m(y)','-6481':' 2(y)','6641' :' m(x)', |
---|
1855 | '-6641':' 2(x)','6591' :' m(+-0)','-6591':' 2(+-0)', |
---|
1856 | '6531' :' m(110) ','-6531':' 2(110) ','6537' :' 4(001)', |
---|
1857 | '-6537':' -4(001)','975' :' 3(111)','6456' :' 3 ', |
---|
1858 | '-489' :' 3(+--)','483' :' 3(-+-)','-969' :' 3(--+)', |
---|
1859 | '819' :' m(+0-)','-819' :' 2(+0-)','2431' :' m(0+-)', |
---|
1860 | '-2431':' 2(0+-)','-657' :' m(xz)','657' :' 2(xz)', |
---|
1861 | '1943' :' -4(100)','-1943':' 4(100)','-2429':' m(yz)', |
---|
1862 | '2429' :' 2(yz)','639' :' -4(010)','-639' :' 4(010)', |
---|
1863 | '-6484':' 2(010) ','6484' :' m(010) ','-6668':' 2(100) ', |
---|
1864 | '6668' :' m(100) ','-6454':' 2(120) ','6454' :' m(120) ', |
---|
1865 | '-6638':' 2(210) ','6638' :' m(210) '} #search ends here |
---|
1866 | |
---|
1867 | |
---|
1868 | KNsym = { |
---|
1869 | '0' :' 1 ','1' :' -1 ','64' :' 2(x)','32' :' m(x)', |
---|
1870 | '97' :' 2/m(x)','16' :' 2(y)','8' :' m(y)','25' :' 2/m(y)', |
---|
1871 | '2' :' 2(z)','4' :' m(z)','7' :' 2/m(z)','134217728' :' 2(yz)', |
---|
1872 | '67108864' :' m(yz)','201326593' :' 2/m(yz)','2097152' :' 2(0+-)','1048576' :' m(0+-)', |
---|
1873 | '3145729' :'2/m(0+-)','8388608' :' 2(xz)','4194304' :' m(xz)','12582913' :' 2/m(xz)', |
---|
1874 | '524288' :' 2(+0-)','262144' :' m(+0-)','796433' :'2/m(+0-)','1024' :' 2(xy)', |
---|
1875 | '512' :' m(xy)','1537' :' 2/m(xy)','256' :' 2(+-0)','128' :' m(+-0)', |
---|
1876 | '385' :'2/m(+-0)','76' :' mm2(x)','52' :' mm2(y)','42' :' mm2(z)', |
---|
1877 | '135266336' :' mm2(yz)','69206048' :'mm2(0+-)','8650760' :' mm2(xz)','4718600' :'mm2(+0-)', |
---|
1878 | '1156' :' mm2(xy)','772' :'mm2(+-0)','82' :' 222 ','136314944' :' 222(x)', |
---|
1879 | '8912912' :' 222(y)','1282' :' 222(z)','127' :' mmm ','204472417' :' mmm(x)', |
---|
1880 | '13369369' :' mmm(y)','1927' :' mmm(z)','33554496' :' 4(100)','16777280' :' -4(100)', |
---|
1881 | '50331745' :'4/m(100)','169869394' :'422(100)','84934738' :'-42m 100','101711948' :'4mm(100)', |
---|
1882 | '254804095' :'4/mmm100','536870928 ':' 4(010)','268435472' :' -4(010)','805306393' :'4/m (10)', |
---|
1883 | '545783890' :'422(010)','272891986' :'-42m 010','541327412' :'4mm(010)','818675839' :'4/mmm010', |
---|
1884 | '2050' :' 4(001)','4098' :' -4(001)','6151' :'4/m(001)','3410' :'422(001)', |
---|
1885 | '4818' :'-42m 001','2730' :'4mm(001)','8191' :'4/mmm001','8192' :' 3(111)', |
---|
1886 | '8193' :' -3(111)','2629888' :' 32(111)','1319040' :' 3m(111)','3940737' :'-3m(111)', |
---|
1887 | '32768' :' 3(+--)','32769' :' -3(+--)','10519552' :' 32(+--)','5276160' :' 3m(+--)', |
---|
1888 | '15762945' :'-3m(+--)','65536' :' 3(-+-)','65537' :' -3(-+-)','134808576' :' 32(-+-)', |
---|
1889 | '67437056' :' 3m(-+-)','202180097' :'-3m(-+-)','131072' :' 3(--+)','131073' :' -3(--+)', |
---|
1890 | '142737664' :' 32(--+)','71434368' :' 3m(--+)','214040961' :'-3m(--+)','237650' :' 23 ', |
---|
1891 | '237695' :' m3 ','715894098' :' 432 ','358068946' :' -43m ','1073725439':' m3m ', |
---|
1892 | '68157504' :' mm2d100','4456464' :' mm2d010','642' :' mm2d001','153092172' :'-4m2 100', |
---|
1893 | '277348404' :'-4m2 010','5418' :'-4m2 001','1075726335':' 6/mmm ','1074414420':'-6m2 100', |
---|
1894 | '1075070124':'-6m2 120','1075069650':' 6mm ','1074414890':' 622 ','1073758215':' 6/m ', |
---|
1895 | '1073758212':' -6 ','1073758210':' 6 ','1073759865':'-3m(100)','1075724673':'-3m(120)', |
---|
1896 | '1073758800':' 3m(100)','1075069056':' 3m(120)','1073759272':' 32(100)','1074413824':' 32(120)', |
---|
1897 | '1073758209':' -3 ','1073758208':' 3 ','1074135143':'mmm(100)','1075314719':'mmm(010)', |
---|
1898 | '1073743751':'mmm(110)','1074004034':' mm2z100','1074790418':' mm2z010','1073742466':' mm2z110', |
---|
1899 | '1074004004':'mm2(100)','1074790412':'mm2(010)','1073742980':'mm2(110)','1073872964':'mm2(120)', |
---|
1900 | '1074266132':'mm2(210)','1073742596':'mm2(+-0)','1073872930':'222(100)','1074266122':'222(010)', |
---|
1901 | '1073743106':'222(110)','1073741831':'2/m(001)','1073741921':'2/m(100)','1073741849':'2/m(010)', |
---|
1902 | '1073743361':'2/m(110)','1074135041':'2/m(120)','1075314689':'2/m(210)','1073742209':'2/m(+-0)', |
---|
1903 | '1073741828':' m(001) ','1073741888':' m(100) ','1073741840':' m(010) ','1073742336':' m(110) ', |
---|
1904 | '1074003968':' m(120) ','1074790400':' m(210) ','1073741952':' m(+-0) ','1073741826':' 2(001) ', |
---|
1905 | '1073741856':' 2(100) ','1073741832':' 2(010) ','1073742848':' 2(110) ','1073872896':' 2(120) ', |
---|
1906 | '1074266112':' 2(210) ','1073742080':' 2(+-0) ','1073741825':' -1 ' |
---|
1907 | } |
---|
1908 | |
---|
1909 | NXUPQsym = { |
---|
1910 | ' 1 ':(28,29,28,28),' -1 ':( 1,29,28, 0),' 2(x)':(12,18,12,25),' m(x)':(25,18,12,25), |
---|
1911 | ' 2/m(x)':( 1,18, 0,-1),' 2(y)':(13,17,13,24),' m(y)':(24,17,13,24),' 2/m(y)':( 1,17, 0,-1), |
---|
1912 | ' 2(z)':(14,16,14,23),' m(z)':(23,16,14,23),' 2/m(z)':( 1,16, 0,-1),' 2(yz)':(10,23,10,22), |
---|
1913 | ' m(yz)':(22,23,10,22),' 2/m(yz)':( 1,23, 0,-1),' 2(0+-)':(11,24,11,21),' m(0+-)':(21,24,11,21), |
---|
1914 | '2/m(0+-)':( 1,24, 0,-1),' 2(xz)':( 8,21, 8,20),' m(xz)':(20,21, 8,20),' 2/m(xz)':( 1,21, 0,-1), |
---|
1915 | ' 2(+0-)':( 9,22, 9,19),' m(+0-)':(19,22, 9,19),'2/m(+0-)':( 1,22, 0,-1),' 2(xy)':( 6,19, 6,18), |
---|
1916 | ' m(xy)':(18,19, 6,18),' 2/m(xy)':( 1,19, 0,-1),' 2(+-0)':( 7,20, 7,17),' m(+-0)':(17,20, 7,17), |
---|
1917 | '2/m(+-0)':( 1,20, 17,-1),' mm2(x)':(12,10, 0,-1),' mm2(y)':(13,10, 0,-1),' mm2(z)':(14,10, 0,-1), |
---|
1918 | ' mm2(yz)':(10,13, 0,-1),'mm2(0+-)':(11,13, 0,-1),' mm2(xz)':( 8,12, 0,-1),'mm2(+0-)':( 9,12, 0,-1), |
---|
1919 | ' mm2(xy)':( 6,11, 0,-1),'mm2(+-0)':( 7,11, 0,-1),' 222 ':( 1,10, 0,-1),' 222(x)':( 1,13, 0,-1), |
---|
1920 | ' 222(y)':( 1,12, 0,-1),' 222(z)':( 1,11, 0,-1),' mmm ':( 1,10, 0,-1),' mmm(x)':( 1,13, 0,-1), |
---|
1921 | ' mmm(y)':( 1,12, 0,-1),' mmm(z)':( 1,11, 0,-1),' 4(100)':(12, 4,12, 0),' -4(100)':( 1, 4,12, 0), |
---|
1922 | '4/m(100)':( 1, 4,12,-1),'422(100)':( 1, 4, 0,-1),'-42m 100':( 1, 4, 0,-1),'4mm(100)':(12, 4, 0,-1), |
---|
1923 | '4/mmm100':( 1, 4, 0,-1),' 4(010)':(13, 3,13, 0),' -4(010)':( 1, 3,13, 0),'4/m (10)':( 1, 3,13,-1), |
---|
1924 | '422(010)':( 1, 3, 0,-1),'-42m 010':( 1, 3, 0,-1),'4mm(010)':(13, 3, 0,-1),'4/mmm010':(1, 3, 0,-1,), |
---|
1925 | ' 4(001)':(14, 2,14, 0),' -4(001)':( 1, 2,14, 0),'4/m(001)':( 1, 2,14,-1),'422(001)':( 1, 2, 0,-1), |
---|
1926 | '-42m 001':( 1, 2, 0,-1),'4mm(001)':(14, 2, 0,-1),'4/mmm001':( 1, 2, 0,-1),' 3(111)':( 2, 5, 2, 0), |
---|
1927 | ' -3(111)':( 1, 5, 2, 0),' 32(111)':( 1, 5, 0, 2),' 3m(111)':( 2, 5, 0, 2),'-3m(111)':( 1, 5, 0,-1), |
---|
1928 | ' 3(+--)':( 5, 8, 5, 0),' -3(+--)':( 1, 8, 5, 0),' 32(+--)':( 1, 8, 0, 5),' 3m(+--)':( 5, 8, 0, 5), |
---|
1929 | '-3m(+--)':( 1, 8, 0,-1),' 3(-+-)':( 4, 7, 4, 0),' -3(-+-)':( 1, 7, 4, 0),' 32(-+-)':( 1, 7, 0, 4), |
---|
1930 | ' 3m(-+-)':( 4, 7, 0, 4),'-3m(-+-)':( 1, 7, 0,-1),' 3(--+)':( 3, 6, 3, 0),' -3(--+)':( 1, 6, 3, 0), |
---|
1931 | ' 32(--+)':( 1, 6, 0, 3),' 3m(--+)':( 3, 6, 0, 3),'-3m(--+)':( 1, 6, 0,-1),' 23 ':( 1, 1, 0, 0), |
---|
1932 | ' m3 ':( 1, 1, 0, 0),' 432 ':( 1, 1, 0, 0),' -43m ':( 1, 1, 0, 0),' m3m ':( 1, 1, 0, 0), |
---|
1933 | ' mm2d100':(12,13, 0,-1),' mm2d010':(13,12, 0,-1),' mm2d001':(14,11, 0,-1),'-4m2 100':( 1, 4, 0,-1), |
---|
1934 | '-4m2 010':( 1, 3, 0,-1),'-4m2 001':( 1, 2, 0,-1),' 6/mmm ':( 1, 9, 0,-1),'-6m2 100':( 1, 9, 0,-1), |
---|
1935 | '-6m2 120':( 1, 9, 0,-1),' 6mm ':(14, 9, 0,-1),' 622 ':( 1, 9, 0,-1),' 6/m ':( 1, 9,14,-1), |
---|
1936 | ' -6 ':( 1, 9,14, 0),' 6 ':(14, 9,14, 0),'-3m(100)':( 1, 9, 0,-1),'-3m(120)':( 1, 9, 0,-1), |
---|
1937 | ' 3m(100)':(14, 9, 0,14),' 3m(120)':(14, 9, 0,14),' 32(100)':( 1, 9, 0,14),' 32(120)':( 1, 9, 0,14), |
---|
1938 | ' -3 ':( 1, 9,14, 0),' 3 ':(14, 9,14, 0),'mmm(100)':( 1,14, 0,-1),'mmm(010)':( 1,15, 0,-1), |
---|
1939 | 'mmm(110)':( 1,11, 0,-1),' mm2z100':(14,14, 0,-1),' mm2z010':(14,15, 0,-1),' mm2z110':(14,11, 0,-1), |
---|
1940 | 'mm2(100)':(12,14, 0,-1),'mm2(010)':(13,15, 0,-1),'mm2(110)':( 6,11, 0,-1),'mm2(120)':(15,14, 0,-1), |
---|
1941 | 'mm2(210)':(16,15, 0,-1),'mm2(+-0)':( 7,11, 0,-1),'222(100)':( 1,14, 0,-1),'222(010)':( 1,15, 0,-1), |
---|
1942 | '222(110)':( 1,11, 0,-1),'2/m(001)':( 1,16,14,-1),'2/m(100)':( 1,25,12,-1),'2/m(010)':( 1,28,13,-1), |
---|
1943 | '2/m(110)':( 1,19, 6,-1),'2/m(120)':( 1,27,15,-1),'2/m(210)':( 1,26,16,-1),'2/m(+-0)':( 1,20,17,-1), |
---|
1944 | ' m(001) ':(23,16,14,23),' m(100) ':(26,25,12,26),' m(010) ':(27,28,13,27),' m(110) ':(18,19, 6,18), |
---|
1945 | ' m(120) ':(24,27,15,24),' m(210) ':(25,26,16,25),' m(+-0) ':(17,20, 7,17),' 2(001) ':(14,16,14,23), |
---|
1946 | ' 2(100) ':(12,25,12,26),' 2(010) ':(13,28,13,27),' 2(110) ':( 6,19, 6,18),' 2(120) ':(15,27,15,24), |
---|
1947 | ' 2(210) ':(16,26,16,25),' 2(+-0) ':( 7,20, 7,17),' -1 ':( 1,29,28, 0) |
---|
1948 | } |
---|
1949 | |
---|
1950 | CSxinel = [[], # 0th empty - indices are Fortran style |
---|
1951 | [[0,0,0],[ 0.0, 0.0, 0.0]], #1 0 0 0 |
---|
1952 | [[1,1,1],[ 1.0, 1.0, 1.0]], #2 X X X |
---|
1953 | [[1,1,1],[ 1.0, 1.0,-1.0]], #3 X X -X |
---|
1954 | [[1,1,1],[ 1.0,-1.0, 1.0]], #4 X -X X |
---|
1955 | [[1,1,1],[ 1.0,-1.0,-1.0]], #5 -X X X |
---|
1956 | [[1,1,0],[ 1.0, 1.0, 0.0]], #6 X X 0 |
---|
1957 | [[1,1,0],[ 1.0,-1.0, 0.0]], #7 X -X 0 |
---|
1958 | [[1,0,1],[ 1.0, 0.0, 1.0]], #8 X 0 X |
---|
1959 | [[1,0,1],[ 1.0, 0.0,-1.0]], #9 X 0 -X |
---|
1960 | [[0,1,1],[ 0.0, 1.0, 1.0]], #10 0 Y Y |
---|
1961 | [[0,1,1],[ 0.0, 1.0,-1.0]], #11 0 Y -Y |
---|
1962 | [[1,0,0],[ 1.0, 0.0, 0.0]], #12 X 0 0 |
---|
1963 | [[0,1,0],[ 0.0, 1.0, 0.0]], #13 0 Y 0 |
---|
1964 | [[0,0,1],[ 0.0, 0.0, 1.0]], #14 0 0 Z |
---|
1965 | [[1,1,0],[ 1.0, 2.0, 0.0]], #15 X 2X 0 |
---|
1966 | [[1,1,0],[ 2.0, 1.0, 0.0]], #16 2X X 0 |
---|
1967 | [[1,1,2],[ 1.0, 1.0, 1.0]], #17 X X Z |
---|
1968 | [[1,1,2],[ 1.0,-1.0, 1.0]], #18 X -X Z |
---|
1969 | [[1,2,1],[ 1.0, 1.0, 1.0]], #19 X Y X |
---|
1970 | [[1,2,1],[ 1.0, 1.0,-1.0]], #20 X Y -X |
---|
1971 | [[1,2,2],[ 1.0, 1.0, 1.0]], #21 X Y Y |
---|
1972 | [[1,2,2],[ 1.0, 1.0,-1.0]], #22 X Y -Y |
---|
1973 | [[1,2,0],[ 1.0, 1.0, 0.0]], #23 X Y 0 |
---|
1974 | [[1,0,2],[ 1.0, 0.0, 1.0]], #24 X 0 Z |
---|
1975 | [[0,1,2],[ 0.0, 1.0, 1.0]], #25 0 Y Z |
---|
1976 | [[1,1,2],[ 1.0, 2.0, 1.0]], #26 X 2X Z |
---|
1977 | [[1,1,2],[ 2.0, 1.0, 1.0]], #27 2X X Z |
---|
1978 | [[1,2,3],[ 1.0, 1.0, 1.0]], #28 X Y Z |
---|
1979 | ] |
---|
1980 | |
---|
1981 | CSuinel = [[], # 0th empty - indices are Fortran style |
---|
1982 | [[1,1,1,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,0,0,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #1 A A A 0 0 0 |
---|
1983 | [[1,1,2,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,0,1,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #2 A A C 0 0 0 |
---|
1984 | [[1,2,1,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,1,0,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #3 A B A 0 0 0 |
