source: trunk/GSASIIobj.py @ 4654

Last change on this file since 4654 was 4654, checked in by toby, 13 months ago

new video tutorial; misc minor RB GUI fixes for Windows; option to show GPX sizes; remove use of deprecated imp module

  • Property svn:eol-style set to native
  • Property svn:keywords set to Date Author Revision URL Id
File size: 159.7 KB
Line 
1# -*- coding: utf-8 -*-
2#GSASIIobj - data objects for GSAS-II
3########### SVN repository information ###################
4# $Date: 2020-11-10 17:24:39 +0000 (Tue, 10 Nov 2020) $
5# $Author: toby $
6# $Revision: 4654 $
7# $URL: trunk/GSASIIobj.py $
8# $Id: GSASIIobj.py 4654 2020-11-10 17:24:39Z toby $
9########### SVN repository information ###################
10
11'''
12*GSASIIobj: Data objects*
13=========================
14
15This module defines and/or documents the data structures used in GSAS-II, as well
16as provides misc. support routines.
17
18.. Next command allows \\AA to be used in HTML
19
20.. only:: html
21
22   :math:`\\require{mediawiki-texvc}`
23
24.. _Constraints_table:
25
26.. index::
27   single: Constraints object description
28   single: Data object descriptions; Constraints
29
30Constraints Tree Item
31----------------------
32
33Constraints are stored in a dict, separated into groups.
34Note that parameter are named in the following pattern,
35p:h:<var>:n, where p is the phase number, h is the histogram number
36<var> is a variable name and n is the parameter number.
37If a parameter does not depend on a histogram or phase or is unnumbered, that
38number is omitted.
39Note that the contents of each dict item is a List where each element in the
40list is a :ref:`constraint definition objects <Constraint_definitions_table>`.
41The constraints in this form are converted in
42:func:`GSASIIstrIO.ProcessConstraints` to the form used in :mod:`GSASIImapvars`
43
44The keys in the Constraints dict are:
45
46.. tabularcolumns:: |l|p{4.5in}|
47
48==========  ====================================================
49  key         explanation
50==========  ====================================================
51Hist        This specifies a list of constraints on
52            histogram-related parameters,
53            which will be of form :h:<var>:n.
54HAP         This specifies a list of constraints on parameters
55            that are defined for every histogram in each phase
56            and are of form p:h:<var>:n.
57Phase       This specifies a list of constraints on phase
58            parameters,
59            which will be of form p::<var>:n.
60Global      This specifies a list of constraints on parameters
61            that are not tied to a histogram or phase and
62            are of form ::<var>:n
63==========  ====================================================
64
65.. _Constraint_definitions_table:
66
67.. index::
68   single: Constraint definition object description
69   single: Data object descriptions; Constraint Definition
70
71Each constraint is defined as an item in a list. Each constraint is of form::
72
73[[<mult1>, <var1>], [<mult2>, <var2>],..., <fixedval>, <varyflag>, <constype>]
74
75Where the variable pair list item containing two values [<mult>, <var>], where:
76
77  * <mult> is a multiplier for the constraint (float)
78  * <var> a :class:`G2VarObj` object (previously a str variable name of form
79      'p:h:name[:at]')
80
81Note that the last three items in the list play a special role:
82
83 * <fixedval> is the fixed value for a `constant equation` (``constype=c``)
84   constraint or is None. For a `New variable` (``constype=f``) constraint,
85   a variable name can be specified as a str (used for externally
86   generated constraints)
87 * <varyflag> is True or False for `New variable` (``constype=f``) constraints
88   or is None. This indicates if this variable should be refined.
89 * <constype> is one of four letters, 'e', 'c', 'h', 'f' that determines the type of constraint:
90
91    * 'e' defines a set of equivalent variables. Only the first variable is refined (if the
92      appropriate refine flag is set) and and all other equivalent variables in the list
93      are generated from that variable, using the appropriate multipliers.
94    * 'c' defines a constraint equation of form,
95      :math:`m_1 \\times var_1 + m_2 \\times var_2 + ... = c`
96    * 'h' defines a variable to hold (not vary). Any variable on this list is not varied,
97      even if its refinement flag is set. Only one [mult,var] pair is allowed in a hold
98      constraint and the mult value is ignored.
99      This is of particular value when needing to hold one or more variables where a
100      single flag controls a set of variables such as, coordinates,
101      the reciprocal metric tensor or anisotropic displacement parameter.
102    * 'f' defines a new variable (function) according to relationship
103      :math:`newvar = m_1 \\times var_1 + m_2 \\times var_2 + ...`
104
105.. _Covariance_table:
106
107.. index::
108   single: Covariance description
109   single: Data object descriptions; Covariance
110
111Covariance Tree Item
112--------------------
113
114The Covariance tree item has results from the last least-squares run. They
115are stored in a dict with these keys:
116
117.. tabularcolumns:: |l|l|p{4in}|
118
119=============  ===============  ====================================================
120  key            sub-key        explanation
121=============  ===============  ====================================================
122newCellDict    \\                (dict) ith lattice parameters computed by
123                                :func:`GSASIIstrMath.GetNewCellParms`
124title          \\                (str) Name of gpx file(?)
125variables      \\                (list) Values for all N refined variables
126                                (list of float values, length N,
127                                ordered to match varyList)
128sig            \\                (list) Uncertainty values for all N refined variables
129                                (list of float values, length N,
130                                ordered to match varyList)
131varyList       \\                (list of str values, length N) List of directly refined variables
132                               
133newAtomDict    \\                (dict) atom position values computed in
134                                :func:`GSASIIstrMath.ApplyXYZshifts`
135Rvals          \\                (dict) R-factors, GOF, Marquardt value for last
136                                refinement cycle
137\\              Nobs             (int) Number of observed data points
138\\              Rwp              (float) overall weighted profile R-factor (%)
139\\              chisq            (float) :math:`\\sum w*(I_{obs}-I_{calc})^2`                               
140                                for all data.
141                                Note: this is not the reduced :math:`\\chi^2`.
142\\              lamMax           (float) Marquardt value applied to Hessian diagonal
143\\              GOF              (float) The goodness-of-fit, aka square root of
144                                the reduced chi squared.
