source: trunk/GSASIIspc.py @ 1957

Last change on this file since 1957 was 1957, checked in by vondreele, 8 years ago

work on SS structure factors
some refactoring of SS special pos code
rearrange sf routines in G2strMath - some math error in the SS sf codes
make SS plots of structure behave properly

  • Property svn:eol-style set to native
  • Property svn:keywords set to Date Author Revision URL Id
File size: 143.2 KB
Line 
1# -*- coding: utf-8 -*-
2"""
3*GSASIIspc: Space group module*
4-------------------------------
5
6Space group interpretation routines. Note that space group information is
7stored in a :ref:`Space Group (SGData)<SGData_table>` object.
8
9"""
10########### SVN repository information ###################
11# $Date: 2015-08-14 20:08:55 +0000 (Fri, 14 Aug 2015) $
12# $Author: vondreele $
13# $Revision: 1957 $
14# $URL: trunk/GSASIIspc.py $
15# $Id: GSASIIspc.py 1957 2015-08-14 20:08:55Z vondreele $
16########### SVN repository information ###################
17import numpy as np
18import numpy.ma as ma
19import numpy.linalg as nl
20import scipy.optimize as so
21import math
22import sys
23import copy
24import os.path as ospath
25
26import GSASIIpath
27GSASIIpath.SetVersionNumber("$Revision: 1957 $")
28import pyspg
29
30npsind = lambda x: np.sin(x*np.pi/180.)
31npcosd = lambda x: np.cos(x*np.pi/180.)
32DEBUG = False
33   
34################################################################################
35#### Space group codes
36################################################################################
37
38def SpcGroup(SGSymbol):
39    """
40    Determines cell and symmetry information from a short H-M space group name
41
42    :param SGSymbol: space group symbol (string) with spaces between axial fields
43    :returns: (SGError,SGData)
44   
45       * SGError = 0 for no errors; >0 for errors (see SGErrors below for details)
46       * SGData - is a dict (see :ref:`Space Group object<SGData_table>`) with entries:
47       
48             * 'SpGrp': space group symbol, slightly cleaned up
49             * 'SGLaue':  one of '-1', '2/m', 'mmm', '4/m', '4/mmm', '3R',
50               '3mR', '3', '3m1', '31m', '6/m', '6/mmm', 'm3', 'm3m'
51             * 'SGInv': boolean; True if centrosymmetric, False if not
52             * 'SGLatt': one of 'P', 'A', 'B', 'C', 'I', 'F', 'R'
53             * 'SGUniq': one of 'a', 'b', 'c' if monoclinic, '' otherwise
54             * 'SGCen': cell centering vectors [0,0,0] at least
55             * 'SGOps': symmetry operations as [M,T] so that M*x+T = x'
56             * 'SGSys': one of 'triclinic', 'monoclinic', 'orthorhombic',
57               'tetragonal', 'rhombohedral', 'trigonal', 'hexagonal', 'cubic'
58             * 'SGPolax': one of ' ', 'x', 'y', 'x y', 'z', 'x z', 'y z',
59               'xyz', '111' for arbitrary axes
60             * 'SGPtGrp': one of 32 point group symbols (with some permutations), which
61                is filled by SGPtGroup, is external (KE) part of supersymmetry point group
62             * 'SSGKl': default internal (Kl) part of supersymmetry point group; modified
63                in supersymmetry stuff depending on chosen modulation vector for Mono & Ortho
64
65    """
66    LaueSym = ('-1','2/m','mmm','4/m','4/mmm','3R','3mR','3','3m1','31m','6/m','6/mmm','m3','m3m')
67    LattSym = ('P','A','B','C','I','F','R')
68    UniqSym = ('','','a','b','c','',)
69    SysSym = ('triclinic','monoclinic','orthorhombic','tetragonal','rhombohedral','trigonal','hexagonal','cubic')
70    SGData = {}
71    SGSymbol = SGSymbol.replace(':',' ')    #get rid of ':' in R space group symbols from some cif files
72    SGInfo = pyspg.sgforpy(SGSymbol)
73    SGData['SpGrp'] = SGSymbol.strip().lower().capitalize()
74    SGData['SGLaue'] = LaueSym[SGInfo[0]-1]
75    SGData['SGInv'] = bool(SGInfo[1])
76    SGData['SGLatt'] = LattSym[SGInfo[2]-1]
77    SGData['SGUniq'] = UniqSym[SGInfo[3]+1]
78    if SGData['SGLatt'] == 'P':
79        SGData['SGCen'] = np.array(([0,0,0],))
80    elif SGData['SGLatt'] == 'A':
81        SGData['SGCen'] = np.array(([0,0,0],[0,.5,.5]))
82    elif SGData['SGLatt'] == 'B':
83        SGData['SGCen'] = np.array(([0,0,0],[.5,0,.5]))
84    elif SGData['SGLatt'] == 'C':
85        SGData['SGCen'] = np.array(([0,0,0],[.5,.5,0,]))
86    elif SGData['SGLatt'] == 'I':
87        SGData['SGCen'] = np.array(([0,0,0],[.5,.5,.5]))
88    elif SGData['SGLatt'] == 'F':
89        SGData['SGCen'] = np.array(([0,0,0],[0,.5,.5],[.5,0,.5],[.5,.5,0,]))
90    elif SGData['SGLatt'] == 'R':
91        SGData['SGCen'] = np.array(([0,0,0],[1./3.,2./3.,2./3.],[2./3.,1./3.,1./3.]))
92    SGData['SGOps'] = []
93    for i in range(SGInfo[5]):
94        Mat = np.array(SGInfo[6][i])
95        Trns = np.array(SGInfo[7][i])
96        SGData['SGOps'].append([Mat,Trns])
97    if SGData['SGLaue'] in '-1':
98        SGData['SGSys'] = SysSym[0]
99    elif SGData['SGLaue'] in '2/m':
100        SGData['SGSys'] = SysSym[1]
101    elif SGData['SGLaue'] in 'mmm':
102        SGData['SGSys'] = SysSym[2]
103    elif SGData['SGLaue'] in ['4/m','4/mmm']:
104        SGData['SGSys'] = SysSym[3]
105    elif SGData['SGLaue'] in ['3R','3mR']:
106        SGData['SGSys'] = SysSym[4]
107    elif SGData['SGLaue'] in ['3','3m1','31m']:
108        SGData['SGSys'] = SysSym[5]
109    elif SGData['SGLaue'] in ['6/m','6/mmm']:
110        SGData['SGSys'] = SysSym[6]
111    elif SGData['SGLaue'] in ['m3','m3m']:
112        SGData['SGSys'] = SysSym[7]
113    SGData['SGPolax'] = SGpolar(SGData)
114    SGData['SGPtGrp'],SGData['SSGKl'] = SGPtGroup(SGData)
115    return SGInfo[8],SGData
116
117def SGErrors(IErr):
118    '''
119    Interprets the error message code from SpcGroup. Used in SpaceGroup.
120   
121    :param IErr: see SGError in :func:`SpcGroup`
122    :returns:
123        ErrString - a string with the error message or "Unknown error"
124    '''
125
126    ErrString = [' ',
127        'Less than 2 operator fields were found',
128        'Illegal Lattice type, not P, A, B, C, I, F or R',
129        'Rhombohedral lattice requires a 3-axis',
130        'Minus sign does not preceed 1, 2, 3, 4 or 6',
131        'Either a 5-axis anywhere or a 3-axis in field not allowed',
132        ' ',
133        'I for COMPUTED GO TO out of range.',
134        'An a-glide mirror normal to A not allowed',
135        'A b-glide mirror normal to B not allowed',
136        'A c-glide mirror normal to C not allowed',
137        'D-glide in a primitive lattice not allowed',
138        'A 4-axis not allowed in the 2nd operator field',
139        'A 6-axis not allowed in the 2nd operator field',
140        'More than 24 matrices needed to define group',
141        ' ',
142        'Improper construction of a rotation operator',
143        'Mirror following a / not allowed',
144        'A translation conflict between operators',
145        'The 2bar operator is not allowed',
146        '3 fields are legal only in R & m3 cubic groups',
147        'Syntax error. Expected I -4 3 d at this point',
148        ' ',
149        'A or B centered tetragonal not allowed',
150        ' ','unknown error in sgroup',' ',' ',' ',
151        'Illegal character in the space group symbol',
152        ]
153    try:
154        return ErrString[IErr]
155    except:
156        return "Unknown error"
157
158def SGpolar(SGData):
159    '''
160    Determine identity of polar axes if any
161    '''
162    POL = ('','x','y','x y','z','x z','y z','xyz','111')
163    NP = [1,2,4]
164    NPZ = [0,1]
165    for M,T in SGData['SGOps']:
166        for i in range(3):
167            if M[i][i] <= 0.: NP[i] = 0
168        if M[0][2] > 0: NPZ[0] = 8
169        if M[1][2] > 0: NPZ[1] = 0
170    NPol = (NP[0]+NP[1]+NP[2]+NPZ[0]*NPZ[1])*(1-int(SGData['SGInv']))
171    return POL[NPol]
172   
173def SGPtGroup(SGData):
174    '''
175    Determine point group of the space group - done after space group symbol has
176    been evaluated by SpcGroup. Only short symbols are allowed
177   
178    :param SGData: from :func SpcGroup
179    :returns: SSGPtGrp & SSGKl (only defaults for Mono & Ortho)
180    '''
181    Flds = SGData['SpGrp'].split()
182    if len(Flds) < 2:
183        return '',[]
184    if SGData['SGLaue'] == '-1':    #triclinic
185        if '-' in Flds[1]:
186            return '-1',[-1,]
187        else:
188            return '1',[1,]
189    elif SGData['SGLaue'] == '2/m': #monoclinic - default for 2D modulation vector
190        if '/' in SGData['SpGrp']:
191            return '2/m',[-1,1]
192        elif '2' in SGData['SpGrp']:
193            return '2',[-1,]
194        else:
195            return 'm',[1,]
196    elif SGData['SGLaue'] == 'mmm': #orthorhombic
197        if SGData['SpGrp'].count('2') == 3:
198            return '222',[-1,-1,-1]
199        elif SGData['SpGrp'].count('2') == 1:
200            if SGData['SGPolax'] == 'x':
201                return '2mm',[-1,1,1]
202            elif SGData['SGPolax'] == 'y':
203                return 'm2m',[1,-1,1]
204            elif SGData['SGPolax'] == 'z':
205                return 'mm2',[1,1,-1]
206        else:
207            return 'mmm',[1,1,1]
208    elif SGData['SGLaue'] == '4/m': #tetragonal
209        if '/' in SGData['SpGrp']:
210            return '4/m',[1,-1]
211        elif '-' in Flds[1]:
212            return '-4',[-1,]
213        else:
214            return '4',[1,]
215    elif SGData['SGLaue'] == '4/mmm':
216        if '/' in SGData['SpGrp']:
217            return '4/mmm',[1,-1,1,1]
218        elif '-' in Flds[1]:
219            if '2' in Flds[2]:
220                return '-42m',[-1,-1,1]
221            else:
222                return '-4m2',[-1,1,-1]             
223        elif '2' in Flds[2:]:
224            return '422',[1,-1,-1]
225        else:
226            return '4mm',[1,1,1]
227    elif SGData['SGLaue'] in ['3','3R']:  #trigonal/rhombohedral
228        if '-' in Flds[1]:
229            return '-3',[-1,]
230        else:
231            return '3',[1,]
232    elif SGData['SGLaue'] == '3mR' or 'R' in Flds[0]:
233        if '2' in Flds[2]:
234            return '32',[1,-1]
235        elif '-' in Flds[1]:
236            return '-3m',[-1,1]
237        else:
238            return '3m',[1,1]
239    elif SGData['SGLaue'] == '3m1':
240        if '2' in Flds[2]:
241            return '321',[1,-1,1]
242        elif '-' in Flds[1]:
243            return '-3m1',[-1,1,1]
244        else:
245            return '3m1',[1,1,1]
246    elif SGData['SGLaue'] == '31m':
247        if '2' in Flds[3]:
248            return '312',[1,1,-1]
249        elif '-' in Flds[1]:
250            return '-31m',[-1,1,1]
251        else:
252            return '31m',[1,1,1]
253    elif SGData['SGLaue'] == '6/m': #hexagonal
254        if '/' in SGData['SpGrp']:
255            return '6/m',[1,-1]
256        elif '-' in SGData['SpGrp']:
257            return '-6',[-1,]
258        else:
259            return '6',[1,]
260    elif SGData['SGLaue'] == '6/mmm':
261        if '/' in SGData['SpGrp']:
262            return '6/mmm',[1,-1,1,1]
263        elif '-' in Flds[1]:
264            if '2' in Flds[2]:
265                return '-62m',[-1,-1,1]
266            else:
267                return '-6m2',[-1,1,-1]                 
268        elif '2' in Flds[2:]:
269            return '622',[1,-1,-1]
270        else:
271            return '6mm',[1,1,1]   
272    elif SGData['SGLaue'] == 'm3':      #cubic - no (3+1) supersymmetry
273        if '2' in Flds[1]:
274            return '23',[]
275        else: 
276            return 'm3',[]
277    elif SGData['SGLaue'] == 'm3m':
278        if '4' in Flds[1]:
279            if '-' in Flds[1]:
280                return '-43m',[]
281            else:
282                return '432',[]
283        else:
284            return 'm-3m',[]
285   
286def SGPrint(SGData):
287    '''
288    Print the output of SpcGroup in a nicely formatted way. Used in SpaceGroup
289
290    :param SGData: from :func:`SpcGroup`
291    :returns:
292        SGText - list of strings with the space group details
293        SGTable - list of strings for each of the operations
294    '''
295    Mult = len(SGData['SGCen'])*len(SGData['SGOps'])*(int(SGData['SGInv'])+1)
296    SGText = []
297    SGText.append(' Space Group: '+SGData['SpGrp'])
298    CentStr = 'centrosymmetric'
299    if not SGData['SGInv']:
300        CentStr = 'non'+CentStr
301    if SGData['SGLatt'] in 'ABCIFR':
302        SGText.append(' The lattice is '+CentStr+' '+SGData['SGLatt']+'-centered '+SGData['SGSys'].lower())
303    else:
304        SGText.append(' The lattice is '+CentStr+' '+'primitive '+SGData['SGSys'].lower()) 
305    SGText.append(' The Laue symmetry is '+SGData['SGLaue'])
306    if 'SGPtGrp' in SGData:         #patch
307        SGText.append(' The lattice point group is '+SGData['SGPtGrp'])
308    SGText.append(' Multiplicity of a general site is '+str(Mult))
309    if SGData['SGUniq'] in ['a','b','c']:
310        SGText.append(' The unique monoclinic axis is '+SGData['SGUniq'])
311    if SGData['SGInv']:
312        SGText.append(' The inversion center is located at 0,0,0')
313    if SGData['SGPolax']:
314        SGText.append(' The location of the origin is arbitrary in '+SGData['SGPolax'])
315    SGText.append(' ')
316    if SGData['SGLatt'] == 'P':
317        SGText.append(' The equivalent positions are:\n')
318    else:   
319        SGText.append(' The equivalent positions are:')
320        SGText.append(' ('+Latt2text(SGData['SGLatt'])+')+\n')
321    SGTable = []
322    for i,Opr in enumerate(SGData['SGOps']):
323        SGTable.append('(%2d) %s'%(i+1,MT2text(Opr)))
324    return SGText,SGTable
325
326def AllOps(SGData):
327    '''
328    Returns a list of all operators for a space group, including those for
329    centering and a center of symmetry
330   
331    :param SGData: from :func:`SpcGroup`
332    :returns: (SGTextList,offsetList,symOpList,G2oprList) where
333
334      * SGTextList: a list of strings with formatted and normalized
335        symmetry operators.
336      * offsetList: a tuple of (dx,dy,dz) offsets that relate the GSAS-II
337        symmetry operation to the operator in SGTextList and symOpList.
338        these dx (etc.) values are added to the GSAS-II generated
339        positions to provide the positions that are generated
340        by the normalized symmetry operators.       
341      * symOpList: a list of tuples with the normalized symmetry
342        operations as (M,T) values
343        (see ``SGOps`` in the :ref:`Space Group object<SGData_table>`)
344      * G2oprList: The GSAS-II operations for each symmetry operation as
345        a tuple with (center,mult,opnum), where center is (0,0,0), (0.5,0,0),
346        (0.5,0.5,0.5),...; where mult is 1 or -1 for the center of symmetry
347        and opnum is the number for the symmetry operation, in ``SGOps``
348        (starting with 0).
349    '''
350    SGTextList = []
351    offsetList = []
352    symOpList = []
353    G2oprList = []
354    onebar = (1,)
355    if SGData['SGInv']:
356        onebar += (-1,)
357    for cen in SGData['SGCen']:
358        for mult in onebar:
359            for j,(M,T) in enumerate(SGData['SGOps']):
360                offset = [0,0,0]
361                Tprime = (mult*T)+cen
362                for i in range(3):
363                    while Tprime[i] < 0:
364                        Tprime[i] += 1
365                        offset[i] += 1
366                    while Tprime[i] >= 1:
367                        Tprime[i] += -1
368                        offset[i] += -1
369                Opr = [mult*M,Tprime]
370                OPtxt = MT2text(Opr)
371                SGTextList.append(OPtxt.replace(' ',''))
372                offsetList.append(tuple(offset))
373                symOpList.append((mult*M,Tprime))
374                G2oprList.append((cen,mult,j))
375    return SGTextList,offsetList,symOpList,G2oprList
376   
377def MT2text(Opr):
378    "From space group matrix/translation operator returns text version"
379    XYZ = ('-Z','-Y','-X','X-Y','ERR','Y-X','X','Y','Z')
380    TRA = ('   ','ERR','1/6','1/4','1/3','ERR','1/2','ERR','2/3','3/4','5/6','ERR')
381    Fld = ''
382    M,T = Opr
383    for j in range(3):
384        IJ = int(round(2*M[j][0]+3*M[j][1]+4*M[j][2]+4))%12
385        IK = int(round(T[j]*12))%12
386        if IK:
387            if IJ < 3:
388                Fld += (TRA[IK]+XYZ[IJ]).rjust(5)
389            else:
390                Fld += (TRA[IK]+'+'+XYZ[IJ]).rjust(5)
391        else:
392            Fld += XYZ[IJ].rjust(5)
393        if j != 2: Fld += ', '
394    return Fld
395   
396def Latt2text(Latt):
397    "From lattice type ('P',A', etc.) returns ';' delimited cell centering vectors"
398    lattTxt = {'A':'0,0,0; 0,1/2,1/2','B':'0,0,0; 1/2,0,1/2',
399        'C':'0,0,0; 1/2,1/2,0','I':'0,0,0; 1/2,1/2,1/2',
400        'F':'0,0,0; 0,1/2,1/2; 1/2,0,1/2; 1/2,1/2,0',
401        'R':'0,0,0; 1/3,2/3,2/3; 2/3,1/3,1/3','P':'0,0,0'}
402    return lattTxt[Latt]   
403       
404def SpaceGroup(SGSymbol):
405    '''
406    Print the output of SpcGroup in a nicely formatted way.
407
408    :param SGSymbol: space group symbol (string) with spaces between axial fields
409    :returns: nothing
410    '''
411    E,A = SpcGroup(SGSymbol)
412    if E > 0:
413        print SGErrors(E)
414        return
415    for l in SGPrint(A):
416        print l
417       
418################################################################################
419#### Superspace group codes
420################################################################################
421       
422def SSpcGroup(SGData,SSymbol):
423    """
424    Determines supersymmetry information from superspace group name; currently only for (3+1) superlattices
425
426    :param SGData: space group data structure as defined in SpcGroup above (see :ref:`SGData<SGData_table>`).
427    :param SSymbol: superspace group symbol extension (string) defining modulation direction & generator info.
428    :returns: (SSGError,SSGData)
429   
430       * SGError = 0 for no errors; >0 for errors (see SGErrors below for details)
431       * SSGData - is a dict (see :ref:`Superspace Group object<SSGData_table>`) with entries:
432       
433             * 'SSpGrp': superspace group symbol extension to space group symbol, accidental spaces removed
434             * 'SSGCen': 4D cell centering vectors [0,0,0,0] at least
435             * 'SSGOps': 4D symmetry operations as [M,T] so that M*x+T = x'
436
437    """
438   
439    def checkModSym():
440        '''
441        Checks to see if proposed modulation form is allowed for Laue group
442        '''
443        if LaueId in [0,] and LaueModId in [0,]:
444            return True
445        elif LaueId in [1,]:
446            try:
447                if modsym.index('1/2') != ['A','B','C'].index(SGData['SGLatt']):
448                    return False
449                if 'I'.index(SGData['SGLatt']) and modsym.count('1/2') not in [0,2]:
450                    return False
451            except ValueError:
452                pass
453            if SGData['SGUniq'] == 'a' and LaueModId in [5,6,7,8,9,10,]:
454                return True
455            elif SGData['SGUniq'] == 'b' and LaueModId in [3,4,13,14,15,16,]:
456                return True
457            elif SGData['SGUniq'] == 'c' and LaueModId in [1,2,19,20,21,22,]:
458                return True
459        elif LaueId in [2,] and LaueModId in [i+7 for i in range(18)]:
460            try:
461                if modsym.index('1/2') != ['A','B','C'].index(SGData['SGLatt']):
462                    return False
463                if SGData['SGLatt'] in ['I','F',] and modsym.index('1/2'):
464                    return False
465            except ValueError:
466                pass
467            return True
468        elif LaueId in [3,4,] and LaueModId in [19,22,]:
469            try:
470                if SGData['SGLatt'] == 'I' and modsym.count('1/2'):
471                    return False
472            except ValueError:
473                pass
474            return True
475        elif LaueId in [7,8,9,] and LaueModId in [19,25,]:
476            if (SGData['SGLatt'] == 'R' or SGData['SGPtGrp'] in ['3m1','-3m1']) and modsym.count('1/3'):
477                return False
478            return True
479        elif LaueId in [10,11,] and LaueModId in [19,]:
480            return True
481        return False
482       
483    def fixMonoOrtho():
484        mod = ''.join(modsym).replace('1/2','0').replace('1','0')
485        if SGData['SGPtGrp'] in ['2','m']:  #OK
486            if mod in ['a00','0b0','00g']:
487                result = [i*-1 for i in SGData['SSGKl']]
488            else:
489                result = SGData['SSGKl'][:]
490            if '/' in mod:
491                return [i*-1 for i in result]
492            else:
493                return result
494        elif SGData['SGPtGrp'] == '2/m':    #OK
495            if mod in ['a00','0b0','00g']:
496                result =  SGData['SSGKl'][:]
497            else:
498                result = [i*-1 for i in SGData['SSGKl']]
499            if '/' in mod:
500                return [i*-1 for i in result]
501            else:
502                return result
503        else:   #orthorhombic
504            return [-SSGKl[i] if mod[i] in ['a','b','g'] else SSGKl[i] for i in range(3)]
505               
506    def extendSSGOps(SSGOps):
507        nOps = len(SSGOps)
508        for OpA in SSGOps:
509            OpAtxt = SSMT2text(OpA)
510            if 't' not in OpAtxt:
511                continue
512            for OpB in SSGOps:
513                OpBtxt = SSMT2text(OpB)
514                if 't' not in OpBtxt:
515                    continue
516                OpC = list(SGProd(OpB,OpA))
517                OpC[1] %= 1.
518                OpCtxt = SSMT2text(OpC)
519#                print OpAtxt.replace(' ','')+' * '+OpBtxt.replace(' ','')+' = '+OpCtxt.replace(' ','')
520                for k,OpD in enumerate(SSGOps):
521                    OpDtxt = SSMT2text(OpD)
522                    if 't' in OpDtxt:
523                        continue
524#                    print '    ('+OpCtxt.replace(' ','')+' = ? '+OpDtxt.replace(' ','')+')'
525                    if OpCtxt == OpDtxt:
526                        continue
527                    elif OpCtxt.split(',')[:3] == OpDtxt.split(',')[:3]:
528                        if 't' not in OpDtxt:
529                            SSGOps[k] = OpC
530#                            print k,'   new:',OpCtxt.replace(' ','')
531                            break
532                        else:
533                            OpCtxt = OpCtxt.replace(' ','')
534                            OpDtxt = OpDtxt.replace(' ','')
535                            Txt = OpCtxt+' conflict with '+OpDtxt
536                            print Txt
537                            return False,Txt
538        return True,SSGOps
539       
540    def findMod(modSym):
541        for a in ['a','b','g']:
542            if a in modSym:
543                return a
544               
545    def genSSGOps():
546        SSGOps = SSGData['SSGOps'][:]
547        iFrac = {}
548        for i,frac in enumerate(SSGData['modSymb']):
549            if frac in ['1/2','1/3','1/4','1/6','1']:
550                iFrac[i] = frac+'.'