---|
1985 | [[1,2,2,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,1,0,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #4 A B B 0 0 0 |
---|
1986 | [[1,1,1,2,2,2],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,0,0,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #5 A A A D D D |
---|
1987 | [[1,1,1,2,2,2],[ 1.0, 1.0, 1.0, 1.0,-1.0,-1.0],[1,0,0,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #6 A A A D -D -D |
---|
1988 | [[1,1,1,2,2,2],[ 1.0, 1.0, 1.0, 1.0,-1.0, 1.0],[1,0,0,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #7 A A A D -D D |
---|
1989 | [[1,1,1,2,2,2],[ 1.0, 1.0, 1.0, 1.0, 1.0,-1.0],[1,0,0,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #8 A A A D D -D |
---|
1990 | [[1,1,2,1,0,0],[ 1.0, 1.0, 1.0, 0.5, 0.0, 0.0],[1,0,1,0,0,0],[1.0,1.0,1.0,0.5,0.0,0.0]], #9 A A C A/2 0 0 |
---|
1991 | [[1,2,3,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,1,1,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #10 A B C 0 0 0 |
---|
1992 | [[1,1,2,3,0,0],[ 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],[1,0,1,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #11 A A C D 0 0 |
---|
1993 | [[1,2,1,0,3,0],[ 1.0, 1.0, 1.0, 0.0, 1.0, 0.0],[1,1,0,0,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #12 A B A 0 E 0 |
---|
1994 | [[1,2,2,0,0,3],[ 1.0, 1.0, 1.0, 0.0, 0.0, 1.0],[1,1,0,0,0,1],[1.0,1.0,1.0,0.0,0.0,0.0]], #13 A B B 0 0 F |
---|
1995 | [[1,2,3,2,0,0],[ 1.0, 1.0, 1.0, 0.5, 0.0, 0.0],[1,1,1,0,0,0],[1.0,1.0,1.0,0.0,0.5,0.0]], #14 A B C B/2 0 0 |
---|
1996 | [[1,2,3,1,0,0],[ 1.0, 1.0, 1.0, 0.5, 0.0, 0.0],[1,1,1,0,0,0],[1.0,1.0,1.0,0.0,0.5,0.0]], #15 A B C A/2 0 0 |
---|
1997 | [[1,2,3,4,0,0],[ 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],[1,1,1,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #16 A B C D 0 0 |
---|
1998 | [[1,2,3,0,4,0],[ 1.0, 1.0, 1.0, 0.0, 1.0, 0.0],[1,1,1,0,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #17 A B C 0 E 0 |
---|
1999 | [[1,2,3,0,0,4],[ 1.0, 1.0, 1.0, 0.0, 0.0, 1.0],[1,1,1,0,0,1],[1.0,1.0,1.0,0.0,0.0,0.0]], #18 A B C 0 0 F |
---|
2000 | [[1,1,2,3,4,4],[ 1.0, 1.0, 1.0, 1.0, 1.0,-1.0],[1,0,1,1,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #19 A A C D E -E |
---|
2001 | [[1,1,2,3,4,4],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,0,1,1,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #20 A A C D E E |
---|
2002 | [[1,2,1,3,4,3],[ 1.0, 1.0, 1.0, 1.0, 1.0,-1.0],[1,1,0,1,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #21 A B A D E -D |
---|
2003 | [[1,2,1,3,4,3],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,1,0,1,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]], #22 A B A D E D |
---|
2004 | [[1,2,2,3,3,4],[ 1.0, 1.0, 1.0, 1.0,-1.0, 1.0],[1,1,0,1,0,1],[1.0,1.0,1.0,0.0,0.0,0.0]], #23 A B B D -D F |
---|
2005 | [[1,2,2,3,3,4],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,1,0,1,0,1],[1.0,1.0,1.0,0.0,0.0,0.0]], #24 A B B D D F |
---|
2006 | [[1,2,3,2,4,4],[ 1.0, 1.0, 1.0, 0.5, 1.0, 2.0],[1,1,1,0,0,1],[1.0,1.0,1.0,0.5,0.0,0.0]], #25 A B C B/2 F/2 F |
---|
2007 | [[1,2,3,1,0,4],[ 1.0, 1.0, 1.0, 0.5, 0.0, 1.0],[1,1,1,0,0,1],[1.0,1.0,1.0,0.5,0.0,0.0]], #26 A B C A/2 0 F |
---|
2008 | [[1,2,3,2,4,0],[ 1.0, 1.0, 1.0, 0.5, 1.0, 0.0],[1,1,1,0,1,0],[1.0,1.0,1.0,0.5,0.0,0.0]], #27 A B C B/2 E 0 |
---|
2009 | [[1,2,3,1,4,4],[ 1.0, 1.0, 1.0, 0.5, 1.0, 0.5],[1,1,1,0,1,0],[1.0,1.0,1.0,0.5,0.0,0.0]], #28 A B C A/2 E E/2 |
---|
2010 | [[1,2,3,4,5,6],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,1,1,1,1,1],[1.0,1.0,1.0,0.0,0.0,0.0]], #29 A B C D E F |
---|
2011 | ] |
---|
2012 | |
---|
2013 | ################################################################################ |
---|
2014 | #### Site symmetry routines |
---|
2015 | ################################################################################ |
---|
2016 | |
---|
2017 | def GetOprPtrName(key): |
---|
2018 | 'Needs a doc string' |
---|
2019 | return OprPtrName[key] |
---|
2020 | |
---|
2021 | def GetOprName(key): |
---|
2022 | 'Needs a doc string' |
---|
2023 | return OprName[key] |
---|
2024 | |
---|
2025 | def GetKNsym(key): |
---|
2026 | 'Needs a doc string' |
---|
2027 | return KNsym[key] |
---|
2028 | |
---|
2029 | def GetNXUPQsym(siteSym): |
---|
2030 | ''' |
---|
2031 | The codes XUPQ are for lookup of symmetry constraints for position(X), thermal parm(U) & magnetic moments (P & Q) |
---|
2032 | ''' |
---|
2033 | return NXUPQsym[siteSym] |
---|
2034 | |
---|
2035 | def GetCSxinel(siteSym): |
---|
2036 | "returns Xyz terms, multipliers, GUI flags" |
---|
2037 | indx = GetNXUPQsym(siteSym) |
---|
2038 | return CSxinel[indx[0]] |
---|
2039 | |
---|
2040 | def GetCSuinel(siteSym): |
---|
2041 | "returns Uij terms, multipliers, GUI flags & Uiso2Uij multipliers" |
---|
2042 | indx = GetNXUPQsym(siteSym) |
---|
2043 | return CSuinel[indx[1]] |
---|
2044 | |
---|
2045 | def GetCSpqinel(siteSym,SpnFlp,dupDir): |
---|
2046 | "returns Mxyz terms, multipliers, GUI flags" |
---|
2047 | CSI = [[1,2,3],[1.0,1.0,1.0]] |
---|
2048 | for opr in dupDir: |
---|
2049 | if '-1' in siteSym and SpnFlp[len(SpnFlp)//2-1] < 0: |
---|
2050 | return [[0,0,0],[0.,0.,0.]] |
---|
2051 | indx = GetNXUPQsym(opr) |
---|
2052 | if SpnFlp[dupDir[opr]] > 0.: |
---|
2053 | csi = CSxinel[indx[2]] #P |
---|
2054 | else: |
---|
2055 | csi = CSxinel[indx[3]] #Q |
---|
2056 | if not len(csi): |
---|
2057 | return [[0,0,0],[0.,0.,0.]] |
---|
2058 | for kcs in [0,1,2]: |
---|
2059 | if csi[0][kcs] == 0 and CSI[0][kcs] != 0: |
---|
2060 | jcs = CSI[0][kcs] |
---|
2061 | for ics in [0,1,2]: |
---|
2062 | if CSI[0][ics] == jcs: |
---|
2063 | CSI[0][ics] = 0 |
---|
2064 | CSI[1][ics] = 0. |
---|
2065 | elif CSI[0][ics] > jcs: |
---|
2066 | CSI[0][ics] = CSI[0][jcs]-1 |
---|
2067 | elif CSI[0][kcs] == csi[0][kcs] and CSI[1][kcs] != csi[1][kcs]: |
---|
2068 | CSI[1][kcs] = csi[1][kcs] |
---|
2069 | elif CSI[0][kcs] > csi[0][kcs]: |
---|
2070 | CSI[0][kcs] = min(CSI[0][kcs],csi[0][kcs]) |
---|
2071 | if CSI[1][kcs] == 1.: |
---|
2072 | CSI[1][kcs] = csi[1][kcs] |
---|
2073 | return CSI |
---|
2074 | |
---|
2075 | def getTauT(tau,sop,ssop,XYZ): |
---|
2076 | ssopinv = nl.inv(ssop[0]) |
---|
2077 | mst = ssopinv[3][:3] |
---|
2078 | epsinv = ssopinv[3][3] |
---|
2079 | sdet = nl.det(sop[0]) |
---|
2080 | ssdet = nl.det(ssop[0]) |
---|
2081 | dtau = mst*(XYZ-sop[1])-epsinv*ssop[1][3] |
---|
2082 | dT = 1.0 |
---|
2083 | if np.any(dtau%.5): |
---|
2084 | dT = np.tan(np.pi*np.sum(dtau%.5)) |
---|
2085 | tauT = np.inner(mst,XYZ-sop[1])+epsinv*(tau-ssop[1][3]) |
---|
2086 | return sdet,ssdet,dtau,dT,tauT |
---|
2087 | |
---|
2088 | def OpsfromStringOps(A,SGData,SSGData): |
---|
2089 | SGOps = SGData['SGOps'] |
---|
2090 | SSGOps = SSGData['SSGOps'] |
---|
2091 | Ax = A.split('+') |
---|
2092 | Ax[0] = int(Ax[0]) |
---|
2093 | iC = 1 |
---|
2094 | if Ax[0] < 0: |
---|
2095 | iC = -1 |
---|
2096 | Ax[0] = abs(Ax[0]) |
---|
2097 | nA = Ax[0]%100-1 |
---|
2098 | return SGOps[nA],SSGOps[nA],iC |
---|
2099 | |
---|
2100 | def GetSSfxuinel(waveType,nH,XYZ,SGData,SSGData,debug=False): |
---|
2101 | |
---|
2102 | def orderParms(CSI): |
---|
2103 | parms = [0,] |
---|
2104 | for csi in CSI: |
---|
2105 | for i in [0,1,2]: |
---|
2106 | if csi[i] not in parms: |
---|
2107 | parms.append(csi[i]) |
---|
2108 | for csi in CSI: |
---|
2109 | for i in [0,1,2]: |
---|
2110 | csi[i] = parms.index(csi[i]) |
---|
2111 | return CSI |
---|
2112 | |
---|
2113 | def fracCrenel(tau,Toff,Twid): |
---|
2114 | Tau = (tau-Toff[:,np.newaxis])%1. |
---|
2115 | A = np.where(Tau<Twid[:,np.newaxis],1.,0.) |
---|
2116 | return A |
---|
2117 | |
---|
2118 | def fracFourier(tau,nH,fsin,fcos): |
---|
2119 | SA = np.sin(2.*nH*np.pi*tau) |
---|
2120 | CB = np.cos(2.*nH*np.pi*tau) |
---|
2121 | A = SA[np.newaxis,np.newaxis,:]*fsin[:,:,np.newaxis] |
---|
2122 | B = CB[np.newaxis,np.newaxis,:]*fcos[:,:,np.newaxis] |
---|
2123 | return A+B |
---|
2124 | |
---|
2125 | def posFourier(tau,nH,psin,pcos): |
---|
2126 | SA = np.sin(2*nH*np.pi*tau) |
---|
2127 | CB = np.cos(2*nH*np.pi*tau) |
---|
2128 | A = SA[np.newaxis,np.newaxis,:]*psin[:,:,np.newaxis] |
---|
2129 | B = CB[np.newaxis,np.newaxis,:]*pcos[:,:,np.newaxis] |
---|
2130 | return A+B |
---|
2131 | |
---|
2132 | def posSawtooth(tau,Toff,slopes): |
---|
2133 | Tau = (tau-Toff)%1. |
---|
2134 | A = slopes[:,np.newaxis]*Tau |
---|
2135 | return A |
---|
2136 | |
---|
2137 | def posZigZag(tau,Tmm,XYZmax): |
---|
2138 | DT = Tmm[1]-Tmm[0] |
---|
2139 | slopeUp = 2.*XYZmax/DT |
---|
2140 | slopeDn = 2.*XYZmax/(1.-DT) |
---|
2141 | A = np.array([np.where(Tmm[0] < t%1. <= Tmm[1],-XYZmax+slopeUp*((t-Tmm[0])%1.),XYZmax-slopeDn*((t-Tmm[1])%1.)) for t in tau]) |
---|
2142 | return A |
---|
2143 | |
---|
2144 | def posBlock(tau,Tmm,XYZmax): |
---|
2145 | A = np.array([np.where(Tmm[0] < t <= Tmm[1],XYZmax,-XYZmax) for t in tau]) |
---|
2146 | return A |
---|
2147 | |
---|
2148 | def DoFrac(): |
---|
2149 | delt2 = np.eye(2)*0.001 |
---|
2150 | FSC = np.ones(2,dtype='i') |
---|
2151 | CSI = [np.zeros((2),dtype='i'),np.zeros(2)] |
---|
2152 | if 'Crenel' in waveType: |
---|
2153 | dF = np.zeros_like(tau) |
---|
2154 | else: |
---|
2155 | dF = fracFourier(tau,nH,delt2[:1],delt2[1:]).squeeze() |
---|
2156 | dFT = np.zeros_like(dF) |
---|
2157 | dFTP = [] |
---|
2158 | for i in SdIndx: |
---|
2159 | sop = Sop[i] |
---|
2160 | ssop = SSop[i] |
---|
2161 | sdet,ssdet,dtau,dT,tauT = getTauT(tau,sop,ssop,XYZ) |
---|
2162 | fsc = np.ones(2,dtype='i') |
---|
2163 | if 'Crenel' in waveType: |
---|
2164 | dFT = np.zeros_like(tau) |
---|
2165 | fsc = [1,1] |
---|
2166 | else: #Fourier |
---|
2167 | dFT = fracFourier(tauT,nH,delt2[:1],delt2[1:]).squeeze() |
---|
2168 | dFT = nl.det(sop[0])*dFT |
---|
2169 | dFT = dFT[:,np.argsort(tauT)] |
---|
2170 | dFT[0] *= ssdet |
---|
2171 | dFT[1] *= sdet |
---|
2172 | dFTP.append(dFT) |
---|
2173 | |
---|
2174 | if np.any(dtau%.5) and ('1/2' in SSGData['modSymb'] or '1' in SSGData['modSymb']): |
---|
2175 | fsc = [1,1] |
---|
2176 | CSI = [[[1,0],[1,0]],[[1.,0.],[1/dT,0.]]] |
---|
2177 | FSC = np.zeros(2,dtype='i') |
---|
2178 | return CSI,dF,dFTP |
---|
2179 | else: |
---|
2180 | for i in range(2): |
---|
2181 | if np.allclose(dF[i,:],dFT[i,:],atol=1.e-6): |
---|
2182 | fsc[i] = 1 |
---|
2183 | else: |
---|
2184 | fsc[i] = 0 |
---|
2185 | FSC &= fsc |
---|
2186 | if debug: print (SSMT2text(ssop).replace(' ',''),sdet,ssdet,epsinv,fsc) |
---|
2187 | n = -1 |
---|
2188 | for i,F in enumerate(FSC): |
---|
2189 | if F: |
---|
2190 | n += 1 |
---|
2191 | CSI[0][i] = n+1 |
---|
2192 | CSI[1][i] = 1.0 |
---|
2193 | |
---|
2194 | return CSI,dF,dFTP |
---|
2195 | |
---|
2196 | def DoXYZ(): |
---|
2197 | delt4 = np.ones(4)*0.001 |
---|
2198 | delt5 = np.ones(5)*0.001 |
---|
2199 | delt6 = np.eye(6)*0.001 |
---|
2200 | if 'Fourier' in waveType: |
---|
2201 | dX = posFourier(tau,nH,delt6[:3],delt6[3:]) #+np.array(XYZ)[:,np.newaxis,np.newaxis] |