145covMatrix      \\                (np.array) The (NxN) covVariance matrix
146=============  ===============  ====================================================
147
148.. _Phase_table:
149
150.. index::
151   single: Phase object description
152   single: Data object descriptions; Phase
153
154Phase Tree Items
155----------------
156
157Phase information is stored in the GSAS-II data tree as children of the
158Phases item in a dict with keys:
159
160.. tabularcolumns:: |l|l|p{4in}|
161
162==========  ===============     =====================================================================================================
163  key         sub-key           explanation
164==========  ===============     =====================================================================================================
165General         \\               (dict) Overall information for the phase
166  \\         3Dproj              (list of str) projections for 3D pole distribution plots
167  \\         AngleRadii          (list of floats) Default radius for each atom used to compute
168                                interatomic angles
169  \\         AtomMass            (list of floats) Masses for atoms
170  \\         AtomPtrs            (list of int) four locations (cx,ct,cs & cu) to use to pull info
171                                from the atom records
172  \\         AtomTypes           (llist of str) Atom types
173  \\         BondRadii           (list of floats) Default radius for each atom used to compute
174                                interatomic distances
175  \\         Cell                Unit cell parameters & ref. flag
176                                (list with 8 items. All but first item are float.)
177
178                                 0: cell refinement flag (True/False),
179                                 1-3: a, b, c, (:math:`\\AA`)
180                                 4-6: alpha, beta & gamma, (degrees)
181                                 7: volume (:math:`\\AA^3`)
182  \\         Color               (list of (r,b,g) triplets) Colors for atoms
183  \\         Compare             (dict) Polygon comparison parameters
184  \\         Data plot type      (str) data plot type ('Mustrain', 'Size' or
185                                'Preferred orientation') for powder data
186  \\         DisAglCtls          (dDict) with distance/angle search controls,
187                                which has keys 'Name', 'AtomTypes',
188                                'BondRadii', 'AngleRadii' which are as above
189                                except are possibly edited. Also contains
190                                'Factors', which is a 2 element list with
191                                a multiplier for bond and angle search range
192                                [typically (0.85,0.85)].
193  \\         F000X               (float) x-ray F(000) intensity
194  \\         F000N               (float) neutron F(000) intensity
195  \\         Flip                (dict) Charge flip controls
196  \\         HydIds              (dict) geometrically generated hydrogen atoms
197  \\         Isotope             (dict) Isotopes for each atom type
198  \\         Isotopes            (dict) Scattering lengths for each isotope
199                                combination for each element in phase
200  \\         MCSA controls       (dict) Monte Carlo-Simulated Annealing controls
201  \\         Map                 (dict) Map parameters
202  \\         Mass                (float) Mass of unit cell contents in g/mol
203  \\         Modulated           (bool) True if phase modulated
204  \\         Mydir               (str) Directory of current .gpx file
205  \\         Name                (str) Phase name
206  \\         NoAtoms             (dict) Number of atoms per unit cell of each type
207  \\         POhkl               (list) March-Dollase preferred orientation direction
208  \\         Pawley dmin         (float) maximum Q (as d-space) to use for Pawley extraction
209  \\         Pawley dmax         (float) minimum Q (as d-space) to use for Pawley extraction
210  \\         Pawley neg wt       (float) Restraint value for negative Pawley intensities
211  \\         SGData              (object) Space group details as a
212                                :ref:`space group (SGData) <SGData_table>`
213                                object, as defined in :func:`GSASIIspc.SpcGroup`.
214  \\         SH Texture          (dict) Spherical harmonic preferred orientation parameters
215  \\         Super               (int) dimension of super group (0,1 only)
216  \\         Type                (str) phase type (e.g. 'nuclear')
217  \\         Z                   (dict) Atomic numbers for each atom type
218  \\         doDysnomia          (bool) flag for max ent map modification via Dysnomia
219  \\         doPawley            (bool) Flag for Pawley intensity extraction
220  \\         vdWRadii            (dict) Van der Waals radii for each atom type
221ranId           \\               (int) unique random number Id for phase
222pId             \\               (int) Phase Id number for current project.
223Atoms           \\               (list of lists) Atoms in phase as a list of lists. The outer list
224                                is for each atom, the inner list contains varying
225                                items depending on the type of phase, see
226                                the :ref:`Atom Records <Atoms_table>` description.
227Drawing         \\               (dict) Display parameters
228\\           Atoms               (list of lists) with an entry for each atom that is drawn
229\\           Plane               (list) Controls for contour density plane display
230\\           Quaternion          (4 element np.array) Viewing quaternion
231\\           Zclip               (float) clipping distance in :math:`\\AA`
232\\           Zstep               (float) Step to de/increase Z-clip
233\\           atomPtrs            (list) positions of x, type, site sym, ADP flag in Draw Atoms
234\\           backColor           (list) background for plot as and R,G,B triplet
235                                (default = [0, 0, 0], black).
236\\           ballScale           (float) Radius of spheres in ball-and-stick display
237\\           bondList            (dict) Bonds
238\\           bondRadius          (float) Radius of binds in :math:`\\AA`
239\\           cameraPos           (float) Viewing position in :math:`\\AA` for plot
240\\           contourLevel        (float) map contour level in :math:`e/\\AA^3`
241\\           contourMax          (float) map contour maximum
242\\           depthFog            (bool) True if use depthFog on plot - set currently as False
243\\           ellipseProb         (float) Probability limit for display of thermal
244                                ellipsoids in % .
245\\           magMult             (float) multiplier for magnetic moment arrows
246\\           mapSize             (float) x & y dimensions of contourmap (fixed internally)
247\\           modelView           (4,4 array) from openGL drawing transofmation matrix
248\\           oldxy               (list with two floats) previous view point
249\\           radiusFactor        (float) Distance ratio for searching for bonds. Bonds
250                                are located that are within r(Ra+Rb) and (Ra+Rb)/r
251                                where Ra and Rb are the atomic radii.
252\\           selectedAtoms       (list of int values) List of selected atoms
253\\           showABC             (bool) Flag to show view point triplet. True=show.
254\\           showHydrogen        (bool) Flag to control plotting of H atoms.
255\\           showRigidBodies     (bool) Flag to highlight rigid body placement
256\\           showSlice           (bool) flag to show contour map
257\\           sizeH               (float) Size ratio for H atoms
258\\           unitCellBox         (bool) Flag to control display of the unit cell.
259\\           vdwScale            (float) Multiplier of van der Waals radius for display of vdW spheres.