551#        print SGData['SpGrp']+SSymbol
552#        print 'SSGKl',SSGKl,'genQ',genQ,'iFrac',iFrac,'modSymb',SSGData['modSymb']
553# set identity & 1,-1; triclinic
554        SSGOps[0][0][3,3] = 1.
555## expand if centrosymmetric
556#        if SGData['SGInv']:
557#            SSGOps += [[-1*M,V] for M,V in SSGOps[:]]
558# monoclinic - all done & all checked
559        if SGData['SGPtGrp'] in ['2','m']:  #OK
560            SSGOps[1][0][3,3] = SSGKl[0]
561            SSGOps[1][1][3] = genQ[0]
562            for i in iFrac:
563                SSGOps[1][0][3,i] = -SSGKl[0]
564        elif SGData['SGPtGrp'] == '2/m':    #OK
565            SSGOps[1][0][3,3] = SSGKl[1]
566            if gensym:
567                SSGOps[1][1][3] = 0.5
568            for i in iFrac:
569                SSGOps[1][0][3,i] = SSGKl[0]
570           
571# orthorhombic - all OK not fully checked
572        elif SGData['SGPtGrp'] in ['222','mm2','m2m','2mm']:    #OK
573            if SGData['SGPtGrp'] == '222':
574                OrOps = {'g':{0:[1,3],1:[2,3]},'a':{1:[1,2],2:[1,3]},'b':{2:[3,2],0:[1,2]}} #OK
575            elif SGData['SGPtGrp'] == 'mm2':
576                OrOps = {'g':{0:[1,3],1:[2,3]},'a':{1:[2,1],2:[3,1]},'b':{0:[1,2],2:[3,2]}} #OK
577            elif SGData['SGPtGrp'] == 'm2m':
578                OrOps = {'b':{0:[1,2],2:[3,2]},'g':{0:[1,3],1:[2,3]},'a':{1:[2,1],2:[3,1]}} #OK
579            elif SGData['SGPtGrp'] == '2mm':
580                OrOps = {'a':{1:[2,1],2:[3,1]},'b':{0:[1,2],2:[3,2]},'g':{0:[1,3],1:[2,3]}} #OK
581            a = findMod(SSGData['modSymb'])
582            OrFrac = OrOps[a]
583            for j in iFrac:
584                for i in OrFrac[j]:
585                    SSGOps[i][0][3,j] = -2.*eval(iFrac[j])*SSGKl[i-1]
586            for i in [0,1,2]:
587                SSGOps[i+1][0][3,3] = SSGKl[i]
588                SSGOps[i+1][1][3] = genQ[i]
589                E,SSGOps = extendSSGOps(SSGOps)
590                if not E:
591                    return E,SSGOps
592        elif SGData['SGPtGrp'] == 'mmm':    #OK
593            OrOps = {'g':{0:[1,3],1:[2,3]},'a':{1:[2,1],2:[3,1]},'b':{0:[1,2],2:[3,2]}} 
594            a = findMod(SSGData['modSymb'])
595            if a == 'g':
596                SSkl = [1,1,1]
597            elif a == 'a':
598                SSkl = [-1,1,-1]
599            else:
600                SSkl = [1,-1,-1]
601            OrFrac = OrOps[a]
602            for j in iFrac:
603                for i in OrFrac[j]:
604                    SSGOps[i][0][3,j] = -2.*eval(iFrac[j])*SSkl[i-1]
605            for i in [0,1,2]:
606                SSGOps[i+1][0][3,3] = SSkl[i]
607                SSGOps[i+1][1][3] = genQ[i]
608                E,SSGOps = extendSSGOps(SSGOps)
609                if not E:
610                    return E,SSGOps               
611# tetragonal - all done & checked
612        elif SGData['SGPtGrp'] == '4':  #OK
613            SSGOps[1][0][3,3] = SSGKl[0]
614            SSGOps[1][1][3] = genQ[0]
615            if '1/2' in SSGData['modSymb']:
616                SSGOps[1][0][3,1] = -1
617        elif SGData['SGPtGrp'] == '-4': #OK
618            SSGOps[1][0][3,3] = SSGKl[0]
619            if '1/2' in SSGData['modSymb']:
620                SSGOps[1][0][3,1] = 1
621        elif SGData['SGPtGrp'] in ['4/m',]: #OK
622            if '1/2' in SSGData['modSymb']:
623                SSGOps[1][0][3,1] = -SSGKl[0]
624            for i,j in enumerate([1,3]):
625                SSGOps[j][0][3,3] = 1
626                if genQ[i]:
627                    SSGOps[j][1][3] = genQ[i]
628                E,SSGOps = extendSSGOps(SSGOps)
629                if not E:
630                    return E,SSGOps
631        elif SGData['SGPtGrp'] in ['422','4mm','-42m','-4m2',]: #OK
632            iGens = [1,4,5]
633            if SGData['SGPtGrp'] in ['4mm','-4m2',]:
634                iGens = [1,6,7]
635            for i,j in enumerate(iGens):
636                if '1/2' in SSGData['modSymb'] and i < 2:
637                    SSGOps[j][0][3,1] = SSGKl[i]
638                SSGOps[j][0][3,3] = SSGKl[i]
639                if genQ[i]:
640                    if 's' in gensym and j == 6:
641                        SSGOps[j][1][3] = -genQ[i]
642                    else:
643                        SSGOps[j][1][3] = genQ[i]
644                E,SSGOps = extendSSGOps(SSGOps)
645                if not E:
646                    return E,SSGOps
647        elif SGData['SGPtGrp'] in ['4/mmm',]:#OK
648            if '1/2' in SSGData['modSymb']:
649                SSGOps[1][0][3,1] = -SSGKl[0]
650                SSGOps[6][0][3,1] = SSGKl[1]
651                if modsym:
652                   SSGOps[1][1][3]  = -genQ[3]
653            for i,j in enumerate([1,2,6,7]):
654                SSGOps[j][0][3,3] = 1
655                SSGOps[j][1][3] = genQ[i]
656                E,Result = extendSSGOps(SSGOps)
657                if not E:
658                    return E,Result
659                else:
660                    SSGOps = Result
661               
662# trigonal - all done & checked
663        elif SGData['SGPtGrp'] == '3':  #OK
664            SSGOps[1][0][3,3] = SSGKl[0]
665            if '1/3' in SSGData['modSymb']:
666                SSGOps[1][0][3,1] = -1
667            SSGOps[1][1][3] = genQ[0]
668        elif SGData['SGPtGrp'] == '-3': #OK
669            SSGOps[1][0][3,3] = -SSGKl[0]
670            if '1/3' in SSGData['modSymb']:
671                SSGOps[1][0][3,1] = -1
672            SSGOps[1][1][3] = genQ[0]
673        elif SGData['SGPtGrp'] in ['312','3m','-3m','-3m1','3m1']:   #OK
674            if '1/3' in SSGData['modSymb']:
675                SSGOps[1][0][3,1] = -1
676            for i,j in enumerate([1,5]):
677                if SGData['SGPtGrp'] in ['3m','-3m']:
678                    SSGOps[j][0][3,3] = 1
679                else:                   
680                    SSGOps[j][0][3,3] = SSGKl[i+1]
681                if genQ[i]:
682                    SSGOps[j][1][3] = genQ[i]
683        elif SGData['SGPtGrp'] in ['321','32']:   #OK
684            for i,j in enumerate([1,4]):
685                SSGOps[j][0][3,3] = SSGKl[i]
686                if genQ[i]:
687                    SSGOps[j][1][3] = genQ[i]
688        elif SGData['SGPtGrp'] in ['31m','-31m']:   #OK
689            ids = [1,3]
690            if SGData['SGPtGrp'] == '-31m':
691                ids = [1,3]
692            if '1/3' in SSGData['modSymb']:
693                SSGOps[ids[0]][0][3,1] = -SSGKl[0]
694            for i,j in enumerate(ids):
695                SSGOps[j][0][3,3] = 1
696                if genQ[i+1]:
697                    SSGOps[j][1][3] = genQ[i+1]
698                     
699# hexagonal all done & checked
700        elif SGData['SGPtGrp'] == '6':  #OK
701            SSGOps[1][0][3,3] = SSGKl[0]
702            SSGOps[1][1][3] = genQ[0]
703        elif SGData['SGPtGrp'] == '-6': #OK
704            SSGOps[1][0][3,3] = SSGKl[0]
705        elif SGData['SGPtGrp'] in ['6/m',]: #OK
706            SSGOps[1][0][3,3] = -SSGKl[1]
707            SSGOps[1][1][3] = genQ[0]
708            SSGOps[2][1][3] = genQ[1]
709        elif SGData['SGPtGrp'] in ['622',]: #OK
710            for i,j in enumerate([1,8,9]):
711                SSGOps[j][0][3,3] = SSGKl[i]
712                if genQ[i]:
713                    SSGOps[j][1][3] = genQ[i]
714                E,SSGOps = extendSSGOps(SSGOps)
715           
716        elif SGData['SGPtGrp'] in ['6mm','-62m','-6m2',]: #OK
717            for i,j in enumerate([1,6,7]):
718                SSGOps[j][0][3,3] = SSGKl[i]
719                if genQ[i]:
720                    SSGOps[j][1][3] = genQ[i]
721                E,SSGOps = extendSSGOps(SSGOps)
722        elif SGData['SGPtGrp'] in ['6/mmm',]: # OK
723            for i,j in enumerate([1,2,10,11]):
724                SSGOps[j][0][3,3] = 1
725                if genQ[i]:
726                    SSGOps[j][1][3] = genQ[i]
727                E,SSGOps = extendSSGOps(SSGOps)
728        elif SGData['SGPtGrp'] in ['1','-1']: #triclinic - done
729            return True,SSGOps
730        E,SSGOps = extendSSGOps(SSGOps)
731        return E,SSGOps
732       
733    def specialGen(gensym,modsym):
734        sym = ''.join(gensym)
735        if SGData['SGPtGrp'] in ['2/m',] and 'n' in SGData['SpGrp']:
736            if 's' in sym:
737                gensym = 'ss'
738        if SGData['SGPtGrp'] in ['-62m',] and sym == '00s':
739            gensym = '0ss'
740        elif SGData['SGPtGrp'] in ['222',]:
741            if sym == '00s':
742                gensym = '0ss'
743            elif sym == '0s0':
744                gensym = 'ss0'
745            elif sym == 's00':
746                gensym = 's0s'
747        elif SGData['SGPtGrp'] in ['mmm',]:
748            if 'g' in modsym:
749                if sym == 's00':
750                    gensym = 's0s'
751                elif sym == '0s0':
752                    gensym = '0ss'
753            elif 'a' in modsym:
754                if sym == '0s0':
755                    gensym = 'ss0'
756                elif sym == '00s':
757                    gensym = 's0s'
758            elif 'b' in modsym:
759                if sym == '00s':
760                    gensym = '0ss'
761                elif sym == 's00':
762                    gensym = 'ss0'
763        return gensym
764                   
765    def checkGen(gensym):
766        '''
767    GenSymList = ['','s','0s','s0', '00s','0s0','s00','s0s','ss0','0ss','q00','0q0','00q','qq0','q0q', '0qq',
768        'q','qqs','s0s0','00ss','s00s','t','t00','t0','h','h00','000s']
769        '''
770        sym = ''.join(gensym)
771# monoclinic - all done
772        if str(SSGKl) == '[-1]' and sym == 's':
773            return False
774        elif SGData['SGPtGrp'] in ['2/m',]:
775            if str(SSGKl) == '[-1, 1]' and sym == '0s':
776                return False
777            elif str(SSGKl) == '[1, -1]' and sym == 's0':
778                return False
779#orthorhombic - all
780        elif SGData['SGPtGrp'] in ['222',] and sym not in ['','s00','0s0','00s']:
781            return False 
782        elif SGData['SGPtGrp'] in ['2mm','m2m','mm2','mmm'] and sym not in ['',]+GenSymList[4:16]:
783            return False 
784#tetragonal - all done
785        elif SGData['SGPtGrp'] in ['4',] and sym not in ['','s','q']:
786            return False 
787        elif SGData['SGPtGrp'] in ['-4',] and sym not in ['',]:
788            return False             
789        elif SGData['SGPtGrp'] in ['4/m',] and sym not in ['','s0','q0']:
790            return False
791        elif SGData['SGPtGrp'] in ['422',] and sym not in ['','q00','s00']:
792            return False         
793        elif SGData['SGPtGrp'] in ['4mm',] and sym not in ['','ss0','s0s','0ss','00s','qq0','qqs']:
794            return False
795        elif SGData['SGPtGrp'] in ['-4m2',] and sym not in ['','0s0','0q0']:
796            return False
797        elif SGData['SGPtGrp'] in ['-42m',] and sym not in ['','0ss','00q',]:
798            return False
799        elif SGData['SGPtGrp'] in ['4/mmm',] and sym not in ['','s00s','s0s0','00ss','000s',]:
800            return False
801#trigonal/rhombohedral - all done
802        elif SGData['SGPtGrp'] in ['3',] and sym not in ['','t']:
803            return False 
804        elif SGData['SGPtGrp'] in ['-3',] and sym not in ['',]:
805            return False 
806        elif SGData['SGPtGrp'] in ['32',] and sym not in ['','t0']:
807            return False 
808        elif SGData['SGPtGrp'] in ['321','312'] and sym not in ['','t00']:
809            return False 
810        elif SGData['SGPtGrp'] in ['3m','-3m'] and sym not in ['','0s']:
811            return False 
812        elif SGData['SGPtGrp'] in ['3m1','-3m1'] and sym not in ['','0s0']:
813            return False 
814        elif SGData['SGPtGrp'] in ['31m','-31m'] and sym not in ['','00s']:
815            return False 
816#hexagonal - all done
817        elif SGData['SGPtGrp'] in ['6',] and sym not in ['','s','h','t']:
818            return False 
819        elif SGData['SGPtGrp'] in ['-6',] and sym not in ['',]:
820            return False
821        elif SGData['SGPtGrp'] in ['6/m',] and sym not in ['','s0']:
822            return False
823        elif SGData['SGPtGrp'] in ['622',] and sym not in ['','h00','t00','s00']:
824            return False         
825        elif SGData['SGPtGrp'] in ['6mm',] and sym not in ['','ss0','s0s','0ss']:
826            return False
827        elif SGData['SGPtGrp'] in ['-6m2',] and sym not in ['','0s0']:
828            return False
829        elif SGData['SGPtGrp'] in ['-62m',] and sym not in ['','00s']:
830            return False
831        elif SGData['SGPtGrp'] in ['6/mmm',] and sym not in ['','s00s','s0s0','00ss']:
832            return False
833        return True
834       
835    LaueModList = [
836        'abg','ab0','ab1/2','a0g','a1/2g',  '0bg','1/2bg','a00','a01/2','a1/20',
837        'a1/21/2','a01','a10','0b0','0b1/2', '1/2b0','1/2b1/2','0b1','1b0','00g',
838        '01/2g','1/20g','1/21/2g','01g','10g', '1/31/3g']
839    LaueList = ['-1','2/m','mmm','4/m','4/mmm','3R','3mR','3','3m1','31m','6/m','6/mmm','m3','m3m']
840    GenSymList = ['','s','0s','s0', '00s','0s0','s00','s0s','ss0','0ss','q00','0q0','00q','qq0','q0q', '0qq',
841        'q','qqs','s0s0','00ss','s00s','t','t00','t0','h','h00','000s']
842    Fracs = {'1/2':0.5,'1/3':1./3,'1':1.0,'0':0.,'s':.5,'t':1./3,'q':.25,'h':1./6,'a':0.,'b':0.,'g':0.}
843    LaueId = LaueList.index(SGData['SGLaue'])
844    if SGData['SGLaue'] in ['m3','m3m']:
845        return '(3+1) superlattices not defined for cubic space groups',None
846    elif SGData['SGLaue'] in ['3R','3mR']:
847        return '(3+1) superlattices not defined for rhombohedral settings - use hexagonal setting',None
848    try:
849        modsym,gensym = splitSSsym(SSymbol)
850    except ValueError:
851        return 'Error in superspace symbol '+SSymbol,None
852    if ''.join(gensym) not in GenSymList:
853        return 'unknown generator symbol '+''.join(gensym),None
854    try:
855        LaueModId = LaueModList.index(''.join(modsym))
856    except ValueError:
857        return 'Unknown modulation symbol '+''.join(modsym),None
858    if not checkModSym():
859        return 'Modulation '+''.join(modsym)+' not consistent with space group '+SGData['SpGrp'],None
860    modQ = [Fracs[mod] for mod in modsym]
861    SSGKl = SGData['SSGKl'][:]
862    if SGData['SGLaue'] in ['2/m','mmm']:
863        SSGKl = fixMonoOrtho()
864    if len(gensym) and len(gensym) != len(SSGKl):
865        return 'Wrong number of items in generator symbol '+''.join(gensym),None
866    if not checkGen(gensym):
867        return 'Generator '+''.join(gensym)+' not consistent with space group '+SGData['SpGrp'],None
868    gensym = specialGen(gensym,modsym)
869    genQ = [Fracs[mod] for mod in gensym]
870    if not genQ:
871        genQ = [0,0,0,0]
872    SSGData = {'SSpGrp':SGData['SpGrp']+SSymbol,'modQ':modQ,'modSymb':modsym,'SSGKl':SSGKl}
873    SSCen = np.zeros((len(SGData['SGCen']),4))
874    for icen,cen in enumerate(SGData['SGCen']):
875        SSCen[icen,0:3] = cen
876    SSCen[0] = np.zeros(4)
877    SSGData['SSGCen'] = SSCen
878    SSGData['SSGOps'] = []
879    for iop,op in enumerate(SGData['SGOps']):
880        T = np.zeros(4)
881        ssop = np.zeros((4,4))
882        ssop[:3,:3] = op[0]
883        T[:3] = op[1]
884        SSGData['SSGOps'].append([ssop,T])
885    E,Result = genSSGOps()
886    if E:
887        SSGData['SSGOps'] = Result
888        if DEBUG:
889            print 'Super spacegroup operators for '+SSGData['SSpGrp']
890            for Op in Result:
891                print SSMT2text(Op).replace(' ','')
892            if SGData['SGInv']:                                 
893                for Op in Result:
894                    Op = [-Op[0],-Op[1]%1.]
895                    print SSMT2text(Op).replace(' ','')                                 
896        return None,SSGData
897    else:
898        return Result+'\nOperator conflict - incorrect superspace symbol',None
899
900def splitSSsym(SSymbol):
901    '''
902    Splits supersymmetry symbol into two lists of strings
903    '''
904    modsym,gensym = SSymbol.replace(' ','').split(')')
905    if gensym in ['0','00','000','0000']:       #get rid of extraneous symbols
906        gensym = ''
907    nfrac = modsym.count('/')
908    modsym = modsym.lstrip('(')
909    if nfrac == 0:
910        modsym = list(modsym)
911    elif nfrac == 1:
912        pos = modsym.find('/')
913        if pos == 1:
914            modsym = [modsym[:3],modsym[3],modsym[4]]
915        elif pos == 2:
916            modsym = [modsym[0],modsym[1:4],modsym[4]]
917        else:
918            modsym = [modsym[0],modsym[1],modsym[2:]]
919    else:
920        lpos = modsym.find('/')
921        rpos = modsym.rfind('/')
922        if lpos == 1 and rpos == 4:
923            modsym = [modsym[:3],modsym[3:6],modsym[6]]
924        elif lpos == 1 and rpos == 5:
925            modsym = [modsym[:3],modsym[3],modsym[4:]]
926        else:
927            modsym = [modsym[0],modsym[1:4],modsym[4:]]
928    gensym = list(gensym)
929    return modsym,gensym
930       
931def SSGPrint(SGData,SSGData):
932    '''
933    Print the output of SSpcGroup in a nicely formatted way. Used in SSpaceGroup
934
935    :param SGData: space group data structure as defined in SpcGroup above.
936    :param SSGData: from :func:`SSpcGroup`
937    :returns:
938        SSGText - list of strings with the superspace group details
939        SGTable - list of strings for each of the operations
940    '''
941    Mult = len(SSGData['SSGCen'])*len(SSGData['SSGOps'])*(int(SGData['SGInv'])+1)
942    SSGText = []
943    SSGText.append(' Superspace Group: '+SSGData['SSpGrp'])
944    CentStr = 'centrosymmetric'
945    if not SGData['SGInv']:
946        CentStr = 'non'+CentStr
947    if SGData['SGLatt'] in 'ABCIFR':
948        SSGText.append(' The lattice is '+CentStr+' '+SGData['SGLatt']+'-centered '+SGData['SGSys'].lower())
949    else:
950        SSGText.append(' The superlattice is '+CentStr+' '+'primitive '+SGData['SGSys'].lower())       
951    SSGText.append(' The Laue symmetry is '+SGData['SGLaue'])
952    SSGText.append(' The superlattice point group is '+SGData['SGPtGrp']+', '+''.join([str(i) for i in SSGData['SSGKl']]))
953    SSGText.append(' The number of superspace group generators is '+str(len(SGData['SSGKl'])))
954    SSGText.append(' Multiplicity of a general site is '+str(Mult))
955    if SGData['SGUniq'] in ['a','b','c']:
956        SSGText.append(' The unique monoclinic axis is '+SGData['SGUniq'])
957    if SGData['SGInv']:
958        SSGText.append(' The inversion center is located at 0,0,0')
959    if SGData['SGPolax']:
960        SSGText.append(' The location of the origin is arbitrary in '+SGData['SGPolax'])
961    SSGText.append(' ')
962    if len(SSGData['SSGCen']) > 1:
963        SSGText.append(' The equivalent positions are:')
964        SSGText.append(' ('+SSLatt2text(SSGData['SSGCen'])+')+\n')
965    else:
966        SSGText.append(' The equivalent positions are:\n')
967    SSGTable = []
968    for i,Opr in enumerate(SSGData['SSGOps']):
969        SSGTable.append('(%2d) %s'%(i+1,SSMT2text(Opr)))
970    return SSGText,SSGTable
971   
972def SSGModCheck(Vec,modSymb):
973    ''' Checks modulation vector compatibility with supersymmetry space group symbol.
974    Superspace group symbol takes precidence & the vector will be modified accordingly
975    '''
976    Fracs = {'1/2':0.5,'1/3':1./3,'1':1.0,'0':0.,'a':0.,'b':0.,'g':0.}
977    modQ = [Fracs[mod] for mod in modSymb]
978    Vec = [0.1 if (vec == 0.0 and mod in ['a','b','g']) else vec for [vec,mod] in zip(Vec,modSymb)]
979    return [Q if mod not in ['a','b','g'] and vec != Q else vec for [vec,mod,Q] in zip(Vec,modSymb,modQ)],  \
980        [True if mod in ['a','b','g'] else False for mod in modSymb]
981
982def SSMT2text(Opr):
983    "From superspace group matrix/translation operator returns text version"
984    XYZS = ('x','y','z','t')    #Stokes, Campbell & van Smaalen notation
985    TRA = ('   ','ERR','1/6','1/4','1/3','ERR','1/2','ERR','2/3','3/4','5/6','ERR')
986    Fld = ''
987    M,T = Opr
988    for j in range(4):
989        IJ = ''
990        for k in range(4):
991            txt = str(int(round(M[j][k])))
992            txt = txt.replace('1',XYZS[k]).replace('0','')
993            if '2' in txt:
994                txt += XYZS[k]
995            if IJ and M[j][k] > 0:
996                IJ += '+'+txt
997            else:
998                IJ += txt
999        IK = int(round(T[j]*12))%12
1000        if IK:
1001            if not IJ:
1002                break
1003            if IJ[0] == '-':
1004                Fld += (TRA[IK]+IJ).rjust(8)
1005            else:
1006                Fld += (TRA[IK]+'+'+IJ).rjust(8)
1007        else:
1008            Fld += IJ.rjust(8)
1009        if j != 3: Fld += ', '
1010    return Fld
1011   
1012def SSLatt2text(SSGCen):
1013    "Lattice centering vectors to text"
1014    lattTxt = ''
1015    for vec in SSGCen:
1016        lattTxt += ' '
1017        for item in vec:
1018            if int(item*12.):
1019                lattTxt += '1/%d,'%(12/int(item*12))
1020            else:
1021                lattTxt += '0,'
1022        lattTxt = lattTxt.rstrip(',')
1023        lattTxt += ';'
1024    lattTxt = lattTxt.rstrip(';').lstrip(' ')
1025    return lattTxt
1026       
1027def SSpaceGroup(SGSymbol,SSymbol):
1028    '''
1029    Print the output of SSpcGroup in a nicely formatted way.
1030
1031    :param SGSymbol: space group symbol with spaces between axial fields.
1032    :param SSymbol: superspace group symbol extension (string).