---|
2202 | #3x6x12 modulated position array (X,Spos,tau)& force positive |
---|
2203 | CSI = [np.zeros((6,3),dtype='i'),np.zeros((6,3))] |
---|
2204 | elif waveType == 'Sawtooth': |
---|
2205 | dX = posSawtooth(tau,delt4[0],delt4[1:]) |
---|
2206 | CSI = [np.array([[1,0,0],[2,0,0],[3,0,0],[4,0,0]]), |
---|
2207 | np.array([[1.0,.0,.0],[1.0,.0,.0],[1.0,.0,.0],[1.0,.0,.0]])] |
---|
2208 | elif waveType in ['ZigZag','Block']: |
---|
2209 | if waveType == 'ZigZag': |
---|
2210 | dX = posZigZag(tau,delt5[:2],delt5[2:]) |
---|
2211 | else: |
---|
2212 | dX = posBlock(tau,delt5[:2],delt5[2:]) |
---|
2213 | CSI = [np.array([[1,0,0],[2,0,0],[3,0,0],[4,0,0],[5,0,0]]), |
---|
2214 | np.array([[1.0,.0,.0],[1.0,.0,.0],[1.0,.0,.0],[1.0,.0,.0],[1.0,.0,.0]])] |
---|
2215 | XSC = np.ones(6,dtype='i') |
---|
2216 | dXTP = [] |
---|
2217 | for i in SdIndx: |
---|
2218 | sop = Sop[i] |
---|
2219 | ssop = SSop[i] |
---|
2220 | sdet,ssdet,dtau,dT,tauT = getTauT(tau,sop,ssop,XYZ) |
---|
2221 | xsc = np.ones(6,dtype='i') |
---|
2222 | if 'Fourier' in waveType: |
---|
2223 | dXT = posFourier(np.sort(tauT),nH,delt6[:3],delt6[3:]) #+np.array(XYZ)[:,np.newaxis,np.newaxis] |
---|
2224 | elif waveType == 'Sawtooth': |
---|
2225 | dXT = posSawtooth(tauT,delt4[0],delt4[1:])+np.array(XYZ)[:,np.newaxis,np.newaxis] |
---|
2226 | elif waveType == 'ZigZag': |
---|
2227 | dXT = posZigZag(tauT,delt5[:2],delt5[2:])+np.array(XYZ)[:,np.newaxis,np.newaxis] |
---|
2228 | elif waveType == 'Block': |
---|
2229 | dXT = posBlock(tauT,delt5[:2],delt5[2:])+np.array(XYZ)[:,np.newaxis,np.newaxis] |
---|
2230 | dXT = np.inner(sop[0],dXT.T) # X modulations array(3x6x49) -> array(3x49x6) |
---|
2231 | dXT = np.swapaxes(dXT,1,2) # back to array(3x6x49) |
---|
2232 | dXT[:,:3,:] *= (ssdet*sdet) # modify the sin component |
---|
2233 | dXTP.append(dXT) |
---|
2234 | if waveType == 'Fourier': |
---|
2235 | for i in range(3): |
---|
2236 | if not np.allclose(dX[i,i,:],dXT[i,i,:]): |
---|
2237 | xsc[i] = 0 |
---|
2238 | if not np.allclose(dX[i,i+3,:],dXT[i,i+3,:]): |
---|
2239 | xsc[i+3] = 0 |
---|
2240 | if np.any(dtau%.5) and ('1/2' in SSGData['modSymb'] or '1' in SSGData['modSymb']): |
---|
2241 | xsc[3:6] = 0 |
---|
2242 | CSI = [[[1,0,0],[2,0,0],[3,0,0], [1,0,0],[2,0,0],[3,0,0]], |
---|
2243 | [[1.,0.,0.],[1.,0.,0.],[1.,0.,0.], [1.,0.,0.],[1.,0.,0.],[1.,0.,0.]]] |
---|
2244 | if '(x)' in siteSym: |
---|
2245 | CSI[1][3:] = [1./dT,0.,0.],[-dT,0.,0.],[-dT,0.,0.] |
---|
2246 | if 'm' in siteSym and len(SdIndx) == 1: |
---|
2247 | CSI[1][3:] = [-dT,0.,0.],[1./dT,0.,0.],[1./dT,0.,0.] |
---|
2248 | elif '(y)' in siteSym: |
---|
2249 | CSI[1][3:] = [-dT,0.,0.],[1./dT,0.,0.],[-dT,0.,0.] |
---|
2250 | if 'm' in siteSym and len(SdIndx) == 1: |
---|
2251 | CSI[1][3:] = [1./dT,0.,0.],[-dT,0.,0.],[1./dT,0.,0.] |
---|
2252 | elif '(z)' in siteSym: |
---|
2253 | CSI[1][3:] = [-dT,0.,0.],[-dT,0.,0.],[1./dT,0.,0.] |
---|
2254 | if 'm' in siteSym and len(SdIndx) == 1: |
---|
2255 | CSI[1][3:] = [1./dT,0.,0.],[1./dT,0.,0.],[-dT,0.,0.] |
---|
2256 | if '4/mmm' in laue: |
---|
2257 | if np.any(dtau%.5) and '1/2' in SSGData['modSymb']: |
---|
2258 | if '(xy)' in siteSym: |
---|
2259 | CSI[0] = [[1,0,0],[1,0,0],[2,0,0], [1,0,0],[1,0,0],[2,0,0]] |
---|
2260 | CSI[1][3:] = [[1./dT,0.,0.],[1./dT,0.,0.],[-dT,0.,0.]] |
---|
2261 | if '(xy)' in siteSym or '(+-0)' in siteSym: |
---|
2262 | mul = 1 |
---|
2263 | if '(+-0)' in siteSym: |
---|
2264 | mul = -1 |
---|
2265 | if np.allclose(dX[0,0,:],dXT[1,0,:]): |
---|
2266 | CSI[0][3:5] = [[11,0,0],[11,0,0]] |
---|
2267 | CSI[1][3:5] = [[1.,0,0],[mul,0,0]] |
---|
2268 | xsc[3:5] = 0 |
---|
2269 | if np.allclose(dX[0,3,:],dXT[0,4,:]): |
---|
2270 | CSI[0][:2] = [[12,0,0],[12,0,0]] |
---|
2271 | CSI[1][:2] = [[1.,0,0],[mul,0,0]] |
---|
2272 | xsc[:2] = 0 |
---|
2273 | XSC &= xsc |
---|
2274 | if debug: print (SSMT2text(ssop).replace(' ',''),sdet,ssdet,epsinv,xsc) |
---|
2275 | if waveType == 'Fourier': |
---|
2276 | n = -1 |
---|
2277 | if debug: print (XSC) |
---|
2278 | for i,X in enumerate(XSC): |
---|
2279 | if X: |
---|
2280 | n += 1 |
---|
2281 | CSI[0][i][0] = n+1 |
---|
2282 | CSI[1][i][0] = 1.0 |
---|
2283 | |
---|
2284 | return CSI,dX,dXTP |
---|
2285 | |
---|
2286 | def DoUij(): |
---|
2287 | tau = np.linspace(0,1,49,True) |
---|
2288 | delt12 = np.eye(12)*0.0001 |
---|
2289 | dU = posFourier(tau,nH,delt12[:6],delt12[6:]) #Uij modulations - 6x12x12 array |
---|
2290 | CSI = [np.zeros((12,3),dtype='i'),np.zeros((12,3))] |
---|
2291 | USC = np.ones(12,dtype='i') |
---|
2292 | dUTP = [] |
---|
2293 | for i in SdIndx: |
---|
2294 | sop = Sop[i] |
---|
2295 | ssop = SSop[i] |
---|
2296 | sdet,ssdet,dtau,dT,tauT = getTauT(tau,sop,ssop,XYZ) |
---|
2297 | usc = np.ones(12,dtype='i') |
---|
2298 | dUT = posFourier(tauT,nH,delt12[:6],delt12[6:]) #Uij modulations - 6x12x49 array |
---|
2299 | dUijT = np.rollaxis(np.rollaxis(np.array(Uij2U(dUT)),3),3) #convert dUT to 12x49x3x3 |
---|
2300 | dUijT = np.rollaxis(np.inner(np.inner(sop[0],dUijT),sop[0].T),3) #transform by sop - 3x3x12x49 |
---|
2301 | dUT = np.array(U2Uij(dUijT)) #convert to 6x12x49 |
---|
2302 | dUT = dUT[:,:,np.argsort(tauT)] |
---|
2303 | dUT[:,:6,:] *=(ssdet*sdet) |
---|
2304 | dUTP.append(dUT) |
---|
2305 | if np.any(dtau%.5) and ('1/2' in SSGData['modSymb'] or '1' in SSGData['modSymb']): |
---|
2306 | CSI = [[[1,0,0],[2,0,0],[3,0,0],[4,0,0],[5,0,0],[6,0,0], |
---|
2307 | [1,0,0],[2,0,0],[3,0,0],[4,0,0],[5,0,0],[6,0,0]], |
---|
2308 | [[1.,0.,0.],[1.,0.,0.],[1.,0.,0.], [1.,0.,0.],[1.,0.,0.],[1.,0.,0.], |
---|
2309 | [1./dT,0.,0.],[1./dT,0.,0.],[1./dT,0.,0.], [1.,0.,0.],[1.,0.,0.],[1.,0.,0.]]] |
---|
2310 | if 'mm2(x)' in siteSym: |
---|
2311 | CSI[1][9:] = [0.,0.,0.],[-dT,0.,0.],[0.,0.,0.] |
---|
2312 | USC = [1,1,1,0,1,0,1,1,1,0,1,0] |
---|
2313 | elif '(xy)' in siteSym: |
---|
2314 | CSI[0] = [[1,0,0],[1,0,0],[2,0,0],[3,0,0],[4,0,0],[4,0,0], |
---|
2315 | [1,0,0],[1,0,0],[2,0,0],[3,0,0],[4,0,0],[4,0,0]] |
---|
2316 | CSI[1][9:] = [[1./dT,0.,0.],[-dT,0.,0.],[-dT,0.,0.]] |
---|
2317 | USC = [1,1,1,1,1,1,1,1,1,1,1,1] |
---|
2318 | elif '(x)' in siteSym: |
---|
2319 | CSI[1][9:] = [-dT,0.,0.],[-dT,0.,0.],[1./dT,0.,0.] |
---|
2320 | elif '(y)' in siteSym: |
---|
2321 | CSI[1][9:] = [-dT,0.,0.],[1./dT,0.,0.],[-dT,0.,0.] |
---|
2322 | elif '(z)' in siteSym: |
---|
2323 | CSI[1][9:] = [1./dT,0.,0.],[-dT,0.,0.],[-dT,0.,0.] |
---|
2324 | for i in range(6): |
---|
2325 | if not USC[i]: |
---|
2326 | CSI[0][i] = [0,0,0] |
---|
2327 | CSI[1][i] = [0.,0.,0.] |
---|
2328 | CSI[0][i+6] = [0,0,0] |
---|
2329 | CSI[1][i+6] = [0.,0.,0.] |
---|
2330 | else: |
---|
2331 | for i in range(6): |
---|
2332 | if not np.allclose(dU[i,i,:],dUT[i,i,:]): #sin part |
---|
2333 | usc[i] = 0 |
---|
2334 | if not np.allclose(dU[i,i+6,:],dUT[i,i+6,:]): #cos part |
---|
2335 | usc[i+6] = 0 |
---|
2336 | if np.any(dUT[1,0,:]): |
---|
2337 | if '4/m' in siteSym: |
---|
2338 | CSI[0][6:8] = [[12,0,0],[12,0,0]] |
---|
2339 | if ssop[1][3]: |
---|
2340 | CSI[1][6:8] = [[1.,0.,0.],[-1.,0.,0.]] |
---|
2341 | usc[9] = 1 |
---|
2342 | else: |
---|
2343 | CSI[1][6:8] = [[1.,0.,0.],[1.,0.,0.]] |
---|
2344 | usc[9] = 0 |
---|
2345 | elif '4' in siteSym: |
---|
2346 | CSI[0][6:8] = [[12,0,0],[12,0,0]] |
---|
2347 | CSI[0][:2] = [[11,0,0],[11,0,0]] |
---|
2348 | if ssop[1][3]: |
---|
2349 | CSI[1][:2] = [[1.,0.,0.],[-1.,0.,0.]] |
---|
2350 | CSI[1][6:8] = [[1.,0.,0.],[-1.,0.,0.]] |
---|
2351 | usc[2] = 0 |
---|
2352 | usc[8] = 0 |
---|
2353 | usc[3] = 1 |
---|
2354 | usc[9] = 1 |
---|
2355 | else: |
---|
2356 | CSI[1][:2] = [[1.,0.,0.],[1.,0.,0.]] |
---|
2357 | CSI[1][6:8] = [[1.,0.,0.],[1.,0.,0.]] |
---|
2358 | usc[2] = 1 |
---|
2359 | usc[8] = 1 |
---|
2360 | usc[3] = 0 |
---|
2361 | usc[9] = 0 |
---|
2362 | elif 'xy' in siteSym or '+-0' in siteSym: |
---|
2363 | if np.allclose(dU[0,0,:],dUT[0,1,:]*sdet): |
---|
2364 | CSI[0][4:6] = [[12,0,0],[12,0,0]] |
---|
2365 | CSI[0][6:8] = [[11,0,0],[11,0,0]] |
---|
2366 | CSI[1][4:6] = [[1.,0.,0.],[sdet,0.,0.]] |
---|
2367 | CSI[1][6:8] = [[1.,0.,0.],[sdet,0.,0.]] |
---|
2368 | usc[4:6] = 0 |
---|
2369 | usc[6:8] = 0 |
---|
2370 | |
---|
2371 | if debug: print (SSMT2text(ssop).replace(' ',''),sdet,ssdet,epsinv,usc) |
---|
2372 | USC &= usc |
---|
2373 | if debug: print (USC) |
---|
2374 | if not np.any(dtau%.5): |
---|
2375 | n = -1 |
---|
2376 | for i,U in enumerate(USC): |
---|
2377 | if U: |
---|
2378 | n += 1 |
---|
2379 | CSI[0][i][0] = n+1 |
---|
2380 | CSI[1][i][0] = 1.0 |
---|
2381 | |
---|
2382 | return CSI,dU,dUTP |
---|
2383 | |
---|
2384 | if debug: print ('super space group: '+SSGData['SSpGrp']) |
---|
2385 | CSI = {'Sfrac':[[[1,0],[2,0]],[[1.,0.],[1.,0.]]], |
---|
2386 | 'Spos':[[[1,0,0],[2,0,0],[3,0,0], [4,0,0],[5,0,0],[6,0,0]], |
---|
2387 | [[1.,0.,0.],[1.,0.,0.],[1.,0.,0.], [1.,0.,0.],[1.,0.,0.],[1.,0.,0.]]], #sin & cos |
---|
2388 | 'Sadp':[[[1,0,0],[2,0,0],[3,0,0],[4,0,0],[5,0,0],[6,0,0], |
---|
2389 | [7,0,0],[8,0,0],[9,0,0],[10,0,0],[11,0,0],[12,0,0]], |
---|
2390 | [[1.,0.,0.],[1.,0.,0.],[1.,0.,0.], [1.,0.,0.],[1.,0.,0.],[1.,0.,0.], |
---|
2391 | [1.,0.,0.],[1.,0.,0.],[1.,0.,0.], [1.,0.,0.],[1.,0.,0.],[1.,0.,0.]]], |
---|
2392 | 'Smag':[[[1,0,0],[2,0,0],[3,0,0], [4,0,0],[5,0,0],[6,0,0]], |
---|
2393 | [[1.,0.,0.],[1.,0.,0.],[1.,0.,0.], [1.,0.,0.],[1.,0.,0.],[1.,0.,0.]]],} |
---|
2394 | xyz = np.array(XYZ)%1. |
---|
2395 | SGOps = copy.deepcopy(SGData['SGOps']) |
---|
2396 | laue = SGData['SGLaue'] |
---|
2397 | siteSym = SytSym(XYZ,SGData)[0].strip() |
---|
2398 | if debug: print ('siteSym: '+siteSym) |
---|
2399 | if siteSym == '1': #"1" site symmetry |
---|
2400 | if debug: |
---|
2401 | return CSI,None,None,None,None |
---|
2402 | else: |
---|
2403 | return CSI |
---|
2404 | elif siteSym == '-1': #"-1" site symmetry |
---|
2405 | CSI['Sfrac'][0] = [[1,0],[0,0]] |
---|
2406 | CSI['Spos'][0] = [[1,0,0],[2,0,0],[3,0,0], [0,0,0],[0,0,0],[0,0,0]] |
---|
2407 | CSI['Sadp'][0] = [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0], |
---|
2408 | [1,0,0],[2,0,0],[3,0,0],[4,0,0],[5,0,0],[6,0,0]] |
---|
2409 | if debug: |
---|
2410 | return CSI,None,None,None,None |
---|
2411 | else: |
---|
2412 | return CSI |
---|
2413 | SSGOps = copy.deepcopy(SSGData['SSGOps']) |
---|
2414 | #expand ops to include inversions if any |
---|
2415 | if SGData['SGInv']: |
---|
2416 | for op,sop in zip(SGData['SGOps'],SSGData['SSGOps']): |
---|
2417 | SGOps.append([-op[0],-op[1]%1.]) |
---|
2418 | SSGOps.append([-sop[0],-sop[1]%1.]) |
---|
2419 | #build set of sym ops around special position |
---|
2420 | SSop = [] |
---|
2421 | Sop = [] |
---|
2422 | Sdtau = [] |
---|
2423 | for iop,Op in enumerate(SGOps): |
---|
2424 | nxyz = (np.inner(Op[0],xyz)+Op[1])%1. |
---|
2425 | if np.allclose(xyz,nxyz,1.e-4) and iop and MT2text(Op).replace(' ','') != '-X,-Y,-Z': |
---|
2426 | SSop.append(SSGOps[iop]) |
---|
2427 | Sop.append(SGOps[iop]) |
---|
2428 | ssopinv = nl.inv(SSGOps[iop][0]) |
---|