260\\           viewDir             (np.array with three floats) cartesian viewing direction
261\\           viewPoint           (list of lists) First item in list is [x,y,z]
262                                in fractional coordinates for the center of
263                                the plot. Second item list of previous & current
264                                atom number viewed (may be [0,0])
265RBModels        \\               Rigid body assignments (note Rigid body definitions
266                                are stored in their own main top-level tree entry.)
267RMC             \\               (dict) RMCProfile & rmcfull controls
268Pawley ref      \\               (list) Pawley reflections
269Histograms      \\               (dict of dicts) The key for the outer dict is
270                                the histograms tied to this phase. The inner
271                                dict contains the combined phase/histogram
272                                parameters for items such as scale factors,
273                                size and strain parameters. The following are the
274                                keys to the inner dict. (dict)
275\\           Babinet             (dict) For protein crystallography. Dictionary with two
276                                entries, 'BabA', 'BabU'
277\\           Extinction          (list of float, bool) Extinction parameter
278\\           Flack               (list of [float, bool]) Flack parameter & refine flag
279\\           HStrain             (list of two lists) Hydrostatic strain. The first is
280                                a list of the HStrain parameters (1, 2, 3, 4, or 6
281                                depending on unit cell), the second is a list of boolean
282                                refinement parameters (same length)
283\\           Histogram           (str) The name of the associated histogram
284\\           Layer Disp          (list of [float, bool]) Layer displacement in beam direction & refine flag
285\\           LeBail              (bool) Flag for LeBail extraction
286\\           Mustrain            (list) Microstrain parameters, in order:
287   
288                                0. Type, one of  u'isotropic', u'uniaxial', u'generalized'
289                                1. Isotropic/uniaxial parameters - list of 3 floats
290                                2. Refinement flags - list of 3 bools
291                                3. Microstrain axis - list of 3 ints, [h, k, l]
292                                4. Generalized mustrain parameters - list of 2-6 floats, depending on space group
293                                5. Generalized refinement flags - list of bools, corresponding to the parameters of (4)
294\\           Pref.Ori.           (list) Preferred Orientation. List of eight parameters.
295                                Items marked SH are only used for Spherical Harmonics.
296                               
297                                0. (str) Type, 'MD' for March-Dollase or 'SH' for Spherical Harmonics
298                                1. (float) Value
299                                2. (bool) Refinement flag
300                                3. (list) Preferred direction, list of ints, [h, k, l]
301                                4. (int) SH - number of terms
302                                5. (dict) SH - 
303                                6. (list) SH
304                                7. (float) SH
305\\           Scale               (list of [float, bool]) Phase fraction & refine flag
306\\           Size                List of crystallite size parameters, in order:
307
308                                0. (str) Type, one of  u'isotropic', u'uniaxial', u'ellipsoidal'
309                                1. (list) Isotropic/uniaxial parameters - list of 3 floats
310                                2. (list) Refinement flags - list of 3 bools
311                                3. (list) Size axis - list of 3 ints, [h, k, l]
312                                4. (list) Ellipsoidal size parameters - list of 6 floats
313                                5. (list) Ellipsoidal refinement flags - list of bools, corresponding to the parameters of (4)
314\\           Use                 (bool) True if this histogram is to be used in refinement
315\\           newLeBail           (bool) Whether to perform a new LeBail extraction
316MCSA            \\               (dict) Monte-Carlo simulated annealing parameters
317==========  ===============     =====================================================================================================
318
319.. _RBData_table:
320
321.. index::
322   single: Rigid Body Data description
323   single: Data object descriptions; Rigid Body Data
324
325Rigid Body Objects
326------------------
327
328Rigid body descriptions are available for two types of rigid bodies: 'Vector'
329and 'Residue'. Vector rigid bodies are developed by a sequence of translations each
330with a refinable magnitude and Residue rigid bodies are described as Cartesian coordinates
331with defined refinable torsion angles.
332
333.. tabularcolumns:: |l|l|p{4in}|
334
335==========  ===============     ====================================================
336  key         sub-key           explanation
337==========  ===============     ====================================================
338Vector      RBId                (dict of dict) vector rigid bodies
339\\           AtInfo              (dict) Drad, Color: atom drawing radius & color for each atom type
340\\           RBname              (str) Name assigned by user to rigid body
341\\           VectMag             (list) vector magnitudes in :math:`\\AA`
342\\           rbXYZ               (list of 3 float Cartesian coordinates for Vector rigid body )
343\\           rbRef               (list of 3 int & 1 bool) 3 assigned reference atom nos. in rigid body for origin
344                                definition, use center of atoms flag
345\\           VectRef             (list of bool refinement flags for VectMag values )
346\\           rbTypes             (list of str) Atom types for each atom in rigid body
347\\           rbVect              (list of lists) Cartesian vectors for each translation used to build rigid body
348\\           useCount            (int) Number of times rigid body is used in any structure
349Residue     RBId                (dict of dict) residue rigid bodies
350\\           AtInfo              (dict) Drad, Color: atom drawing radius & color for each atom type
351\\           RBname              (str) Name assigned by user to rigid body
352\\           rbXYZ               (list of 3 float) Cartesian coordinates for Residue rigid body
353\\           rbTypes             (list of str) Atom types for each atom in rigid body
354\\           atNames             (list of str) Names of each atom in rigid body (e.g. C1,N2...)