1033    :returns: nothing
1034    '''
1035
1036    E,A = SpcGroup(SGSymbol)
1037    if E > 0:
1038        print SGErrors(E)
1039        return
1040    E,B = SSpcGroup(A,SSymbol)   
1041    if E > 0:
1042        print E
1043        return
1044    for l in SSGPrint(B):
1045        print l
1046       
1047def SGProd(OpA,OpB):
1048    '''
1049    Form space group operator product. OpA & OpB are [M,V] pairs;
1050        both must be of same dimension (3 or 4). Returns [M,V] pair
1051    '''
1052    A,U = OpA
1053    B,V = OpB
1054    M = np.inner(B,A.T)
1055    W = np.inner(B,U)+V
1056    return M,W
1057       
1058def MoveToUnitCell(xyz):
1059    '''
1060    Translates a set of coordinates so that all values are >=0 and < 1
1061
1062    :param xyz: a list or numpy array of fractional coordinates
1063    :returns: XYZ - numpy array of new coordinates now 0 or greater and less than 1
1064    '''
1065    XYZ = (xyz+10.)%1.
1066    cell = np.asarray(np.rint(xyz-XYZ),dtype=np.int32)
1067    return XYZ,cell
1068       
1069def Opposite(XYZ,toler=0.0002):
1070    '''
1071    Gives opposite corner, edge or face of unit cell for position within tolerance.
1072        Result may be just outside the cell within tolerance
1073
1074    :param XYZ: 0 >= np.array[x,y,z] > 1 as by MoveToUnitCell
1075    :param toler: unit cell fraction tolerance making opposite
1076    :returns:
1077        XYZ: dict of opposite positions; key=unit cell & always contains XYZ
1078    '''
1079    perm3 = [[1,1,1],[0,1,1],[1,0,1],[1,1,0],[1,0,0],[0,1,0],[0,0,1],[0,0,0]]
1080    TB = np.where(abs(XYZ-1)<toler,-1,0)+np.where(abs(XYZ)<toler,1,0)
1081    perm = TB*perm3
1082    cperm = ['%d,%d,%d'%(i,j,k) for i,j,k in perm]
1083    D = dict(zip(cperm,perm))
1084    new = {}
1085    for key in D:
1086        new[key] = np.array(D[key])+np.array(XYZ)
1087    return new
1088       
1089def GenAtom(XYZ,SGData,All=False,Uij=[],Move=True):
1090    '''
1091    Generates the equivalent positions for a specified coordinate and space group
1092
1093    :param XYZ: an array, tuple or list containing 3 elements: x, y & z
1094    :param SGData: from :func:`SpcGroup`
1095    :param All: True return all equivalent positions including duplicates;
1096      False return only unique positions
1097    :param Uij: [U11,U22,U33,U12,U13,U23] or [] if no Uij
1098    :param Move: True move generated atom positions to be inside cell
1099      False do not move atoms       
1100    :return: [[XYZEquiv],Idup,[UijEquiv]]
1101
1102      *  [XYZEquiv] is list of equivalent positions (XYZ is first entry)
1103      *  Idup = [-][C]SS where SS is the symmetry operator number (1-24), C (if not 0,0,0)
1104      * is centering operator number (1-4) and - is for inversion
1105        Cell = unit cell translations needed to put new positions inside cell
1106        [UijEquiv] - equivalent Uij; absent if no Uij given
1107       
1108    '''
1109    XYZEquiv = []
1110    UijEquiv = []
1111    Idup = []
1112    Cell = []
1113    X = np.array(XYZ)
1114    if Move:
1115        X = MoveToUnitCell(X)[0]
1116    for ic,cen in enumerate(SGData['SGCen']):
1117        C = np.array(cen)
1118        for invers in range(int(SGData['SGInv']+1)):
1119            for io,[M,T] in enumerate(SGData['SGOps']):
1120                idup = ((io+1)+100*ic)*(1-2*invers)
1121                XT = np.inner(M,X)+T
1122                if len(Uij):
1123                    U = Uij2U(Uij)
1124                    U = np.inner(M,np.inner(U,M).T)
1125                    newUij = U2Uij(U)
1126                if invers:
1127                    XT = -XT
1128                XT += C
1129                cell = np.zeros(3,dtype=np.int32)
1130                cellj = np.zeros(3,dtype=np.int32)
1131                if Move:
1132                    newX,cellj = MoveToUnitCell(XT)
1133                else:
1134                    newX = XT
1135                cell += cellj
1136                if All:
1137                    if np.allclose(newX,X,atol=0.0002):
1138                        idup = False
1139                else:
1140                    if True in [np.allclose(newX,oldX,atol=0.0002) for oldX in XYZEquiv]:
1141                        idup = False
1142                if All or idup:
1143                    XYZEquiv.append(newX)
1144                    Idup.append(idup)
1145                    Cell.append(cell)
1146                    if len(Uij):
1147                        UijEquiv.append(newUij)                   
1148    if len(Uij):
1149        return zip(XYZEquiv,UijEquiv,Idup,Cell)
1150    else:
1151        return zip(XYZEquiv,Idup,Cell)
1152
1153def GenHKLf(HKL,SGData):
1154    '''
1155    Uses old GSAS Fortran routine genhkl.for
1156
1157    :param HKL:  [h,k,l] must be integral values for genhkl.for to work
1158    :param SGData: space group data obtained from SpcGroup
1159    :returns: iabsnt,mulp,Uniq,phi
1160
1161     *   iabsnt = True if reflection is forbidden by symmetry
1162     *   mulp = reflection multiplicity including Friedel pairs
1163     *   Uniq = numpy array of equivalent hkl in descending order of h,k,l
1164     *   phi = phase offset for each equivalent h,k,l
1165
1166    '''
1167    hklf = list(HKL)+[0,]       #could be numpy array!
1168    Ops = SGData['SGOps']
1169    OpM = np.array([op[0] for op in Ops])
1170    OpT = np.array([op[1] for op in Ops])
1171    Inv = SGData['SGInv']
1172    Cen = np.array([cen for cen in SGData['SGCen']])
1173   
1174    Nuniq,Uniq,iabsnt,mulp = pyspg.genhklpy(hklf,len(Ops),OpM,OpT,SGData['SGInv'],len(Cen),Cen)
1175    h,k,l,f = Uniq
1176    Uniq=np.array(zip(h[:Nuniq],k[:Nuniq],l[:Nuniq]))
1177    phi = f[:Nuniq]
1178   
1179    return iabsnt,mulp,Uniq,phi
1180   
1181def checkSSLaue(HKL,SGData,SSGData):
1182    #Laue check here - Toss HKL if outside unique Laue part
1183    h,k,l,m = HKL
1184    if SGData['SGLaue'] == '2/m':
1185        if SGData['SGUniq'] == 'a':
1186            if 'a' in SSGData['modSymb'] and h == 0 and m < 0:
1187                return False
1188            elif 'b' in SSGData['modSymb'] and k == 0 and l ==0 and m < 0:
1189                return False
1190            else:
1191                return True
1192        elif SGData['SGUniq'] == 'b':
1193            if 'b' in SSGData['modSymb'] and k == 0 and m < 0:
1194                return False
1195            elif 'a' in SSGData['modSymb'] and h == 0 and l ==0 and m < 0:
1196                return False
1197            else:
1198                return True
1199        elif SGData['SGUniq'] == 'c':
1200            if 'g' in SSGData['modSymb'] and l == 0 and m < 0:
1201                return False
1202            elif 'a' in SSGData['modSymb'] and h == 0 and k ==0 and m < 0:
1203                return False
1204            else:
1205                return True
1206    elif SGData['SGLaue'] == 'mmm':
1207        if 'a' in SSGData['modSymb']:
1208            if h == 0 and m < 0:
1209                return False
1210            else:
1211                return True
1212        elif 'b' in SSGData['modSymb']:
1213            if k == 0 and m < 0:
1214                return False
1215            else:
1216                return True
1217        elif 'g' in SSGData['modSymb']:
1218            if l == 0 and m < 0:
1219                return False
1220            else:
1221                return True
1222    else:   #tetragonal, trigonal, hexagonal (& triclinic?)
1223        if l == 0 and m < 0:
1224            return False
1225        else:
1226            return True
1227       
1228   
1229def checkSSextc(HKL,SSGData):
1230    Ops = SSGData['SSGOps']
1231    OpM = np.array([op[0] for op in Ops])
1232    OpT = np.array([op[1] for op in Ops])
1233    HKLS = np.array([HKL,-HKL])     #Freidel's Law
1234    DHKL = np.reshape(np.inner(HKLS,OpM)-HKL,(-1,4))
1235    PHKL = np.reshape(np.inner(HKLS,OpT),(-1,))
1236    for dhkl,phkl in zip(DHKL,PHKL)[1:]:    #skip identity
1237        if dhkl.any():
1238            continue
1239        else:
1240            if phkl%1.:
1241                return False
1242    return True
1243                                 
1244def GetOprPtrName(key):
1245    'Needs a doc string'
1246    OprPtrName = {
1247        '-6643':[   2,' 1bar ', 1],'6479' :[  10,'  2z  ', 2],'-6479':[   9,'  mz  ', 3],
1248        '6481' :[   7,'  my  ', 4],'-6481':[   6,'  2y  ', 5],'6641' :[   4,'  mx  ', 6],
1249        '-6641':[   3,'  2x  ', 7],'6591' :[  28,' m+-0 ', 8],'-6591':[  27,' 2+-0 ', 9],
1250        '6531' :[  25,' m110 ',10],'-6531':[  24,' 2110 ',11],'6537' :[  61,'  4z  ',12],
1251        '-6537':[  62,' -4z  ',13],'975'  :[  68,' 3+++1',14],'6456' :[ 114,'  3z1 ',15],
1252        '-489' :[  73,' 3+-- ',16],'483'  :[  78,' 3-+- ',17],'-969' :[  83,' 3--+ ',18],
1253        '819'  :[  22,' m+0- ',19],'-819' :[  21,' 2+0- ',20],'2431' :[  16,' m0+- ',21],
1254        '-2431':[  15,' 20+- ',22],'-657' :[  19,' m101 ',23],'657'  :[  18,' 2101 ',24],
1255        '1943' :[  48,' -4x  ',25],'-1943':[  47,'  4x  ',26],'-2429':[  13,' m011 ',27],
1256        '2429' :[  12,' 2011 ',28],'639'  :[  55,' -4y  ',29],'-639' :[  54,'  4y  ',30],
1257        '-6484':[ 146,' 2010 ', 4],'6484' :[ 139,' m010 ', 5],'-6668':[ 145,' 2100 ', 6],
1258        '6668' :[ 138,' m100 ', 7],'-6454':[ 148,' 2120 ',18],'6454' :[ 141,' m120 ',19],
1259        '-6638':[ 149,' 2210 ',20],'6638' :[ 142,' m210 ',21],              #search ends here
1260        '2223' :[  68,' 3+++2',39],
1261        '6538' :[ 106,'  6z1 ',40],'-2169':[  83,' 3--+2',41],'2151' :[  73,' 3+--2',42],
1262        '2205' :[  79,'-3-+-2',43],'-2205':[  78,' 3-+-2',44],'489'  :[  74,'-3+--1',45],
1263        '801'  :[  53,'  4y1 ',46],'1945' :[  47,'  4x3 ',47],'-6585':[  62,' -4z3 ',48],
1264        '6585' :[  61,'  4z3 ',49],'6584' :[ 114,'  3z2 ',50],'6666' :[ 106,'  6z5 ',51],
1265        '6643' :[   1,' Iden ',52],'-801' :[  55,' -4y1 ',53],'-1945':[  48,' -4x3 ',54],
1266        '-6666':[ 105,' -6z5 ',55],'-6538':[ 105,' -6z1 ',56],'-2223':[  69,'-3+++2',57],
1267        '-975' :[  69,'-3+++1',58],'-6456':[ 113,' -3z1 ',59],'-483' :[  79,'-3-+-1',60],
1268        '969'  :[  84,'-3--+1',61],'-6584':[ 113,' -3z2 ',62],'2169' :[  84,'-3--+2',63],
1269        '-2151':[  74,'-3+--2',64],'0':[0,' ????',0]
1270        }
1271    return OprPtrName[key]
1272
1273def GetKNsym(key):
1274    'Needs a doc string'
1275    KNsym = {
1276        '0'         :'    1   ','1'         :'   -1   ','64'        :'    2(x)','32'        :'    m(x)',
1277        '97'        :'  2/m(x)','16'        :'    2(y)','8'         :'    m(y)','25'        :'  2/m(y)',
1278        '2'         :'    2(z)','4'         :'    m(z)','7'         :'  2/m(z)','134217728' :'   2(yz)',
1279        '67108864'  :'   m(yz)','201326593' :' 2/m(yz)','2097152'   :'  2(0+-)','1048576'   :'  m(0+-)',
1280        '3145729'   :'2/m(0+-)','8388608'   :'   2(xz)','4194304'   :'   m(xz)','12582913'  :' 2/m(xz)',
1281        '524288'    :'  2(+0-)','262144'    :'  m(+0-)','796433'    :'2/m(+0-)','1024'      :'   2(xy)',
1282        '512'       :'   m(xy)','1537'      :' 2/m(xy)','256'       :'  2(+-0)','128'       :'  m(+-0)',
1283        '385'       :'2/m(+-0)','76'        :'  mm2(x)','52'        :'  mm2(y)','42'        :'  mm2(z)',
1284        '135266336' :' mm2(yz)','69206048'  :'mm2(0+-)','8650760'   :' mm2(xz)','4718600'   :'mm2(+0-)',
1285        '1156'      :' mm2(xy)','772'       :'mm2(+-0)','82'        :'  222   ','136314944' :'  222(x)',
1286        '8912912'   :'  222(y)','1282'      :'  222(z)','127'       :'  mmm   ','204472417' :'  mmm(x)',
1287        '13369369'  :'  mmm(y)','1927'      :'  mmm(z)','33554496'  :'  4(100)','16777280'  :' -4(100)',
1288        '50331745'  :'4/m(100)','169869394' :'422(100)','84934738'  :'-42m 100','101711948' :'4mm(100)',
1289        '254804095' :'4/mmm100','536870928 ':'  4(010)','268435472' :' -4(010)','805306393' :'4/m (10)',
1290        '545783890' :'422(010)','272891986' :'-42m 010','541327412' :'4mm(010)','818675839' :'4/mmm010',
1291        '2050'      :'  4(001)','4098'      :' -4(001)','6151'      :'4/m(001)','3410'      :'422(001)',
1292        '4818'      :'-42m 001','2730'      :'4mm(001)','8191'      :'4/mmm001','8192'      :'  3(111)',
1293        '8193'      :' -3(111)','2629888'   :' 32(111)','1319040'   :' 3m(111)','3940737'   :'-3m(111)',
1294        '32768'     :'  3(+--)','32769'     :' -3(+--)','10519552'  :' 32(+--)','5276160'   :' 3m(+--)',
1295        '15762945'  :'-3m(+--)','65536'     :'  3(-+-)','65537'     :' -3(-+-)','134808576' :' 32(-+-)',
1296        '67437056'  :' 3m(-+-)','202180097' :'-3m(-+-)','131072'    :'  3(--+)','131073'    :' -3(--+)',
1297        '142737664' :' 32(--+)','71434368'  :' 3m(--+)','214040961' :'-3m(--+)','237650'    :'   23   ',
1298        '237695'    :'   m3   ','715894098' :'   432  ','358068946' :'  -43m  ','1073725439':'   m3m  ',
1299        '68157504'  :' mm2d100','4456464'   :' mm2d010','642'       :' mm2d001','153092172' :'-4m2 100',
1300        '277348404' :'-4m2 010','5418'      :'-4m2 001','1075726335':'  6/mmm ','1074414420':'-6m2 100',
1301        '1075070124':'-6m2 120','1075069650':'   6mm  ','1074414890':'   622  ','1073758215':'   6/m  ',
1302        '1073758212':'   -6   ','1073758210':'    6   ','1073759865':'-3m(100)','1075724673':'-3m(120)',
1303        '1073758800':' 3m(100)','1075069056':' 3m(120)','1073759272':' 32(100)','1074413824':' 32(120)',
1304        '1073758209':'   -3   ','1073758208':'    3   ','1074135143':'mmm(100)','1075314719':'mmm(010)',
1305        '1073743751':'mmm(110)','1074004034':' mm2z100','1074790418':' mm2z010','1073742466':' mm2z110',
1306        '1074004004':'mm2(100)','1074790412':'mm2(010)','1073742980':'mm2(110)','1073872964':'mm2(120)',
1307        '1074266132':'mm2(210)','1073742596':'mm2(+-0)','1073872930':'222(100)','1074266122':'222(010)',
1308        '1073743106':'222(110)','1073741831':'2/m(001)','1073741921':'2/m(100)','1073741849':'2/m(010)',
1309        '1073743361':'2/m(110)','1074135041':'2/m(120)','1075314689':'2/m(210)','1073742209':'2/m(+-0)',
1310        '1073741828':' m(001) ','1073741888':' m(100) ','1073741840':' m(010) ','1073742336':' m(110) ',
1311        '1074003968':' m(120) ','1074790400':' m(210) ','1073741952':' m(+-0) ','1073741826':' 2(001) ',
1312        '1073741856':' 2(100) ','1073741832':' 2(010) ','1073742848':' 2(110) ','1073872896':' 2(120) ',
1313        '1074266112':' 2(210) ','1073742080':' 2(+-0) ','1073741825':'   -1   '
1314        }
1315    return KNsym[key]       
1316
1317def GetNXUPQsym(siteSym):
1318    '''       
1319    The codes XUPQ are for lookup of symmetry constraints for position(X), thermal parm(U) & magnetic moments
1320    (P&Q-not used in GSAS-II)
1321    '''
1322    NXUPQsym = {
1323        '    1   ':(28,29,28,28),'   -1   ':( 1,29,28, 0),'    2(x)':(12,18,12,25),'    m(x)':(25,18,12,25),
1324        '  2/m(x)':( 1,18, 0,-1),'    2(y)':(13,17,13,24),'    m(y)':(24,17,13,24),'  2/m(y)':( 1,17, 0,-1),
1325        '    2(z)':(14,16,14,23),'    m(z)':(23,16,14,23),'  2/m(z)':( 1,16, 0,-1),'   2(yz)':(10,23,10,22),
1326        '   m(yz)':(22,23,10,22),' 2/m(yz)':( 1,23, 0,-1),'  2(0+-)':(11,24,11,21),'  m(0+-)':(21,24,11,21),
1327        '2/m(0+-)':( 1,24, 0,-1),'   2(xz)':( 8,21, 8,20),'   m(xz)':(20,21, 8,20),' 2/m(xz)':( 1,21, 0,-1),
1328        '  2(+0-)':( 9,22, 9,19),'  m(+0-)':(19,22, 9,19),'2/m(+0-)':( 1,22, 0,-1),'   2(xy)':( 6,19, 6,18),
1329        '   m(xy)':(18,19, 6,18),' 2/m(xy)':( 1,19, 0,-1),'  2(+-0)':( 7,20, 7,17),'  m(+-0)':(17,20, 7,17),
1330        '2/m(+-0)':( 1,20, 0,-1),'  mm2(x)':(12,10, 0,-1),'  mm2(y)':(13,10, 0,-1),'  mm2(z)':(14,10, 0,-1),
1331        ' mm2(yz)':(10,13, 0,-1),'mm2(0+-)':(11,13, 0,-1),' mm2(xz)':( 8,12, 0,-1),'mm2(+0-)':( 9,12, 0,-1),
1332        ' mm2(xy)':( 6,11, 0,-1),'mm2(+-0)':( 7,11, 0,-1),'  222   ':( 1,10, 0,-1),'  222(x)':( 1,13, 0,-1),
1333        '  222(y)':( 1,12, 0,-1),'  222(z)':( 1,11, 0,-1),'  mmm   ':( 1,10, 0,-1),'  mmm(x)':( 1,13, 0,-1),
1334        '  mmm(y)':( 1,12, 0,-1),'  mmm(z)':( 1,11, 0,-1),'  4(100)':(12, 4,12, 0),' -4(100)':( 1, 4,12, 0),
1335        '4/m(100)':( 1, 4,12,-1),'422(100)':( 1, 4, 0,-1),'-42m 100':( 1, 4, 0,-1),'4mm(100)':(12, 4, 0,-1),
1336        '4/mmm100':( 1, 4, 0,-1),'  4(010)':(13, 3,13, 0),' -4(010)':( 1, 3,13, 0),'4/m (10)':( 1, 3,13,-1),
1337        '422(010)':( 1, 3, 0,-1),'-42m 010':( 1, 3, 0,-1),'4mm(010)':(13, 3, 0,-1),'4/mmm010':(1, 3, 0,-1,),
1338        '  4(001)':(14, 2,14, 0),' -4(001)':( 1, 2,14, 0),'4/m(001)':( 1, 2,14,-1),'422(001)':( 1, 2, 0,-1),
1339        '-42m 001':( 1, 2, 0,-1),'4mm(001)':(14, 2, 0,-1),'4/mmm001':( 1, 2, 0,-1),'  3(111)':( 2, 5, 2, 0),
1340        ' -3(111)':( 1, 5, 2, 0),' 32(111)':( 1, 5, 0, 2),' 3m(111)':( 2, 5, 0, 2),'-3m(111)':( 1, 5, 0,-1),
1341        '  3(+--)':( 5, 8, 5, 0),' -3(+--)':( 1, 8, 5, 0),' 32(+--)':( 1, 8, 0, 5),' 3m(+--)':( 5, 8, 0, 5),
1342        '-3m(+--)':( 1, 8, 0,-1),'  3(-+-)':( 4, 7, 4, 0),' -3(-+-)':( 1, 7, 4, 0),' 32(-+-)':( 1, 7, 0, 4),
1343        ' 3m(-+-)':( 4, 7, 0, 4),'-3m(-+-)':( 1, 7, 0,-1),'  3(--+)':( 3, 6, 3, 0),' -3(--+)':( 1, 6, 3, 0),
1344        ' 32(--+)':( 1, 6, 0, 3),' 3m(--+)':( 3, 6, 0, 3),'-3m(--+)':( 1, 6, 0,-1),'   23   ':( 1, 1, 0, 0),
1345        '   m3   ':( 1, 1, 0, 0),'   432  ':( 1, 1, 0, 0),'  -43m  ':( 1, 1, 0, 0),'   m3m  ':( 1, 1, 0, 0),
1346        ' mm2d100':(12,13, 0,-1),' mm2d010':(13,12, 0,-1),' mm2d001':(14,11, 0,-1),'-4m2 100':( 1, 4, 0,-1),
1347        '-4m2 010':( 1, 3, 0,-1),'-4m2 001':( 1, 2, 0,-1),'  6/mmm ':( 1, 9, 0,-1),'-6m2 100':( 1, 9, 0,-1),
1348        '-6m2 120':( 1, 9, 0,-1),'   6mm  ':(14, 9, 0,-1),'   622  ':( 1, 9, 0,-1),'   6/m  ':( 1, 9,14,-1),
1349        '   -6   ':( 1, 9,14, 0),'    6   ':(14, 9,14, 0),'-3m(100)':( 1, 9, 0,-1),'-3m(120)':( 1, 9, 0,-1),
1350        ' 3m(100)':(14, 9, 0,14),' 3m(120)':(14, 9, 0,14),' 32(100)':( 1, 9, 0,14),' 32(120)':( 1, 9, 0,14),
1351        '   -3   ':( 1, 9,14, 0),'    3   ':(14, 9,14, 0),'mmm(100)':( 1,14, 0,-1),'mmm(010)':( 1,15, 0,-1),
1352        'mmm(110)':( 1,11, 0,-1),' mm2z100':(14,14, 0,-1),' mm2z010':(14,15, 0,-1),' mm2z110':(14,11, 0,-1),
1353        'mm2(100)':(12,14, 0,-1),'mm2(010)':(13,15, 0,-1),'mm2(110)':( 6,11, 0,-1),'mm2(120)':(15,14, 0,-1),
1354        'mm2(210)':(16,15, 0,-1),'mm2(+-0)':( 7,11, 0,-1),'222(100)':( 1,14, 0,-1),'222(010)':( 1,15, 0,-1),
1355        '222(110)':( 1,11, 0,-1),'2/m(001)':( 1,16,14,-1),'2/m(100)':( 1,25,12,-1),'2/m(010)':( 1,28,13,-1),
1356        '2/m(110)':( 1,19, 6,-1),'2/m(120)':( 1,27,15,-1),'2/m(210)':( 1,26,16,-1),'2/m(+-0)':( 1,20,17,-1),
1357        ' m(001) ':(23,16,14,23),' m(100) ':(26,25,12,26),' m(010) ':(27,28,13,27),' m(110) ':(18,19, 6,18),
1358        ' m(120) ':(24,27,15,24),' m(210) ':(25,26,16,25),' m(+-0) ':(17,20, 7,17),' 2(001) ':(14,16,14,23),
1359        ' 2(100) ':(12,25,12,26),' 2(010) ':(13,28,13,27),' 2(110) ':( 6,19, 6,18),' 2(120) ':(15,27,15,24),
1360        ' 2(210) ':(16,26,16,25),' 2(+-0) ':( 7,20, 7,17),'   -1   ':( 1,29,28, 0)
1361        }
1362    return NXUPQsym[siteSym]
1363
1364def GetCSxinel(siteSym): 
1365    'Needs a doc string'
1366    CSxinel = [[],                         # 0th empty - indices are Fortran style
1367        [[0,0,0],[ 0.0, 0.0, 0.0]],      #1  0  0  0
1368        [[1,1,1],[ 1.0, 1.0, 1.0]],      #2  X  X  X
1369        [[1,1,1],[ 1.0, 1.0,-1.0]],      #3  X  X -X
1370        [[1,1,1],[ 1.0,-1.0, 1.0]],      #4  X -X  X
1371        [[1,1,1],[ 1.0,-1.0,-1.0]],      #5 -X  X  X
1372        [[1,1,0],[ 1.0, 1.0, 0.0]],      #6  X  X  0
1373        [[1,1,0],[ 1.0,-1.0, 0.0]],      #7  X -X  0
1374        [[1,0,1],[ 1.0, 0.0, 1.0]],      #8  X  0  X
1375        [[1,0,1],[ 1.0, 0.0,-1.0]],      #9  X  0 -X
1376        [[0,1,1],[ 0.0, 1.0, 1.0]],      #10  0  Y  Y
1377        [[0,1,1],[ 0.0, 1.0,-1.0]],      #11 0  Y -Y
1378        [[1,0,0],[ 1.0, 0.0, 0.0]],      #12  X  0  0
1379        [[0,1,0],[ 0.0, 1.0, 0.0]],      #13  0  Y  0
1380        [[0,0,1],[ 0.0, 0.0, 1.0]],      #14  0  0  Z
1381        [[1,1,0],[ 1.0, 2.0, 0.0]],      #15  X 2X  0
1382        [[1,1,0],[ 2.0, 1.0, 0.0]],      #16 2X  X  0
1383        [[1,1,2],[ 1.0, 1.0, 1.0]],      #17  X  X  Z
1384        [[1,1,2],[ 1.0,-1.0, 1.0]],      #18  X -X  Z
1385        [[1,2,1],[ 1.0, 1.0, 1.0]],      #19  X  Y  X
1386        [[1,2,1],[ 1.0, 1.0,-1.0]],      #20  X  Y -X
1387        [[1,2,2],[ 1.0, 1.0, 1.0]],      #21  X  Y  Y
1388        [[1,2,2],[ 1.0, 1.0,-1.0]],      #22  X  Y -Y
1389        [[1,2,0],[ 1.0, 1.0, 0.0]],      #23  X  Y  0
1390        [[1,0,2],[ 1.0, 0.0, 1.0]],      #24  X  0  Z
1391        [[0,1,2],[ 0.0, 1.0, 1.0]],      #25  0  Y  Z
1392        [[1,1,2],[ 1.0, 2.0, 1.0]],      #26  X 2X  Z
1393        [[1,1,2],[ 2.0, 1.0, 1.0]],      #27 2X  X  Z
1394        [[1,2,3],[ 1.0, 1.0, 1.0]],      #28  X  Y  Z
1395        ]
1396    indx = GetNXUPQsym(siteSym)
1397    return CSxinel[indx[0]]
1398   
1399def GetCSuinel(siteSym):
1400    "returns Uij terms, multipliers, GUI flags & Uiso2Uij multipliers"
1401    CSuinel = [[],                                             # 0th empty - indices are Fortran style
1402        [[1,1,1,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,0,0,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]],    #1  A  A  A  0  0  0
1403        [[1,1,2,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,0,1,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]],    #2  A  A  C  0  0  0
1404        [[1,2,1,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,1,0,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]],    #3  A  B  A  0  0  0
1405        [[1,2,2,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,1,0,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]],    #4  A  B  B  0  0  0
1406        [[1,1,1,2,2,2],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,0,0,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]],    #5  A  A  A  D  D  D
1407        [[1,1,1,2,2,2],[ 1.0, 1.0, 1.0, 1.0,-1.0,-1.0],[1,0,0,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]],    #6  A  A  A  D -D -D
1408        [[1,1,1,2,2,2],[ 1.0, 1.0, 1.0, 1.0,-1.0, 1.0],[1,0,0,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]],    #7  A  A  A  D -D  D
1409        [[1,1,1,2,2,2],[ 1.0, 1.0, 1.0, 1.0, 1.0,-1.0],[1,0,0,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]],    #8  A  A  A  D  D -D
1410        [[1,1,2,1,0,0],[ 1.0, 1.0, 1.0, 0.5, 0.0, 0.0],[1,0,1,0,0,0],[1.0,1.0,1.0,0.5,0.0,0.0]],    #9  A  A  C A/2 0  0
1411        [[1,2,3,0,0,0],[ 1.0, 1.0, 1.0, 0.0, 0.0, 0.0],[1,1,1,0,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]],    #10  A  B  C  0  0  0
1412        [[1,1,2,3,0,0],[ 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],[1,0,1,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]],    #11  A  A  C  D  0  0
1413        [[1,2,1,0,3,0],[ 1.0, 1.0, 1.0, 0.0, 1.0, 0.0],[1,1,0,0,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]],    #12  A  B  A  0  E  0
1414        [[1,2,2,0,0,3],[ 1.0, 1.0, 1.0, 0.0, 0.0, 1.0],[1,1,0,0,0,1],[1.0,1.0,1.0,0.0,0.0,0.0]],    #13  A  B  B  0  0  F
1415        [[1,2,3,2,0,0],[ 1.0, 1.0, 1.0, 0.5, 0.0, 0.0],[1,1,1,0,0,0],[1.0,1.0,1.0,0.0,0.5,0.0]],    #14  A  B  C B/2 0  0
1416        [[1,2,3,1,0,0],[ 1.0, 1.0, 1.0, 0.5, 0.0, 0.0],[1,1,1,0,0,0],[1.0,1.0,1.0,0.0,0.5,0.0]],    #15  A  B  C A/2 0  0
1417        [[1,2,3,4,0,0],[ 1.0, 1.0, 1.0, 1.0, 0.0, 0.0],[1,1,1,1,0,0],[1.0,1.0,1.0,0.0,0.0,0.0]],    #16  A  B  C  D  0  0
1418        [[1,2,3,0,4,0],[ 1.0, 1.0, 1.0, 0.0, 1.0, 0.0],[1,1,1,0,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]],    #17  A  B  C  0  E  0
1419        [[1,2,3,0,0,4],[ 1.0, 1.0, 1.0, 0.0, 0.0, 1.0],[1,1,1,0,0,1],[1.0,1.0,1.0,0.0,0.0,0.0]],    #18  A  B  C  0  0  F
1420        [[1,1,2,3,4,4],[ 1.0, 1.0, 1.0, 1.0, 1.0,-1.0],[1,0,1,1,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]],    #19  A  A  C  D  E -E
1421        [[1,1,2,3,4,4],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,0,1,1,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]],    #20  A  A  C  D  E  E
1422        [[1,2,1,3,4,3],[ 1.0, 1.0, 1.0, 1.0, 1.0,-1.0],[1,1,0,1,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]],    #21  A  B  A  D  E -D
1423        [[1,2,1,3,4,3],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,1,0,1,1,0],[1.0,1.0,1.0,0.0,0.0,0.0]],    #22  A  B  A  D  E  D
1424        [[1,2,2,3,3,4],[ 1.0, 1.0, 1.0, 1.0,-1.0, 1.0],[1,1,0,1,0,1],[1.0,1.0,1.0,0.0,0.0,0.0]],    #23  A  B  B  D -D  F
1425        [[1,2,2,3,3,4],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,1,0,1,0,1],[1.0,1.0,1.0,0.0,0.0,0.0]],    #24  A  B  B  D  D  F
1426        [[1,2,3,2,4,4],[ 1.0, 1.0, 1.0, 0.5, 0.5, 1.0],[1,1,1,0,0,1],[1.0,1.0,1.0,0.5,0.0,0.0]],    #25  A  B  C B/2 F/2 F
1427        [[1,2,3,1,0,4],[ 1.0, 1.0, 1.0, 0.5, 0.0, 1.0],[1,1,1,0,0,1],[1.0,1.0,1.0,0.5,0.0,0.0]],    #26  A  B  C A/2  0  F
1428        [[1,2,3,2,4,0],[ 1.0, 1.0, 1.0, 0.5, 1.0, 0.0],[1,1,1,0,1,0],[1.0,1.0,1.0,0.5,0.0,0.0]],    #27  A  B  C B/2  E  0
1429        [[1,2,3,1,4,4],[ 1.0, 1.0, 1.0, 0.5, 1.0, 0.5],[1,1,1,0,1,0],[1.0,1.0,1.0,0.5,0.0,0.0]],    #28  A  B  C A/2  E E/2
1430        [[1,2,3,4,5,6],[ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],[1,1,1,1,1,1],[1.0,1.0,1.0,0.0,0.0,0.0]],    #29  A  B  C  D  E   F
1431        ]
1432    indx = GetNXUPQsym(siteSym)
1433    return CSuinel[indx[1]]
1434   
1435def getTauT(tau,sop,ssop,XYZ):
1436    ssopinv = nl.inv(ssop[0])
1437    mst = ssopinv[3][:3]
1438    epsinv = ssopinv[3][3]
1439    sdet = nl.det(sop[0])
1440    ssdet = nl.det(ssop[0])
1441    dtau = mst*(XYZ-sop[1])-epsinv*ssop[1][3]
1442    dT = 1.0
1443    if np.any(dtau%.5):
1444        dT = np.tan(np.pi*np.sum(dtau%.5))
1445    tauT = np.inner(mst,XYZ-sop[1])+epsinv*(tau-ssop[1][3])
1446    return sdet,ssdet,dtau,dT,tauT
1447   
1448def OpsfromStringOps(A,SGData,SSGData):
1449    SGOps = SGData['SGOps']
1450    SSGOps = SSGData['SSGOps']
1451    Ax = A.split('+')
1452    Ax[0] = int(Ax[0])
1453    iC = 1
1454    if Ax[0] < 0:
1455        iC = -1
1456    Ax[0] = abs(Ax[0])
1457    nA = Ax[0]%100-1
1458    return SGOps[nA],SSGOps[nA],iC
1459   
1460def GetSSfxuinel(waveType,nH,XYZ,SGData,SSGData,debug=False):
1461   
1462    def orderParms(CSI):
1463        parms = [0,]
1464        for csi in CSI:
1465            for i in [0,1,2]:
1466                if csi[i] not in parms:
1467                    parms.append(csi[i])
1468        for csi in CSI:
1469            for i in [0,1,2]:
1470                csi[i] = parms.index(csi[i])
1471        return CSI
1472       
1473    def fracCrenel(tau,Toff,Twid):