2429 | mst = ssopinv[3][:3] |
---|
2430 | epsinv = ssopinv[3][3] |
---|
2431 | Sdtau.append(np.sum(mst*(XYZ-SGOps[iop][1])-epsinv*SSGOps[iop][1][3])) |
---|
2432 | SdIndx = np.argsort(np.array(Sdtau)) # just to do in sensible order |
---|
2433 | if debug: print ('special pos super operators: ',[SSMT2text(ss).replace(' ','') for ss in SSop]) |
---|
2434 | #setup displacement arrays |
---|
2435 | tau = np.linspace(-1,1,49,True) |
---|
2436 | #make modulation arrays - one parameter at a time |
---|
2437 | #site fractions |
---|
2438 | CSI['Sfrac'],dF,dFTP = DoFrac() |
---|
2439 | #positions |
---|
2440 | CSI['Spos'],dX,dXTP = DoXYZ() |
---|
2441 | #anisotropic thermal motion |
---|
2442 | CSI['Sadp'],dU,dUTP = DoUij() |
---|
2443 | CSI['Spos'][0] = orderParms(CSI['Spos'][0]) |
---|
2444 | CSI['Sadp'][0] = orderParms(CSI['Sadp'][0]) |
---|
2445 | if debug: |
---|
2446 | return CSI,tau,[dF,dFTP],[dX,dXTP],[dU,dUTP] |
---|
2447 | else: |
---|
2448 | return CSI |
---|
2449 | |
---|
2450 | def MustrainNames(SGData): |
---|
2451 | 'Needs a doc string' |
---|
2452 | laue = SGData['SGLaue'] |
---|
2453 | uniq = SGData['SGUniq'] |
---|
2454 | if laue in ['m3','m3m']: |
---|
2455 | return ['S400','S220'] |
---|
2456 | elif laue in ['6/m','6/mmm','3m1']: |
---|
2457 | return ['S400','S004','S202'] |
---|
2458 | elif laue in ['31m','3']: |
---|
2459 | return ['S400','S004','S202','S211'] |
---|
2460 | elif laue in ['3R','3mR']: |
---|
2461 | return ['S400','S220','S310','S211'] |
---|
2462 | elif laue in ['4/m','4/mmm']: |
---|
2463 | return ['S400','S004','S220','S022'] |
---|
2464 | elif laue in ['mmm']: |
---|
2465 | return ['S400','S040','S004','S220','S202','S022'] |
---|
2466 | elif laue in ['2/m']: |
---|
2467 | SHKL = ['S400','S040','S004','S220','S202','S022'] |
---|
2468 | if uniq == 'a': |
---|
2469 | SHKL += ['S013','S031','S211'] |
---|
2470 | elif uniq == 'b': |
---|
2471 | SHKL += ['S301','S103','S121'] |
---|
2472 | elif uniq == 'c': |
---|
2473 | SHKL += ['S130','S310','S112'] |
---|
2474 | return SHKL |
---|
2475 | else: |
---|
2476 | SHKL = ['S400','S040','S004','S220','S202','S022'] |
---|
2477 | SHKL += ['S310','S103','S031','S130','S301','S013'] |
---|
2478 | SHKL += ['S211','S121','S112'] |
---|
2479 | return SHKL |
---|
2480 | |
---|
2481 | def HStrainVals(HSvals,SGData): |
---|
2482 | laue = SGData['SGLaue'] |
---|
2483 | uniq = SGData['SGUniq'] |
---|
2484 | DIJ = np.zeros(6) |
---|
2485 | if laue in ['m3','m3m']: |
---|
2486 | DIJ[:3] = [HSvals[0],HSvals[0],HSvals[0]] |
---|
2487 | elif laue in ['6/m','6/mmm','3m1','31m','3']: |
---|
2488 | DIJ[:4] = [HSvals[0],HSvals[0],HSvals[1],HSvals[0]] |
---|
2489 | elif laue in ['3R','3mR']: |
---|
2490 | DIJ = [HSvals[0],HSvals[0],HSvals[0],HSvals[1],HSvals[1],HSvals[1]] |
---|
2491 | elif laue in ['4/m','4/mmm']: |
---|
2492 | DIJ[:3] = [HSvals[0],HSvals[0],HSvals[1]] |
---|
2493 | elif laue in ['mmm']: |
---|
2494 | DIJ[:3] = [HSvals[0],HSvals[1],HSvals[2]] |
---|
2495 | elif laue in ['2/m']: |
---|
2496 | DIJ[:3] = [HSvals[0],HSvals[1],HSvals[2]] |
---|
2497 | if uniq == 'a': |
---|
2498 | DIJ[5] = HSvals[3] |
---|
2499 | elif uniq == 'b': |
---|
2500 | DIJ[4] = HSvals[3] |
---|
2501 | elif uniq == 'c': |
---|
2502 | DIJ[3] = HSvals[3] |
---|
2503 | else: |
---|
2504 | DIJ = [HSvals[0],HSvals[1],HSvals[2],HSvals[3],HSvals[4],HSvals[5]] |
---|
2505 | return DIJ |
---|
2506 | |
---|
2507 | def HStrainNames(SGData): |
---|
2508 | 'Needs a doc string' |
---|
2509 | laue = SGData['SGLaue'] |
---|
2510 | uniq = SGData['SGUniq'] |
---|
2511 | if laue in ['m3','m3m']: |
---|
2512 | return ['D11','eA'] #add cubic strain term |
---|
2513 | elif laue in ['6/m','6/mmm','3m1','31m','3']: |
---|
2514 | return ['D11','D33'] |
---|
2515 | elif laue in ['3R','3mR']: |
---|
2516 | return ['D11','D12'] |
---|
2517 | elif laue in ['4/m','4/mmm']: |
---|
2518 | return ['D11','D33'] |
---|
2519 | elif laue in ['mmm']: |
---|
2520 | return ['D11','D22','D33'] |
---|
2521 | elif laue in ['2/m']: |
---|
2522 | Dij = ['D11','D22','D33'] |
---|
2523 | if uniq == 'a': |
---|
2524 | Dij += ['D23'] |
---|
2525 | elif uniq == 'b': |
---|
2526 | Dij += ['D13'] |
---|
2527 | elif uniq == 'c': |
---|
2528 | Dij += ['D12'] |
---|
2529 | return Dij |
---|
2530 | else: |
---|
2531 | Dij = ['D11','D22','D33','D12','D13','D23'] |
---|
2532 | return Dij |
---|
2533 | |
---|
2534 | def MustrainCoeff(HKL,SGData): |
---|
2535 | 'Needs a doc string' |
---|
2536 | #NB: order of terms is the same as returned by MustrainNames |
---|
2537 | laue = SGData['SGLaue'] |
---|
2538 | uniq = SGData['SGUniq'] |
---|
2539 | h,k,l = HKL |
---|
2540 | Strm = [] |
---|
2541 | if laue in ['m3','m3m']: |
---|
2542 | Strm.append(h**4+k**4+l**4) |
---|
2543 | Strm.append(3.0*((h*k)**2+(h*l)**2+(k*l)**2)) |
---|
2544 | elif laue in ['6/m','6/mmm','3m1']: |
---|
2545 | Strm.append(h**4+k**4+2.0*k*h**3+2.0*h*k**3+3.0*(h*k)**2) |
---|
2546 | Strm.append(l**4) |
---|
2547 | Strm.append(3.0*((h*l)**2+(k*l)**2+h*k*l**2)) |
---|
2548 | elif laue in ['31m','3']: |
---|
2549 | Strm.append(h**4+k**4+2.0*k*h**3+2.0*h*k**3+3.0*(h*k)**2) |
---|
2550 | Strm.append(l**4) |
---|
2551 | Strm.append(3.0*((h*l)**2+(k*l)**2+h*k*l**2)) |
---|
2552 | Strm.append(4.0*h*k*l*(h+k)) |
---|
2553 | elif laue in ['3R','3mR']: |
---|
2554 | Strm.append(h**4+k**4+l**4) |
---|
2555 | Strm.append(3.0*((h*k)**2+(h*l)**2+(k*l)**2)) |
---|
2556 | Strm.append(2.0*(h*l**3+l*k**3+k*h**3)+2.0*(l*h**3+k*l**3+l*k**3)) |
---|
2557 | Strm.append(4.0*(k*l*h**2+h*l*k**2+h*k*l**2)) |
---|
2558 | elif laue in ['4/m','4/mmm']: |
---|
2559 | Strm.append(h**4+k**4) |
---|
2560 | Strm.append(l**4) |
---|
2561 | Strm.append(3.0*(h*k)**2) |
---|
2562 | Strm.append(3.0*((h*l)**2+(k*l)**2)) |
---|
2563 | elif laue in ['mmm']: |
---|
2564 | Strm.append(h**4) |
---|
2565 | Strm.append(k**4) |
---|
2566 | Strm.append(l**4) |
---|
2567 | Strm.append(3.0*(h*k)**2) |
---|
2568 | Strm.append(3.0*(h*l)**2) |
---|
2569 | Strm.append(3.0*(k*l)**2) |
---|
2570 | elif laue in ['2/m']: |
---|
2571 | Strm.append(h**4) |
---|
2572 | Strm.append(k**4) |
---|
2573 | Strm.append(l**4) |
---|
2574 | Strm.append(3.0*(h*k)**2) |
---|
2575 | Strm.append(3.0*(h*l)**2) |
---|
2576 | Strm.append(3.0*(k*l)**2) |
---|
2577 | if uniq == 'a': |
---|
2578 | Strm.append(2.0*k*l**3) |
---|
2579 | Strm.append(2.0*l*k**3) |
---|
2580 | Strm.append(4.0*k*l*h**2) |
---|
2581 | elif uniq == 'b': |
---|
2582 | Strm.append(2.0*l*h**3) |
---|
2583 | Strm.append(2.0*h*l**3) |
---|
2584 | Strm.append(4.0*h*l*k**2) |
---|
2585 | elif uniq == 'c': |
---|
2586 | Strm.append(2.0*h*k**3) |
---|
2587 | Strm.append(2.0*k*h**3) |
---|
2588 | Strm.append(4.0*h*k*l**2) |
---|
2589 | else: |
---|
2590 | Strm.append(h**4) |
---|
2591 | Strm.append(k**4) |
---|
2592 | Strm.append(l**4) |
---|
2593 | Strm.append(3.0*(h*k)**2) |
---|
2594 | Strm.append(3.0*(h*l)**2) |
---|
2595 | Strm.append(3.0*(k*l)**2) |
---|
2596 | Strm.append(2.0*k*h**3) |
---|
2597 | Strm.append(2.0*h*l**3) |
---|
2598 | Strm.append(2.0*l*k**3) |
---|
2599 | Strm.append(2.0*h*k**3) |
---|
2600 | Strm.append(2.0*l*h**3) |
---|
2601 | Strm.append(2.0*k*l**3) |
---|
2602 | Strm.append(4.0*k*l*h**2) |
---|
2603 | Strm.append(4.0*h*l*k**2) |
---|
2604 | Strm.append(4.0*k*h*l**2) |
---|
2605 | return Strm |
---|
2606 | |
---|
2607 | def Muiso2Shkl(muiso,SGData,cell): |
---|
2608 | "this is to convert isotropic mustrain to generalized Shkls" |
---|
2609 | import GSASIIlattice as G2lat |
---|
2610 | A = G2lat.cell2AB(cell)[0] |
---|
2611 | |
---|
2612 | def minMus(Shkl,muiso,H,SGData,A): |
---|
2613 | U = np.inner(A.T,H) |
---|
2614 | S = np.array(MustrainCoeff(U,SGData)) |
---|
2615 | Sum = np.sqrt(np.sum(np.multiply(S,Shkl[:,np.newaxis]),axis=0)) |
---|
2616 | rad = np.sqrt(np.sum((Sum[:,np.newaxis]*H)**2,axis=1)) |
---|
2617 | return (muiso-rad)**2 |
---|
2618 | |
---|
2619 | laue = SGData['SGLaue'] |
---|
2620 | PHI = np.linspace(0.,360.,60,True) |
---|
2621 | PSI = np.linspace(0.,180.,60,True) |
---|
2622 | X = np.outer(npsind(PHI),npsind(PSI)) |
---|
2623 | Y = np.outer(npcosd(PHI),npsind(PSI)) |
---|
2624 | Z = np.outer(np.ones(np.size(PHI)),npcosd(PSI)) |
---|
2625 | HKL = np.dstack((X,Y,Z)) |
---|
2626 | if laue in ['m3','m3m']: |
---|
2627 | S0 = [1000.,1000.] |
---|
2628 | elif laue in ['6/m','6/mmm','3m1']: |
---|
2629 | S0 = [1000.,1000.,1000.] |
---|
2630 | elif laue in ['31m','3']: |
---|
2631 | S0 = [1000.,1000.,1000.,1000.] |
---|
2632 | elif laue in ['3R','3mR']: |
---|
2633 | S0 = [1000.,1000.,1000.,1000.] |
---|
2634 | elif laue in ['4/m','4/mmm']: |
---|
2635 | S0 = [1000.,1000.,1000.,1000.] |
---|
2636 | elif laue in ['mmm']: |
---|
2637 | S0 = [1000.,1000.,1000.,1000.,1000.,1000.] |
---|
2638 | elif laue in ['2/m']: |
---|
2639 | S0 = [1000.,1000.,1000.,0.,0.,0.,0.,0.,0.] |
---|
2640 | else: |
---|
2641 | S0 = [1000.,1000.,1000.,1000.,1000., 1000.,1000.,1000.,1000.,1000., |
---|
2642 | 1000.,1000.,0.,0.,0.] |
---|
2643 | S0 = np.array(S0) |
---|
2644 | HKL = np.reshape(HKL,(-1,3)) |
---|
2645 | result = so.leastsq(minMus,S0,(np.ones(HKL.shape[0])*muiso,HKL,SGData,A)) |
---|
2646 | return result[0] |
---|
2647 | |
---|
2648 | def PackRot(SGOps): |
---|
2649 | IRT = [] |
---|
2650 | for ops in SGOps: |
---|
2651 | M = ops[0] |
---|
2652 | irt = 0 |
---|
2653 | for j in range(2,-1,-1): |
---|
2654 | for k in range(2,-1,-1): |
---|
2655 | irt *= 3 |
---|
2656 | irt += M[k][j] |
---|
2657 | IRT.append(int(irt)) |
---|
2658 | return IRT |
---|
2659 | |
---|
2660 | def SytSym(XYZ,SGData): |
---|
2661 | ''' |
---|
2662 | Generates the number of equivalent positions and a site symmetry code for a specified coordinate and space group |
---|
2663 | |
---|
2664 | :param XYZ: an array, tuple or list containing 3 elements: x, y & z |
---|
2665 | :param SGData: from SpcGroup |
---|
2666 | :Returns: a two element tuple: |
---|
2667 | |
---|
2668 | * The 1st element is a code for the site symmetry (see GetKNsym) |
---|
2669 | * The 2nd element is the site multiplicity |
---|
2670 | |
---|
2671 | ''' |
---|
2672 | Mult = 1 |
---|
2673 | Isym = 0 |
---|
2674 | if SGData['SGLaue'] in ['3','3m1','31m','6/m','6/mmm']: |
---|
2675 | Isym = 1073741824 |
---|
2676 | Jdup = 0 |
---|
2677 | Ndup = 0 |
---|
2678 | dupDir = {} |
---|
2679 | Xeqv = list(GenAtom(XYZ,SGData,True)) |
---|
2680 | IRT = PackRot(SGData['SGOps']) |
---|
2681 | L = -1 |
---|
2682 | for ic,cen in enumerate(SGData['SGCen']): |
---|
2683 | for invers in range(int(SGData['SGInv']+1)): |
---|
2684 | for io,ops in enumerate(SGData['SGOps']): |
---|
2685 | irtx = (1-2*invers)*IRT[io] |
---|
2686 | L += 1 |
---|
2687 | if not Xeqv[L][1]: |
---|
2688 | Ndup = io |
---|
2689 | Jdup += 1 |
---|
2690 | jx = GetOprPtrName(str(irtx)) #[KN table no,op name,KNsym ptr] |
---|
2691 | if jx[2] < 39: |
---|
2692 | px = GetOprName(str(irtx)) |
---|
2693 | if px != '6643': #skip Iden |
---|
2694 | dupDir[px] = io |
---|
2695 | Isym += 2**(jx[2]-1) |