355\\           rbRef               (list of 3 int & 1 bool) 3 assigned reference atom nos. in rigid body for origin
356                                definition, use center of atoms flag
357\\           rbSeq               (list) Orig,Piv,angle,Riding : definition of internal rigid body
358                                torsion; origin atom (int), pivot atom (int), torsion angle (float),
359                                riding atoms (list of int)
360\\           SelSeq              (int,int) used by SeqSizer to identify objects
361\\           useCount            (int)Number of times rigid body is used in any structure
362RBIds           \\               (dict) unique Ids generated upon creation of each rigid body
363\\           Vector              (list) Ids for each Vector rigid body
364\\           Residue             (list) Ids for each Residue rigid body
365==========  ===============     ====================================================
366
367.. _SGData_table:
368
369.. index::
370   single: Space Group Data description
371   single: Data object descriptions; Space Group Data
372
373Space Group Objects
374-------------------
375
376Space groups are interpreted by :func:`GSASIIspc.SpcGroup`
377and the information is placed in a SGdata object
378which is a dict with these keys. Magnetic ones are marked "mag"
379
380.. tabularcolumns:: |l|p{4.5in}|
381
382==========  ========================================================================================
383  key         explanation
384==========  ========================================================================================
385BNSlattsym  mag - (str) BNS magnetic space group symbol and centering vector
386GenFlg      mag - (list) symmetry generators indices
387GenSym      mag - (list) names for each generator
388MagMom      mag - (list) "time reversals" for each magnetic operator
389MagPtGp     mag - (str) Magnetic point group symbol
390MagSpGrp    mag - (str) Magnetic space group symbol
391OprNames    mag - (list) names for each space group operation
392SGCen       (np.array) Symmetry cell centering vectors. A (n,3) np.array
393            of centers. Will always have at least one row: ``np.array([[0, 0, 0]])``
394SGFixed     (bool) Only True if phase mported from a magnetic cif file
395            then the space group can not be changed by the user because
396            operator set from cif may be nonstandard
397SGGen       (list) generators
398SGGray      (bool) True if space group is a gray group (incommensurate magnetic structures)
399SGInv       (bool) True if centrosymmetric, False if not
400SGLatt      (str)Lattice centering type. Will be one of
401            P, A, B, C, I, F, R
402SGLaue      (str) one of the following 14 Laue classes:
403            -1, 2/m, mmm, 4/m, 4/mmm, 3R,
404            3mR, 3, 3m1, 31m, 6/m, 6/mmm, m3, m3m
405SGOps       (list) symmetry operations as a list of form
406            ``[[M1,T1], [M2,T2],...]``
407            where :math:`M_n` is a 3x3 np.array
408            and :math:`T_n` is a length 3 np.array.
409            Atom coordinates are transformed where the
410            Asymmetric unit coordinates [X is (x,y,z)]
411            are transformed using
412            :math:`X^\\prime = M_n*X+T_n`
413SGPolax     (str) Axes for space group polarity. Will be one of
414            '', 'x', 'y', 'x y', 'z', 'x z', 'y z',
415            'xyz'. In the case where axes are arbitrary
416            '111' is used (P 1, and ?).
417SGPtGrp     (str) Point group of the space group
418SGUniq      unique axis if monoclinic. Will be
419            a, b, or c for monoclinic space groups.
420            Will be blank for non-monoclinic.
421SGSpin      mag - (list) of spin flip operatiors (+1 or -1) for the space group operations
422SGSys       (str) symmetry unit cell: type one of
423            'triclinic', 'monoclinic', 'orthorhombic',
424            'tetragonal', 'rhombohedral', 'trigonal',
425            'hexagonal', 'cubic'
426SSGK1       (list) Superspace multipliers
427SpGrp       (str) space group symbol
428SpnFlp      mag - (list) Magnetic spin flips for every magnetic space group operator
429==========  ========================================================================================
430
431.. _SSGData_table:
432
433.. index::
434   single: Superspace Group Data description
435   single: Data object descriptions; Superspace Group Data
436
437Superspace groups [3+1] are interpreted by :func:`GSASIIspc.SSpcGroup`
438and the information is placed in a SSGdata object
439which is a dict with these keys:
440
441.. tabularcolumns:: |l|p{4.5in}|
442
443==========  ====================================================
444  key         explanation
445==========  ====================================================
446SSGCen      (list) 4D cell centering vectors [0,0,0,0] at least
447SSGK1       (list) Superspace multipliers
448SSGOps      (list) 4D symmetry operations as [M,T] so that M*x+T = x'
449SSpGrp      (str) superspace group symbol extension to space group
450            symbol, accidental spaces removed
451modQ        (list) modulation/propagation vector
452modSymb     (list of str) Modulation symbols
453==========  ====================================================
454
455
456.. _Atoms_table:
457
458.. index::
459   single: Atoms record description
460   single: Data object descriptions; Atoms record
461
462Atom Records
463------------
464
465If ``phasedict`` points to the phase information in the data tree, then
466atoms are contained in a list of atom records (list) in
467``phasedict['Atoms']``. Also needed to read atom information
468are four pointers, ``cx,ct,cs,cia = phasedict['General']['AtomPtrs']``,
469which define locations in the atom record, as shown below. Items shown are
470always present; additional ones for macromolecular phases are marked 'mm',
471and those for magnetic structures are marked 'mg'
472
473.. tabularcolumns:: |l|p{4.5in}|
474
475==============      ====================================================
476location            explanation
477==============      ====================================================
478ct-4                mm - (str) residue number
479ct-3                mm - (str) residue name (e.g. ALA)
480ct-2                mm - (str) chain label
481ct-1                (str) atom label
482ct                  (str) atom type
483ct+1                (str) refinement flags; combination of 'F', 'X', 'U', 'M'
484cx,cx+1,cx+2        (3 floats) the x,y and z coordinates
485cx+3                (float) site occupancy
486cx+4,cx+5,cx+6      mg - (list) atom magnetic moment along a,b,c in Bohr magnetons
487cs                  (str) site symmetry
488cs+1                (int) site multiplicity
489cia                 (str) ADP flag: Isotropic ('I') or Anisotropic ('A')
490cia+1               (float) Uiso
491cia+2...cia+7       (6 floats) U11, U22, U33, U12, U13, U23
492atom[cia+8]         (int) unique atom identifier
493
494==============      ====================================================
495
496.. _Drawing_atoms_table:
497
498.. index::
499   single: Drawing atoms record description
500   single: Data object descriptions; Drawing atoms record
501
502Drawing Atom Records
503--------------------
504
505If ``phasedict`` points to the phase information in the data tree, then
506drawing atoms are contained in a list of drawing atom records (list) in
507``phasedict['Drawing']['Atoms']``. Also needed to read atom information
508are four pointers, ``cx,ct,cs,ci = phasedict['Drawing']['AtomPtrs']``,
509which define locations in the atom record, as shown below. Items shown are
510always present; additional ones for macromolecular phases are marked 'mm',
511and those for magnetic structures are marked 'mg'
512
513.. tabularcolumns:: |l|p{4.5in}|
514
515==============   ===================================================================================
516location            explanation
517==============   ===================================================================================
518ct-4                mm - (str) residue number
519ct-3                mm - (str) residue name (e.g. ALA)
520ct-2                mm - (str) chain label
521ct-1                (str) atom label
522ct                  (str) atom type
523cx,cx+1,cx+2        (3 floats) the x,y and z coordinates
524cx+3,cx+4,cx+5      mg - (3 floats) atom magnetic moment along a,b,c in Bohr magnetons
525cs-1                (str) Sym Op symbol; sym. op number + unit cell id (e.g. '1,0,-1')
526cs                  (str) atom drawing style; e.g. 'balls & sticks'
527cs+1                (str) atom label style (e.g. 'name')
528cs+2                (int) atom color (RBG triplet)
529cs+3                (str) ADP flag: Isotropic ('I') or Anisotropic ('A')
530cs+4                (float) Uiso
531cs+5...cs+11        (6 floats) U11, U22, U33, U12, U13, U23
532ci                  (int) unique atom identifier; matches source atom Id in Atom Records
533==============   ===================================================================================
534
535.. _Powder_table:
536
537.. index::
538   single: Powder data object description
539   single: Data object descriptions; Powder Data
540
541Powder Diffraction Tree Items
542-----------------------------
543
544Every powder diffraction histogram is stored in the GSAS-II data tree
545with a top-level entry named beginning with the string "PWDR ". The
546diffraction data for that information are directly associated with
547that tree item and there are a series of children to that item. The
548routines :func:`GSASIIdataGUI.GSASII.GetUsedHistogramsAndPhasesfromTree`
549and :func:`GSASIIstrIO.GetUsedHistogramsAndPhases` will
550load this information into a dictionary where the child tree name is
551used as a key, and the information in the main entry is assigned
552a key of ``Data``, as outlined below.