1474        Tau = (tau-Toff[:,np.newaxis])%1.
1475        A = np.where(Tau<Twid[:,np.newaxis],1.,0.)
1476        return A
1477       
1478    def fracFourier(tau,nH,fsin,fcos):
1479        SA = np.sin(2.*nH*np.pi*tau)
1480        CB = np.cos(2.*nH*np.pi*tau)
1481        A = SA[np.newaxis,np.newaxis,:]*fsin[:,:,np.newaxis]
1482        B = CB[np.newaxis,np.newaxis,:]*fcos[:,:,np.newaxis]
1483        return A+B
1484       
1485    def posFourier(tau,nH,psin,pcos):
1486        SA = np.sin(2*nH*np.pi*tau)
1487        CB = np.cos(2*nH*np.pi*tau)
1488        A = SA[np.newaxis,np.newaxis,:]*psin[:,:,np.newaxis]
1489        B = CB[np.newaxis,np.newaxis,:]*pcos[:,:,np.newaxis]
1490        return A+B   
1491
1492    def posSawtooth(tau,Toff,slopes):
1493        Tau = (tau-Toff)%1.
1494        A = slopes[:,np.newaxis]*Tau
1495        return A
1496   
1497    def posZigZag(tau,Toff,slopes):
1498        Tau = (tau-Toff)%1.
1499        A = np.where(Tau <= 0.5,slopes[:,np.newaxis]*Tau,slopes[:,np.newaxis]*(1.-Tau))
1500        return A
1501       
1502    def DoFrac():
1503        delt2 = np.eye(2)*0.001
1504        FSC = np.ones(2,dtype='i')
1505        VFSC = np.ones(2)
1506        CSI = [np.zeros((2),dtype='i'),np.zeros(2)]
1507        if 'Crenel' in waveType:
1508            dF = fracCrenel(tau,delt2[:1],delt2[1:]).squeeze()
1509        else:
1510            dF = fracFourier(tau,nH,delt2[:1],delt2[1:]).squeeze()
1511        dFT = np.zeros_like(dF)
1512        dFTP = []
1513        for i in SdIndx:
1514            sop = Sop[i]
1515            ssop = SSop[i]           
1516            sdet,ssdet,dtau,dT,tauT = getTauT(tau,sop,ssop,XYZ)
1517            fsc = np.ones(2,dtype='i')
1518            if 'Crenel' in waveType:
1519                dFT = fracCrenel(tauT,delt2[:1],delt2[1:]).squeeze()
1520                fsc = [1,1]
1521            else:   #Fourier
1522                dFT = fracFourier(tauT,nH,delt2[:1],delt2[1:]).squeeze()
1523                dFT = nl.det(sop[0])*dFT
1524                dFT = dFT[:,np.argsort(tauT)]
1525                dFT[0] *= ssdet
1526                dFT[1] *= sdet
1527                dFTP.append(dFT)
1528           
1529                if np.any(dtau%.5) and ('1/2' in SSGData['modSymb'] or '1' in SSGData['modSymb']):
1530                    fsc = [1,1]
1531                    CSI = [[[1,0],[1,0]],[[1.,0.],[1/dT,0.]]]
1532                    FSC = np.zeros(2,dtype='i')
1533                    return CSI,dF,dFTP
1534                else:
1535                    for i in range(2):
1536                        if np.allclose(dF[i,:],dFT[i,:],atol=1.e-6):
1537                            fsc[i] = 1
1538                        else:
1539                            fsc[i] = 0
1540                    FSC &= fsc
1541                    if debug: print SSMT2text(ssop).replace(' ',''),sdet,ssdet,epsinv,fsc
1542        n = -1
1543        for i,F in enumerate(FSC):
1544            if F:
1545                n += 1
1546                CSI[0][i] = n+1
1547                CSI[1][i] = 1.0
1548       
1549        return CSI,dF,dFTP
1550       
1551    def DoXYZ():
1552        delt4 = np.ones(4)*0.001
1553        delt6 = np.eye(6)*0.001
1554        if 'Fourier' in waveType:
1555            dX = posFourier(tau,nH,delt6[:3],delt6[3:]) #+np.array(XYZ)[:,np.newaxis,np.newaxis]
1556              #3x6x12 modulated position array (X,Spos,tau)& force positive
1557            CSI = [np.zeros((6,3),dtype='i'),np.zeros((6,3))]
1558        elif waveType == 'Sawtooth':
1559            dX = posSawtooth(tau,delt4[0],delt4[1:])
1560            CSI = [np.array([[1,0,0],[2,0,0],[3,0,0],[4,0,0]]),
1561                np.array([[1.0,.0,.0],[1.0,.0,.0],[1.0,.0,.0],[1.0,.0,.0]])]
1562        elif waveType == 'ZigZag':
1563            dX = posZigZag(tau,delt4[0],delt4[1:])
1564            CSI = [np.array([[1,0,0],[2,0,0],[3,0,0],[4,0,0]]),
1565                np.array([[1.0,.0,.0],[1.0,.0,.0],[1.0,.0,.0],[1.0,.0,.0]])]
1566        XSC = np.ones(6,dtype='i')
1567        dXTP = []
1568        for i in SdIndx:
1569            sop = Sop[i]
1570            ssop = SSop[i]
1571            sdet,ssdet,dtau,dT,tauT = getTauT(tau,sop,ssop,XYZ)
1572            xsc = np.ones(6,dtype='i')
1573            if waveType == 'Fourier':
1574                dXT = posFourier(np.sort(tauT),nH,delt6[:3],delt6[3:])   #+np.array(XYZ)[:,np.newaxis,np.newaxis]
1575            elif waveType == 'Sawtooth':
1576                dXT = posSawtooth(tauT,delt4[0],delt4[1:])+np.array(XYZ)[:,np.newaxis,np.newaxis]
1577            elif waveType == 'ZigZag':
1578                dXT = posZigZag(tauT,delt4[0],delt4[1:])+np.array(XYZ)[:,np.newaxis,np.newaxis] 
1579            dXT = np.inner(sop[0],dXT.T)    # X modulations array(3x6x49) -> array(3x49x6)
1580            dXT = np.swapaxes(dXT,1,2)      # back to array(3x6x49)
1581            dXT[:,:3,:] *= (ssdet*sdet)            # modify the sin component
1582            dXTP.append(dXT)
1583            if waveType == 'Fourier':
1584                for i in range(3):
1585                    if not np.allclose(dX[i,i,:],dXT[i,i,:]):
1586                        xsc[i] = 0
1587                    if not np.allclose(dX[i,i+3,:],dXT[i,i+3,:]):
1588                        xsc[i+3] = 0
1589                if np.any(dtau%.5) and ('1/2' in SSGData['modSymb'] or '1' in SSGData['modSymb']):
1590                    xsc[3:6] = 0
1591                    CSI = [[[1,0,0],[2,0,0],[3,0,0], [1,0,0],[2,0,0],[3,0,0]],
1592                        [[1.,0.,0.],[1.,0.,0.],[1.,0.,0.], [1.,0.,0.],[1.,0.,0.],[1.,0.,0.]]]                   
1593                    if '(x)' in siteSym:
1594                        CSI[1][3:] = [1./dT,0.,0.],[-dT,0.,0.],[-dT,0.,0.]
1595                        if 'm' in siteSym and len(SdIndx) == 1:
1596                            CSI[1][3:] = [-dT,0.,0.],[1./dT,0.,0.],[1./dT,0.,0.]
1597                    elif '(y)' in siteSym:
1598                        CSI[1][3:] = [-dT,0.,0.],[1./dT,0.,0.],[-dT,0.,0.]
1599                        if 'm' in siteSym and len(SdIndx) == 1:
1600                            CSI[1][3:] = [1./dT,0.,0.],[-dT,0.,0.],[1./dT,0.,0.]
1601                    elif '(z)' in siteSym:
1602                        CSI[1][3:] = [-dT,0.,0.],[-dT,0.,0.],[1./dT,0.,0.]
1603                        if 'm' in siteSym and len(SdIndx) == 1:
1604                            CSI[1][3:] = [1./dT,0.,0.],[1./dT,0.,0.],[-dT,0.,0.]
1605                if '4/mmm' in laue:
1606                    if np.any(dtau%.5) and '1/2' in SSGData['modSymb']:
1607                        if '(xy)' in siteSym:
1608                            CSI[0] = [[1,0,0],[1,0,0],[2,0,0], [1,0,0],[1,0,0],[2,0,0]]
1609                            CSI[1][3:] = [[1./dT,0.,0.],[1./dT,0.,0.],[-dT,0.,0.]]
1610                    if '(xy)' in siteSym or '(+-0)' in siteSym:
1611                        mul = 1
1612                        if '(+-0)' in siteSym:
1613                            mul = -1
1614                        if np.allclose(dX[0,0,:],dXT[1,0,:]):
1615                            CSI[0][3:5] = [[11,0,0],[11,0,0]]
1616                            CSI[1][3:5] = [[1.,0,0],[mul,0,0]]
1617                            xsc[3:5] = 0
1618                        if np.allclose(dX[0,3,:],dXT[0,4,:]):
1619                            CSI[0][:2] = [[12,0,0],[12,0,0]]
1620                            CSI[1][:2] = [[1.,0,0],[mul,0,0]]
1621                            xsc[:2] = 0
1622            XSC &= xsc
1623            if debug: print SSMT2text(ssop).replace(' ',''),sdet,ssdet,epsinv,xsc
1624        if waveType == 'Fourier':
1625            n = -1
1626            if debug: print XSC
1627            for i,X in enumerate(XSC):
1628                if X:
1629                    n += 1
1630                    CSI[0][i][0] = n+1
1631                    CSI[1][i][0] = 1.0
1632       
1633        return CSI,dX,dXTP
1634       
1635    def DoUij():
1636        tau = np.linspace(0,1,49,True)
1637        delt12 = np.eye(12)*0.0001
1638        dU = posFourier(tau,nH,delt12[:6],delt12[6:])                  #Uij modulations - 6x12x12 array
1639        CSI = [np.zeros((12,3),dtype='i'),np.zeros((12,3))]
1640        USC = np.ones(12,dtype='i')
1641        dUTP = []
1642        for i in SdIndx:
1643            sop = Sop[i]
1644            ssop = SSop[i]
1645            sdet,ssdet,dtau,dT,tauT = getTauT(tau,sop,ssop,XYZ)
1646            usc = np.ones(12,dtype='i')
1647            dUT = posFourier(tauT,nH,delt12[:6],delt12[6:])                  #Uij modulations - 6x12x49 array
1648            dUijT = np.rollaxis(np.rollaxis(np.array(Uij2U(dUT)),3),3)    #convert dUT to 12x49x3x3
1649            dUijT = np.rollaxis(np.inner(np.inner(sop[0],dUijT),sop[0].T),3) #transform by sop - 3x3x12x49
1650            dUT = np.array(U2Uij(dUijT))    #convert to 6x12x49
1651            dUT = dUT[:,:,np.argsort(tauT)]
1652            dUT[:,:6,:] *=(ssdet*sdet)
1653            dUTP.append(dUT)
1654            if np.any(dtau%.5) and ('1/2' in SSGData['modSymb'] or '1' in SSGData['modSymb']):
1655                CSI = [[[1,0,0],[2,0,0],[3,0,0],[4,0,0],[5,0,0],[6,0,0], 
1656                [1,0,0],[2,0,0],[3,0,0],[4,0,0],[5,0,0],[6,0,0]],
1657                [[1.,0.,0.],[1.,0.,0.],[1.,0.,0.], [1.,0.,0.],[1.,0.,0.],[1.,0.,0.],
1658                [1./dT,0.,0.],[1./dT,0.,0.],[1./dT,0.,0.], [1.,0.,0.],[1.,0.,0.],[1.,0.,0.]]]
1659                if 'mm2(x)' in siteSym:
1660                    CSI[1][9:] = [0.,0.,0.],[-dT,0.,0.],[0.,0.,0.]
1661                    USC = [1,1,1,0,1,0,1,1,1,0,1,0]
1662                elif '(xy)' in siteSym:
1663                    CSI[0] = [[1,0,0],[1,0,0],[2,0,0],[3,0,0],[4,0,0],[4,0,0],
1664                        [1,0,0],[1,0,0],[2,0,0],[3,0,0],[4,0,0],[4,0,0]]
1665                    CSI[1][9:] = [[1./dT,0.,0.],[-dT,0.,0.],[-dT,0.,0.]]
1666                    USC = [1,1,1,1,1,1,1,1,1,1,1,1]                             
1667                elif '(x)' in siteSym:
1668                    CSI[1][9:] = [-dT,0.,0.],[-dT,0.,0.],[1./dT,0.,0.]
1669                elif '(y)' in siteSym:
1670                    CSI[1][9:] = [-dT,0.,0.],[1./dT,0.,0.],[-dT,0.,0.]
1671                elif '(z)' in siteSym:
1672                    CSI[1][9:] = [1./dT,0.,0.],[-dT,0.,0.],[-dT,0.,0.]
1673                for i in range(6):
1674                    if not USC[i]:
1675                        CSI[0][i] = [0,0,0]
1676                        CSI[1][i] = [0.,0.,0.]
1677                        CSI[0][i+6] = [0,0,0]
1678                        CSI[1][i+6] = [0.,0.,0.]
1679            else:                       
1680                for i in range(6):
1681                    if not np.allclose(dU[i,i,:],dUT[i,i,:]):  #sin part
1682                        usc[i] = 0
1683                    if not np.allclose(dU[i,i+6,:],dUT[i,i+6,:]):   #cos part
1684                        usc[i+6] = 0
1685                if np.any(dUT[1,0,:]):
1686                    if '4/m' in siteSym:
1687                        CSI[0][6:8] = [[12,0,0],[12,0,0]]
1688                        if ssop[1][3]:
1689                            CSI[1][6:8] = [[1.,0.,0.],[-1.,0.,0.]]
1690                            usc[9] = 1
1691                        else:
1692                            CSI[1][6:8] = [[1.,0.,0.],[1.,0.,0.]]
1693                            usc[9] = 0
1694                    elif '4' in siteSym:
1695                        CSI[0][6:8] = [[12,0,0],[12,0,0]]
1696                        CSI[0][:2] = [[11,0,0],[11,0,0]]
1697                        if ssop[1][3]:
1698                            CSI[1][:2] = [[1.,0.,0.],[-1.,0.,0.]]
1699                            CSI[1][6:8] = [[1.,0.,0.],[-1.,0.,0.]]
1700                            usc[2] = 0
1701                            usc[8] = 0
1702                            usc[3] = 1
1703                            usc[9] = 1
1704                        else:
1705                            CSI[1][:2] = [[1.,0.,0.],[1.,0.,0.]]
1706                            CSI[1][6:8] = [[1.,0.,0.],[1.,0.,0.]]
1707                            usc[2] = 1
1708                            usc[8] = 1
1709                            usc[3] = 0               
1710                            usc[9] = 0
1711                    elif 'xy' in siteSym or '+-0' in siteSym:
1712                        if np.allclose(dU[0,0,:],dUT[0,1,:]*sdet):
1713                            CSI[0][4:6] = [[12,0,0],[12,0,0]]
1714                            CSI[0][6:8] = [[11,0,0],[11,0,0]]
1715                            CSI[1][4:6] = [[1.,0.,0.],[sdet,0.,0.]]
1716                            CSI[1][6:8] = [[1.,0.,0.],[sdet,0.,0.]]
1717                            usc[4:6] = 0
1718                            usc[6:8] = 0
1719                       
1720                if debug: print SSMT2text(ssop).replace(' ',''),sdet,ssdet,epsinv,usc
1721            USC &= usc
1722        if debug: print USC
1723        if not np.any(dtau%.5):
1724            n = -1
1725            for i,U in enumerate(USC):
1726                if U:
1727                    n += 1
1728                    CSI[0][i][0] = n+1
1729                    CSI[1][i][0] = 1.0
1730
1731        return CSI,dU,dUTP
1732       
1733    if debug: print 'super space group: ',SSGData['SSpGrp']
1734    CSI = {'Sfrac':[[[1,0],[2,0]],[[1.,0.],[1.,0.]]],
1735        'Spos':[[[1,0,0],[2,0,0],[3,0,0], [4,0,0],[5,0,0],[6,0,0]],
1736            [[1.,0.,0.],[1.,0.,0.],[1.,0.,0.], [1.,0.,0.],[1.,0.,0.],[1.,0.,0.]]],    #sin & cos
1737        'Sadp':[[[1,0,0],[2,0,0],[3,0,0],[4,0,0],[5,0,0],[6,0,0], 
1738            [7,0,0],[8,0,0],[9,0,0],[10,0,0],[11,0,0],[12,0,0]],
1739            [[1.,0.,0.],[1.,0.,0.],[1.,0.,0.], [1.,0.,0.],[1.,0.,0.],[1.,0.,0.],
1740            [1.,0.,0.],[1.,0.,0.],[1.,0.,0.], [1.,0.,0.],[1.,0.,0.],[1.,0.,0.]]],
1741        'Smag':[[[1,0,0],[2,0,0],[3,0,0], [4,0,0],[5,0,0],[6,0,0]],
1742            [[1.,0.,0.],[1.,0.,0.],[1.,0.,0.], [1.,0.,0.],[1.,0.,0.],[1.,0.,0.]]],}
1743    xyz = np.array(XYZ)%1.
1744    xyzt = np.array(XYZ+[0,])%1.
1745    SGOps = copy.deepcopy(SGData['SGOps'])
1746    laue = SGData['SGLaue']
1747    siteSym = SytSym(XYZ,SGData)[0].strip()
1748    if debug: print 'siteSym: ',siteSym
1749    if siteSym == '1':   #"1" site symmetry
1750        if debug:
1751            return CSI,None,None,None,None
1752        else:
1753            return CSI
1754    elif siteSym == '-1':   #"-1" site symmetry
1755        CSI['Sfrac'][0] = [[1,0],[0,0]]
1756        CSI['Spos'][0] = [[1,0,0],[2,0,0],[3,0,0], [0,0,0],[0,0,0],[0,0,0]]
1757        CSI['Sadp'][0] = [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0], 
1758        [1,0,0],[2,0,0],[3,0,0],[4,0,0],[5,0,0],[6,0,0]]
1759        if debug:
1760            return CSI,None,None,None,None
1761        else:
1762            return CSI
1763    SSGOps = copy.deepcopy(SSGData['SSGOps'])
1764    #expand ops to include inversions if any
1765    if SGData['SGInv']:
1766        for op,sop in zip(SGData['SGOps'],SSGData['SSGOps']):
1767            SGOps.append([-op[0],-op[1]%1.])
1768            SSGOps.append([-sop[0],-sop[1]%1.])
1769    #build set of sym ops around special position       
1770    SSop = []
1771    Sop = []
1772    Sdtau = []
1773    for iop,Op in enumerate(SGOps):         
1774        nxyz = (np.inner(Op[0],xyz)+Op[1])%1.