---|
2696 | if Isym == 1073741824: Isym = 0 |
---|
2697 | Mult = len(SGData['SGOps'])*len(SGData['SGCen'])*(int(SGData['SGInv'])+1)//Jdup |
---|
2698 | |
---|
2699 | return GetKNsym(str(Isym)),Mult,Ndup,dupDir |
---|
2700 | |
---|
2701 | def ElemPosition(SGData): |
---|
2702 | ''' Under development. |
---|
2703 | Object here is to return a list of symmetry element types and locations suitable |
---|
2704 | for say drawing them. |
---|
2705 | So far I have the element type... getting all possible locations without lookup may be impossible! |
---|
2706 | ''' |
---|
2707 | Inv = SGData['SGInv'] |
---|
2708 | eleSym = {-3:['','-1'],-2:['',-6],-1:['2','-4'],0:['3','-3'],1:['4','m'],2:['6',''],3:['1','']} |
---|
2709 | # get operators & expand if centrosymmetric |
---|
2710 | Ops = SGData['SGOps'] |
---|
2711 | opM = np.array([op[0].T for op in Ops]) |
---|
2712 | opT = np.array([op[1] for op in Ops]) |
---|
2713 | if Inv: |
---|
2714 | opM = np.concatenate((opM,-opM)) |
---|
2715 | opT = np.concatenate((opT,-opT)) |
---|
2716 | opMT = list(zip(opM,opT)) |
---|
2717 | for M,T in opMT[1:]: #skip I |
---|
2718 | Dt = int(nl.det(M)) |
---|
2719 | Tr = int(np.trace(M)) |
---|
2720 | Dt = -(Dt-1)//2 |
---|
2721 | Es = eleSym[Tr][Dt] |
---|
2722 | if Dt: #rotation-inversion |
---|
2723 | I = np.eye(3) |
---|
2724 | if Tr == 1: #mirrors/glides |
---|
2725 | if np.any(T): #glide |
---|
2726 | M2 = np.inner(M,M) |
---|
2727 | MT = np.inner(M,T)+T |
---|
2728 | print ('glide',Es,MT) |
---|
2729 | print (M2) |
---|
2730 | else: #mirror |
---|
2731 | print ('mirror',Es,T) |
---|
2732 | print (I-M) |
---|
2733 | X = [-1,-1,-1] |
---|
2734 | elif Tr == -3: # pure inversion |
---|
2735 | X = np.inner(nl.inv(I-M),T) |
---|
2736 | print ('inversion',Es,X) |
---|
2737 | else: #other rotation-inversion |
---|
2738 | M2 = np.inner(M,M) |
---|
2739 | MT = np.inner(M,T)+T |
---|
2740 | print ('rot-inv',Es,MT) |
---|
2741 | print (M2) |
---|
2742 | X = [-1,-1,-1] |
---|
2743 | else: #rotations |
---|
2744 | print ('rotation',Es) |
---|
2745 | X = [-1,-1,-1] |
---|
2746 | #SymElements.append([Es,X]) |
---|
2747 | |
---|
2748 | return #SymElements |
---|
2749 | |
---|
2750 | def ApplyStringOps(A,SGData,X,Uij=[]): |
---|
2751 | 'Needs a doc string' |
---|
2752 | SGOps = SGData['SGOps'] |
---|
2753 | SGCen = SGData['SGCen'] |
---|
2754 | Ax = A.split('+') |
---|
2755 | Ax[0] = int(Ax[0]) |
---|
2756 | iC = 0 |
---|
2757 | if Ax[0] < 0: |
---|
2758 | iC = 1 |
---|
2759 | Ax[0] = abs(Ax[0]) |
---|
2760 | nA = Ax[0]%100-1 |
---|
2761 | cA = Ax[0]//100 |
---|
2762 | Cen = SGCen[cA] |
---|
2763 | M,T = SGOps[nA] |
---|
2764 | if len(Ax)>1: |
---|
2765 | cellA = Ax[1].split(',') |
---|
2766 | cellA = np.array([int(a) for a in cellA]) |
---|
2767 | else: |
---|
2768 | cellA = np.zeros(3) |
---|
2769 | newX = Cen+(1-2*iC)*(np.inner(M,X).T+T)+cellA |
---|
2770 | if len(Uij): |
---|
2771 | U = Uij2U(Uij) |
---|
2772 | U = np.inner(M,np.inner(U,M).T) |
---|
2773 | newUij = U2Uij(U) |
---|
2774 | return [newX,newUij] |
---|
2775 | else: |
---|
2776 | return newX |
---|
2777 | |
---|
2778 | def StringOpsProd(A,B,SGData): |
---|
2779 | """ |
---|
2780 | Find A*B where A & B are in strings '-' + '100*c+n' + '+ijk' |
---|
2781 | where '-' indicates inversion, c(>0) is the cell centering operator, |
---|
2782 | n is operator number from SgOps and ijk are unit cell translations (each may be <0). |
---|
2783 | Should return resultant string - C. SGData - dictionary using entries: |
---|
2784 | |
---|
2785 | * 'SGCen': cell centering vectors [0,0,0] at least |
---|
2786 | * 'SGOps': symmetry operations as [M,T] so that M*x+T = x' |
---|
2787 | |
---|
2788 | """ |
---|
2789 | SGOps = SGData['SGOps'] |
---|
2790 | SGCen = SGData['SGCen'] |
---|
2791 | #1st split out the cell translation part & work on the operator parts |
---|
2792 | Ax = A.split('+'); Bx = B.split('+') |
---|
2793 | Ax[0] = int(Ax[0]); Bx[0] = int(Bx[0]) |
---|
2794 | iC = 0 |
---|
2795 | if Ax[0]*Bx[0] < 0: |
---|
2796 | iC = 1 |
---|
2797 | Ax[0] = abs(Ax[0]); Bx[0] = abs(Bx[0]) |
---|
2798 | nA = Ax[0]%100-1; nB = Bx[0]%100-1 |
---|
2799 | cA = Ax[0]//100; cB = Bx[0]//100 |
---|
2800 | Cen = (SGCen[cA]+SGCen[cB])%1.0 |
---|
2801 | cC = np.nonzero([np.allclose(C,Cen) for C in SGCen])[0][0] |
---|
2802 | Ma,Ta = SGOps[nA]; Mb,Tb = SGOps[nB] |
---|
2803 | Mc = np.inner(Ma,Mb.T) |
---|
2804 | # print Ma,Mb,Mc |
---|
2805 | Tc = (np.add(np.inner(Mb,Ta)+1.,Tb))%1.0 |
---|
2806 | # print Ta,Tb,Tc |
---|
2807 | # print [np.allclose(M,Mc)&np.allclose(T,Tc) for M,T in SGOps] |
---|
2808 | nC = np.nonzero([np.allclose(M,Mc)&np.allclose(T,Tc) for M,T in SGOps])[0][0] |
---|
2809 | #now the cell translation part |
---|
2810 | if len(Ax)>1: |
---|
2811 | cellA = Ax[1].split(',') |
---|
2812 | cellA = [int(a) for a in cellA] |
---|
2813 | else: |
---|
2814 | cellA = [0,0,0] |
---|
2815 | if len(Bx)>1: |
---|
2816 | cellB = Bx[1].split(',') |
---|
2817 | cellB = [int(b) for b in cellB] |
---|
2818 | else: |
---|
2819 | cellB = [0,0,0] |
---|
2820 | cellC = np.add(cellA,cellB) |
---|
2821 | C = str(((nC+1)+(100*cC))*(1-2*iC))+'+'+ \ |
---|
2822 | str(int(cellC[0]))+','+str(int(cellC[1]))+','+str(int(cellC[2])) |
---|
2823 | return C |
---|
2824 | |
---|
2825 | def U2Uij(U): |
---|
2826 | #returns the UIJ vector U11,U22,U33,U12,U13,U23 from tensor U |
---|
2827 | return [U[0][0],U[1][1],U[2][2],U[0][1],U[0][2],U[1][2]] |
---|
2828 | |
---|
2829 | def Uij2U(Uij): |
---|
2830 | #returns the thermal motion tensor U from Uij as numpy array |
---|
2831 | return np.array([[Uij[0],Uij[3],Uij[4]],[Uij[3],Uij[1],Uij[5]],[Uij[4],Uij[5],Uij[2]]]) |
---|
2832 | |
---|
2833 | def StandardizeSpcName(spcgroup): |
---|
2834 | '''Accept a spacegroup name where spaces may have not been used |
---|
2835 | in the names according to the GSAS convention (spaces between symmetry |
---|
2836 | for each axis) and return the space group name as used in GSAS |
---|
2837 | ''' |
---|
2838 | rspc = spcgroup.replace(' ','').upper() |
---|
2839 | # deal with rhombohedral and hexagonal setting designations |
---|
2840 | rhomb = '' |
---|
2841 | if rspc[-1:] == 'R': |
---|
2842 | rspc = rspc[:-1] |
---|
2843 | rhomb = ' R' |
---|
2844 | elif rspc[-1:] == 'H': # hexagonal is assumed and thus can be ignored |
---|
2845 | rspc = rspc[:-1] |
---|
2846 | # look for a match in the spacegroup lists |
---|
2847 | for i in spglist.values(): |
---|
2848 | for spc in i: |
---|
2849 | if rspc == spc.replace(' ','').upper(): |
---|
2850 | return spc + rhomb |
---|
2851 | # how about the post-2002 orthorhombic names? |
---|
2852 | for i,spc in sgequiv_2002_orthorhombic: |
---|
2853 | if rspc == i.replace(' ','').upper(): |
---|
2854 | return spc |
---|
2855 | # not found |
---|
2856 | return '' |
---|
2857 | |
---|
2858 | spgbyNum = [] |
---|
2859 | '''Space groups indexed by number''' |
---|
2860 | spgbyNum = [None, |
---|
2861 | 'P 1','P -1', #1-2 |
---|
2862 | 'P 2','P 21','C 2','P m','P c','C m','C c','P 2/m','P 21/m', |
---|
2863 | 'C 2/m','P 2/c','P 21/c','C 2/c', #3-15 |
---|
2864 | 'P 2 2 2','P 2 2 21','P 21 21 2','P 21 21 21', |
---|
2865 | 'C 2 2 21','C 2 2 2','F 2 2 2','I 2 2 2','I 21 21 21', |
---|
2866 | 'P m m 2','P m c 21','P c c 2','P m a 2','P c a 21', |
---|
2867 | 'P n c 2','P m n 21','P b a 2','P n a 21','P n n 2', |
---|
2868 | 'C m m 2','C m c 21','C c c 2', |
---|
2869 | 'A m m 2','A b m 2','A m a 2','A b a 2', |
---|
2870 | 'F m m 2','F d d 2','I m m 2','I b a 2','I m a 2', |
---|
2871 | 'P m m m','P n n n','P c c m','P b a n', |
---|
2872 | 'P m m a','P n n a','P m n a','P c c a','P b a m','P c c n', |
---|
2873 | 'P b c m','P n n m','P m m n','P b c n','P b c a','P n m a', |
---|
2874 | 'C m c m','C m c a','C m m m','C c c m','C m m a','C c c a', |
---|
2875 | 'F m m m', 'F d d d', |
---|
2876 | 'I m m m','I b a m','I b c a','I m m a', #16-74 |
---|
2877 | 'P 4','P 41','P 42','P 43', |
---|
2878 | 'I 4','I 41', |
---|
2879 | 'P -4','I -4','P 4/m','P 42/m','P 4/n','P 42/n', |
---|
2880 | 'I 4/m','I 41/a', |
---|
2881 | 'P 4 2 2','P 4 21 2','P 41 2 2','P 41 21 2','P 42 2 2', |
---|
2882 | 'P 42 21 2','P 43 2 2','P 43 21 2', |
---|
2883 | 'I 4 2 2','I 41 2 2', |
---|
2884 | 'P 4 m m','P 4 b m','P 42 c m','P 42 n m','P 4 c c','P 4 n c', |
---|
2885 | 'P 42 m c','P 42 b c', |
---|
2886 | 'I 4 m m','I 4 c m','I 41 m d','I 41 c d', |
---|
2887 | 'P -4 2 m','P -4 2 c','P -4 21 m','P -4 21 c','P -4 m 2', |
---|
2888 | 'P -4 c 2','P -4 b 2','P -4 n 2', |
---|
2889 | 'I -4 m 2','I -4 c 2','I -4 2 m','I -4 2 d', |
---|
2890 | 'P 4/m m m','P 4/m c c','P 4/n b m','P 4/n n c','P 4/m b m', |
---|
2891 | 'P 4/m n c','P 4/n m m','P 4/n c c','P 42/m m c','P 42/m c m', |
---|
2892 | 'P 42/n b c','P 42/n n m','P 42/m b c','P 42/m n m','P 42/n m c', |
---|
2893 | 'P 42/n c m', |
---|
2894 | 'I 4/m m m','I 4/m c m','I 41/a m d','I 41/a c d', |
---|
2895 | 'P 3','P 31','P 32','R 3','P -3','R -3', |
---|
2896 | 'P 3 1 2','P 3 2 1','P 31 1 2','P 31 2 1','P 32 1 2','P 32 2 1', |
---|
2897 | 'R 3 2', |
---|
2898 | 'P 3 m 1','P 3 1 m','P 3 c 1','P 3 1 c', |
---|
2899 | 'R 3 m','R 3 c', |
---|
2900 | 'P -3 1 m','P -3 1 c','P -3 m 1','P -3 c 1', |
---|
2901 | 'R -3 m','R -3 c', #75-167 |
---|
2902 | 'P 6','P 61', |
---|
2903 | 'P 65','P 62','P 64','P 63','P -6','P 6/m','P 63/m','P 6 2 2', |
---|
2904 | 'P 61 2 2','P 65 2 2','P 62 2 2','P 64 2 2','P 63 2 2','P 6 m m', |
---|
2905 | 'P 6 c c','P 63 c m','P 63 m c','P -6 m 2','P -6 c 2','P -6 2 m', |
---|
2906 | 'P -6 2 c','P 6/m m m','P 6/m c c','P 63/m c m','P 63/m m c', #168-194 |
---|
2907 | 'P 2 3','F 2 3','I 2 3','P 21 3','I 21 3','P m 3','P n 3', |
---|
2908 | 'F m -3','F d -3','I m -3', |
---|
2909 | 'P a -3','I a -3','P 4 3 2','P 42 3 2','F 4 3 2','F 41 3 2', |
---|
2910 | 'I 4 3 2','P 43 3 2','P 41 3 2','I 41 3 2','P -4 3 m', |
---|
2911 | 'F -4 3 m','I -4 3 m','P -4 3 n','F -4 3 c','I -4 3 d', |
---|
2912 | 'P m -3 m','P n -3 n','P m -3 n','P n -3 m', |
---|
2913 | 'F m -3 m','F m -3 c','F d -3 m','F d -3 c', |
---|
2914 | 'I m -3 m','I a -3 d',] #195-230 |
---|
2915 | spg2origins = {} |
---|
2916 | ''' A dictionary of all spacegroups that have 2nd settings; the value is the |
---|
2917 | 1st --> 2nd setting transformation vector as X(2nd) = X(1st)-V, nonstandard ones are included. |
---|
2918 | ''' |
---|
2919 | spg2origins = { |
---|
2920 | 'P n n n':[-.25,-.25,-.25], |
---|
2921 | 'P b a n':[-.25,-.25,0],'P n c b':[0,-.25,-.25],'P c n a':[-.25,0,-.25], |
---|
2922 | 'P m m n':[-.25,-.25,0],'P n m m':[0,-.25,-.25],'P m n m':[-.25,0,-.25], |
---|
2923 | 'C c c a':[0,-.25,-.25],'C c c b':[-.25,0,-.25],'A b a a':[-.25,0,-.25], |
---|
2924 | 'A c a a':[-.25,-.25,0],'B b c b':[-.25,-.25,0],'B b a b':[0,-.25,-.25], |
---|
2925 | 'F d d d':[-.125,-.125,-.125], |
---|
2926 | 'P 4/n':[-.25,-.25,0],'P 42/n':[-.25,-.25,-.25],'I 41/a':[0,-.25,-.125], |
---|
2927 | 'P 4/n b m':[-.25,-.25,0],'P 4/n n c':[-.25,-.25,-.25],'P 4/n m m':[-.25,-.25,0],'P 4/n c c':[-.25,-.25,0], |