553
554.. tabularcolumns:: |p{1in}|p{1in}|p{4in}|
555
556======================     ===============  ===========================================================
557  key                       sub-key          explanation
558======================     ===============  ===========================================================
559Comments                    \\               (list of str) Text strings extracted from the original powder
560                                            data header. These cannot be changed by the user;
561                                            it may be empty.
562Limits                      \\               (list) two two element lists, as [[Ld,Hd],[L,H]]
563                                            where L and Ld are the current and default lowest
564                                            two-theta value to be used and
565                                            where H and Hd are the current and default highest
566                                            two-theta value to be used.
567Reflection Lists            \\               (dict of dicts) with an entry for each phase in the
568                                            histogram. The contents of each dict item
569                                            is a dict containing reflections, as described in
570                                            the :ref:`Powder Reflections <PowderRefl_table>`
571                                            description.
572Instrument Parameters       \\               (dict) The instrument parameters uses different dicts
573                                            for the constant wavelength (CW) and time-of-flight (TOF)
574                                            cases. See below for the descriptions of each.
575wtFactor                    \\               (float) A weighting factor to increase or decrease
576                                            the leverage of data in the histogram .
577                                            A value of 1.0 weights the data with their
578                                            standard uncertainties and a larger value
579                                            increases the weighting of the data (equivalent
580                                            to decreasing the uncertainties).
581Sample Parameters           \\               (dict) Parameters that describe how
582                                            the data were collected, as listed
583                                            below. Refinable parameters are a list containing
584                                            a float and a bool, where the second value
585                                            specifies if the value is refined, otherwise
586                                            the value is a float unless otherwise noted.
587\\                           Scale           The histogram scale factor (refinable)
588\\                           Absorption      The sample absorption coefficient as
589                                            :math:`\\mu r` where r is the radius
590                                            (refinable). Only valid for Debye-Scherrer geometry.
591\\                           SurfaceRoughA   Surface roughness parameter A as defined by
592                                            Surotti, *J. Appl. Cryst*, **5**, 325-331, 1972.
593                                            (refinable - only valid for Bragg-Brentano geometry)
594\\                           SurfaceRoughB   Surface roughness parameter B (refinable -
595                                            only valid for Bragg-Brentano geometry)
596\\                           DisplaceX,      Sample displacement from goniometer center
597                            DisplaceY       where Y is along the beam direction and
598                                            X is perpendicular. Units are :math:`\\mu m`
599                                            (refinable).
600\\                           Phi, Chi,       Goniometer sample setting angles, in degrees.
601                            Omega
602\\                           Gonio. radius   Radius of the diffractometer in mm
603\\                           InstrName       (str) A name for the instrument, used in preparing
604                                            a CIF .
605\\                           Force,          Variables that describe how the measurement
606                            Temperature,    was performed. Not used directly in
607                            Humidity,       any computations.
608                            Pressure,
609                            Voltage
610\\                           ranId           (int) The random-number Id for the histogram
611                                            (same value as where top-level key is ranId)
612\\                           Type            (str) Type of diffraction data, may be 'Debye-Scherrer'
613                                            or 'Bragg-Brentano' .
614hId                         \\               (int) The number assigned to the histogram when
615                                            the project is loaded or edited (can change)
616ranId                       \\               (int) A random number id for the histogram
617                                            that does not change
618Background                  \\               (list) The background is stored as a list with where
619                                            the first item in the list is list and the second
620                                            item is a dict. The list contains the background
621                                            function and its coefficients; the dict contains
622                                            Debye diffuse terms and background peaks.
623                                            (TODO: this needs to be expanded.)
624Data                        \\               (list) The data consist of a list of 6 np.arrays
625                                            containing in order:
626
627                                            0. the x-postions (two-theta in degrees),
628                                            1. the intensity values (Yobs),
629                                            2. the weights for each Yobs value
630                                            3. the computed intensity values (Ycalc)
631                                            4. the background values
632                                            5. Yobs-Ycalc
633======================     ===============  ===========================================================
634
635.. _CWPowder_table:
636
637.. index::
638   single: Powder data CW Instrument Parameters
639
640-----------------------------
641CW Instrument Parameters
642-----------------------------
643
644Instrument Parameters are placed in a list of two dicts,
645where the keys in the first dict are listed below. Note that the dict contents are different for
646constant wavelength (CW) vs. time-of-flight (TOF) histograms.
647The value for each item is a list containing three values: the initial value, the current value
648and a refinement flag which can have a value of True, False or 0 where 0 indicates a value that
649cannot be refined. The first and second values are floats unless otherwise noted.