1775        if np.allclose(xyz,nxyz,1.e-4) and iop and MT2text(Op).replace(' ','') != '-X,-Y,-Z':
1776            SSop.append(SSGOps[iop])
1777            Sop.append(SGOps[iop])
1778            ssopinv = nl.inv(SSGOps[iop][0])
1779            mst = ssopinv[3][:3]
1780            epsinv = ssopinv[3][3]
1781            Sdtau.append(np.sum(mst*(XYZ-SGOps[iop][1])-epsinv*SSGOps[iop][1][3]))
1782    SdIndx = np.argsort(np.array(Sdtau))     # just to do in sensible order
1783    if debug: print 'special pos super operators: ',[SSMT2text(ss).replace(' ','') for ss in SSop]
1784    #setup displacement arrays
1785    tau = np.linspace(-1,1,49,True)
1786    #make modulation arrays - one parameter at a time
1787    #site fractions
1788    CSI['Sfrac'],dF,dFTP = DoFrac()
1789    #positions
1790    CSI['Spos'],dX,dXTP = DoXYZ()       
1791    #anisotropic thermal motion
1792    CSI['Sadp'],dU,dUTP = DoUij()
1793    CSI['Spos'][0] = orderParms(CSI['Spos'][0])
1794    CSI['Sadp'][0] = orderParms(CSI['Sadp'][0])           
1795    if debug:
1796        return CSI,tau,[dF,dFTP],[dX,dXTP],[dU,dUTP]
1797    else:
1798        return CSI
1799   
1800def MustrainNames(SGData):
1801    'Needs a doc string'
1802    laue = SGData['SGLaue']
1803    uniq = SGData['SGUniq']
1804    if laue in ['m3','m3m']:
1805        return ['S400','S220']
1806    elif laue in ['6/m','6/mmm','3m1']:
1807        return ['S400','S004','S202']
1808    elif laue in ['31m','3']:
1809        return ['S400','S004','S202','S211']
1810    elif laue in ['3R','3mR']:
1811        return ['S400','S220','S310','S211']
1812    elif laue in ['4/m','4/mmm']:
1813        return ['S400','S004','S220','S022']
1814    elif laue in ['mmm']:
1815        return ['S400','S040','S004','S220','S202','S022']
1816    elif laue in ['2/m']:
1817        SHKL = ['S400','S040','S004','S220','S202','S022']
1818        if uniq == 'a':
1819            SHKL += ['S013','S031','S211']
1820        elif uniq == 'b':
1821            SHKL += ['S301','S103','S121']
1822        elif uniq == 'c':
1823            SHKL += ['S130','S310','S112']
1824        return SHKL
1825    else:
1826        SHKL = ['S400','S040','S004','S220','S202','S022']
1827        SHKL += ['S310','S103','S031','S130','S301','S013']
1828        SHKL += ['S211','S121','S112']
1829        return SHKL
1830       
1831def HStrainVals(HSvals,SGData):
1832    laue = SGData['SGLaue']
1833    uniq = SGData['SGUniq']
1834    DIJ = np.zeros(6)
1835    if laue in ['m3','m3m']:
1836        DIJ[:3] = [HSvals[0],HSvals[0],HSvals[0]]
1837    elif laue in ['6/m','6/mmm','3m1','31m','3']:
1838        DIJ[:4] = [HSvals[0],HSvals[0],HSvals[1],HSvals[0]]
1839    elif laue in ['3R','3mR']:
1840        DIJ = [HSvals[0],HSvals[0],HSvals[0],HSvals[1],HSvals[1],HSvals[1]]
1841    elif laue in ['4/m','4/mmm']:
1842        DIJ[:3] = [HSvals[0],HSvals[0],HSvals[1]]
1843    elif laue in ['mmm']:
1844        DIJ[:3] = [HSvals[0],HSvals[1],HSvals[2]]
1845    elif laue in ['2/m']:
1846        DIJ[:3] = [HSvals[0],HSvals[1],HSvals[2]]
1847        if uniq == 'a':
1848            DIJ[5] = HSvals[3]
1849        elif uniq == 'b':
1850            DIJ[4] = HSvals[3]
1851        elif uniq == 'c':
1852            DIJ[3] = HSvals[3]
1853    else:
1854        DIJ = [HSvals[0],HSvals[1],HSvals[2],HSvals[3],HSvals[4],HSvals[5]]
1855    return DIJ
1856
1857def HStrainNames(SGData):
1858    'Needs a doc string'
1859    laue = SGData['SGLaue']
1860    uniq = SGData['SGUniq']
1861    if laue in ['m3','m3m']:
1862        return ['D11','eA']         #add cubic strain term
1863    elif laue in ['6/m','6/mmm','3m1','31m','3']:
1864        return ['D11','D33']
1865    elif laue in ['3R','3mR']:
1866        return ['D11','D12']
1867    elif laue in ['4/m','4/mmm']:
1868        return ['D11','D33']
1869    elif laue in ['mmm']:
1870        return ['D11','D22','D33']
1871    elif laue in ['2/m']:
1872        Dij = ['D11','D22','D33']
1873        if uniq == 'a':
1874            Dij += ['D23']
1875        elif uniq == 'b':
1876            Dij += ['D13']
1877        elif uniq == 'c':
1878            Dij += ['D12']
1879        return Dij
1880    else:
1881        Dij = ['D11','D22','D33','D12','D13','D23']
1882        return Dij
1883   
1884def MustrainCoeff(HKL,SGData):
1885    'Needs a doc string'
1886    #NB: order of terms is the same as returned by MustrainNames
1887    laue = SGData['SGLaue']
1888    uniq = SGData['SGUniq']
1889    h,k,l = HKL
1890    Strm = []
1891    if laue in ['m3','m3m']:
1892        Strm.append(h**4+k**4+l**4)
1893        Strm.append(3.0*((h*k)**2+(h*l)**2+(k*l)**2))
1894    elif laue in ['6/m','6/mmm','3m1']:
1895        Strm.append(h**4+k**4+2.0*k*h**3+2.0*h*k**3+3.0*(h*k)**2)
1896        Strm.append(l**4)
1897        Strm.append(3.0*((h*l)**2+(k*l)**2+h*k*l**2))
1898    elif laue in ['31m','3']:
1899        Strm.append(h**4+k**4+2.0*k*h**3+2.0*h*k**3+3.0*(h*k)**2)
1900        Strm.append(l**4)
1901        Strm.append(3.0*((h*l)**2+(k*l)**2+h*k*l**2))
1902        Strm.append(4.0*h*k*l*(h+k))
1903    elif laue in ['3R','3mR']:
1904        Strm.append(h**4+k**4+l**4)
1905        Strm.append(3.0*((h*k)**2+(h*l)**2+(k*l)**2))
1906        Strm.append(2.0*(h*l**3+l*k**3+k*h**3)+2.0*(l*h**3+k*l**3+l*k**3))
1907        Strm.append(4.0*(k*l*h**2+h*l*k**2+h*k*l**2))
1908    elif laue in ['4/m','4/mmm']:
1909        Strm.append(h**4+k**4)
1910        Strm.append(l**4)
1911        Strm.append(3.0*(h*k)**2)
1912        Strm.append(3.0*((h*l)**2+(k*l)**2))
1913    elif laue in ['mmm']:
1914        Strm.append(h**4)
1915        Strm.append(k**4)
1916        Strm.append(l**4)
1917        Strm.append(3.0*(h*k)**2)
1918        Strm.append(3.0*(h*l)**2)
1919        Strm.append(3.0*(k*l)**2)
1920    elif laue in ['2/m']:
1921        Strm.append(h**4)
1922        Strm.append(k**4)
1923        Strm.append(l**4)
1924        Strm.append(3.0*(h*k)**2)
1925        Strm.append(3.0*(h*l)**2)
1926        Strm.append(3.0*(k*l)**2)
1927        if uniq == 'a':
1928            Strm.append(2.0*k*l**3)
1929            Strm.append(2.0*l*k**3)
1930            Strm.append(4.0*k*l*h**2)
1931        elif uniq == 'b':
1932            Strm.append(2.0*l*h**3)
1933            Strm.append(2.0*h*l**3)
1934            Strm.append(4.0*h*l*k**2)
1935        elif uniq == 'c':
1936            Strm.append(2.0*h*k**3)
1937            Strm.append(2.0*k*h**3)
1938            Strm.append(4.0*h*k*l**2)
1939    else:
1940        Strm.append(h**4)
1941        Strm.append(k**4)
1942        Strm.append(l**4)
1943        Strm.append(3.0*(h*k)**2)
1944        Strm.append(3.0*(h*l)**2)
1945        Strm.append(3.0*(k*l)**2)
1946        Strm.append(2.0*k*h**3)
1947        Strm.append(2.0*h*l**3)
1948        Strm.append(2.0*l*k**3)
1949        Strm.append(2.0*h*k**3)
1950        Strm.append(2.0*l*h**3)
1951        Strm.append(2.0*k*l**3)
1952        Strm.append(4.0*k*l*h**2)
1953        Strm.append(4.0*h*l*k**2)
1954        Strm.append(4.0*k*h*l**2)
1955    return Strm
1956   
1957def Muiso2Shkl(muiso,SGData,cell):
1958    "this is to convert isotropic mustrain to generalized Shkls"
1959    import GSASIIlattice as G2lat
1960    A = G2lat.cell2AB(cell)[0]
1961   
1962    def minMus(Shkl,muiso,H,SGData,A):
1963        U = np.inner(A.T,H)
1964        S = np.array(MustrainCoeff(U,SGData))
1965        Sum = np.sqrt(np.sum(np.multiply(S,Shkl[:,np.newaxis]),axis=0))
1966        rad = np.sqrt(np.sum((Sum[:,np.newaxis]*H)**2,axis=1))
1967        return (muiso-rad)**2
1968       
1969    laue = SGData['SGLaue']
1970    PHI = np.linspace(0.,360.,60,True)
1971    PSI = np.linspace(0.,180.,60,True)
1972    X = np.outer(npsind(PHI),npsind(PSI))
1973    Y = np.outer(npcosd(PHI),npsind(PSI))
1974    Z = np.outer(np.ones(np.size(PHI)),npcosd(PSI))
1975    HKL = np.dstack((X,Y,Z))
1976    if laue in ['m3','m3m']:
1977        S0 = [1000.,1000.]
1978    elif laue in ['6/m','6/mmm','3m1']:
1979        S0 = [1000.,1000.,1000.]
1980    elif laue in ['31m','3']:
1981        S0 = [1000.,1000.,1000.,1000.]
1982    elif laue in ['3R','3mR']:
1983        S0 = [1000.,1000.,1000.,1000.]
1984    elif laue in ['4/m','4/mmm']:
1985        S0 = [1000.,1000.,1000.,1000.]
1986    elif laue in ['mmm']:
1987        S0 = [1000.,1000.,1000.,1000.,1000.,1000.]
1988    elif laue in ['2/m']:
1989        S0 = [1000.,1000.,1000.,0.,0.,0.,0.,0.,0.]
1990    else:
1991        S0 = [1000.,1000.,1000.,1000.,1000., 1000.,1000.,1000.,1000.,1000., 
1992            1000.,1000.,0.,0.,0.]
1993    S0 = np.array(S0)
1994    HKL = np.reshape(HKL,(-1,3))
1995    result = so.leastsq(minMus,S0,(np.ones(HKL.shape[0])*muiso,HKL,SGData,A))
1996    return result[0]
1997       
1998def SytSym(XYZ,SGData):
1999    '''
2000    Generates the number of equivalent positions and a site symmetry code for a specified coordinate and space group
2001
2002    :param XYZ: an array, tuple or list containing 3 elements: x, y & z
2003    :param SGData: from SpcGroup
2004    :Returns: a two element tuple:
2005
2006     * The 1st element is a code for the site symmetry (see GetKNsym)
2007     * The 2nd element is the site multiplicity
2008
2009    '''
2010    def PackRot(SGOps):
2011        IRT = []
2012        for ops in SGOps:
2013            M = ops[0]
2014            irt = 0
2015            for j in range(2,-1,-1):
2016                for k in range(2,-1,-1):
2017                    irt *= 3
2018                    irt += M[k][j]
2019            IRT.append(int(irt))
2020        return IRT
2021       
2022    SymName = ''
2023    Mult = 1
2024    Isym = 0
2025    if SGData['SGLaue'] in ['3','3m1','31m','6/m','6/mmm']:
2026        Isym = 1073741824
2027    Jdup = 0
2028    Xeqv = GenAtom(XYZ,SGData,True)
2029    IRT = PackRot(SGData['SGOps'])
2030    L = -1
2031    for ic,cen in enumerate(SGData['SGCen']):
2032        for invers in range(int(SGData['SGInv']+1)):
2033            for io,ops in enumerate(SGData['SGOps']):
2034                irtx = (1-2*invers)*IRT[io]
2035                L += 1
2036                if not Xeqv[L][1]:
2037                    Jdup += 1
2038                    jx = GetOprPtrName(str(irtx))
2039                    if jx[2] < 39:
2040                        Isym += 2**(jx[2]-1)
2041    if Isym == 1073741824: Isym = 0
2042    Mult = len(SGData['SGOps'])*len(SGData['SGCen'])*(int(SGData['SGInv'])+1)/Jdup
2043         
2044    return GetKNsym(str(Isym)),Mult
2045   
2046def ElemPosition(SGData):
2047    ''' Under development.
2048    Object here is to return a list of symmetry element types and locations suitable
2049    for say drawing them.
2050    So far I have the element type... getting all possible locations without lookup may be impossible!
2051    '''
2052    SymElements = []
2053    Inv = SGData['SGInv']
2054    Cen = SGData['SGCen']
2055    eleSym = {-3:['','-1'],-2:['',-6],-1:['2','-4'],0:['3','-3'],1:['4','m'],2:['6',''],3:['1','']}
2056    # get operators & expand if centrosymmetric
2057    Ops = SGData['SGOps']
2058    opM = np.array([op[0].T for op in Ops])
2059    opT = np.array([op[1] for op in Ops])
2060    if Inv:
2061        opM = np.concatenate((opM,-opM))
2062        opT = np.concatenate((opT,-opT))
2063    opMT = zip(opM,opT)
2064    for M,T in opMT[1:]:        #skip I
2065        Dt = int(nl.det(M))
2066        Tr = int(np.trace(M))
2067        Dt = -(Dt-1)/2
2068        Es = eleSym[Tr][Dt]
2069        if Dt:              #rotation-inversion
2070            I = np.eye(3)
2071            if Tr == 1:     #mirrors/glides
2072                if np.any(T):       #glide
2073                    M2 = np.inner(M,M)
2074                    MT = np.inner(M,T)+T
2075                    print 'glide',Es,MT
2076                    print M2
2077                else:               #mirror
2078                    print 'mirror',Es,T
2079                    print I-M
2080                X = [-1,-1,-1]
2081            elif Tr == -3:  # pure inversion
2082                X = np.inner(nl.inv(I-M),T)
2083                print 'inversion',Es,X
2084            else:           #other rotation-inversion
2085                M2 = np.inner(M,M)
2086                MT = np.inner(M,T)+T
2087                print 'rot-inv',Es,MT
2088                print M2
2089                X = [-1,-1,-1]
2090        else:               #rotations
2091            print 'rotation',Es
2092            X = [-1,-1,-1]
2093        #SymElements.append([Es,X])
2094       
2095    return #SymElements
2096   
2097def ApplyStringOps(A,SGData,X,Uij=[]):
2098    'Needs a doc string'
2099    SGOps = SGData['SGOps']
2100    SGCen = SGData['SGCen']
2101    Ax = A.split('+')
2102    Ax[0] = int(Ax[0])
2103    iC = 0
2104    if Ax[0] < 0:
2105        iC = 1
2106    Ax[0] = abs(Ax[0])
2107    nA = Ax[0]%100-1
2108    cA = Ax[0]/100
2109    Cen = SGCen[cA]
2110    M,T = SGOps[nA]
2111    if len(Ax)>1:
2112        cellA = Ax[1].split(',')
2113        cellA = np.array([int(a) for a in cellA])
2114    else:
2115        cellA = np.zeros(3)
2116    newX = Cen+(1-2*iC)*(np.inner(M,X).T+T)+cellA
2117    if len(Uij):
2118        U = Uij2U(Uij)
2119        U = np.inner(M,np.inner(U,M).T)
2120        newUij = U2Uij(U)
2121        return [newX,newUij]
2122    else:
2123        return newX
2124       
2125def StringOpsProd(A,B,SGData):
2126    """
2127    Find A*B where A & B are in strings '-' + '100*c+n' + '+ijk'
2128    where '-' indicates inversion, c(>0) is the cell centering operator,
2129    n is operator number from SgOps and ijk are unit cell translations (each may be <0).
2130    Should return resultant string - C. SGData - dictionary using entries:
2131
2132       *  'SGCen': cell centering vectors [0,0,0] at least
2133       *  'SGOps': symmetry operations as [M,T] so that M*x+T = x'
2134
2135    """
2136    SGOps = SGData['SGOps']
2137    SGCen = SGData['SGCen']
2138    #1st split out the cell translation part & work on the operator parts
2139    Ax = A.split('+'); Bx = B.split('+')
2140    Ax[0] = int(Ax[0]); Bx[0] = int(Bx[0])
2141    iC = 0
2142    if Ax[0]*Bx[0] < 0:
2143        iC = 1
2144    Ax[0] = abs(Ax[0]); Bx[0] = abs(Bx[0])
2145    nA = Ax[0]%100-1;  nB = Bx[0]%100-1
2146    cA = Ax[0]/100;  cB = Bx[0]/100
2147    Cen = (SGCen[cA]+SGCen[cB])%1.0
2148    cC = np.nonzero([np.allclose(C,Cen) for C in SGCen])[0][0]
2149    Ma,Ta = SGOps[nA]; Mb,Tb = SGOps[nB]
2150    Mc = np.inner(Ma,Mb.T)
2151#    print Ma,Mb,Mc
2152    Tc = (np.add(np.inner(Mb,Ta)+1.,Tb))%1.0
2153#    print Ta,Tb,Tc
2154#    print [np.allclose(M,Mc)&np.allclose(T,Tc) for M,T in SGOps]
2155    nC = np.nonzero([np.allclose(M,Mc)&np.allclose(T,Tc) for M,T in SGOps])[0][0]
2156    #now the cell translation part
2157    if len(Ax)>1:
2158        cellA = Ax[1].split(',')
2159        cellA = [int(a) for a in cellA]
2160    else:
2161        cellA = [0,0,0]
2162    if len(Bx)>1:
2163        cellB = Bx[1].split(',')
2164        cellB = [int(b) for b in cellB]
2165    else:
2166        cellB = [0,0,0]
2167    cellC = np.add(cellA,cellB)
2168    C = str(((nC+1)+(100*cC))*(1-2*iC))+'+'+ \
2169        str(int(cellC[0]))+','+str(int(cellC[1]))+','+str(int(cellC[2]))
2170    return C
2171           
2172def U2Uij(U):
2173    #returns the UIJ vector U11,U22,U33,U12,U13,U23 from tensor U
2174    return [U[0][0],U[1][1],U[2][2],2.*U[0][1],2.*U[0][2],2.*U[1][2]]
2175   
2176def Uij2U(Uij):
2177    #returns the thermal motion tensor U from Uij as numpy array
2178    return np.array([[Uij[0],Uij[3]/2.,Uij[4]/2.],[Uij[3]/2.,Uij[1],Uij[5]/2.],[Uij[4]/2.,Uij[5]/2.,Uij[2]]])
2179
2180def StandardizeSpcName(spcgroup):
2181    '''Accept a spacegroup name where spaces may have not been used
2182    in the names according to the GSAS convention (spaces between symmetry
2183    for each axis) and return the space group name as used in GSAS
2184    '''
2185    rspc = spcgroup.replace(' ','').upper()
2186    # deal with rhombohedral and hexagonal setting designations
2187    rhomb = ''
2188    if rspc[-1:] == 'R':
2189        rspc = rspc[:-1]
2190        rhomb = ' R'
2191    elif rspc[-1:] == 'H': # hexagonal is assumed and thus can be ignored
2192        rspc = rspc[:-1]
2193    # look for a match in the spacegroup lists
2194    for i in spglist.values():
2195        for spc in i:
2196            if rspc == spc.replace(' ','').upper():
2197                return spc + rhomb
2198    # how about the post-2002 orthorhombic names?
2199    for i,spc in sgequiv_2002_orthorhombic:
2200        if rspc == i.replace(' ','').upper():
2201            return spc
2202    # not found
2203    return ''
2204
2205   
2206spglist = {}
2207'''A dictionary of space groups as ordered and named in the pre-2002 International
2208Tables Volume A, except that spaces are used following the GSAS convention to
2209separate the different crystallographic directions.
2210Note that the symmetry codes here will recognize many non-standard space group
2211symbols with different settings. They are ordered by Laue group
2212'''
2213spglist = {
2214    'P1' : ('P 1','P -1',), # 1-2
2215    'P2/m': ('P 2','P 21','P m','P a','P c','P n',
2216        'P 2/m','P 21/m','P 2/c','P 2/a','P 2/n','P 21/c','P 21/a','P 21/n',), #3-15
2217    'C2/m':('C 2','C m','C c','C n',
2218        'C 2/m','C 2/c','C 2/n',),
2219    'Pmmm':('P 2 2 2',
2220        'P 2 2 21','P 21 2 2','P 2 21 2',
2221        'P 21 21 2','P 2 21 21','P 21 2 21',
2222        'P 21 21 21',
2223        'P m m 2','P 2 m m','P m 2 m',
2224        'P m c 21','P 21 m a','P b 21 m','P m 21 b','P c m 21','P 21 a m',
2225        'P c c 2','P 2 a a','P b 2 b',
2226        'P m a 2','P 2 m b','P c 2 m','P m 2 a','P b m 2','P 2 c m',
2227        'P c a 21','P 21 a b','P c 21 b','P b 21 a','P b c 21','P 21 c a',
2228        'P n c 2','P 2 n a','P b 2 n','P n 2 b','P c n 2','P 2 a n',
2229        'P m n 21','P 21 m n','P n 21 m','P m 21 n','P n m 21','P 21 n m',
2230        'P b a 2','P 2 c b','P c 2 a',
2231        'P n a 21','P 21 n b','P c 21 n','P n 21 a','P b n 21','P 21 c n',
2232        'P n n 2','P 2 n n','P n 2 n',
2233        'P m m m','P n n n',
2234        'P c c m','P m a a','P b m b',
2235        'P b a n','P n c b','P c n a',
2236        'P m m a','P b m m','P m c m','P m a m','P m m b','P c m m',
2237        'P n n a','P b n n','P n c n','P n a n','P n n b','P c n n',
2238        'P m n a','P b m n','P n c m','P m a n','P n m b','P c n m',
2239        'P c c a','P b a a','P b c b','P b a b','P c c b','P c a a',
2240        'P b a m','P m c b','P c m a',
2241        'P c c n','P n a a','P b n b',
2242        'P b c m','P m c a','P b m a','P c m b','P c a m','P m a b',
2243        'P n n m','P m n n','P n m n',
2244        'P m m n','P n m m','P m n m',
2245        'P b c n','P n c a','P b n a','P c n b','P c a n','P n a b',
2246        'P b c a','P c a b',
2247        'P n m a','P b n m','P m c n','P n a m','P m n b','P c m n',
2248        ),
2249    'Cmmm':('C 2 2 21','C 2 2 2','C m m 2',
2250        'C m c 21','C c m 21','C c c 2','C m 2 m','C 2 m m',
2251        'C m 2 a','C 2 m b','C c 2 m','C 2 c m','C c 2 a','C 2 c b',
2252        'C m c m','C m c a','C c m b',
2253        'C m m m','C c c m','C m m a','C m m b','C c c a','C c c b',),
2254    'Immm':('I 2 2 2','I 21 21 21',
2255        'I m m 2','I m 2 m','I 2 m m',
2256        'I b a 2','I 2 c b','I c 2 a',
2257        'I m a 2','I 2 m b','I c 2 m','I m 2 a','I b m 2','I 2 c m',
2258        'I m m m','I b a m','I m c b','I c m a',
2259        'I b c a','I c a b',
2260        'I m m a','I b m m ','I m c m','I m a m','I m m b','I c m m',),
2261    'Fmmm':('F 2 2 2','F m m m', 'F d d d',
2262        'F m m 2','F m 2 m','F 2 m m',
2263        'F d d 2','F d 2 d','F 2 d d',),
2264    'P4/mmm':('P 4','P 41','P 42','P 43','P -4','P 4/m','P 42/m','P 4/n','P 42/n',
2265        'P 4 2 2','P 4 21 2','P 41 2 2','P 41 21 2','P 42 2 2',
2266        'P 42 21 2','P 43 2 2','P 43 21 2','P 4 m m','P 4 b m','P 42 c m',
2267        'P 42 n m','P 4 c c','P 4 n c','P 42 m c','P 42 b c','P -4 2 m',
2268        'P -4 2 c','P -4 21 m','P -4 21 c','P -4 m 2','P -4 c 2','P -4 b 2',
2269        'P -4 n 2','P 4/m m m','P 4/m c c','P 4/n b m','P 4/n n c','P 4/m b m',
2270        'P 4/m n c','P 4/n m m','P 4/n c c','P 42/m m c','P 42/m c m',
2271        'P 42/n b c','P 42/n n m','P 42/m b c','P 42/m n m','P 42/n m c',
2272        'P 42/n c m',),
2273    'I4/mmm':('I 4','I 41','I -4','I 4/m','I 41/a','I 4 2 2','I 41 2 2','I 4 m m',
2274        'I 4 c m','I 41 m d','I 41 c d',
2275        'I -4 m 2','I -4 c 2','I -4 2 m','I -4 2 d','I 4/m m m','I 4/m c m',
2276        'I 41/a m d','I 41/a c d'),
2277    'R3-H':('R 3','R -3','R 3 2','R 3 m','R 3 c','R -3 m','R -3 c',),
2278    'P6/mmm': ('P 3','P 31','P 32','P -3','P 3 1 2','P 3 2 1','P 31 1 2',
2279        'P 31 2 1','P 32 1 2','P 32 2 1', 'P 3 m 1','P 3 1 m','P 3 c 1',
2280        'P 3 1 c','P -3 1 m','P -3 1 c','P -3 m 1','P -3 c 1','P 6','P 61',
2281        'P 65','P 62','P 64','P 63','P -6','P 6/m','P 63/m','P 6 2 2',
2282        'P 61 2 2','P 65 2 2','P 62 2 2','P 64 2 2','P 63 2 2','P 6 m m',
2283        'P 6 c c','P 63 c m','P 63 m c','P -6 m 2','P -6 c 2','P -6 2 m',
2284        'P -6 2 c','P 6/m m m','P 6/m c c','P 63/m c m','P 63/m m c',),
2285    'Pm3m': ('P 2 3','P 21 3','P m 3','P n 3','P a 3','P 4 3 2','P 42 3 2',
2286        'P 43 3 2','P 41 3 2','P -4 3 m','P -4 3 n','P m 3 m','P n 3 n',
2287        'P m 3 n','P n 3 m',),
2288    'Im3m':('I 2 3','I 21 3','I m -3','I a -3', 'I 4 3 2','I 41 3 2',
2289        'I -4 3 m', 'I -4 3 d','I m -3 m','I m 3 m','I a -3 d',),
2290    'Fm3m':('F 2 3','F m -3','F d -3','F 4 3 2','F 41 3 2','F -4 3 m',
2291        'F -4 3 c','F m -3 m','F m 3 m','F m -3 c','F d -3 m','F d -3 c',),
2292}
2293
2294ssdict = {}
2295'''A dictionary of superspace group symbols allowed for each entry in spglist
2296(except cubics). Monoclinics are all b-unique setting.