---|
2928 | 'P 42/n b c':[-.25,-.25,-.25],'P 42/n n m':[-.25,.25,-.25],'P 42/n m c':[-.25,.25,-.25],'P 42/n c m':[-.25,.25,-.25], |
---|
2929 | 'I 41/a m d':[0,.25,-.125],'I 41/a c d':[0,.25,-.125], |
---|
2930 | 'p n -3':[-.25,-.25,-.25],'F d -3':[-.125,-.125,-.125],'P n -3 n':[-.25,-.25,-.25], |
---|
2931 | 'P n -3 m':[-.25,-.25,-.25],'F d -3 m':[-.125,-.125,-.125],'F d -3 c':[-.375,-.375,-.375], |
---|
2932 | 'p n 3':[-.25,-.25,-.25],'F d 3':[-.125,-.125,-.125],'P n 3 n':[-.25,-.25,-.25], |
---|
2933 | 'P n 3 m':[-.25,-.25,-.25],'F d 3 m':[-.125,-.125,-.125],'F d - c':[-.375,-.375,-.375]} |
---|
2934 | spglist = {} |
---|
2935 | '''A dictionary of space groups as ordered and named in the pre-2002 International |
---|
2936 | Tables Volume A, except that spaces are used following the GSAS convention to |
---|
2937 | separate the different crystallographic directions. |
---|
2938 | Note that the symmetry codes here will recognize many non-standard space group |
---|
2939 | symbols with different settings. They are ordered by Laue group |
---|
2940 | ''' |
---|
2941 | spglist = { |
---|
2942 | 'P1' : ('P 1','P -1',), # 1-2 |
---|
2943 | 'C1' : ('C 1','C -1',), |
---|
2944 | 'P2/m': ('P 2','P 21','P m','P a','P c','P n', |
---|
2945 | 'P 2/m','P 21/m','P 2/c','P 2/a','P 2/n','P 21/c','P 21/a','P 21/n',), #3-15 |
---|
2946 | 'C2/m':('C 2','C m','C c','C n', |
---|
2947 | 'C 2/m','C 2/c','C 2/n',), |
---|
2948 | 'Pmmm':('P 2 2 2', |
---|
2949 | 'P 2 2 21','P 21 2 2','P 2 21 2', |
---|
2950 | 'P 21 21 2','P 2 21 21','P 21 2 21', |
---|
2951 | 'P 21 21 21', |
---|
2952 | 'P m m 2','P 2 m m','P m 2 m', |
---|
2953 | 'P m c 21','P 21 m a','P b 21 m','P m 21 b','P c m 21','P 21 a m', |
---|
2954 | 'P c c 2','P 2 a a','P b 2 b', |
---|
2955 | 'P m a 2','P 2 m b','P c 2 m','P m 2 a','P b m 2','P 2 c m', |
---|
2956 | 'P c a 21','P 21 a b','P c 21 b','P b 21 a','P b c 21','P 21 c a', |
---|
2957 | 'P n c 2','P 2 n a','P b 2 n','P n 2 b','P c n 2','P 2 a n', |
---|
2958 | 'P m n 21','P 21 m n','P n 21 m','P m 21 n','P n m 21','P 21 n m', |
---|
2959 | 'P b a 2','P 2 c b','P c 2 a', |
---|
2960 | 'P n a 21','P 21 n b','P c 21 n','P n 21 a','P b n 21','P 21 c n', |
---|
2961 | 'P n n 2','P 2 n n','P n 2 n', |
---|
2962 | 'P m m m','P n n n', |
---|
2963 | 'P c c m','P m a a','P b m b', |
---|
2964 | 'P b a n','P n c b','P c n a', |
---|
2965 | 'P m m a','P b m m','P m c m','P m a m','P m m b','P c m m', |
---|
2966 | 'P n n a','P b n n','P n c n','P n a n','P n n b','P c n n', |
---|
2967 | 'P m n a','P b m n','P n c m','P m a n','P n m b','P c n m', |
---|
2968 | 'P c c a','P b a a','P b c b','P b a b','P c c b','P c a a', |
---|
2969 | 'P b a m','P m c b','P c m a', |
---|
2970 | 'P c c n','P n a a','P b n b', |
---|
2971 | 'P b c m','P m c a','P b m a','P c m b','P c a m','P m a b', |
---|
2972 | 'P n n m','P m n n','P n m n', |
---|
2973 | 'P m m n','P n m m','P m n m', |
---|
2974 | 'P b c n','P n c a','P b n a','P c n b','P c a n','P n a b', |
---|
2975 | 'P b c a','P c a b', |
---|
2976 | 'P n m a','P b n m','P m c n','P n a m','P m n b','P c m n', |
---|
2977 | ), |
---|
2978 | 'Cmmm':('C 2 2 21','C 2 2 2','C m m 2', |
---|
2979 | 'C m c 21','C c m 21','C c c 2','C m 2 m','C 2 m m', |
---|
2980 | 'C m 2 a','C 2 m b','C c 2 m','C 2 c m','C c 2 a','C 2 c b', |
---|
2981 | 'C m c m','C m c a','C c m b', |
---|
2982 | 'C m m m','C c c m','C m m a','C m m b','C c c a','C c c b',), |
---|
2983 | 'Immm':('I 2 2 2','I 21 21 21', |
---|
2984 | 'I m m 2','I m 2 m','I 2 m m', |
---|
2985 | 'I b a 2','I 2 c b','I c 2 a', |
---|
2986 | 'I m a 2','I 2 m b','I c 2 m','I m 2 a','I b m 2','I 2 c m', |
---|
2987 | 'I m m m','I b a m','I m c b','I c m a', |
---|
2988 | 'I b c a','I c a b', |
---|
2989 | 'I m m a','I b m m ','I m c m','I m a m','I m m b','I c m m',), |
---|
2990 | 'Fmmm':('F 2 2 2','F m m m', 'F d d d', |
---|
2991 | 'F m m 2','F m 2 m','F 2 m m', |
---|
2992 | 'F d d 2','F d 2 d','F 2 d d',), |
---|
2993 | 'P4/mmm':('P 4','P 41','P 42','P 43','P -4','P 4/m','P 42/m','P 4/n','P 42/n', |
---|
2994 | 'P 4 2 2','P 4 21 2','P 41 2 2','P 41 21 2','P 42 2 2', |
---|
2995 | 'P 42 21 2','P 43 2 2','P 43 21 2','P 4 m m','P 4 b m','P 42 c m', |
---|
2996 | 'P 42 n m','P 4 c c','P 4 n c','P 42 m c','P 42 b c','P -4 2 m', |
---|
2997 | 'P -4 2 c','P -4 21 m','P -4 21 c','P -4 m 2','P -4 c 2','P -4 b 2', |
---|
2998 | 'P -4 n 2','P 4/m m m','P 4/m c c','P 4/n b m','P 4/n n c','P 4/m b m', |
---|
2999 | 'P 4/m n c','P 4/n m m','P 4/n c c','P 42/m m c','P 42/m c m', |
---|
3000 | 'P 42/n b c','P 42/n n m','P 42/m b c','P 42/m n m','P 42/n m c', |
---|
3001 | 'P 42/n c m',), |
---|
3002 | 'I4/mmm':('I 4','I 41','I -4','I 4/m','I 41/a','I 4 2 2','I 41 2 2','I 4 m m', |
---|
3003 | 'I 4 c m','I 41 m d','I 41 c d', |
---|
3004 | 'I -4 m 2','I -4 c 2','I -4 2 m','I -4 2 d','I 4/m m m','I 4/m c m', |
---|
3005 | 'I 41/a m d','I 41/a c d'), |
---|
3006 | 'R3-H':('R 3','R -3','R 3 2','R 3 m','R 3 c','R -3 m','R -3 c',), |
---|
3007 | 'P6/mmm': ('P 3','P 31','P 32','P -3','P 3 1 2','P 3 2 1','P 31 1 2', |
---|
3008 | 'P 31 2 1','P 32 1 2','P 32 2 1', 'P 3 m 1','P 3 1 m','P 3 c 1', |
---|
3009 | 'P 3 1 c','P -3 1 m','P -3 1 c','P -3 m 1','P -3 c 1','P 6','P 61', |
---|
3010 | 'P 65','P 62','P 64','P 63','P -6','P 6/m','P 63/m','P 6 2 2', |
---|
3011 | 'P 61 2 2','P 65 2 2','P 62 2 2','P 64 2 2','P 63 2 2','P 6 m m', |
---|
3012 | 'P 6 c c','P 63 c m','P 63 m c','P -6 m 2','P -6 c 2','P -6 2 m', |
---|
3013 | 'P -6 2 c','P 6/m m m','P 6/m c c','P 63/m c m','P 63/m m c',), |
---|
3014 | 'Pm3m': ('P 2 3','P 21 3','P m 3','P n 3','P a 3','P 4 3 2','P 42 3 2', |
---|
3015 | 'P 43 3 2','P 41 3 2','P -4 3 m','P -4 3 n','P m 3 m','P n 3 n', |
---|
3016 | 'P m 3 n','P n 3 m',), |
---|
3017 | 'Im3m':('I 2 3','I 21 3','I m -3','I a -3', 'I 4 3 2','I 41 3 2', |
---|
3018 | 'I -4 3 m', 'I -4 3 d','I m -3 m','I m 3 m','I a -3 d',), |
---|
3019 | 'Fm3m':('F 2 3','F m -3','F d -3','F 4 3 2','F 41 3 2','F -4 3 m', |
---|
3020 | 'F -4 3 c','F m -3 m','F m 3 m','F m -3 c','F d -3 m','F d -3 c',), |
---|
3021 | } |
---|
3022 | |
---|
3023 | ssdict = {} |
---|
3024 | '''A dictionary of superspace group symbols allowed for each entry in spglist |
---|
3025 | (except cubics). Monoclinics are all b-unique setting. |
---|
3026 | ''' |
---|
3027 | ssdict = { |
---|
3028 | #1,2 |
---|
3029 | 'P 1':['(abg)',],'P -1':['(abg)',], |
---|
3030 | 'C 1':['(abg)',],'C -1':['(abg)',], |
---|
3031 | #monoclinic - done |
---|
3032 | #3 |
---|
3033 | 'P 2':['(a0g)','(a1/2g)','(0b0)','(0b0)s','(1/2b0)','(0b1/2)',], |
---|
3034 | #4 |
---|
3035 | 'P 21':['(a0g)','(0b0)','(1/2b0)','(0b1/2)',], |
---|
3036 | #5 |
---|
3037 | 'C 2':['(a0g)','(0b0)','(0b0)s','(0b1/2)',], |
---|
3038 | #6 |
---|
3039 | 'P m':['(a0g)','(a0g)s','(a1/2g)','(0b0)','(1/2b0)','(0b1/2)',], |
---|
3040 | #7 |
---|
3041 | 'P a':['(a0g)','(a1/2g)','(0b0)','(0b1/2)',], |
---|
3042 | 'P c':['(a0g)','(a1/2g)','(0b0)','(1/2b0)',], |
---|
3043 | 'P n':['(a0g)','(a1/2g)','(0b0)','(1/2b1/2)',], |
---|
3044 | #8 |
---|
3045 | 'C m':['(a0g)','(a0g)s','(0b0)','(0b1/2)',], |
---|
3046 | #9 |
---|
3047 | 'C c':['(a0g)','(a0g)s','(0b0)',], |
---|
3048 | 'C n':['(a0g)','(a0g)s','(0b0)',], |
---|
3049 | #10 |
---|
3050 | 'P 2/m':['(a0g)','(a0g)0s','(a1/2g)','(0b0)','(0b0)s0','(1/2b0)','(0b1/2)',], |
---|
3051 | #11 |
---|
3052 | 'P 21/m':['(a0g)','(a0g)0s','(0b0)','(0b0)s0','(1/2b0)','(0b1/2)',], |
---|
3053 | #12 |
---|
3054 | 'C 2/m':['(a0g)','(a0g)0s','(0b0)','(0b0)s0','(0b1/2)',], |
---|
3055 | #13 |
---|
3056 | 'P 2/c':['(a0g)','(a0g)0s','(a1/2g)','(0b0)','(0b0)s0','(1/2b0)',], |
---|
3057 | 'P 2/a':['(a0g)','(a0g)0s','(a1/2g)','(0b0)','(0b0)s0','(0b1/2)',], |
---|
3058 | 'P 2/n':['(a0g)','(a0g)0s','(a1/2g)','(0b0)','(0b0)s0','(1/2b1/2)',], |
---|
3059 | #14 |
---|
3060 | 'P 21/c':['(a0g)','(0b0)','(1/2b0)',], |
---|
3061 | 'P 21/a':['(a0g)','(0b0)','(0b1/2)',], |
---|
3062 | 'P 21/n':['(a0g)','(0b0)','(1/2b1/2)',], |
---|
3063 | #15 |
---|
3064 | 'C 2/c':['(a0g)','(0b0)','(0b0)s0',], |
---|
3065 | 'C 2/n':['(a0g)','(0b0)','(0b0)s0',], |
---|
3066 | #orthorhombic |
---|
3067 | #16 |
---|
3068 | 'P 2 2 2':['(00g)','(00g)00s','(01/2g)','(1/20g)','(1/21/2g)', |
---|
3069 | '(a00)','(a00)s00','(a01/2)','(a1/20)','(a1/21/2)', |
---|
3070 | '(0b0)','(0b0)0s0','(1/2b0)','(0b1/2)','(1/2b1/2)',], |
---|
3071 | #17 |
---|
3072 | 'P 2 2 21':['(00g)','(01/2g)','(1/20g)','(1/21/2g)', |
---|
3073 | '(a00)','(a00)s00','(a1/20)','(0b0)','(0b0)0s0','(1/2b0)',], |
---|
3074 | 'P 21 2 2':['(a00)','(a01/2)','(a1/20)','(a1/21/2)', |
---|
3075 | '(0b0)','(0b0)0s0','(1/2b0)','(00g)','(00g)00s','(1/20g)',], |
---|
3076 | 'P 2 21 2':['(0b0)','(0b1/2)','(1/2b0)','(1/2b1/2)', |
---|
3077 | '(00g)','(00g)00s','(1/20g)','(a00)','(a00)s00','(a1/20)',], |
---|
3078 | #18 |
---|
3079 | 'P 21 21 2':['(00g)','(00g)00s','(a00)','(a01/2)','(0b0)','(0b1/2)',], |
---|
3080 | 'P 2 21 21':['(a00)','(a00)s00','(0b0)','(0b1/2)','(00g)','(01/2g)',], |
---|
3081 | 'P 21 2 21':['(0b0)','(0b0)0s0','(00g)','(01/2g)','(a00)','(a01/2)',], |
---|
3082 | #19 |
---|
3083 | 'P 21 21 21':['(00g)','(a00)','(0b0)',], |
---|
3084 | #20 |
---|
3085 | 'C 2 2 21':['(00g)','(10g)','(01g)','(a00)','(a00)s00','(0b0)','(0b0)0s0',], |
---|
3086 | 'A 21 2 2':['(a00)','(a10)','(a01)','(0b0)','(0b0)0s0','(00g)','(00g)00s',], |
---|
3087 | 'B 2 21 2':['(0b0)','(1b0)','(0b1)','(00g)','(00g)00s','(a00)','(a00)s00',], |
---|
3088 | #21 |
---|
3089 | 'C 2 2 2':['(00g)','(00g)00s','(10g)','(10g)00s','(01g)','(01g)00s', |
---|
3090 | '(a00)','(a00)s00','(a01/2)','(0b0)','(0b0)0s0','(0b1/2)',], |
---|
3091 | 'A 2 2 2':['(a00)','(a00)s00','(a10)','(a10)s00','(a01)','(a01)s00', |
---|
3092 | '(0b0)','(0b0)0s0','(1/2b0)','(00g)','(00g)00s','(1/20g)',], |
---|
3093 | 'B 2 2 2':['(0b0)','(0b0)0s0','(1b0)','(1b0)0s0','(0b1)','(0b1)0s0', |
---|
3094 | '(00g)','(00g)00s','(01/2g)','(a00)','(a00)s00','(a1/20)',], |
---|
3095 | #22 |
---|
3096 | 'F 2 2 2':['(00g)','(00g)00s','(10g)','(01g)', |
---|
3097 | '(a00)','(a00)s00','(a10)','(a01)', |
---|
3098 | '(0b0)','(0b0)0s0','(1b0)','(0b1)',], |
---|
3099 | #23 |
---|
3100 | 'I 2 2 2':['(00g)','(00g)00s','(a00)','(a00)s00','(0b0)','(0b0)0s0',], |
---|
3101 | #24 |
---|
3102 | 'I 21 21 21':['(00g)','(00g)00s','(a00)','(a00)s00','(0b0)','(0b0)0s0',], |
---|
3103 | #25 |
---|
3104 | 'P m m 2':['(00g)','(00g)s0s','(00g)0ss','(00g)ss0', |
---|
3105 | '(01/2g)','(01/2g)s0s','(1/20g)','(1/20g)0ss','(1/21/2g)', |
---|
3106 | '(a00)','(a00)0s0','(a1/20)','(a01/2)','(a01/2)0s0','(a1/21/2)', |
---|
3107 | '(0b0)','(0b0)s00','(0b1/2)','(0b1/2)s00','(1/2b0)','(1/2b1/2)',], |
---|
3108 | 'P 2 m m':['(a00)','(a00)ss0','(a00)s0s','(a00)0ss', |
---|
3109 | '(a01/2)','(a01/2)ss0','(a1/20)','(a1/20)s0s','(a1/21/2)', |
---|
3110 | '(0b0)','(0b0)00s','(1/2b0)','(0b1/2)','(0b1/2)00s','(1/2b1/2)', |
---|
3111 | '(00g)','(00g)0s0','(01/2g)','(01/2g)0s0','(1/20g)','(1/21/2g)',], |