650Items not refined are noted as [*]
651
652.. tabularcolumns:: |l|p{1in}|p{4in}|
653
654========================    ===============  ===========================================================
655  key                       sub-key           explanation
656========================    ===============  ===========================================================
657Instrument Parameters[0]    Type [*]            (str) Histogram type:
658                                                * 'PXC' for constant wavelength x-ray
659                                                * 'PNC' for constant wavelength neutron
660\\                           Bank [*]            (int) Data set number in a multidata file (usually 1)
661\\                           Lam                 (float) Specifies a wavelength in :math:`\\AA`
662\\                           Lam1 [*]            (float) Specifies the primary wavelength in
663                                                :math:`\\AA`, used in place of Lam
664                                                when an :math:`\\alpha_1, \\alpha_2`
665                                                source is used.
666\\                           Lam2 [*]            (float) Specifies the secondary wavelength in
667                                                :math:`\\AA`, used with Lam1
668\\                           I(L2)/I(L1)         (float) Ratio of Lam2 to Lam1, used with Lam1
669\\                           Zero                (float) Two-theta zero correction in *degrees*
670\\                           Azimuth [*]         (float) Azimuthal setting angle for data recorded with differing setting angles
671\\                           U, V, W             (float) Cagliotti profile coefficients
672                                                for Gaussian instrumental broadening, where the
673                                                FWHM goes as
674                                                :math:`U \\tan^2\\theta + V \\tan\\theta + W`
675\\                           X, Y, Z             (float) Cauchy (Lorentzian) instrumental broadening coefficients
676\\                           SH/L                (float) Variant of the Finger-Cox-Jephcoat asymmetric
677                                                peak broadening ratio. Note that this is the
678                                                sum of S/L and H/L where S is
679                                                sample height, H is the slit height and
680                                                L is the goniometer diameter.
681\\                           Polariz.            (float) Polarization coefficient.
682Instrument Parameters[1]                        (empty dict)
683========================    ===============  ===========================================================
684
685.. _TOFPowder_table:
686
687.. index::
688   single: Powder data TOF Instrument Parameters
689
690-----------------------------
691TOF Instrument Parameters
692-----------------------------
693
694Instrument Parameters are also placed in a list of two dicts,
695where the keys in each dict listed below, but here for
696time-of-flight (TOF) histograms.
697The value for each item is a list containing three values: the initial value, the current value
698and a refinement flag which can have a value of True, False or 0 where 0 indicates a value that
699cannot be refined. The first and second values are floats unless otherwise noted.
700Items not refined are noted as [*]
701
702.. tabularcolumns:: |l|p{1.5in}|p{4in}|
703
704========================    ===============  ===========================================================
705  key                        sub-key          explanation
706========================    ===============  ===========================================================
707Instrument Parameters[0]    Type [*]            (str) Histogram type:
708                                                * 'PNT' for time of flight neutron
709\\                           Bank                (int) Data set number in a multidata file
710\\                           2-theta [*]         (float) Nominal scattering angle for the detector
711\\                           fltPath [*]         (float) Total flight path source-sample-detector
712\\                           Azimuth [*]         (float) Azimuth angle for detector right hand rotation
713                                                from horizontal away from source
714\\                           difC,difA,          (float) Diffractometer constants for conversion of d-spacing to TOF
715                            difB                in microseconds
716\\                           Zero                (float) Zero point offset (microseconds)
717\\                           alpha               (float) Exponential rise profile coefficients
718\\                           beta-0              (float) Exponential decay profile coefficients
719                            beta-1
720                            beta-q
721\\                           sig-0               (float) Gaussian profile coefficients
722                            sig-1
723                            sig-2
724                            sig-q   
725\\                           X,Y,Z               (float) Lorentzian profile coefficients
726Instrument Parameters[1]    Pdabc               (list of 4 float lists) Originally created for use in gsas as optional tables
727                                                of d, alp, bet, d-true; for a reflection alpha & beta are obtained via interpolation
728                                                from the d-spacing and these tables. The d-true column is apparently unused.
729========================    ===============  ===========================================================
730
731
732.. _PowderRefl_table:
733
734.. index::
735   single: Powder reflection object description
736   single: Data object descriptions; Powder Reflections
737
738Powder Reflection Data Structure
739--------------------------------
740
741For every phase in a histogram, the ``Reflection Lists`` value is a dict
742one element of which is `'RefList'`, which is a np.array containing
743reflections. The columns in that array are documented below.
744
745==========  ====================================================
746  index         explanation
747==========  ====================================================
748 0,1,2          h,k,l (float)
749 3              (int) multiplicity
750 4              (float) d-space, :math:`\\AA`
751 5              (float) pos, two-theta
752 6              (float) sig, Gaussian width
753 7              (float) gam, Lorenzian width
754 8              (float) :math:`F_{obs}^2`
755 9              (float) :math:`F_{calc}^2`
756 10             (float) reflection phase, in degrees
757 11             (float) intensity correction for reflection, this times
758                :math:`F_{obs}^2` or :math:`F_{calc}^2` gives Iobs or Icalc
759 12             (float) Preferred orientation correction
760 13             (float) Transmission (absorption correction)
761 14             (float) Extinction correction
762==========  ====================================================
763
764.. _Xtal_table:
765
766.. index::
767   single: Single Crystal data object description
768   single: Data object descriptions; Single crystal data
769
770Single Crystal Tree Items
771-------------------------
772
773Every single crystal diffraction histogram is stored in the GSAS-II data tree
774with a top-level entry named beginning with the string "HKLF ". The
775diffraction data for that information are directly associated with
776that tree item and there are a series of children to that item. The
777routines :func:`GSASIIdataGUI.GSASII.GetUsedHistogramsAndPhasesfromTree`
778and :func:`GSASIIstrIO.GetUsedHistogramsAndPhases` will
779load this information into a dictionary where the child tree name is
780used as a key, and the information in the main entry is assigned
781a key of ``Data``, as outlined below.
782
783.. tabularcolumns:: |l|l|p{4in}|
784
785======================  ===============     ====================================================
786  key                      sub-key          explanation
787======================  ===============     ====================================================
788Data                        \\               (dict) that contains the
789                                            reflection table,
790                                            as described in the
791                                            :ref:`Single Crystal Reflections
792                                            <XtalRefl_table>`
793                                            description.
794
795Instrument Parameters       \\               (list) containing two dicts where the possible
796                                            keys in each dict are listed below. The value
797                                            for most items is a list containing two values:
798                                            the initial value, the current value.