2297'''
2298ssdict = {
2299#1,2
2300    'P 1':['(abg)',],'P -1':['(abg)',],
2301#monoclinic - done
2302#3
2303    'P 2':['(a0g)','(a1/2g)','(0b0)','(0b0)s','(1/2b0)','(0b1/2)',],
2304#4       
2305    'P 21':['(a0g)','(0b0)','(1/2b0)','(0b1/2)',],
2306#5
2307    'C 2':['(a0g)','(0b0)','(0b0)s','(0b1/2)',],
2308#6
2309    'P m':['(a0g)','(a0g)s','(a1/2g)','(0b0)','(1/2b0)','(0b1/2)',],
2310#7
2311    'P a':['(a0g)','(a1/2g)','(0b0)','(0b1/2)',],
2312    'P c':['(a0g)','(a1/2g)','(0b0)','(1/2b0)',],
2313    'P n':['(a0g)','(a1/2g)','(0b0)','(1/2b1/2)',],
2314#8       
2315    'C m':['(a0g)','(a0g)s','(0b0)','(0b1/2)',],
2316#9       
2317    'C c':['(a0g)','(a0g)s','(0b0)',],
2318    'C n':['(a0g)','(a0g)s','(0b0)',],
2319#10       
2320    'P 2/m':['(a0g)','(a0g)0s','(a1/2g)','(0b0)','(0b0)s0','(1/2b0)','(0b1/2)',],
2321#11
2322    'P 21/m':['(a0g)','(a0g)0s','(0b0)','(0b0)s0','(1/2b0)','(0b1/2)',],
2323#12       
2324    'C 2/m':['(a0g)','(a0g)0s','(0b0)','(0b0)s0','(0b1/2)',],
2325#13
2326    'P 2/c':['(a0g)','(a0g)0s','(a1/2g)','(0b0)','(0b0)s0','(1/2b0)',],
2327    'P 2/a':['(a0g)','(a0g)0s','(a1/2g)','(0b0)','(0b0)s0','(0b1/2)',],
2328    'P 2/n':['(a0g)','(a0g)0s','(a1/2g)','(0b0)','(0b0)s0','(1/2b1/2)',],
2329#14
2330    'P 21/c':['(a0g)','(0b0)','(1/2b0)',],
2331    'P 21/a':['(a0g)','(0b0)','(0b1/2)',],
2332    'P 21/n':['(a0g)','(0b0)','(1/2b1/2)',],
2333#15
2334    'C 2/c':['(a0g)','(0b0)','(0b0)s0',],
2335    'C 2/n':['(a0g)','(0b0)','(0b0)s0',],
2336#orthorhombic
2337#16   
2338    'P 2 2 2':['(00g)','(00g)00s','(01/2g)','(1/20g)','(1/21/2g)',
2339        '(a00)','(a00)s00','(a01/2)','(a1/20)','(a1/21/2)',
2340        '(0b0)','(0b0)0s0','(1/2b0)','(0b1/2)','(1/2b1/2)',],
2341#17       
2342    'P 2 2 21':['(00g)','(01/2g)','(1/20g)','(1/21/2g)',
2343        '(a00)','(a00)s00','(a1/20)','(0b0)','(0b0)0s0','(1/2b0)',],
2344    'P 21 2 2':['(a00)','(a01/2)','(a1/20)','(a1/21/2)',
2345        '(0b0)','(0b0)0s0','(1/2b0)','(00g)','(00g)00s','(1/20g)',],
2346    'P 2 21 2':['(0b0)','(0b1/2)','(1/2b0)','(1/2b1/2)',
2347        '(00g)','(00g)00s','(1/20g)','(a00)','(a00)s00','(a1/20)',],
2348#18       
2349    'P 21 21 2':['(00g)','(00g)00s','(a00)','(a01/2)','(0b0)','(0b1/2)',],
2350    'P 2 21 21':['(a00)','(a00)s00','(0b0)','(0b1/2)','(00g)','(01/2g)',],
2351    'P 21 2 21':['(0b0)','(0b0)0s0','(00g)','(01/2g)','(a00)','(a01/2)',],
2352#19       
2353    'P 21 21 21':['(00g)','(a00)','(0b0)',],
2354#20       
2355    'C 2 2 21':['(00g)','(10g)','(01g)','(a00)','(a00)s00','(0b0)','(0b0)0s0',],
2356    'A 21 2 2':['(a00)','(a10)','(a01)','(0b0)','(0b0)0s0','(00g)','(00g)00s',],
2357    'B 2 21 2':['(0b0)','(1b0)','(0b1)','(00g)','(00g)00s','(a00)','(a00)s00',],
2358#21       
2359    'C 2 2 2':['(00g)','(00g)00s','(10g)','(10g)00s','(01g)','(01g)00s',
2360        '(a00)','(a00)s00','(a01/2)','(0b0)','(0b0)0s0','(0b1/2)',],
2361    'A 2 2 2':['(a00)','(a00)s00','(a10)','(a10)s00','(a01)','(a01)s00',
2362        '(0b0)','(0b0)0s0','(1/2b0)','(00g)','(00g)00s','(1/20g)',],
2363    'B 2 2 2':['(0b0)','(0b0)0s0','(1b0)','(1b0)0s0','(0b1)','(0b1)0s0',
2364        '(00g)','(00g)00s','(01/2g)','(a00)','(a00)s00','(a1/20)',],
2365#22       
2366    'F 2 2 2':['(00g)','(00g)00s','(10g)','(01g)',
2367        '(a00)','(a00)s00','(a10)','(a01)',
2368        '(0b0)','(0b0)0s0','(1b0)','(0b1)',],
2369#23       
2370    'I 2 2 2':['(00g)','(00g)00s','(a00)','(a00)s00','(0b0)','(0b0)0s0',],
2371#24       
2372    'I 21 21 21':['(00g)','(00g)00s','(a00)','(a00)s00','(0b0)','(0b0)0s0',],
2373#25       
2374    'P m m 2':['(00g)','(00g)s0s','(00g)0ss','(00g)ss0',
2375        '(01/2g)','(01/2g)s0s','(1/20g)','(1/20g)0ss','(1/21/2g)',
2376        '(a00)','(a00)0s0','(a1/20)','(a01/2)','(a01/2)0s0','(a1/21/2)',
2377        '(0b0)','(0b0)s00','(0b1/2)','(0b1/2)s00','(1/2b0)','(1/2b1/2)',],       
2378    'P 2 m m':['(a00)','(a00)ss0','(a00)s0s','(a00)0ss',
2379        '(a01/2)','(a01/2)ss0','(a1/20)','(a1/20)s0s','(a1/21/2)',
2380        '(0b0)','(0b0)00s','(1/2b0)','(0b1/2)','(0b1/2)00s','(1/2b1/2)',
2381        '(00g)','(00g)0s0','(01/2g)','(01/2g)0s0','(1/20g)','(1/21/2g)',],
2382    'P m 2 m':['(0b0)','(0b0)ss0','(0b0)0ss','(0b0)s0s',
2383        '(0b1/2)','(0b1/2)ss0','(1/2b0)','(1/2b0)0ss','(1/2b1/2)',
2384        '(00g)','(00g)s00','(1/20g)','(01/2g)','(01/2g)s00','(1/21/2g)',
2385        '(a00)','(a00)0s0','(a01/2)','(a01/2)0s0','(a1/20)','(a1/21/2)',],       
2386#26       
2387    'P m c 21':['(00g)','(00g)s0s','(01/2g)','(01/2g)s0s','(1/20g)','(1/21/2g)',
2388        '(a00)','(a00)0s0','(a1/20)','(0b0)','(0b0)s00','(0b1/2)',],
2389    'P 21 m a':['(a00)','(a00)ss0','(a01/2)','(a01/2)ss0','(a1/20)','(a1/21/2)',
2390        '(0b0)','(0b0)00s','(1/2b0)','(00g)','(00g)0s0','(01/2g)',],
2391    'P b 21 m':['(0b0)','(0b0)ss0','(0b1/2)','(0b1/2)ss0','(1/2b0)','(1/2b1/2)',
2392        '(00g)','(00g)s00','(1/20g)','(a00)','(a00)0s0','(a01/2)',],
2393    'P m 21 b':['(a00)','(a00)ss0','(a01/2)','(a01/2)ss0','(a1/20)','(a1/21/2)',
2394        '(00g)','(00g)0s0','(01/2g)','(0b0)','(0b0)s00','(0b1/2)',],
2395    'P c m 21':['(00g)','(00g)0ss','(1/20g)','(1/20g)0ss','(01/2g)','(1/21/2g)',
2396        '(0b0)','(0b0)s00','(1/2b0)','(a00)','(a00)0s0','(a01/2)',],
2397    'P 21 a m':['(0b0)','(0b0)ss0','(0b1/2)','(0b1/2)ss0','(1/2b0)','(1/2b1/2)',
2398        '(a00)','(a00)00s','(a1/20)','(00g)','(00g)s00','(1/20g)',],
2399#27       
2400    'P c c 2':['(00g)','(00g)s0s','(00g)0ss','(01/2g)','(1/20g)','(1/21/2g)',
2401        '(a00)','(a00)0s0','(a1/20)','(0b0)','(0b0)s00','(1/2b0)',],
2402    'P 2 a a':['(a00)','(a00)ss0','(a00)s0s','(a01/2)','(a1/20)','(a1/21/2)',
2403        '(0b0)','(0b0)00s','(0b1/2)','(00g)','(00g)0s0','(01/2g)',],
2404    'P b 2 b':['(0b0)','(0b0)0ss','(0b0)ss0','(1/2b0)','(0b1/2)','(1/2b1/2)',
2405        '(00g)','(00g)s00','(1/20g)','(a00)','(a00)00s','(a01/2)',],
2406#28       
2407    'P m a 2':['(00g)','(00g)s0s','(00g)ss0','(00g)0ss','(01/2g)','(01/2g)s0s',
2408        '(0b1/2)','(0b1/2)s00','(a01/2)','(a00)','(0b0)','(0b0)0s0','(a1/20)','(a1/21/2)'],
2409    'P 2 m b':['(a00)','(a00)s0s','(a00)ss0','(a00)0ss','(a01/2)','(a01/2)s0s',
2410        '(1/20g)','(1/20g)s00','(1/2b0)','(0b0)','(00g)','(00g)0s0','(0b1/2)','(1/2b1/2)'],
2411    'P c 2 m':['(0b0)','(0b0)s0s','(0b0)ss0','(0b0)0ss','(1/2b0)','(1/2b0)s0s',
2412        '(a1/20)','(a1/20)s00','(01/2g)','(00g)','(a00)','(a00)0s0','(1/20g)','(1/21/2g)'],
2413    'P m 2 a':['(0b0)','(0b0)s0s','(0b0)ss0','(0b0)0ss','(0b1/2)','(0b1/2)s0s',
2414        '(01/2g)','(01/2g)s00','(a1/20)','(a00)','(00g)','(00g)0s0','(a01/2)','(a1/21/2)'],
2415    'P b m 2':['(00g)','(00g)s0s','(00g)ss0','(00g)0ss','(1/20g)','(1/20g)s0s',
2416        '(a01/2)','(a01/2)s00','(0b1/2)','(0b0)','(a00)','(a00)0s0','(1/2b0)','(1/2b1/2)'],
2417    'P 2 c m':['(a00)','(a00)s0s','(a00)ss0','(a00)0ss','(a1/20)','(a1/20)s0s',
2418        '(1/2b0)','(1/2b0)s00','(1/20g)','(00g)','(0b0)','(0b0)0s0','(01/2g)','(1/21/2g)'],
2419#29       
2420    'P c a 21':['(00g)','(00g)0ss','(01/2g)','(1/20g)',
2421        '(a00)','(a00)0s0','(a1/20)','(0b0)','(0b0)s00','(1/2b0)',],
2422    'P 21 a b':['(a00)','(a00)s0s','(a01/2)','(a1/20)',
2423        '(0b0)','(0b0)00s','(0b1/2)','(00g)','(00g)0s0','(01/2g)',],
2424    'P c 21 b':['(0b0)','(0b0)ss0','(1/2b0)','(0b1/2)',
2425        '(00g)','(00g)s00','(1/20g)','(a00)','(a00)00s','(a01/2)',],
2426    'P b 21 a':['(0b0)','(0b0)0ss','(0b1/2)','(1/2b0)',
2427        '(a00)','(a00)00s','(a1/20)','(00g)','(00g)s00','(1/20g)',],
2428    'P b c 21':['(00g)','(00g)s0s','(1/20g)','(01/2g)',
2429        '(0b0)','(0b0)s00','(0b1/2)','(a00)','(a00)0s0','(a1/20)',],
2430    'P 21 c a':['(a00)','(a00)ss0','(a1/20)','(a01/2)',
2431        '(00g)','(00g)0s0','(1/20g)','(0b0)','(0b0)00s','(0b1/2)',],
2432#30       
2433    'P c n 2':['(00g)','(00g)s0s','(01/2g)','(a00)','(0b0)','(0b0)s00',
2434        '(a1/20)','(1/2b1/2)q00',],
2435    'P 2 a n':['(a00)','(a00)ss0','(a01/2)','(0b0)','(00g)','(00g)0s0',
2436        '(0b1/2)','(1/21/2g)0q0',],
2437    'P n 2 b':['(0b0)','(0b0)0ss','(1/2b0)','(00g)','(a00)','(a00)00s',
2438        '(1/20g)','(a1/21/2)00q',],
2439    'P b 2 n':['(0b0)','(0b0)ss0','(0b1/2)','(a00)','(00g)','(00g)s00',
2440        '(a01/2)','(1/21/2g)0ss',],
2441    'P n c 2':['(00g)','(00g)0ss','(1/20g)','(0b0)','(a00)','(a00)0s0',
2442        '(1/2b0)','(a1/21/2)s0s',],
2443    'P 2 n a':['(a00)','(a00)s0s','(a1/20)','(00g)','(0b0)','(0b0)00s',
2444        '(01/2g)','(1/2b1/2)ss0',],
2445#31       
2446    'P m n 21':['(00g)','(00g)s0s','(01/2g)','(01/2g)s0s','(a00)','(0b0)',
2447        '(0b0)s00','(a1/20)',],
2448    'P 21 m n':['(a00)','(a00)ss0','(a01/2)','(a01/2)ss0','(0b0)','(00g)',
2449        '(00g)0s0','(0b1/2)',],
2450    'P n 21 m':['(0b0)','(0b0)0ss','(1/2b0)','(1/2b0)0ss','(00g)','(a00)',
2451        '(a00)00s','(1/20g)',],
2452    'P m 21 n':['(0b0)','(0b0)ss0','(0b1/2)','(0b1/2)ss0','(a00)','(00g)',
2453        '(00g)s00','(a01/2)',],
2454    'P n m 21':['(00g)','(00g)0ss','(1/20g)','(1/20g)0ss','(0b0)','(a00)',
2455        '(a00)0s0','(1/2b0)',],
2456    'P 21 n m':['(a00)','(a00)s0s','(a1/20)','(a1/20)s0s','(00g)','(0b0)',
2457        '(0b0)00s','(01/2g)',],
2458#32       
2459    'P b a 2':['(00g)','(00g)s0s','(00g)0ss','(00g)ss0','(1/21/2g)qq0',
2460        '(a00)','(a01/2)','(0b0)','(0b1/2)',],
2461    'P 2 c b':['(a00)','(a00)ss0','(a00)s0s','(a00)0ss','(a1/21/2)0qq',
2462        '(0b0)','(1/2b0)','(00g)','(1/20g)',],
2463    'P c 2 a':['(0b0)','(0b0)ss0','(0b0)0ss','(0b0)s0s','(1/2b1/2)q0q',
2464        '(00g)','01/2g)','(a00)','(a1/20)',],
2465#33       
2466    'P b n 21':['(00g)','(00g)s0s','(1/21/2g)qq0','(a00)','(0b0)',],
2467    'P 21 c n':['(a00)','(a00)ss0','(a1/21/2)0qq','(0b0)','(00g)',],
2468    'P n 21 a':['(0b0)','(0b0)0ss','(1/2b1/2)q0q','(00g)','(a00)',],
2469    'P c 21 n':['(0b0)','(0b0)ss0','(1/2b1/2)q0q','(a00)','(00g)',],
2470    'P n a 21':['(00g)','(00g)0ss','(1/21/2g)qq0','(0b0)','(a00)',],
2471    'P 21 n b':['(a00)','(a00)s0s','(a1/21/2)0qq','(00g)','(0b0)',],
2472#34       
2473    'P n n 2':['(00g)','(00g)s0s','(00g)0ss','(1/21/2g)qq0',
2474        '(a00)','(a1/21/2)0q0','(a1/21/2)00q','(0b0)','(1/2b1/2)q00','(1/2b1/2)00q',],
2475    'P 2 n n':['(a00)','(a00)ss0','(a00)s0s','(a1/21/2)0qq',
2476        '(0b0)','(1/2b1/2)q00','(1/2b1/2)00q','(00g)','(1/21/2g)0q0','(1/21/2g)q00',],
2477    'P n 2 n':['(0b0)','(0b0)ss0','(0b0)0ss','(1/2b1/2)q0q',
2478        '(00g)','(1/21/2g)0q0','(1/21/2g)q00','(a00)','(a1/21/2)00q','(a1/21/2)0q0',],
2479#35       
2480    'C m m 2':['(00g)','(00g)s0s','(00g)ss0','(10g)','(10g)s0s','(10g)ss0',
2481        '(0b0)','(0b0)s00','(0b1/2)','(0b1/2)s00',],
2482    'A 2 m m':['(a00)','(a00)ss0','(a00)0ss','(a10)','(a10)ss0','(a10)0ss',
2483        '(00g)','(00g)0s0','(1/20g)','(1/20g)0s0',],
2484    'B m 2 m':['(0b0)','(0b0)0ss','(0b0)s0s','(0b1)','(0b1)0ss','(0b1)s0s',
2485        '(a00)','(a00)00s','(a1/20)','(a1/20)00s',],
2486#36
2487    'C m c 21':['(00g)','(00g)s0s','(10g)','(10g)s0s','(a00)','(a00)0s0','(0b0)','(0b0)s00',],
2488    'A 21 m a':['(a00)','(a00)ss0','(a10)','(a10)ss0','(0b0)','(0b0)00s','(00g)','(00g)0s0',],
2489    'B m 21 b':['(0b0)','(0b0)ss0','(1b0)','(1b0)ss0','(a00)','(a00)00s','(00g)','(00g)s00',],
2490    'B b 21 m':['(0b0)','(0b0)0ss','(0b1)','(0b1)ss0','(a00)','(a00)00s','(00g)','(00g)s00',],
2491    'C c m 21':['(00g)','(00g)0ss','(01g)','(01g)0ss','(a00)','(a00)0s0','(0b0)','(0b0)s00',],
2492    'A 21 a m':['(a00)','(a00)s0s','(a01)','(a01)s0s','(0b0)','(0b0)00s','(00g)','(00g)0s0',],
2493#37
2494    'C c c 2':['(00g)','(00g)s0s','(00g)0ss','(10g)','(10g)s0s','(10g)0ss','(01g)','(01g)s0s','(01g)0ss',
2495        '(a00)','(a00)0s0','(0b0)','(0b0)s00',],
2496    'A 2 a a':['(a00)','(a00)ss0','(a00)s0s','(a10)','(a10)ss0','(a10)ss0','(a01)','(a01)ss0','(a01)ss0',
2497        '(0b0)','(0b0)00s','(00g)','(00g)0s0',],
2498    'B b 2 b':['(0b0)','(0b0)0ss','(0b0)ss0','(0b1)','(0b1)0ss','(0b1)ss0','(1b0)','(1b0)0ss','(1b0)ss0',
2499        '(a00)','(a00)00s','(00g)','(00g)s00',],
2500#38
2501    'A m m 2':['(a00)','(a00)0s0','(a10)','(a10)0s0','(00g)','(00g)0s0',
2502        '(00g)ss0','(00g)0ss','(1/20g)','(1/20g)0ss','(0b0)','(0b0)s00','(1/2b0)',],
2503    'B 2 m m':['(0b0)','(0b0)00s','(0b1)','(0b1)00s','(a00)','(a00)00s',
2504        '(a00)0ss','(a00)s0s','(a1/20)','(a1/20)s0s','(00g)','(00g)0s0','(01/2g)',],
2505    'C m 2 m':['(00g)','(00g)s00','(10g)','(10g)s00','(0b0)','(0b0)s00',
2506        '(0b0)s0s','(0b0)ss0','(0b1/2)','(0b1/2)ss0','(a00)','(a00)00s','(a01/2)',],
2507    'A m 2 m':['(a00)','(a00)00s','(a01)','(a01)00s','(0b0)','(0b0)00s',
2508        '(0b0)s0s','(0b0)0ss','(1/2b0)','(1/2b0)0ss','(00g)','(00g)s00','(1/20g)',],
2509    'B m m 2':['(0b0)','(0b0)s00','(0b1)','(0b1)s00','(a00)','(a00)0s0',
2510        '(a00)0ss','(a00)ss0','(01/2g)','(01/2g)s0s','(a00)','(a00)0s0','(a1/20)',],
2511    'C 2 m m':['(00g)','(00g)0s0','(10g)','(10g)0s0','(00g)','(00g)s00',
2512        '(0b0)s0s','(0b0)0ss','(a01/2)','(a01/2)ss0','(0b0)','(0b0)00s','(0b1/2)',],
2513#39
2514    'A b m 2':['(a00)','(a00)0s0','(a01)','(a01)0s0','(00g)','(00g)s0s',
2515        '(00g)ss0','(00g)0ss','(1/20g)','(1/20g)0ss','(0b0)','(0b0)s00','(1/2b0)',],
2516    'B 2 c m':['(0b0)','(0b0)00s','(1b0)','(1b0)00s','(a00)','(a00)ss0',
2517        '(a00)0ss','(a00)s0s','(a1/20)','(a1/20)s0s','(00g)','(00g)0s0','(01/2g)',],
2518    'C m 2 a':['(00g)','(00g)s00','(01g)','(01g)s00','(0b0)','(0b0)0ss',
2519        '(0b0)s0s','(0b0)ss0','(0b1/2)','(0b1/2)ss0','(a00)','(a00)00s','(a01/2)',],
2520    'A c 2 m':['(a00)','(a00)00s','(a10)','(a10)00s','(0b0)','(0b0)ss0',
2521        '(0b0)s0s','(0b0)0ss','(1/2b0)','(1/2b0)0ss','(00g)','(00g)s00','(1/20g)',],
2522    'B m a 2':['(0b0)','(0b0)s00','(0b1)','(0b1)s00','(00g)','(00g)s0s',
2523        '(00g)0ss','(00g)ss0','(01/2g)','(01/2g)ss0','(a00)','(a00)00s','(a1/20)',],
2524    'C 2 m b':['(00g)','(00g)0s0','(10g)','(10g)0s0','(a00)','(a00)0ss',
2525        '(a00)ss0','(a00)s0s','(a01/2)','(a01/2)s0s','(0b0)','(0b0)0s0','(0b1/2)',],
2526#40       
2527    'A m a 2':['(a00)','(a01)','(00g)','(00g)s0s','(00g)ss0','(00g)0ss','(0b0)','(0b0)s00',],
2528    'B 2 m b':['(0b0)','(1b0)','(a00)','(a00)ss0','(a00)0ss','(a00)s0s','(00g)','(00g)0s0',],
2529    'C c 2 m':['(00g)','(01g)','(0b0)','(0b0)0ss','(0b0)s0s','(0b0)ss0','(a00)','(a00)00s',],
2530    'A m 2 a':['(a00)','(a10)','(0b0)','(0b0)ss0','(0b0)s0s','(0b0)0ss','(00g)','(00g)s00',],
2531    'B b m 2':['(0b0)','(0b1)','(00g)','(00g)0ss','(00g)ss0','(00g)s0s','(a00)','(a00)0s0',],
2532    'C 2 c m':['(00g)','(10g)','(a00)','(a00)s0s','(a00)0ss','(a00)ss0','(0b0)','(0b0)00s',],
2533#41
2534    'A b a 2':['(a00)','(a01)','(00g)','(00g)s0s','(00g)ss0','(00g)0ss','(0b0)','(0b0)s00',],
2535    'B 2 c b':['(0b0)','(1b0)','(a00)','(a00)ss0','(a00)0ss','(a00)s0s','(00g)','(00g)0s0',],
2536    'C c 2 a':['(00g)','(01g)','(0b0)','(0b0)0ss','(0b0)s0s','(0b0)ss0','(a00)','(a00)00s',],
2537    'A c 2 a':['(a00)','(a10)','(0b0)','(0b0)ss0','(0b0)s0s','(0b0)0ss','(00g)','(00g)s00',],
2538    'B b a 2':['(0b0)','(0b1)','(00g)','(00g)0ss','(00g)ss0','(00g)s0s','(a00)','(a00)0s0',],
2539    'C 2 c b':['(00g)','(10g)','(a00)','(a00)s0s','(a00)0ss','(a00)ss0','(0b0)','(0b0)00s',],
2540       
2541#42       
2542    'F m m 2':['(00g)','(00g)s0s','(00g)0ss','(00g)ss0','(10g)','(10g)ss0','(10g)s0s',
2543        '(01g)','(01g)ss0','(01g)0ss','(a00)','(a00)0s0','(a01)','(a01)0s0',
2544        '(0b0)','(0b0)s00','(0b1)','(0b1)s00',],       
2545    'F 2 m m':['(a00)','(a00)ss0','(a00)s0s','(a00)0ss','(a10)','(a10)0ss','(a10)ss0',
2546        '(a01)','(a01)0ss','(a01)s0s','(0b0)','(0b0)00s','(1b0)','(1b0)00s',
2547        '(00g)','(00g)0s0','(10g)','(10g)0s0',],
2548    'F m 2 m':['(0b0)','(0b0)0ss','(0b0)ss0','(0b0)s0s','(0b1)','(0b1)s0s','(0b1)0ss',
2549        '(1b0)','(1b0)s0s','(1b0)ss0','(00g)','(00g)s00','(01g)','(01g)s00',
2550        '(a00)','(a00)00s','(a10)','(a10)00s',],       
2551#43       
2552    'F d d 2':['(00g)','(00g)0ss','(00g)s0s','(a00)','(0b0)',],
2553    'F 2 d d':['(a00)','(a00)s0s','(a00)ss0','(00g)','(0b0)',],       
2554    'F d 2 d':['(0b0)','(0b0)0ss','(0b0)ss0','(a00)','(00g)',],
2555#44
2556    'I m m 2':['(00g)','(00g)ss0','(00g)s0s','(00g)0ss','(a00)','(a00)0s0','(0b0)','(0b0)s00',],
2557    'I 2 m m':['(a00)','(00g)0ss','(00g)ss0','(00g)s0s','(0b0)','(0b0)00s','(00g)','(00g)0s0',],
2558    'I m 2 m':['(0b0)','(0b0)s0s','(0b0)0ss','(0b0)ss0','(00g)','(00g)s00','(a00)','(a00)00s',],
2559#45       
2560    'I b a 2':['(00g)','(00g)ss0','(00g)s0s','(00g)0ss','(a00)','(a00)0s0','(0b0)','(0b0)s00',],
2561    'I 2 c b':['(0b0)','(0b0)s0s','(0b0)0ss','(0b0)ss0','(00g)','(00g)s00','(a00)','(a00)00s',],
2562    'I c 2 a':['(a00)','(00g)0ss','(00g)ss0','(00g)s0s','(0b0)','(0b0)00s','(00g)','(00g)0s0',],
2563#46       
2564    'I m a 2':['(a00)','(00g)0ss','(00g)ss0','(00g)s0s','(0b0)','(0b0)00s','(00g)','(00g)0s0',],
2565    'I 2 m b':['(0b0)','(0b0)s0s','(0b0)0ss','(0b0)ss0','(00g)','(00g)s00','(a00)','(a00)00s',],       
2566    'I c 2 m':['(a00)','(00g)0ss','(00g)ss0','(00g)s0s','(0b0)','(0b0)00s','(00g)','(00g)0s0',],
2567    'I m 2 a':['(a00)','(00g)0ss','(00g)ss0','(00g)s0s','(0b0)','(0b0)00s','(00g)','(00g)0s0',],
2568    'I b m 2':['(a00)','(00g)0ss','(00g)ss0','(00g)s0s','(0b0)','(0b0)00s','(00g)','(00g)0s0',],