---|
3112 | 'P m 2 m':['(0b0)','(0b0)ss0','(0b0)0ss','(0b0)s0s', |
---|
3113 | '(0b1/2)','(0b1/2)ss0','(1/2b0)','(1/2b0)0ss','(1/2b1/2)', |
---|
3114 | '(00g)','(00g)s00','(1/20g)','(01/2g)','(01/2g)s00','(1/21/2g)', |
---|
3115 | '(a00)','(a00)0s0','(a01/2)','(a01/2)0s0','(a1/20)','(a1/21/2)',], |
---|
3116 | #26 |
---|
3117 | 'P m c 21':['(00g)','(00g)s0s','(01/2g)','(01/2g)s0s','(1/20g)','(1/21/2g)', |
---|
3118 | '(a00)','(a00)0s0','(a1/20)','(0b0)','(0b0)s00','(0b1/2)',], |
---|
3119 | 'P 21 m a':['(a00)','(a00)ss0','(a01/2)','(a01/2)ss0','(a1/20)','(a1/21/2)', |
---|
3120 | '(0b0)','(0b0)00s','(1/2b0)','(00g)','(00g)0s0','(01/2g)',], |
---|
3121 | 'P b 21 m':['(0b0)','(0b0)ss0','(0b1/2)','(0b1/2)ss0','(1/2b0)','(1/2b1/2)', |
---|
3122 | '(00g)','(00g)s00','(1/20g)','(a00)','(a00)0s0','(a01/2)',], |
---|
3123 | 'P m 21 b':['(a00)','(a00)ss0','(a01/2)','(a01/2)ss0','(a1/20)','(a1/21/2)', |
---|
3124 | '(00g)','(00g)0s0','(01/2g)','(0b0)','(0b0)s00','(0b1/2)',], |
---|
3125 | 'P c m 21':['(00g)','(00g)0ss','(1/20g)','(1/20g)0ss','(01/2g)','(1/21/2g)', |
---|
3126 | '(0b0)','(0b0)s00','(1/2b0)','(a00)','(a00)0s0','(a01/2)',], |
---|
3127 | 'P 21 a m':['(0b0)','(0b0)ss0','(0b1/2)','(0b1/2)ss0','(1/2b0)','(1/2b1/2)', |
---|
3128 | '(a00)','(a00)00s','(a1/20)','(00g)','(00g)s00','(1/20g)',], |
---|
3129 | #27 |
---|
3130 | 'P c c 2':['(00g)','(00g)s0s','(00g)0ss','(01/2g)','(1/20g)','(1/21/2g)', |
---|
3131 | '(a00)','(a00)0s0','(a1/20)','(0b0)','(0b0)s00','(1/2b0)',], |
---|
3132 | 'P 2 a a':['(a00)','(a00)ss0','(a00)s0s','(a01/2)','(a1/20)','(a1/21/2)', |
---|
3133 | '(0b0)','(0b0)00s','(0b1/2)','(00g)','(00g)0s0','(01/2g)',], |
---|
3134 | 'P b 2 b':['(0b0)','(0b0)0ss','(0b0)ss0','(1/2b0)','(0b1/2)','(1/2b1/2)', |
---|
3135 | '(00g)','(00g)s00','(1/20g)','(a00)','(a00)00s','(a01/2)',], |
---|
3136 | #28 |
---|
3137 | 'P m a 2':['(00g)','(00g)s0s','(00g)ss0','(00g)0ss','(01/2g)','(01/2g)s0s', |
---|
3138 | '(0b1/2)','(0b1/2)s00','(a01/2)','(a00)','(0b0)','(0b0)0s0','(a1/20)','(a1/21/2)'], |
---|
3139 | 'P 2 m b':['(a00)','(a00)s0s','(a00)ss0','(a00)0ss','(a01/2)','(a01/2)s0s', |
---|
3140 | '(1/20g)','(1/20g)s00','(1/2b0)','(0b0)','(00g)','(00g)0s0','(0b1/2)','(1/2b1/2)'], |
---|
3141 | 'P c 2 m':['(0b0)','(0b0)s0s','(0b0)ss0','(0b0)0ss','(1/2b0)','(1/2b0)s0s', |
---|
3142 | '(a1/20)','(a1/20)s00','(01/2g)','(00g)','(a00)','(a00)0s0','(1/20g)','(1/21/2g)'], |
---|
3143 | 'P m 2 a':['(0b0)','(0b0)s0s','(0b0)ss0','(0b0)0ss','(0b1/2)','(0b1/2)s0s', |
---|
3144 | '(01/2g)','(01/2g)s00','(a1/20)','(a00)','(00g)','(00g)0s0','(a01/2)','(a1/21/2)'], |
---|
3145 | 'P b m 2':['(00g)','(00g)s0s','(00g)ss0','(00g)0ss','(1/20g)','(1/20g)s0s', |
---|
3146 | '(a01/2)','(a01/2)s00','(0b1/2)','(0b0)','(a00)','(a00)0s0','(1/2b0)','(1/2b1/2)'], |
---|
3147 | 'P 2 c m':['(a00)','(a00)s0s','(a00)ss0','(a00)0ss','(a1/20)','(a1/20)s0s', |
---|
3148 | '(1/2b0)','(1/2b0)s00','(1/20g)','(00g)','(0b0)','(0b0)0s0','(01/2g)','(1/21/2g)'], |
---|
3149 | #29 |
---|
3150 | 'P c a 21':['(00g)','(00g)0ss','(01/2g)','(1/20g)', |
---|
3151 | '(a00)','(a00)0s0','(a1/20)','(0b0)','(0b0)s00','(1/2b0)',], |
---|
3152 | 'P 21 a b':['(a00)','(a00)s0s','(a01/2)','(a1/20)', |
---|
3153 | '(0b0)','(0b0)00s','(0b1/2)','(00g)','(00g)0s0','(01/2g)',], |
---|
3154 | 'P c 21 b':['(0b0)','(0b0)ss0','(1/2b0)','(0b1/2)', |
---|
3155 | '(00g)','(00g)s00','(1/20g)','(a00)','(a00)00s','(a01/2)',], |
---|
3156 | 'P b 21 a':['(0b0)','(0b0)0ss','(0b1/2)','(1/2b0)', |
---|
3157 | '(a00)','(a00)00s','(a1/20)','(00g)','(00g)s00','(1/20g)',], |
---|
3158 | 'P b c 21':['(00g)','(00g)s0s','(1/20g)','(01/2g)', |
---|
3159 | '(0b0)','(0b0)s00','(0b1/2)','(a00)','(a00)0s0','(a1/20)',], |
---|
3160 | 'P 21 c a':['(a00)','(a00)ss0','(a1/20)','(a01/2)', |
---|
3161 | '(00g)','(00g)0s0','(1/20g)','(0b0)','(0b0)00s','(0b1/2)',], |
---|
3162 | #30 |
---|
3163 | 'P c n 2':['(00g)','(00g)s0s','(01/2g)','(a00)','(0b0)','(0b0)s00', |
---|
3164 | '(a1/20)','(1/2b1/2)q00',], |
---|
3165 | 'P 2 a n':['(a00)','(a00)ss0','(a01/2)','(0b0)','(00g)','(00g)0s0', |
---|
3166 | '(0b1/2)','(1/21/2g)0q0',], |
---|
3167 | 'P n 2 b':['(0b0)','(0b0)0ss','(1/2b0)','(00g)','(a00)','(a00)00s', |
---|
3168 | '(1/20g)','(a1/21/2)00q',], |
---|
3169 | 'P b 2 n':['(0b0)','(0b0)ss0','(0b1/2)','(a00)','(00g)','(00g)s00', |
---|
3170 | '(a01/2)','(1/21/2g)0ss',], |
---|
3171 | 'P n c 2':['(00g)','(00g)0ss','(1/20g)','(0b0)','(a00)','(a00)0s0', |
---|
3172 | '(1/2b0)','(a1/21/2)s0s',], |
---|
3173 | 'P 2 n a':['(a00)','(a00)s0s','(a1/20)','(00g)','(0b0)','(0b0)00s', |
---|
3174 | '(01/2g)','(1/2b1/2)ss0',], |
---|
3175 | #31 |
---|
3176 | 'P m n 21':['(00g)','(00g)s0s','(01/2g)','(01/2g)s0s','(a00)','(0b0)', |
---|
3177 | '(0b0)s00','(a1/20)',], |
---|
3178 | 'P 21 m n':['(a00)','(a00)ss0','(a01/2)','(a01/2)ss0','(0b0)','(00g)', |
---|
3179 | '(00g)0s0','(0b1/2)',], |
---|
3180 | 'P n 21 m':['(0b0)','(0b0)0ss','(1/2b0)','(1/2b0)0ss','(00g)','(a00)', |
---|
3181 | '(a00)00s','(1/20g)',], |
---|
3182 | 'P m 21 n':['(0b0)','(0b0)ss0','(0b1/2)','(0b1/2)ss0','(a00)','(00g)', |
---|
3183 | '(00g)s00','(a01/2)',], |
---|
3184 | 'P n m 21':['(00g)','(00g)0ss','(1/20g)','(1/20g)0ss','(0b0)','(a00)', |
---|
3185 | '(a00)0s0','(1/2b0)',], |
---|
3186 | 'P 21 n m':['(a00)','(a00)s0s','(a1/20)','(a1/20)s0s','(00g)','(0b0)', |
---|
3187 | '(0b0)00s','(01/2g)',], |
---|
3188 | #32 |
---|
3189 | 'P b a 2':['(00g)','(00g)s0s','(00g)0ss','(00g)ss0','(1/21/2g)qq0', |
---|
3190 | '(a00)','(a01/2)','(0b0)','(0b1/2)',], |
---|
3191 | 'P 2 c b':['(a00)','(a00)ss0','(a00)s0s','(a00)0ss','(a1/21/2)0qq', |
---|
3192 | '(0b0)','(1/2b0)','(00g)','(1/20g)',], |
---|
3193 | 'P c 2 a':['(0b0)','(0b0)ss0','(0b0)0ss','(0b0)s0s','(1/2b1/2)q0q', |
---|
3194 | '(00g)','01/2g)','(a00)','(a1/20)',], |
---|
3195 | #33 |
---|
3196 | 'P b n 21':['(00g)','(00g)s0s','(1/21/2g)qq0','(a00)','(0b0)',], |
---|
3197 | 'P 21 c n':['(a00)','(a00)ss0','(a1/21/2)0qq','(0b0)','(00g)',], |
---|
3198 | 'P n 21 a':['(0b0)','(0b0)0ss','(1/2b1/2)q0q','(00g)','(a00)',], |
---|
3199 | 'P c 21 n':['(0b0)','(0b0)ss0','(1/2b1/2)q0q','(a00)','(00g)',], |
---|
3200 | 'P n a 21':['(00g)','(00g)0ss','(1/21/2g)qq0','(0b0)','(a00)',], |
---|
3201 | 'P 21 n b':['(a00)','(a00)s0s','(a1/21/2)0qq','(00g)','(0b0)',], |
---|
3202 | #34 |
---|
3203 | 'P n n 2':['(00g)','(00g)s0s','(00g)0ss','(1/21/2g)qq0', |
---|
3204 | '(a00)','(a1/21/2)0q0','(a1/21/2)00q','(0b0)','(1/2b1/2)q00','(1/2b1/2)00q',], |
---|
3205 | 'P 2 n n':['(a00)','(a00)ss0','(a00)s0s','(a1/21/2)0qq', |
---|
3206 | '(0b0)','(1/2b1/2)q00','(1/2b1/2)00q','(00g)','(1/21/2g)0q0','(1/21/2g)q00',], |
---|
3207 | 'P n 2 n':['(0b0)','(0b0)ss0','(0b0)0ss','(1/2b1/2)q0q', |
---|
3208 | '(00g)','(1/21/2g)0q0','(1/21/2g)q00','(a00)','(a1/21/2)00q','(a1/21/2)0q0',], |
---|
3209 | #35 |
---|
3210 | 'C m m 2':['(00g)','(00g)s0s','(00g)ss0','(10g)','(10g)s0s','(10g)ss0', |
---|
3211 | '(0b0)','(0b0)s00','(0b1/2)','(0b1/2)s00',], |
---|
3212 | 'A 2 m m':['(a00)','(a00)ss0','(a00)0ss','(a10)','(a10)ss0','(a10)0ss', |
---|
3213 | '(00g)','(00g)0s0','(1/20g)','(1/20g)0s0',], |
---|
3214 | 'B m 2 m':['(0b0)','(0b0)0ss','(0b0)s0s','(0b1)','(0b1)0ss','(0b1)s0s', |
---|
3215 | '(a00)','(a00)00s','(a1/20)','(a1/20)00s',], |
---|
3216 | #36 |
---|
3217 | 'C m c 21':['(00g)','(00g)s0s','(10g)','(10g)s0s','(a00)','(a00)0s0','(0b0)','(0b0)s00',], |
---|
3218 | 'A 21 m a':['(a00)','(a00)ss0','(a10)','(a10)ss0','(0b0)','(0b0)00s','(00g)','(00g)0s0',], |
---|
3219 | 'B m 21 b':['(0b0)','(0b0)ss0','(1b0)','(1b0)ss0','(a00)','(a00)00s','(00g)','(00g)s00',], |
---|
3220 | 'B b 21 m':['(0b0)','(0b0)0ss','(0b1)','(0b1)ss0','(a00)','(a00)00s','(00g)','(00g)s00',], |
---|
3221 | 'C c m 21':['(00g)','(00g)0ss','(01g)','(01g)0ss','(a00)','(a00)0s0','(0b0)','(0b0)s00',], |
---|
3222 | 'A 21 a m':['(a00)','(a00)s0s','(a01)','(a01)s0s','(0b0)','(0b0)00s','(00g)','(00g)0s0',], |
---|
3223 | #37 |
---|
3224 | 'C c c 2':['(00g)','(00g)s0s','(00g)0ss','(10g)','(10g)s0s','(10g)0ss','(01g)','(01g)s0s','(01g)0ss', |
---|
3225 | '(a00)','(a00)0s0','(0b0)','(0b0)s00',], |
---|
3226 | 'A 2 a a':['(a00)','(a00)ss0','(a00)s0s','(a10)','(a10)ss0','(a10)ss0','(a01)','(a01)ss0','(a01)ss0', |
---|
3227 | '(0b0)','(0b0)00s','(00g)','(00g)0s0',], |
---|
3228 | 'B b 2 b':['(0b0)','(0b0)0ss','(0b0)ss0','(0b1)','(0b1)0ss','(0b1)ss0','(1b0)','(1b0)0ss','(1b0)ss0', |
---|
3229 | '(a00)','(a00)00s','(00g)','(00g)s00',], |
---|
3230 | #38 |
---|
3231 | 'A m m 2':['(a00)','(a00)0s0','(a10)','(a10)0s0','(00g)','(00g)0s0', |
---|
3232 | '(00g)ss0','(00g)0ss','(1/20g)','(1/20g)0ss','(0b0)','(0b0)s00','(1/2b0)',], |
---|
3233 | 'B 2 m m':['(0b0)','(0b0)00s','(0b1)','(0b1)00s','(a00)','(a00)00s', |
---|
3234 | '(a00)0ss','(a00)s0s','(a1/20)','(a1/20)s0s','(00g)','(00g)0s0','(01/2g)',], |
---|
3235 | 'C m 2 m':['(00g)','(00g)s00','(10g)','(10g)s00','(0b0)','(0b0)s00', |
---|
3236 | '(0b0)s0s','(0b0)ss0','(0b1/2)','(0b1/2)ss0','(a00)','(a00)00s','(a01/2)',], |
---|
3237 | 'A m 2 m':['(a00)','(a00)00s','(a01)','(a01)00s','(0b0)','(0b0)00s', |
---|
3238 | '(0b0)s0s','(0b0)0ss','(1/2b0)','(1/2b0)0ss','(00g)','(00g)s00','(1/20g)',], |
---|
3239 | 'B m m 2':['(0b0)','(0b0)s00','(0b1)','(0b1)s00','(a00)','(a00)0s0', |
---|
3240 | '(a00)0ss','(a00)ss0','(01/2g)','(01/2g)s0s','(a00)','(a00)0s0','(a1/20)',], |
---|
3241 | 'C 2 m m':['(00g)','(00g)0s0','(10g)','(10g)0s0','(00g)','(00g)s00', |
---|
3242 | '(0b0)s0s','(0b0)0ss','(a01/2)','(a01/2)ss0','(0b0)','(0b0)00s','(0b1/2)',], |
---|
3243 | #39 |
---|
3244 | 'A b m 2':['(a00)','(a00)0s0','(a01)','(a01)0s0','(00g)','(00g)s0s', |
---|
3245 | '(00g)ss0','(00g)0ss','(1/20g)','(1/20g)0ss','(0b0)','(0b0)s00','(1/2b0)',], |
---|
3246 | 'B 2 c m':['(0b0)','(0b0)00s','(1b0)','(1b0)00s','(a00)','(a00)ss0', |
---|
3247 | '(a00)0ss','(a00)s0s','(a1/20)','(a1/20)s0s','(00g)','(00g)0s0','(01/2g)',], |
---|
3248 | 'C m 2 a':['(00g)','(00g)s00','(01g)','(01g)s00','(0b0)','(0b0)0ss', |
---|
3249 | '(0b0)s0s','(0b0)ss0','(0b1/2)','(0b1/2)ss0','(a00)','(a00)00s','(a01/2)',], |
---|
3250 | 'A c 2 m':['(a00)','(a00)00s','(a10)','(a10)00s','(0b0)','(0b0)ss0', |
---|
3251 | '(0b0)s0s','(0b0)0ss','(1/2b0)','(1/2b0)0ss','(00g)','(00g)s00','(1/20g)',], |
---|
3252 | 'B m a 2':['(0b0)','(0b0)s00','(0b1)','(0b1)s00','(00g)','(00g)s0s', |
---|
3253 | '(00g)0ss','(00g)ss0','(01/2g)','(01/2g)ss0','(a00)','(a00)00s','(a1/20)',], |
---|
3254 | 'C 2 m b':['(00g)','(00g)0s0','(10g)','(10g)0s0','(a00)','(a00)0ss', |
---|
3255 | '(a00)ss0','(a00)s0s','(a01/2)','(a01/2)s0s','(0b0)','(0b0)0s0','(0b1/2)',], |
---|
3256 | #40 |
---|
3257 | 'A m a 2':['(a00)','(a01)','(00g)','(00g)s0s','(00g)ss0','(00g)0ss','(0b0)','(0b0)s00',], |
---|
3258 | 'B 2 m b':['(0b0)','(1b0)','(a00)','(a00)ss0','(a00)0ss','(a00)s0s','(00g)','(00g)0s0',], |
---|
3259 | 'C c 2 m':['(00g)','(01g)','(0b0)','(0b0)0ss','(0b0)s0s','(0b0)ss0','(a00)','(a00)00s',], |
---|
3260 | 'A m 2 a':['(a00)','(a10)','(0b0)','(0b0)ss0','(0b0)s0s','(0b0)0ss','(00g)','(00g)s00',], |