799                                            The first and second
800                                            values are floats unless otherwise noted.
801\\                           Lam             (two floats) Specifies a wavelength in :math:`\\AA`
802\\                           Type            (two str values) Histogram type :
803                                            * 'SXC' for constant wavelength x-ray
804                                            * 'SNC' for constant wavelength neutron
805                                            * 'SNT' for time of flight neutron
806\\                           InstrName       (str) A name for the instrument, used in preparing a CIF
807wtFactor                    \\               (float) A weighting factor to increase or decrease
808                                            the leverage of data in the histogram.
809                                            A value of 1.0 weights the data with their
810                                            standard uncertainties and a larger value
811                                            increases the weighting of the data (equivalent
812                                            to decreasing the uncertainties).
813
814hId                         \\               (int) The number assigned to the histogram when
815                                            the project is loaded or edited (can change)
816ranId                       \\               (int) A random number id for the histogram
817                                            that does not change
818======================  ===============     ====================================================
819
820.. _XtalRefl_table:
821
822.. index::
823   single: Single Crystal reflection object description
824   single: Data object descriptions; Single Crystal Reflections
825
826Single Crystal Reflection Data Structure
827----------------------------------------
828
829For every single crystal a histogram, the ``'Data'`` item contains
830the structure factors as an np.array in item `'RefList'`.
831The columns in that array are documented below.
832
833.. tabularcolumns:: |l|p{4in}|
834
835==========  ====================================================
836  index         explanation
837==========  ====================================================
838 0,1,2          (float) h,k,l
839 3              (int) multiplicity
840 4              (float) d-space, :math:`\\AA`
841 5              (float) :math:`F_{obs}^2`
842 6              (float) :math:`\\sigma(F_{obs}^2)`
843 7              (float) :math:`F_{calc}^2`
844 8              (float) :math:`F_{obs}^2T`
845 9              (float) :math:`F_{calc}^2T`
846 10             (float) reflection phase, in degrees
847 11             (float) intensity correction for reflection, this times
848                :math:`F_{obs}^2` or :math:`F_{calc}^2`
849                gives Iobs or Icalc
850==========  ====================================================
851
852.. _Image_table:
853
854.. index::
855   image: Image data object description
856   image: Image object descriptions
857
858Image Data Structure
859--------------------
860
861Every 2-dimensional image is stored in the GSAS-II data tree
862with a top-level entry named beginning with the string "IMG ". The
863image data are directly associated with that tree item and there
864are a series of children to that item. The routines :func:`GSASIIdataGUI.GSASII.GetUsedHistogramsAndPhasesfromTree`
865and :func:`GSASIIstrIO.GetUsedHistogramsAndPhases` will
866load this information into a dictionary where the child tree name is
867used as a key, and the information in the main entry is assigned
868a key of ``Data``, as outlined below.
869
870.. tabularcolumns:: |l|l|p{4in}|
871
872======================  ======================  ====================================================
873  key                      sub-key              explanation
874======================  ======================  ====================================================
875Comments                    \\                   (list of str) Text strings extracted from the original image data
876                                                header or a metafile. These cannot be changed by
877                                                the user; it may be empty.
878Image Controls              azmthOff            (float) The offset to be applied to an azimuthal
879                                                value. Accomodates
880                                                detector orientations other than with the detector
881                                                X-axis
882                                                horizontal.
883\\                           background image    (list:str,float) The name of a tree item ("IMG ...") that is to be subtracted
884                                                during image integration multiplied by value. It must have the same size/shape as
885                                                the integrated image. NB: value < 0 for subtraction.
886\\                           calibrant           (str) The material used for determining the position/orientation
887                                                of the image. The data is obtained from :func:`ImageCalibrants`
888                                                and UserCalibrants.py (supplied by user).
889\\                           calibdmin           (float) The minimum d-spacing used during the last calibration run.
890\\                           calibskip           (int) The number of expected diffraction lines skipped during the last
891                                                calibration run.
892\\                           center              (list:floats) The [X,Y] point in detector coordinates (mm) where the direct beam
893                                                strikes the detector plane as determined by calibration. This point
894                                                does not have to be within the limits of the detector boundaries.
895\\                           centerAzm           (bool) If True then the azimuth reported for the integrated slice
896                                                of the image is at the center line otherwise it is at the leading edge.
897\\                           color               (str) The name of the colormap used to display the image. Default = 'Paired'.
898\\                           cutoff              (float) The minimum value of I/Ib for a point selected in a diffraction ring for
899                                                calibration calculations. See pixLimit for details as how point is found.
900\\                           DetDepth            (float) Coefficient for penetration correction to distance; accounts for diffraction
901                                                ring offset at higher angles. Optionally determined by calibration.
902\\                           DetDepthRef         (bool) If True then refine DetDepth during calibration/recalibration calculation.
903\\                           distance            (float) The distance (mm) from sample to detector plane.
904\\                           ellipses            (list:lists) Each object in ellipses is a list [center,phi,radii,color] where
905                                                center (list) is location (mm) of the ellipse center on the detector plane, phi is the
906                                                rotation of the ellipse minor axis from the x-axis, and radii are the minor & major
907                                                radii of the ellipse. If radii[0] is negative then parameters describe a hyperbola. Color
908                                                is the selected drawing color (one of 'b', 'g' ,'r') for the ellipse/hyperbola.
909\\                           edgemin             (float) Not used;  parameter in EdgeFinder code.
910\\                           fullIntegrate       (bool) If True then integrate over full 360 deg azimuthal range.
911\\                           GonioAngles         (list:floats) The 'Omega','Chi','Phi' goniometer angles used for this image.
912                                                Required for texture calculations.
913\\                           invert_x            (bool) If True display the image with the x-axis inverted.
914\\                           invert_y            (bool) If True display the image with the y-axis inverted.
915\\                           IOtth               (list:floats) The minimum and maximum 2-theta values to be used for integration.
916\\                           LRazimuth           (list:floats) The minimum and maximum azimuth values to be used for integration.
917\\                           Oblique             (list:float,bool) If True apply a detector absorption correction using the value to the
918                                                intensities obtained during integration.
919\\                           outAzimuths         (int) The number of azimuth pie slices.
920\\                           outChannels         (int) The number of 2-theta steps.
921\\                           pixelSize           (list:ints) The X,Y dimensions (microns) of each pixel.