2569    'I 2 c m':['(0b0)','(0b0)s0s','(0b0)0ss','(0b0)ss0','(00g)','(00g)s00','(a00)','(a00)00s',],
2570#47       
2571    'P m m m':['(00g)','(00g)s00','(00g)0s0','(00g)ss0','(01/2g)','(01/2g)s00','(1/20g)','(1/20g)s00','(1/21/2g)',
2572        '(a00)','(a00)0s0','(a00)00s','(a00)0ss','(a01/2)','(a01/2)0s0','(a1/20)','(a1/20)00s','(a1/21/2)',
2573        '(0b0)','(0b0)s00','(0b0)00s','(0b0)s0s','(1/2b0)','(1/2b0)00s','(0b1/2)','(0b1/2)s00','(1/2b1/2)',],
2574#48 o@i qq0,0qq,q0q ->000
2575    'P n n n':['(00g)','(00g)s00','(00g)0s0','(1/21/2g)',
2576        '(a00)','(a00)0s0','(a00)00s','(a1/21/2)',
2577        '(0b0)','(0b0)s00','(0b0)00s','(1/2b1/2)',],
2578#49       
2579    'P c c m':['(00g)','(00g)s00','(00g)0s0','(01/2g)','(1/20g)','(1/21/2g)',
2580        '(a00)','(a00)0s0','(a00)00s','(a00)0ss','(a1/20)','(a1/20)00s',
2581        '(0b0)','(0b0)s00','(0b0)00s','(0b0)s0s','(1/2b0)','(1/2b0)00s',],       
2582    'P m a a':['(a00)','(a00)0s0','(a00)00s','(a01/2)','(a1/20)','(a1/21/2)',
2583        '(0b0)','(0b0)00s','(0b0)s00','(0b0)s0s','(0b1/2)','(0b1/2)s00',
2584        '(00g)','(00g)0s0','(00g)s00','(00g)ss0','(01/2g)','(01/2g)s00',],       
2585    'P b m b':['(0b0)','(0b0)00s','(0b0)s00','(0b1/2)','(1/2b0)','(1/2b1/2)',
2586        '(00g)','(00g)s00','(00g)0s0','(00g)ss0','(1/20g)','(1/20g)0s0',
2587        '(a00)','(a00)00s','(a00)0s0','(a00)0ss','(a01/2)','(a01/2)0s0',],
2588#50 o@i qq0,0qq,q0q ->000
2589    'P b a n':['(00g)','(00g)s00','(00g)0s0','(00g)ss0','(1/21/2g)',
2590        '(a00)','(a00)0s0','(a01/2)','(0b0)','(0b0)s00','(0b1/2)',],
2591    'P n c b':['(a00)','(a00)0s0','(a00)00s','(a00)0ss','(a1/21/2)',
2592        '(0b0)','(0b0)00s','(1/2b0)','(00g)','(00g)0s0','(1/20g)',],
2593    'P c n a':['(0b0)','(0b0)s00','(0b0)00s','(0b0)s0s','(1/2b1/2)',
2594        '(00g)','(00g)s00','(01/2g)','(a00)','(a00)00s','(a1/20)',],
2595#51       
2596    'P m m a':['(00g)','(00g)s00','(00g)ss0','(00g)0s0','(0b0)','(0b0)s00',
2597        '(0b0)s0s','(0b0)00s','(a00)','(a00)0s0','(01/2g)','(01/2g)s00',
2598        '(0b1/2)','(0b1/2)s00','(a01/2)','(a01/2)0s0','(1/2b0)','(1/2b1/2)',],
2599    'P b m m':['(a00)','(a00)0s0','(a00)0ss','(a00)00s','(00g)','(00g)0s0',
2600        '(00g)ss0','(00g)s00','(0b0)','(0b0)00s','(a01/2)','(a01/2)0s0',
2601        '(1/20g)','(1/20g)0s0','(1/2b0)','(1/2b0)00s','(01/2g)','(1/21/2g)',],
2602    'P m c m':['(0b0)','(0b0)00s','(0b0)s0s','(0b0)s00','(a00)','(a00)00s',
2603        '(a00)0ss','(a00)0s0','(00g)','(00g)s00','(1/2b0)','(1/2b0)00s',
2604        '(a1/20)','(a1/20)00s','(01/2g)','(01/2g)s00','(a01/2)','(a1/21/2)',],
2605    'P m a m':['(0b0)','(0b0)s00','(0b0)s0s','(0b0)00s','(00g)','(00g)s00',
2606        '(00g)ss0','(00g)0s0','(a00)','(a00)00s','(0b1/2)','(0b1/2)s00',
2607        '(01/2g)','(01/2g)s00','(a1/20)','(a1/20)00s','(1/20g)','(1/21/2g)',],
2608    'P m m b':['(00g)','(00g)0s0','(00g)ss0','(00g)s00','(a00)','(a00)0s0',
2609        '(a00)0ss','(a00)00s','(0b0)','(0b0)s00','(a00)','(a00)0s0',
2610        '(a01/2)','(a01/2)0s0','(0b1/2)','(0b1/2)s00','(a1/20)','(a1/21/2)',],
2611    'P c m m':['(a00)','(a00)00s','(a00)0ss','(a00)0s0','(0b0)','(0b0)00s',
2612        '(0b0)s0s','(0b0)s00','(00g)','(00g)0s0','(0b0)','(0b0)00s',
2613        '(1/2b0)','(1/2b0)00s','(1/20g)','(1/20g)0s0','(0b1/2)','(1/2b1/2)',],
2614#52   o@i qq0,0qq,q0q ->000     
2615    'P n n a':['(00g)','(00g)s00','(00g)0s0','(a00)','(a00)00s',
2616        '(0b0)','(0b0)00s','(a1/21/2)','(1/2b1/2)',],
2617    'P b n n':['(a00)','(a00)0s0','(a00)00s','(0b0)','(0b0)s00',
2618        '(00g)','(00g)s00','(1/2b1/2)','(1/21/2g)',],
2619    'P n c n':['(0b0)','(0b0)s00','(0b0)00s','(00g)','(00g)0s0',
2620        '(a00)','(a00)0s0','(1/21/2g)','(a1/21/2)',],
2621    'P n a n':['(0b0)','(0b0)s00','(0b0)00s','(00g)','(00g)0s0',
2622        '(a00)','(a00)0s0','(1/21/2g)','(a1/21/2)',],
2623    'P n n b':['(00g)','(00g)s00','(00g)0s0','(a00)','(a00)00s',
2624        '(0b0)','(0b0)00s','(a1/21/2)','(1/2b1/2)',],
2625    'P c n n':['(a00)','(a00)0s0','(a00)00s','(0b0)','(0b0)s00',
2626        '(00g)','(00g)s00','(1/2b1/2)','(1/21/2g)',],
2627#53       
2628    'P m n a':['(00g)','(00g)s00','(a00)','(a00)00s','(0b0)','(0b0)00s',
2629        '(0b0)s0s','(0b0)s00','(01/2g)','(01/2g)s00','(a1/20)',],
2630    'P b m n':['(a00)','(a00)0s0','(0b0)','(0b0)s00','(00g)','(00g)s00',
2631        '(00g)ss0','(00g)0s0','(a01/2)','(a01/2)0s0','(0b1/2)',],
2632    'P n c m':['(0b0)','(0b0)00s','(00g)','(00g)0s0','(a00)','(a00)0s0',
2633        '(a00)0ss','(a00)00s','(1/2b0)','(1/2b0)00s','(1/20g)',],
2634    'P m a n':['(0b0)','(0b0)s00','(a00)','(a00)0s0','(00g)','(00g)0s0',
2635        '(00g)ss0','(00g)s00','(0b1/2)','(0b1/2)s00','(a01/2)',],
2636    'P n m b':['(00g)','(00g)0s0','(0b0)','(0b0)00s','(a00)','(a00)00s',
2637        '(a00)0ss','(a00)0s0','(1/20g)','(1/20g)0s0','(1/2b0)',],
2638    'P c n m':['(a00)','(a00)00s','(00g)','(00g)s00','(0b0)','(0b0)s00',
2639        '(0b0)s0s','(0b0)00s','(a1/20)','(a1/20)00s','(01/2g)',],
2640#54       
2641    'P c c a':['(00g)','(00g)s00','(0b0)','(0b0)s00','(a00)','(a00)0s0',
2642        '(a00)0ss','(a00)00s','(01/2g)','(1/2b0)',],
2643    'P b a a':['(a00)','(a00)0s0','(00g)','(00g)0s0','(0b0)','(0b0)00s',
2644        '(0b0)s0s','(0b0)s00','(a01/2)','(01/2g)',],
2645    'P b c b':['(0b0)','(0b0)00s','(a00)','(a00)00s','(00g)','(00g)s00',
2646        '(00g)ss0','(00g)0s0','(1/2b0)','(a01/2)',],
2647    'P b a b':['(0b0)','(0b0)s00','(00g)','(00g)s00','(a00)','(a00)00s',
2648        '(a00)0ss','(a00)0s0','(0b1/2)','(1/20g)',],
2649    'P c c b':['(00g)','(00g)0s0','(a00)','(a00)0s0','(0b0)','(0b0)s00',
2650        '(0b0)s0s','(0b0)00s','(1/20g)','(a1/20)',],
2651    'P c a a':['(a00)','(a00)00s','(0b0)','(0b0)00s','(00g)','(00g)0s0',
2652        '(00g)ss0','(00g)s00','(a1/20)','(0b1/2)',],
2653#55       
2654    'P b a m':['(00g)','(00g)s00','(00g)0s0','(00g)ss0',
2655        '(a00)','(a00)00s','(a01/2)','(0b0)','(0b0)00s','(0b1/2)'],
2656    'P m c b':['(a00)','(a00)0s0','(a00)00s','(a00)0ss',
2657        '(0b0)','(0b0)s00','(1/2b0)','(00g)','(00g)s00','(1/20g)'],
2658    'P c m a':['(0b0)','(0b0)s00','(0b0)00s','(0b0)s0s',
2659        '(a00)','(a00)0s0','(a1/20)','(00g)','(00g)0s0','(01/2g)'],
2660#56       
2661    'P c c n':['(00g)','(00g)s00','(00g)0s0','(a00)','(a00)0s0',
2662        '(0b0)','(0b0)s00'],
2663    'P n a a':['(a00)','(a00)0s0','(a00)00s','(0b0)','(0b0)00s',
2664        '(00g)','(00g)0s0'],
2665    'P b n b':['(0b0)','(0b0)s00','(0b0)00s','(a00)','(a00)00s',
2666        '(00g)','(00g)s00'],
2667#57       
2668    'P c a m':['(00g)','(00g)0s0','(a00)','(a00)00s','(0b0)','(0b0)s00',
2669        '(0b0)ss0','(0b0)00s','(01/2g)','(a1/20)','(a1/20)00s',],
2670    'P m a b':['(a00)','(a00)00s','(0b0)','(0b0)s00','(00g)','(00g)0s0',
2671        '(00g)s0s','(00g)s00','(a01/2)','(0b1/2)','(0b1/2)s00',],
2672    'P c m b':['(0b0)','(0b0)s00','(00g)','(00g)0s0','(a00)','(a00)00s',
2673        '(a00)0ss','(a00)0s0','(1/2b0)','(1/20g)','(1/20g)0s0',],
2674    'P b m a':['(0b0)','(0b0)00s','(a00)','(a00)0s0','(00g)','(00g)s00',
2675        '(00g)ss0','(00g)0s0','(0b1/2)','(a01/2)','(a01/2)0s0',],
2676    'P m c a':['(a00)','(a00)0s0','(00g)','(00g)s00','(0b0)','(0b0)00s',
2677        '(0b0)s0s','(0b0)s00','(a1/20)','(01/2g)','(01/2g)s00'],
2678    'P b c m':['(00g)','(00g)s00','(0b0)','(0b0)00s','(a00)','(a00)0s0',
2679        '(a00)0ss','(a00)00s','(1/20g)','(1/2b0)','(1/2b0)00s',],
2680#58       
2681    'P n n m':['(00g)','(00g)s00','(00g)0s0','(a00)',
2682        '(a00)00s','(0b0)','(0b0)00s'],
2683    'P m n n':['(00g)','(00g)s00','(a00)','(a00)0s0',
2684        '(a00)00s','(0b0)','(0b0)s00'],
2685    'P n m n':['(00g)','(00g)0s0','(a00)','(a00)0s0',
2686        '(0b0)','(0b0)s00','(0b0)00s',],
2687#59 o@i
2688    'P m m n':['(00g)','(00g)s00','(00g)0s0','(00g)ss0','(a00)','(a00)0s0',
2689        '(a01/2)','(a01/2)0s0','(0b0)','(0b0)s00','(0b1/2)','(0b1/2)s00',],
2690    'P n m m':['(a00)','(a00)0s0','(a00)00s','(a00)0ss','(00g)','(00g)0s0',
2691        '(1/20g)','(1/20g)0s0','(0b0)','(0b0)00s','(1/2b0)','(1/2b0)00s'],
2692    'P m n m':['(0b0)','(0b0)s00','(0b0)00s','(0b0)s0s','(00g)','(00g)s00',
2693        '(01/2g)','(01/2g)s00','(a00)','(a00)00s','(a1/20)','(a1/20)00s'],
2694#60       
2695    'P b c n':['(00g)','(00g)s00','(00g)0s0','(a00)','(a00)0s0',
2696        '(a00)00s','(0b0)','(0b0)s00','(0b0)00s'],
2697    'P n c a':['(00g)','(00g)s00','(00g)0s0','(a00)','(a00)0s0',
2698        '(a00)00s','(0b0)','(0b0)s00','(0b0)00s'],
2699    'P b n a':['(00g)','(00g)s00','(00g)0s0','(a00)','(a00)0s0',
2700        '(a00)00s','(0b0)','(0b0)s00','(0b0)00s'],
2701    'P c n b':['(00g)','(00g)s00','(00g)0s0','(a00)','(a00)0s0',
2702        '(a00)00s','(0b0)','(0b0)s00','(0b0)00s'],
2703    'P c a n':['(00g)','(00g)s00','(00g)0s0','(a00)','(a00)0s0',
2704        '(a00)00s','(0b0)','(0b0)s00','(0b0)00s'],
2705    'P n a b':['(00g)','(00g)s00','(00g)0s0','(a00)','(a00)0s0',
2706        '(a00)00s','(0b0)','(0b0)s00','(0b0)00s'],
2707#61       
2708    'P b c a':['(00g)','(00g)s00','(00g)0s0','(a00)','(a00)0s0','(a00)00s',
2709        '(0b0)','(0b0)s00','(0b0)00s'],
2710    'P c a b':['(00g)','(00g)s00','(00g)0s0','(a00)','(a00)0s0','(a00)00s',
2711        '(0b0)','(0b0)s00','(0b0)00s'],
2712#62       
2713    'P n m a':['(00g)','(00g)0s0','(a00)','(a00)0s0','(0b0)','(0b0)00s'],
2714    'P b n m':['(00g)','(00g)s00','(a00)','(a00)00s','(0b0)','(0b0)00s'],
2715    'P m c n':['(00g)','(00g)s00','(a00)','(a00)0s0','(0b0)','(0b0)s00'],
2716    'P n a m':['(00g)','(00g)0s0','(a00)','(a00)00s','(0b0)','(0b0)00s'],
2717    'P m n b':['(00g)','(00g)s00','(a00)','(a00)00s','(0b0)','(0b0)s00'],
2718    'P c m n':['(00g)','(00g)0s0','(a00)','(a00)0s0','(0b0)','(0b0)s00'],
2719#63
2720    'C m c m':['(00g)','(00g)s00','(10g)','(10g)s00','(a00)','(a00)00s','(a00)0ss','(a00)0s0','(0b0)','(0b0)00s','(0b0)s0s','(0b0)s00',],
2721    'A m m a':['(a00)','(a00)0s0','(a10)','(a10)0s0','(0b0)','(0b0)s00','(0b0)s0s','(00g)00s','(00g)','(00g)s00','(00g)ss0','(00g)0s0',],
2722    'B b m m':['(0b0)','(0b0)00s','(0b1)','(0b1)00s','(00g)','(00g)0s0','(00g)ss0','(00g)s00','(a00)','(a00)0s0','(a00)0ss','(a00)00s',],
2723    'B m m b':['(0b0)','(0b0)s00','(1b0)','(1b0)s00','(a00)','(a00)0s0','(a00)0ss','(a00)00s','(00g)','(00g)0s0','(00g)ss0','(00g)s00',],
2724    'C c m m':['(00g)','(00g)0s0','(01g)','(01g)0s0','(0b0)','(0b0)00s','(0b0)s0s','(0b0)s00','(a00)','(a00)00s','(a00)0ss','(a00)0s0',],
2725    'A m a m':['(a00)','(a00)00s','(a01)','(a01)00s','(00g)','(00g)s00','(00g)ss0','(00g)0s0','(0b0)','(0b0)s00','(0b0)s0s','(0b0)00s',],
2726#64       
2727    'C m c a':['(00g)','(00g)s00','(10g)','(10g)s00','(0b0)','(0b0)00s','(0b0)s0s','(0b0)s00','(a00)','(a00)00s','(a00)0ss','(a00)0s0',],
2728    'A b m a':['(a00)','(a00)0s0','(a10)','(a10)0s0','(00g)','(00g)s00','(00g)ss0','(00g)0s0','(0b0)','(0b0)s00','(0b0)s0s','(0b0)00s',],
2729    'B b c m':['(0b0)','(0b0)00s','(0b1)','(0b1)00s','(a00)','(a00)0s0','(a00)0ss','(a00)00s','(00g)','(00g)0s0','(00g)ss0','(00g)s00',],
2730    'B m a b':['(0b0)','(0b0)s00','(1b0)','(1b0)s00','(00g)','(00g)0s0','(00g)ss0','(00g)s00','(a00)','(a00)0s0','(a00)0ss','(a00)00s',],
2731    'C c m b':['(00g)','(00g)0s0','(01g)','(01g)0s0','(a00)','(a00)00s','(a00)0ss','(a00)0s0','(0b0)','(0b0)00s','(0b0)s0s','(0b0)s00',],
2732    'A c a m':['(a00)','(a00)00s','(a01)','(a01)00s','(0b0)','(0b0)s00','(0b0)s0s','(0b0)00s','(00g)','(00g)s00','(00g)ss0','(00g)0s0',],
2733#65       
2734    'C m m m':['(00g)','(00g)s00','(00g)ss0','(10g)','(10g)s00','(10g)ss0','(0b0)','(0b0)00s','(0b0)s0s','(0b0)s00','(0b1/2)','(0b1/2)s00',],
2735    'A m m m':['(a00)','(a00)0s0','(a00)0ss','(a10)','(a10)0s0','(a10)0ss','(00g)','(00g)s00','(00g)ss0','(00g)0s0','(1/20g)','(1/20g)0s0',],
2736    'B m m m':['(0b0)','(0b0)00s','(0b0)s0s','(0b1)','(0b1)00s','(0b1)s0s','(a00)','(a00)0s0','(a00)0ss','(a00)00s','(a1/20)','(a1/20)00s',],
2737#66       
2738    'C c c m':['(00g)','(00g)s00','(10g)','(10g)s00','(0b0)','(0b0)00s','(0b0)s0s','(0b0)s00',],
2739    'A m m a':['(a00)','(a00)0s0','(a10)','(a10)0s0','(00g)','(00g)s00','(00g)ss0','(00g)0s0',],
2740    'B b m b':['(0b0)','(0b0)00s','(0b1)','(0b1)00s','(a00)','(a00)0s0','(a00)0ss','(a00)00s',],
2741#67       
2742    'C m m a':['(00g)','(00g)s00','(00g)ss0','(10g)','(10g)s00','(10g)ss0','(a00)','(a00)00s','(a00)0ss','(a00)0s0','(a01/2)','(a01/2)0s0',],
2743    'A b m m':['(a00)','(a00)0s0','(a00)0ss','(a10)','(a10)0s0','(a10)0ss','(0b0)','(0b0)s00','(0b0)s0s','(0b0)00s','(1/2b0)','(1/2b0)00s',],
2744    'B m c m':['(0b0)','(0b0)00s','(0b0)s0s','(0b1)','(0b1)00s','(0b1)s0s','(00g)','(00g)0s0','(00g)ss0','(00g)s00','(01/2g)','(01/2g)s00',],
2745    'B m a m':['(0b0)','(0b0)s00','(0b0)s0s','(1b0)','(1b0)s00','(1b0)s0s','(a00)','(a00)0s0','(a00)0ss','(a00)00s','(a1/20)','(a1/20)00s',],
2746    'C m m b':['(00g)','(00g)0s0','(00g)ss0','(01g)','(01g)0s0','(01g)ss0','(0b0)','(0b0)00s','(0b0)s0s','(0b0)s00','(0b1/2)','(0b1/2)s00',],
2747    'A c m m':['(a00)','(a00)00s','(a00)0ss','(a01)','(a01)00s','(a01)0ss','(00g)','(00g)s00','(00g)ss0','(00g)0s0','(1/20g)','(1/20g)0s0',],
2748#68 o@i
2749    'C c c a':['(00g)','(00g)s00','(10g)','(01g)','(10g)s00','(01g)s00',
2750        '(a00)','(a00)s00','(a00)ss0','(a00)0s0','(0b0)','(0b0)s00','(0b0)ss0','(0b0)0s0'],
2751    'A b a a':['(a00)','(a00)s00','(a10)','(a01)','(a10)s00','(a01)s00',
2752        '(0b0)','(0b0)s00','(0b0)ss0','(0b0)0s0','(00g)','(00g)s00','(00g)ss0','(00g)0s0'],
2753    'B b c b':['(0b0)','(0b0)s00','(0b1)','(1b0)','(0b1)s00','(1b0)s00',
2754        '(00g)','(00g)s00','(00g)ss0','(0b0)0s0','(a00)','(a00)s00','(a00)ss0','(a00)0s0'],
2755    'B b a b':['(0b0)','(0b0)s00','(1b0)','(0b1)','(1b0)s00','(0b1)s00',
2756        '(a00)','(a00)s00','(a00)ss0','(a00)0s0','(00g)','(00g)s00','(00g)ss0','(00g)0s0'],
2757    'C c c b':['(00g)','(00g)ss0','(01g)','(10g)','(01g)s00','(10g)s00',
2758        '(0b0)','(0b0)s00','(0b0)ss0','(0b0)0s0','(a00)','(a00)s00','(a00)ss0','(a00)0s0'],
2759    'A c a a':['(a00)','(a00)ss0','(a01)','(a10)','(a01)s00','(a10)s00',
2760        '(00g)','(00g)s00','(00g)ss0','(00g)0s0','(0b0)','(0b0)s00','(0b0)ss0','(0b0)0s0'],
2761#69       
2762    'F m m m':['(00g)','(00g)s00','(00g)ss0','(a00)','(a00)s00',
2763        '(a00)ss0','(0b0)','(0b0)s00','(0b0)ss0',
2764        '(10g)','(10g)s00','(10g)ss0','(a10)','(a10)0s0',
2765        '(a10)00s','(a10)0ss','(0b1)','(0b1)s00','(0b1)00s','(0b1)s0s',
2766        '(01g)','(01g)s00','(01g)ss0','(a01)','(a01)0s0',
2767        '(a01)00s','(a01)0ss','(1b0)','(1b0)s00','(1b0)00s','(1b0)s0s'],
2768#70 o@i       
2769    'F d d d':['(00g)','(00g)s00','(a00)','(a00)s00','(0b0)','(0b0)s00'],       
2770#71
2771    'I m m m':['(00g)','(00g)s00','(00g)ss0','(a00)','(a00)0s0',
2772        '(a00)ss0','(0b0)','(0b0)s00','(0b0)ss0'],
2773#72       
2774    'I b a m':['(00g)','(00g)s00','(00g)0s0','(00g)ss0','(a00)','(a00)0s0',
2775        '(a00)00s','(a00)0ss','(0b0)','(0b0)s00','(0b0)00s','(0b0)s0s'],
2776    'I m c b':['(a00)','(a00)0s0','(a00)00s','(a00)0ss','(0b0)','(0b0)00s',
2777        '(0b0)s00','(0b0)s0s','(00g)','(00g)0s0','(00g)s00','(00g)ss0'],
2778    'I c m a':['(0b0)','(0b0)00s','(0b0)s00','(0b0)s0s','(00g)','(00g)s00',
2779        '(00g)0s0','(00g)ss0','(a00)','(a00)00s','(a00)0s0','(a00)0ss'],
2780#73       
2781    'I b c a':['(00g)','(00g)s00','(00g)0s0','(00g)ss0','(a00)','(a00)0s0',
2782        '(a00)00s','(a00)0ss','(0b0)','(0b0)s00','(0b0)00s','(0b0)s0s'],
2783    'I c a b':['(00g)','(00g)s00','(00g)0s0','(00g)ss0','(a00)','(a00)0s0',
2784        '(a00)00s','(a00)0ss','(0b0)','(0b0)s00','(0b0)00s','(0b0)s0s'],
2785#74       
2786    'I m m a':['(00g)','(00g)s00','(00g)0s0','(00g)ss0','(a00)','(a00)0s0',
2787        '(a00)00s','(a00)0ss','(0b0)','(0b0)s00','(0b0)00s','(0b0)s0s'],
2788    'I b m m':['(00g)','(00g)s00','(00g)0s0','(00g)ss0','(a00)','(a00)0s0',
2789        '(a00)00s','(a00)0ss','(0b0)','(0b0)s00','(0b0)00s','(0b0)s0s'],
2790    'I m c m':['(00g)','(00g)s00','(00g)0s0','(00g)ss0','(a00)','(a00)0s0',
2791        '(a00)00s','(a00)0ss','(0b0)','(0b0)s00','(0b0)00s','(0b0)s0s'],
2792    'I m a m':['(00g)','(00g)s00','(00g)0s0','(00g)ss0','(a00)','(a00)0s0',
2793        '(a00)00s','(a00)0ss','(0b0)','(0b0)s00','(0b0)00s','(0b0)s0s'],
2794    'I m m b':['(00g)','(00g)s00','(00g)0s0','(00g)ss0','(a00)','(a00)0s0',
2795        '(a00)00s','(a00)0ss','(0b0)','(0b0)s00','(0b0)00s','(0b0)s0s'],
2796    'I c m m':['(00g)','(00g)s00','(00g)0s0','(00g)ss0','(a00)','(a00)0s0',
2797        '(a00)00s','(a00)0ss','(0b0)','(0b0)s00','(0b0)00s','(0b0)s0s'],
2798#tetragonal - done & checked
2799#75
2800    'P 4':['(00g)','(00g)q','(00g)s','(1/21/2g)','(1/21/2g)q',],
2801#76
2802    'P 41':['(00g)','(1/21/2g)',],
2803#77
2804    'P 42':['(00g)','(00g)q','(1/21/2g)','(1/21/2g)q',],
2805#78
2806    'P 43':['(00g)','(1/21/2g)',],
2807#79
2808    'I 4':['(00g)','(00g)q','(00g)s',],
2809#80
2810    'I 41':['(00g)','(00g)q',],
2811#81
2812    'P -4':['(00g)','(1/21/2g)',],
2813#82
2814    'I -4':['(00g)',],
2815#83
2816    'P 4/m':['(00g)','(00g)s0','(1/21/2g)',],
2817#84
2818    'P 42/m':['(00g)','(1/21/2g)',],
2819#85 o@i q0 -> 00
2820    'P 4/n':['(00g)','(00g)s0','(1/21/2g)',], #q0?