---|
3261 | 'B b m 2':['(0b0)','(0b1)','(00g)','(00g)0ss','(00g)ss0','(00g)s0s','(a00)','(a00)0s0',], |
---|
3262 | 'C 2 c m':['(00g)','(10g)','(a00)','(a00)s0s','(a00)0ss','(a00)ss0','(0b0)','(0b0)00s',], |
---|
3263 | #41 |
---|
3264 | 'A b a 2':['(a00)','(a01)','(00g)','(00g)s0s','(00g)ss0','(00g)0ss','(0b0)','(0b0)s00',], |
---|
3265 | 'B 2 c b':['(0b0)','(1b0)','(a00)','(a00)ss0','(a00)0ss','(a00)s0s','(00g)','(00g)0s0',], |
---|
3266 | 'C c 2 a':['(00g)','(01g)','(0b0)','(0b0)0ss','(0b0)s0s','(0b0)ss0','(a00)','(a00)00s',], |
---|
3267 | 'A c 2 a':['(a00)','(a10)','(0b0)','(0b0)ss0','(0b0)s0s','(0b0)0ss','(00g)','(00g)s00',], |
---|
3268 | 'B b a 2':['(0b0)','(0b1)','(00g)','(00g)0ss','(00g)ss0','(00g)s0s','(a00)','(a00)0s0',], |
---|
3269 | 'C 2 c b':['(00g)','(10g)','(a00)','(a00)s0s','(a00)0ss','(a00)ss0','(0b0)','(0b0)00s',], |
---|
3270 | |
---|
3271 | #42 |
---|
3272 | 'F m m 2':['(00g)','(00g)s0s','(00g)0ss','(00g)ss0','(10g)','(10g)ss0','(10g)s0s', |
---|
3273 | '(01g)','(01g)ss0','(01g)0ss','(a00)','(a00)0s0','(a01)','(a01)0s0', |
---|
3274 | '(0b0)','(0b0)s00','(0b1)','(0b1)s00',], |
---|
3275 | 'F 2 m m':['(a00)','(a00)ss0','(a00)s0s','(a00)0ss','(a10)','(a10)0ss','(a10)ss0', |
---|
3276 | '(a01)','(a01)0ss','(a01)s0s','(0b0)','(0b0)00s','(1b0)','(1b0)00s', |
---|
3277 | '(00g)','(00g)0s0','(10g)','(10g)0s0',], |
---|
3278 | 'F m 2 m':['(0b0)','(0b0)0ss','(0b0)ss0','(0b0)s0s','(0b1)','(0b1)s0s','(0b1)0ss', |
---|
3279 | '(1b0)','(1b0)s0s','(1b0)ss0','(00g)','(00g)s00','(01g)','(01g)s00', |
---|
3280 | '(a00)','(a00)00s','(a10)','(a10)00s',], |
---|
3281 | #43 |
---|
3282 | 'F d d 2':['(00g)','(00g)0ss','(00g)s0s','(a00)','(0b0)',], |
---|
3283 | 'F 2 d d':['(a00)','(a00)s0s','(a00)ss0','(00g)','(0b0)',], |
---|
3284 | 'F d 2 d':['(0b0)','(0b0)0ss','(0b0)ss0','(a00)','(00g)',], |
---|
3285 | #44 |
---|
3286 | 'I m m 2':['(00g)','(00g)ss0','(00g)s0s','(00g)0ss','(a00)','(a00)0s0','(0b0)','(0b0)s00',], |
---|
3287 | 'I 2 m m':['(a00)','(00g)0ss','(00g)ss0','(00g)s0s','(0b0)','(0b0)00s','(00g)','(00g)0s0',], |
---|
3288 | 'I m 2 m':['(0b0)','(0b0)s0s','(0b0)0ss','(0b0)ss0','(00g)','(00g)s00','(a00)','(a00)00s',], |
---|
3289 | #45 |
---|
3290 | 'I b a 2':['(00g)','(00g)ss0','(00g)s0s','(00g)0ss','(a00)','(a00)0s0','(0b0)','(0b0)s00',], |
---|
3291 | 'I 2 c b':['(0b0)','(0b0)s0s','(0b0)0ss','(0b0)ss0','(00g)','(00g)s00','(a00)','(a00)00s',], |
---|
3292 | 'I c 2 a':['(a00)','(00g)0ss','(00g)ss0','(00g)s0s','(0b0)','(0b0)00s','(00g)','(00g)0s0',], |
---|
3293 | #46 |
---|
3294 | 'I m a 2':['(a00)','(00g)0ss','(00g)ss0','(00g)s0s','(0b0)','(0b0)00s','(00g)','(00g)0s0',], |
---|
3295 | 'I 2 m b':['(0b0)','(0b0)s0s','(0b0)0ss','(0b0)ss0','(00g)','(00g)s00','(a00)','(a00)00s',], |
---|
3296 | 'I c 2 m':['(a00)','(00g)0ss','(00g)ss0','(00g)s0s','(0b0)','(0b0)00s','(00g)','(00g)0s0',], |
---|
3297 | 'I m 2 a':['(a00)','(00g)0ss','(00g)ss0','(00g)s0s','(0b0)','(0b0)00s','(00g)','(00g)0s0',], |
---|
3298 | 'I b m 2':['(a00)','(00g)0ss','(00g)ss0','(00g)s0s','(0b0)','(0b0)00s','(00g)','(00g)0s0',], |
---|
3299 | 'I 2 c m':['(0b0)','(0b0)s0s','(0b0)0ss','(0b0)ss0','(00g)','(00g)s00','(a00)','(a00)00s',], |
---|
3300 | #47 |
---|
3301 | 'P m m m':['(00g)','(00g)s00','(00g)0s0','(00g)ss0','(01/2g)','(01/2g)s00','(1/20g)','(1/20g)s00','(1/21/2g)', |
---|
3302 | '(a00)','(a00)0s0','(a00)00s','(a00)0ss','(a01/2)','(a01/2)0s0','(a1/20)','(a1/20)00s','(a1/21/2)', |
---|
3303 | '(0b0)','(0b0)s00','(0b0)00s','(0b0)s0s','(1/2b0)','(1/2b0)00s','(0b1/2)','(0b1/2)s00','(1/2b1/2)',], |
---|
3304 | #48 o@i qq0,0qq,q0q ->000 |
---|
3305 | 'P n n n':['(00g)','(00g)s00','(00g)0s0','(1/21/2g)', |
---|
3306 | '(a00)','(a00)0s0','(a00)00s','(a1/21/2)', |
---|
3307 | '(0b0)','(0b0)s00','(0b0)00s','(1/2b1/2)',], |
---|
3308 | #49 |
---|
3309 | 'P c c m':['(00g)','(00g)s00','(00g)0s0','(01/2g)','(1/20g)','(1/21/2g)', |
---|
3310 | '(a00)','(a00)0s0','(a00)00s','(a00)0ss','(a1/20)','(a1/20)00s', |
---|
3311 | '(0b0)','(0b0)s00','(0b0)00s','(0b0)s0s','(1/2b0)','(1/2b0)00s',], |
---|
3312 | 'P m a a':['(a00)','(a00)0s0','(a00)00s','(a01/2)','(a1/20)','(a1/21/2)', |
---|
3313 | '(0b0)','(0b0)00s','(0b0)s00','(0b0)s0s','(0b1/2)','(0b1/2)s00', |
---|
3314 | '(00g)','(00g)0s0','(00g)s00','(00g)ss0','(01/2g)','(01/2g)s00',], |
---|
3315 | 'P b m b':['(0b0)','(0b0)00s','(0b0)s00','(0b1/2)','(1/2b0)','(1/2b1/2)', |
---|
3316 | '(00g)','(00g)s00','(00g)0s0','(00g)ss0','(1/20g)','(1/20g)0s0', |
---|
3317 | '(a00)','(a00)00s','(a00)0s0','(a00)0ss','(a01/2)','(a01/2)0s0',], |
---|
3318 | #50 o@i qq0,0qq,q0q ->000 |
---|
3319 | 'P b a n':['(00g)','(00g)s00','(00g)0s0','(00g)ss0','(1/21/2g)', |
---|
3320 | '(a00)','(a00)0s0','(a01/2)','(0b0)','(0b0)s00','(0b1/2)',], |
---|
3321 | 'P n c b':['(a00)','(a00)0s0','(a00)00s','(a00)0ss','(a1/21/2)', |
---|
3322 | '(0b0)','(0b0)00s','(1/2b0)','(00g)','(00g)0s0','(1/20g)',], |
---|
3323 | 'P c n a':['(0b0)','(0b0)s00','(0b0)00s','(0b0)s0s','(1/2b1/2)', |
---|
3324 | '(00g)','(00g)s00','(01/2g)','(a00)','(a00)00s','(a1/20)',], |
---|
3325 | #51 |
---|
3326 | 'P m m a':['(00g)','(00g)s00','(00g)ss0','(00g)0s0','(0b0)','(0b0)s00', |
---|
3327 | '(0b0)s0s','(0b0)00s','(a00)','(a00)0s0','(01/2g)','(01/2g)s00', |
---|
3328 | '(0b1/2)','(0b1/2)s00','(a01/2)','(a01/2)0s0','(1/2b0)','(1/2b1/2)',], |
---|
3329 | 'P b m m':['(a00)','(a00)0s0','(a00)0ss','(a00)00s','(00g)','(00g)0s0', |
---|
3330 | '(00g)ss0','(00g)s00','(0b0)','(0b0)00s','(a01/2)','(a01/2)0s0', |
---|
3331 | '(1/20g)','(1/20g)0s0','(1/2b0)','(1/2b0)00s','(01/2g)','(1/21/2g)',], |
---|
3332 | 'P m c m':['(0b0)','(0b0)00s','(0b0)s0s','(0b0)s00','(a00)','(a00)00s', |
---|
3333 | '(a00)0ss','(a00)0s0','(00g)','(00g)s00','(1/2b0)','(1/2b0)00s', |
---|
3334 | '(a1/20)','(a1/20)00s','(01/2g)','(01/2g)s00','(a01/2)','(a1/21/2)',], |
---|
3335 | 'P m a m':['(0b0)','(0b0)s00','(0b0)s0s','(0b0)00s','(00g)','(00g)s00', |
---|
3336 | '(00g)ss0','(00g)0s0','(a00)','(a00)00s','(0b1/2)','(0b1/2)s00', |
---|
3337 | '(01/2g)','(01/2g)s00','(a1/20)','(a1/20)00s','(1/20g)','(1/21/2g)',], |
---|
3338 | 'P m m b':['(00g)','(00g)0s0','(00g)ss0','(00g)s00','(a00)','(a00)0s0', |
---|
3339 | '(a00)0ss','(a00)00s','(0b0)','(0b0)s00','(a00)','(a00)0s0', |
---|
3340 | '(a01/2)','(a01/2)0s0','(0b1/2)','(0b1/2)s00','(a1/20)','(a1/21/2)',], |
---|
3341 | 'P c m m':['(a00)','(a00)00s','(a00)0ss','(a00)0s0','(0b0)','(0b0)00s', |
---|
3342 | '(0b0)s0s','(0b0)s00','(00g)','(00g)0s0','(0b0)','(0b0)00s', |
---|
3343 | '(1/2b0)','(1/2b0)00s','(1/20g)','(1/20g)0s0','(0b1/2)','(1/2b1/2)',], |
---|
3344 | #52 o@i qq0,0qq,q0q ->000 |
---|
3345 | 'P n n a':['(00g)','(00g)s00','(00g)0s0','(a00)','(a00)00s', |
---|
3346 | '(0b0)','(0b0)00s','(a1/21/2)','(1/2b1/2)',], |
---|
3347 | 'P b n n':['(a00)','(a00)0s0','(a00)00s','(0b0)','(0b0)s00', |
---|
3348 | '(00g)','(00g)s00','(1/2b1/2)','(1/21/2g)',], |
---|
3349 | 'P n c n':['(0b0)','(0b0)s00','(0b0)00s','(00g)','(00g)0s0', |
---|
3350 | '(a00)','(a00)0s0','(1/21/2g)','(a1/21/2)',], |
---|
3351 | 'P n a n':['(0b0)','(0b0)s00','(0b0)00s','(00g)','(00g)0s0', |
---|
3352 | '(a00)','(a00)0s0','(1/21/2g)','(a1/21/2)',], |
---|
3353 | 'P n n b':['(00g)','(00g)s00','(00g)0s0','(a00)','(a00)00s', |
---|
3354 | '(0b0)','(0b0)00s','(a1/21/2)','(1/2b1/2)',], |
---|
3355 | 'P c n n':['(a00)','(a00)0s0','(a00)00s','(0b0)','(0b0)s00', |
---|
3356 | '(00g)','(00g)s00','(1/2b1/2)','(1/21/2g)',], |
---|
3357 | #53 |
---|
3358 | 'P m n a':['(00g)','(00g)s00','(a00)','(a00)00s','(0b0)','(0b0)00s', |
---|
3359 | '(0b0)s0s','(0b0)s00','(01/2g)','(01/2g)s00','(a1/20)',], |
---|
3360 | 'P b m n':['(a00)','(a00)0s0','(0b0)','(0b0)s00','(00g)','(00g)s00', |
---|
3361 | '(00g)ss0','(00g)0s0','(a01/2)','(a01/2)0s0','(0b1/2)',], |
---|
3362 | 'P n c m':['(0b0)','(0b0)00s','(00g)','(00g)0s0','(a00)','(a00)0s0', |
---|
3363 | '(a00)0ss','(a00)00s','(1/2b0)','(1/2b0)00s','(1/20g)',], |
---|
3364 | 'P m a n':['(0b0)','(0b0)s00','(a00)','(a00)0s0','(00g)','(00g)0s0', |
---|
3365 | '(00g)ss0','(00g)s00','(0b1/2)','(0b1/2)s00','(a01/2)',], |
---|
3366 | 'P n m b':['(00g)','(00g)0s0','(0b0)','(0b0)00s','(a00)','(a00)00s', |
---|
3367 | '(a00)0ss','(a00)0s0','(1/20g)','(1/20g)0s0','(1/2b0)',], |
---|
3368 | 'P c n m':['(a00)','(a00)00s','(00g)','(00g)s00','(0b0)','(0b0)s00', |
---|
3369 | '(0b0)s0s','(0b0)00s','(a1/20)','(a1/20)00s','(01/2g)',], |
---|
3370 | #54 |
---|
3371 | 'P c c a':['(00g)','(00g)s00','(0b0)','(0b0)s00','(a00)','(a00)0s0', |
---|
3372 | '(a00)0ss','(a00)00s','(01/2g)','(1/2b0)',], |
---|
3373 | 'P b a a':['(a00)','(a00)0s0','(00g)','(00g)0s0','(0b0)','(0b0)00s', |
---|
3374 | '(0b0)s0s','(0b0)s00','(a01/2)','(01/2g)',], |
---|
3375 | 'P b c b':['(0b0)','(0b0)00s','(a00)','(a00)00s','(00g)','(00g)s00', |
---|
3376 | '(00g)ss0','(00g)0s0','(1/2b0)','(a01/2)',], |
---|
3377 | 'P b a b':['(0b0)','(0b0)s00','(00g)','(00g)s00','(a00)','(a00)00s', |
---|
3378 | '(a00)0ss','(a00)0s0','(0b1/2)','(1/20g)',], |
---|
3379 | 'P c c b':['(00g)','(00g)0s0','(a00)','(a00)0s0','(0b0)','(0b0)s00', |
---|
3380 | '(0b0)s0s','(0b0)00s','(1/20g)','(a1/20)',], |
---|
3381 | 'P c a a':['(a00)','(a00)00s','(0b0)','(0b0)00s','(00g)','(00g)0s0', |
---|
3382 | '(00g)ss0','(00g)s00','(a1/20)','(0b1/2)',], |
---|
3383 | #55 |
---|
3384 | 'P b a m':['(00g)','(00g)s00','(00g)0s0','(00g)ss0', |
---|
3385 | '(a00)','(a00)00s','(a01/2)','(0b0)','(0b0)00s','(0b1/2)'], |
---|
3386 | 'P m c b':['(a00)','(a00)0s0','(a00)00s','(a00)0ss', |
---|
3387 | '(0b0)','(0b0)s00','(1/2b0)','(00g)','(00g)s00','(1/20g)'], |
---|
3388 | 'P c m a':['(0b0)','(0b0)s00','(0b0)00s','(0b0)s0s', |
---|
3389 | '(a00)','(a00)0s0','(a1/20)','(00g)','(00g)0s0','(01/2g)'], |
---|
3390 | #56 |
---|
3391 | 'P c c n':['(00g)','(00g)s00','(00g)0s0','(a00)','(a00)0s0', |
---|
3392 | '(0b0)','(0b0)s00'], |
---|
3393 | 'P n a a':['(a00)','(a00)0s0','(a00)00s','(0b0)','(0b0)00s', |
---|
3394 | '(00g)','(00g)0s0'], |
---|
3395 | 'P b n b':['(0b0)','(0b0)s00','(0b0)00s','(a00)','(a00)00s', |
---|
3396 | '(00g)','(00g)s00'], |
---|
3397 | #57 |
---|
3398 | 'P c a m':['(00g)','(00g)0s0','(a00)','(a00)00s','(0b0)','(0b0)s00', |
---|
3399 | '(0b0)ss0','(0b0)00s','(01/2g)','(a1/20)','(a1/20)00s',], |
---|
3400 | 'P m a b':['(a00)','(a00)00s','(0b0)','(0b0)s00','(00g)','(00g)0s0', |
---|
3401 | '(00g)s0s','(00g)s00','(a01/2)','(0b1/2)','(0b1/2)s00',], |
---|
3402 | 'P c m b':['(0b0)','(0b0)s00','(00g)','(00g)0s0','(a00)','(a00)00s', |
---|
3403 | '(a00)0ss','(a00)0s0','(1/2b0)','(1/20g)','(1/20g)0s0',], |
---|
3404 | 'P b m a':['(0b0)','(0b0)00s','(a00)','(a00)0s0','(00g)','(00g)s00', |
---|
3405 | '(00g)ss0','(00g)0s0','(0b1/2)','(a01/2)','(a01/2)0s0',], |
---|
3406 | 'P m c a':['(a00)','(a00)0s0','(00g)','(00g)s00','(0b0)','(0b0)00s', |
---|
3407 | '(0b0)s0s','(0b0)s00','(a1/20)','(01/2g)','(01/2g)s00'], |
---|
3408 | 'P b c m':['(00g)','(00g)s00','(0b0)','(0b0)00s','(a00)','(a00)0s0', |
---|
3409 | '(a00)0ss','(a00)00s','(1/20g)','(1/ |
---|