2821#86 o@i q0 -> 00
2822    'P 42/n':['(00g)','(1/21/2g)',],      #q0?
2823#87
2824    'I 4/m':['(00g)','(00g)s0',],
2825#88
2826    'I 41/a':['(00g)',],
2827#89
2828    'P 4 2 2':['(00g)','(00g)q00','(00g)s00','(1/21/2g)','(1/21/2g)q00',],
2829#90
2830    'P 4 21 2':['(00g)','(00g)q00','(00g)s00',],
2831#91
2832    'P 41 2 2':['(00g)','(1/21/2g)',],
2833#92
2834    'P 41 21 2':['(00g)',],
2835#93
2836    'P 42 2 2':['(00g)','(00g)q00','(1/21/2g)','(1/21/2g)q00',],
2837#94
2838    'P 42 21 2':['(00g)','(00g)q00',],
2839#95
2840    'P 43 2 2':['(00g)','(1/21/2g)',],
2841#96
2842    'P 43 21 2':['(00g)',],
2843#97
2844    'I 4 2 2':['(00g)','(00g)q00','(00g)s00',],
2845#98
2846    'I 41 2 2':['(00g)','(00g)q00',],
2847#99
2848    'P 4 m m':['(00g)','(00g)ss0','(00g)0ss','(00g)s0s','(1/21/2g)','(1/21/2g)0ss'],
2849#100
2850    'P 4 b m':['(00g)','(00g)ss0','(00g)0ss','(00g)s0s','(1/21/2g)qq0','(1/21/2g)qqs',],
2851#101
2852    'P 42 c m':['(00g)','(00g)0ss','(1/21/2g)','(1/21/2g)0ss',],
2853#102
2854    'P 42 n m':['(00g)','(00g)0ss','(1/21/2g)qq0','(1/21/2g)qqs',],
2855#103
2856    'P 4 c c':['(00g)','(00g)ss0','(1/21/2g)',],
2857#104
2858    'P 4 n c':['(00g)','(00g)ss0','(1/21/2g)qq0',],
2859#105
2860    'P 42 m c':['(00g)','(00g)ss0','(1/21/2g)',],
2861#106
2862    'P 42 b c':['(00g)','(00g)ss0','(1/21/2g)qq0',],
2863#107
2864    'I 4 m m':['(00g)','(00g)ss0','(00g)0ss','(00g)s0s',],
2865#108
2866    'I 4 c m':['(00g)','(00g)ss0','(00g)0ss','(00g)s0s',],
2867#109
2868    'I 41 m d':['(00g)','(00g)ss0',],
2869#110
2870    'I 41 c d':['(00g)','(00g)ss0',],
2871#111
2872    'P -4 2 m':['(00g)','(00g)0ss','(1/21/2g)','(1/21/2g)0ss',],
2873#112
2874    'P -4 2 c':['(00g)','(1/21/2g)',],
2875#113
2876    'P -4 21 m':['(00g)','(00g)0ss',],
2877#114
2878    'P -4 21 c':['(00g)',],
2879#115    00s -> 0ss
2880    'P -4 m 2':['(00g)','(00g)0s0','(1/21/2g)',],
2881#116
2882    'P -4 c 2':['(00g)','(1/21/2g)',],
2883#117    00s -> 0ss
2884    'P -4 b 2':['(00g)','(00g)0s0','(1/21/2g)0q0',],
2885#118
2886    'P -4 n 2':['(00g)','(1/21/2g)0q0',],
2887#119
2888    'I -4 m 2':['(00g)','(00g)0s0',],
2889#120
2890    'I -4 c 2':['(00g)','(00g)0s0',],
2891#121    00s -> 0ss
2892    'I -4 2 m':['(00g)','(00g)0ss',],
2893#122
2894    'I -4 2 d':['(00g)',],
2895#123
2896    'P 4/m m m':['(00g)','(00g)s0s0','(00g)00ss','(00g)s00s',
2897        '(1/21/2g)','(1/21/2g)s0s0','(1/21/2g)00ss','(1/21/2g)s00s',],
2898#124
2899    'P 4/m c c':['(00g)','(00g)s0s0','(1/21/2g)',],
2900#125    o@i q0q0 -> 0000, q0qs -> 00ss
2901    'P 4/n b m':['(00g)','(00g)s0s0','(00g)00ss','(00g)s00s','(1/21/2g)','(1/21/2g)00ss',],
2902#126    o@i q0q0 -> 0000
2903    'P 4/n n c':['(00g)','(00g)s0s0','(1/21/2g)',],
2904#127
2905    'P 4/m b m':['(00g)','(00g)s0s0','(00g)00ss','(00g)s00s',],
2906#128
2907    'P 4/m n c':['(00g)','(00g)s0s0',],
2908#129
2909    'P 4/n m m':['(00g)','(00g)s0s0','(00g)00ss','(00g)s00s',],
2910#130
2911    'P 4/n c c':['(00g)','(00g)s0s0',],
2912#131
2913    'P 42/m m c':['(00g)','(00g)s0s0','(1/21/2g)',],
2914#132
2915    'P 42/m c m':['(00g)','(00g)00ss','(1/21/2g)','(1/21/2g)00ss',],
2916#133    o@i q0q0 -> 0000
2917    'P 42/n b c':['(00g)','(00g)s0s0','(1/21/2g)',],
2918#134    o@i q0q0 -> 0000, q0qs -> 00ss
2919    'P 42/n n m':['(00g)','(00g)00ss','(1/21/2g)','(1/21/2g)00ss',],
2920#135
2921    'P 42/m b c':['(00g)','(00g)s0s0',],
2922#136
2923    'P 42/m n m':['(00g)','(00g)00ss',],
2924#137
2925    'P 42/n m c':['(00g)','(00g)s0s0',],
2926#138
2927    'P 42/n c m':['(00g)','(00g)00ss',],
2928#139
2929    'I 4/m m m':['(00g)','(00g)s0s0','(00g)00ss','(00g)s00s',],
2930#140
2931    'I 4/m c m':['(00g)','(00g)s0s0','(00g)00ss','(00g)s00s',],
2932#141
2933    'I 41/a m d':['(00g)','(00g)s0s0',],
2934#142
2935    'I 41/a c d':['(00g)','(00g)s0s0',],
2936    #trigonal/rhombahedral - done & checked
2937#143
2938    'P 3':['(00g)','(00g)t','(1/31/3g)',],
2939#144
2940    'P 31':['(00g)','(1/31/3g)',],
2941#145
2942    'P 32':['(00g)','(1/31/3g)',],
2943#146
2944    'R 3':['(00g)','(00g)t',],
2945#147
2946    'P -3':['(00g)','(1/31/3g)',],
2947#148
2948    'R -3':['(00g)',],
2949#149
2950    'P 3 1 2':['(00g)','(00g)t00','(1/31/3g)',],
2951#150
2952    'P 3 2 1':['(00g)','(00g)t00',],
2953#151
2954    'P 31 1 2':['(00g)','(1/31/3g)',],
2955#152
2956    'P 31 2 1':['(00g)',],
2957#153
2958    'P 32 1 2':['(00g)','(1/31/3g)',],
2959#154
2960    'P 32 2 1':['(00g)',],
2961#155
2962    'R 3 2':['(00g)','(00g)t0',],
2963#156
2964    'P 3 m 1':['(00g)','(00g)0s0',],
2965#157
2966    'P 3 1 m':['(00g)','(00g)00s','(1/31/3g)','(1/31/3g)00s',],
2967#158
2968    'P 3 c 1':['(00g)',],
2969#159
2970    'P 3 1 c':['(00g)','(1/31/3g)',],
2971#160
2972    'R 3 m':['(00g)','(00g)0s',],
2973#161
2974    'R 3 c':['(00g)',],
2975#162
2976    'P -3 1 m':['(00g)','(00g)00s','(1/31/3g)','(1/31/3g)00s',],
2977#163
2978    'P -3 1 c':['(00g)','(1/31/3g)',],
2979#164
2980    'P -3 m 1':['(00g)','(00g)0s0',],
2981#165
2982    'P -3 c 1':['(00g)',],
2983#166       
2984    'R -3 m':['(00g)','(00g)0s',],
2985#167
2986    'R -3 c':['(00g)',],
2987    #hexagonal - done & checked
2988#168
2989    'P 6':['(00g)','(00g)h','(00g)t','(00g)s',],
2990#169
2991    'P 61':['(00g)',],
2992#170
2993    'P 65':['(00g)',],
2994#171
2995    'P 62':['(00g)','(00g)h',],
2996#172
2997    'P 64':['(00g)','(00g)h',],
2998#173
2999    'P 63':['(00g)','(00g)h',],
3000#174
3001    'P -6':['(00g)',],
3002#175
3003    'P 6/m':['(00g)','(00g)s0',],
3004#176
3005    'P 63/m':['(00g)',],
3006#177
3007    'P 6 2 2':['(00g)','(00g)h00','(00g)t00','(00g)s00',],
3008#178
3009    'P 61 2 2':['(00g)',],
3010#179
3011    'P 65 2 2':['(00g)',],
3012#180
3013    'P 62 2 2':['(00g)','(00g)h00',],
3014#181
3015    'P 64 2 2':['(00g)','(00g)h00',],
3016#182
3017    'P 63 2 2':['(00g)','(00g)h00',],
3018#183
3019    'P 6 m m':['(00g)','(00g)ss0','(00g)0ss','(00g)s0s',],
3020#184
3021    'P 6 c c':['(00g)','(00g)s0s',],
3022#185
3023    'P 63 c m':['(00g)','(00g)0ss',],
3024#186
3025    'P 63 m c':['(00g)','(00g)0ss',],
3026#187
3027    'P -6 m 2':['(00g)','(00g)0s0',],
3028#188
3029    'P -6 c 2':['(00g)',],
3030#189
3031    'P -6 2 m':['(00g)','(00g)00s',],
3032#190
3033    'P -6 2 c':['(00g)',],
3034#191
3035    'P 6/m m m':['(00g)','(00g)s0s0','(00g)00ss','(00g)s00s',],
3036#192
3037    'P 6/m c c':['(00g)','(00g)s00s',],
3038#193
3039    'P 63/m c m':['(00g)','(00g)00ss',],
3040#194
3041    'P 63/m m c':['(00g)','(00g)00ss'],
3042    }
3043
3044#'A few non-standard space groups for test use'
3045nonstandard_sglist = ('P 21 1 1','P 1 21 1','P 1 1 21','R 3 r','R 3 2 h', 
3046                      'R -3 r', 'R 3 2 r','R 3 m h', 'R 3 m r',
3047                      'R 3 c r','R -3 c r','R -3 m r',),
3048
3049#A list of orthorhombic space groups that were renamed in the 2002 Volume A,
3050# along with the pre-2002 name. The e designates a double glide-plane'''
3051sgequiv_2002_orthorhombic= (('A e m 2', 'A b m 2',),
3052                            ('A e a 2', 'A b a 2',),
3053                            ('C m c e', 'C m c a',),
3054                            ('C m m e', 'C m m a',),
3055                            ('C c c e', 'C c c a'),)
3056#Use the space groups types in this order to list the symbols in the
3057#order they are listed in the International Tables, vol. A'''
3058symtypelist = ('triclinic', 'monoclinic', 'orthorhombic', 'tetragonal', 
3059               'trigonal', 'hexagonal', 'cubic')
3060
3061# self-test materials follow. Requires files in directory testinp
3062selftestlist = []
3063'''Defines a list of self-tests'''
3064selftestquiet = True
3065def _ReportTest():
3066    'Report name and doc string of current routine when ``selftestquiet`` is False'
3067    if not selftestquiet:
3068        import inspect
3069        caller = inspect.stack()[1][3]
3070        doc = eval(caller).__doc__
3071        if doc is not None:
3072            print('testing '+__file__+' with '+caller+' ('+doc+')')
3073        else:
3074            print('testing '+__file__()+" with "+caller)
3075def test0():
3076    '''self-test #0: exercise MoveToUnitCell'''
3077    _ReportTest()
3078    msg = "MoveToUnitCell failed"
3079    assert (MoveToUnitCell([1,2,3]) == [0,0,0]).all, msg
3080    assert (MoveToUnitCell([2,-1,-2]) == [0,0,0]).all, msg
3081    assert abs(MoveToUnitCell(np.array([-.1]))[0]-0.9) < 1e-6, msg
3082    assert abs(MoveToUnitCell(np.array([.1]))[0]-0.1) < 1e-6, msg
3083selftestlist.append(test0)
3084
3085def test1():
3086    '''self-test #1: SpcGroup against previous results'''
3087    #'''self-test #1: SpcGroup and SGPrint against previous results'''
3088    _ReportTest()
3089    testdir = ospath.join(ospath.split(ospath.abspath( __file__ ))[0],'testinp')
3090    if ospath.exists(testdir):
3091        if testdir not in sys.path: sys.path.insert(0,testdir)
3092    import spctestinp
3093    def CompareSpcGroup(spc, referr, refdict, reflist): 
3094        'Compare output from GSASIIspc.SpcGroup with results from a previous run'
3095        # if an error is reported, the dictionary can be ignored
3096        msg0 = "CompareSpcGroup failed on space group %s" % spc
3097        result = SpcGroup(spc)
3098        if result[0] == referr and referr > 0: return True
3099        keys = result[1].keys()
3100        #print result[1]['SpGrp']
3101        #msg = msg0 + " in list lengths"
3102        #assert len(keys) == len(refdict.keys()), msg
3103        for key in refdict.keys():
3104            if key == 'SGOps' or  key == 'SGCen':
3105                msg = msg0 + (" in key %s length" % key)
3106                assert len(refdict[key]) == len(result[1][key]), msg
3107                for i in range(len(refdict[key])):
3108                    msg = msg0 + (" in key %s level 0" % key)
3109                    assert np.allclose(result[1][key][i][0],refdict[key][i][0]), msg
3110                    msg = msg0 + (" in key %s level 1" % key)
3111                    assert np.allclose(result[1][key][i][1],refdict[key][i][1]), msg
3112            else:
3113                msg = msg0 + (" in key %s" % key)
3114                assert result[1][key] == refdict[key], msg
3115        msg = msg0 + (" in key %s reflist" % key)
3116        #for (l1,l2) in zip(reflist, SGPrint(result[1])):
3117        #    assert l2.replace('\t','').replace(' ','') == l1.replace(' ',''), 'SGPrint ' +msg
3118        # for now disable SGPrint testing, output has changed
3119        #assert reflist == SGPrint(result[1]), 'SGPrint ' +msg
3120    for spc in spctestinp.SGdat:
3121        CompareSpcGroup(spc, 0, spctestinp.SGdat[spc], spctestinp.SGlist[spc] )
3122selftestlist.append(test1)
3123
3124def test2():
3125    '''self-test #2: SpcGroup against cctbx (sgtbx) computations'''
3126    _ReportTest()
3127    testdir = ospath.join(ospath.split(ospath.abspath( __file__ ))[0],'testinp')
3128    if ospath.exists(testdir):
3129        if testdir not in sys.path: sys.path.insert(0,testdir)
3130    import sgtbxtestinp
3131    def CompareWcctbx(spcname, cctbx_in, debug=0):
3132        'Compare output from GSASIIspc.SpcGroup with results from cctbx.sgtbx'
3133        cctbx = cctbx_in[:] # make copy so we don't delete from the original
3134        spc = (SpcGroup(spcname))[1]
3135        if debug: print spc['SpGrp']
3136        if debug: print spc['SGCen']
3137        latticetype = spcname.strip().upper()[0]
3138        # lattice type of R implies Hexagonal centering", fix the rhombohedral settings
3139        if latticetype == "R" and len(spc['SGCen']) == 1: latticetype = 'P'
3140        assert latticetype == spc['SGLatt'], "Failed: %s does not match Lattice: %s" % (spcname, spc['SGLatt'])
3141        onebar = [1]
3142        if spc['SGInv']: onebar.append(-1)
3143        for (op,off) in spc['SGOps']:
3144            for inv in onebar:
3145                for cen in spc['SGCen']:
3146                    noff = off + cen
3147                    noff = MoveToUnitCell(noff)[0]
3148                    mult = tuple((op*inv).ravel().tolist())
3149                    if debug: print "\n%s: %s + %s" % (spcname,mult,noff)
3150                    for refop in cctbx:
3151                        if debug: print refop
3152                        # check the transform
3153                        if refop[:9] != mult: continue
3154                        if debug: print "mult match"
3155                        # check the translation
3156                        reftrans = list(refop[-3:])
3157                        reftrans = MoveToUnitCell(reftrans)[0]
3158                        if all(abs(noff - reftrans) < 1.e-5):
3159                            cctbx.remove(refop)
3160                            break
3161                    else:
3162                        assert False, "failed on %s:\n\t %s + %s" % (spcname,mult,noff)
3163    for key in sgtbxtestinp.sgtbx:
3164        CompareWcctbx(key, sgtbxtestinp.sgtbx[key])
3165selftestlist.append(test2)
3166
3167def test3(): 
3168    '''self-test #3: exercise SytSym (includes GetOprPtrName, GenAtom, GetKNsym)
3169     for selected space groups against info in IT Volume A '''
3170    _ReportTest()
3171    def ExerciseSiteSym (spc, crdlist):
3172        'compare site symmetries and multiplicities for a specified space group'
3173        msg = "failed on site sym test for %s" % spc
3174        (E,S) = SpcGroup(spc)
3175        assert not E, msg
3176        for t in crdlist:
3177            symb, m = SytSym(t[0],S)
3178            if symb.strip() != t[2].strip() or m != t[1]:
3179                print spc,t[0],m,symb,t[2]
3180            assert m == t[1]
3181            #assert symb.strip() == t[2].strip()
3182
3183    ExerciseSiteSym('p 1',[
3184            ((0.13,0.22,0.31),1,'1'),
3185            ((0,0,0),1,'1'),
3186            ])
3187    ExerciseSiteSym('p -1',[
3188            ((0.13,0.22,0.31),2,'1'),
3189            ((0,0.5,0),1,'-1'),
3190            ])
3191    ExerciseSiteSym('C 2/c',[
3192            ((0.13,0.22,0.31),8,'1'),
3193            ((0.0,.31,0.25),4,'2(y)'),
3194            ((0.25,.25,0.5),4,'-1'),
3195            ((0,0.5,0),4,'-1'),
3196            ])
3197    ExerciseSiteSym('p 2 2 2',[
3198            ((0.13,0.22,0.31),4,'1'),
3199            ((0,0.5,.31),2,'2(z)'),
3200            ((0.5,.31,0.5),2,'2(y)'),
3201            ((.11,0,0),2,'2(x)'),
3202            ((0,0.5,0),1,'222'),
3203            ])
3204    ExerciseSiteSym('p 4/n',[
3205            ((0.13,0.22,0.31),8,'1'),
3206            ((0.25,0.75,.31),4,'2(z)'),
3207            ((0.5,0.5,0.5),4,'-1'),
3208            ((0,0.5,0),4,'-1'),
3209            ((0.25,0.25,.31),2,'4(001)'),
3210            ((0.25,.75,0.5),2,'-4(001)'),
3211            ((0.25,.75,0.0),2,'-4(001)'),
3212            ])
3213    ExerciseSiteSym('p 31 2 1',[
3214            ((0.13,0.22,0.31),6,'1'),
3215            ((0.13,0.0,0.833333333),3,'2(100)'),
3216            ((0.13,0.13,0.),3,'2(110)'),
3217            ])
3218    ExerciseSiteSym('R 3 c',[
3219            ((0.13,0.22,0.31),18,'1'),
3220            ((0.0,0.0,0.31),6,'3'),
3221            ])
3222    ExerciseSiteSym('R 3 c R',[
3223            ((0.13,0.22,0.31),6,'1'),
3224            ((0.31,0.31,0.31),2,'3(111)'),
3225            ])
3226    ExerciseSiteSym('P 63 m c',[
3227            ((0.13,0.22,0.31),12,'1'),
3228            ((0.11,0.22,0.31),6,'m(100)'),
3229            ((0.333333,0.6666667,0.31),2,'3m(100)'),
3230            ((0,0,0.31),2,'3m(100)'),
3231            ])
3232    ExerciseSiteSym('I a -3',[
3233            ((0.13,0.22,0.31),48,'1'),
3234            ((0.11,0,0.25),24,'2(x)'),
3235            ((0.11,0.11,0.11),16,'3(111)'),
3236            ((0,0,0),8,'-3(111)'),
3237            ])
3238selftestlist.append(test3)
3239
3240if __name__ == '__main__':
3241    # run self-tests
3242    selftestquiet = False
3243    for test in selftestlist:
3244        test()
3245    print "OK"
Note: See TracBrowser for help on using the repository browser.