922\\                           pixLimit            (int) A box in the image with 2*pixLimit+1 edges is searched to find the maximum.
923                                                This value (I) along with the minimum (Ib) in the box is reported by :func:`GSASIIimage.ImageLocalMax`
924                                                and subject to cutoff in :func:`GSASIIimage.makeRing`.
925                                                Locations are used to construct rings of points for calibration calcualtions.
926\\                           PolaVal             (list:float,bool) If type='SASD' and if True, apply polarization correction to intensities from
927                                                integration using value.
928\\                           rings               (list:lists) Each entry is [X,Y,dsp] where X & Y are lists of x,y coordinates around a
929                                                diffraction ring with the same d-spacing (dsp)
930\\                           ring                (list) The x,y coordinates of the >5 points on an inner ring
931                                                selected by the user,
932\\                           Range               (list) The minimum & maximum values of the image
933\\                           rotation            (float) The angle between the x-axis and the vector about which the
934                                                detector is tilted. Constrained to -180 to 180 deg.
935\\                           SampleShape         (str) Currently only 'Cylinder'. Sample shape for Debye-Scherrer experiments; used for absorption
936                                                calculations.
937\\                           SampleAbs           (list: float,bool) Value of absorption coefficient for Debye-Scherrer experimnents, flag if True
938                                                to cause correction to be applied.
939\\                           setDefault          (bool) If True the use the image controls values for all new images to be read. (might be removed)
940\\                           setRings            (bool) If True then display all the selected x,y ring positions (vida supra rings) used in the calibration.
941\\                           showLines           (bool) If True then isplay the integration limits to be used.
942\\                           size                (list:int) The number of pixels on the image x & y axes
943\\                           type                (str) One of 'PWDR', 'SASD' or 'REFL' for powder, small angle or reflectometry data, respectively.
944\\                           tilt                (float) The angle the detector normal makes with the incident beam; range -90 to 90.
945\\                           wavelength          (float) The radiation wavelength (:math:`\\AA`) as entered by the user
946                                                (or someday obtained from the image header).
947Masks                       Arcs                (list: lists) Each entry [2-theta,[azimuth[0],azimuth[1]],thickness] describes an arc mask
948                                                to be excluded from integration
949\\                           Frames              (list:lists) Each entry describes the x,y points (3 or more - mm) that describe a frame outside
950                                                of which is excluded from recalibration and integration. Only one frame is allowed.
951\\                           Points              (list:lists) Each entry [x,y,radius] (mm) describes an excluded spot on the image to be excluded
952                                                from integration.
953\\                           Polygons            (list:lists) Each entry is a list of 3+ [x,y] points (mm) that describe a polygon on the image
954                                                to be excluded from integration.
955\\                           Rings               (list: lists) Each entry [2-theta,thickness] describes a ring mask
956                                                to be excluded from integration.
957\\                           Thresholds          (list:[tuple,list]) [(Imin,Imax),[Imin,Imax]] This gives lower and upper limits for points on the image to be included
958                                                in integrsation. The tuple is the image intensity limits and the list are those set by the user.
959\\                           SpotMask            (dict: int & array)
960                                                'esdMul'(int) number of standard deviations above mean ring intensity to mask
961                                                'spotMask' (bool array) the spot mask for every pixel in image         
962
963Stress/Strain               Sample phi          (float) Sample rotation about vertical axis.
964\\                           Sample z            (float) Sample translation from the calibration sample position (for Sample phi = 0)
965                                                These will be restricted by space group symmetry; result of strain fit refinement.
966\\                           Type                (str) 'True' or 'Conventional': The strain model used for the calculation.
967\\                           d-zero              (list:dict) Each item is for a diffraction ring on the image; all items are from the same phase
968                                                and are used to determine the strain tensor.
969                                                The dictionary items are:
970                                                'Dset': (float) True d-spacing for the diffraction ring; entered by the user.
971                                                'Dcalc': (float) Average calculated d-spacing determined from strain coeff.
972                                                'Emat': (list: float) The strain tensor elements e11, e12 & e22 (e21=e12, rest are 0)
973                                                'Esig': (list: float) Esds for Emat from fitting.
974                                                'pixLimit': (int) Search range to find highest point on ring for each data point
975                                                'cutoff': (float) I/Ib cutoff for searching.
976                                                'ImxyObs': (list: lists) [[X],[Y]] observed points to be used for strain calculations.
977                                                'ImtaObs': (list: lists) [[d],[azm]] transformed via detector calibration from ImxyObs.
978                                                'ImtaCalc': (list: lists [[d],[azm]] calculated d-spacing & azimuth from fit.
979
980======================  ======================  ====================================================
981
982.. _parmDict_table:
983
984.. index::
985   single: Parameter dictionary
986
987Parameter Dictionary
988-------------------------
989
990The parameter dictionary contains all of the variable parameters for the refinement.
991The dictionary keys are the name of the parameter (<phase>:<hist>:<name>:<atom>).
992It is prepared in two ways. When loaded from the tree
993(in :meth:`GSASIIdataGUI.GSASII.MakeLSParmDict` and
994:meth:`GSASIIIO.ExportBaseclass.loadParmDict`),
995the values are lists with two elements: ``[value, refine flag]``
996
997When loaded from the GPX file (in
998:func:`GSASIIstrMain.Refine` and :func:`GSASIIstrMain.SeqRefine`), the value in the
999dict is the actual parameter value (usually a float, but sometimes a
1000letter or string flag value (such as I or A for iso/anisotropic).
1001
1002Texture implementation
1003------------------------------
1004
1005There are two different places where texture can be treated in GSAS-II.
1006One is for mitigating the effects of texture in a structural refinement.
1007The other is for texture characterization.
1008
1009For reducing the effect of texture in a structural refinement
1010there are entries labeled preferred orientation in each phase's
1011data tab. Two different
1012approaches can be used for this, the March-Dollase model and
1013spherical harmonics.
1014For the March-Dollase model, one axis in reciprocal space is designated as
1015unique (defaulting to the 001 axis) and reflections are corrected
1016according to the angle they make with this axis depending on
1017the March-Dollase ratio. (If unity, no correction is made).
1018The ratio can be greater than one or less than one depending on if
1019crystallites oriented along the designated axis are
1020overrepresented or underrepresented. For most crystal systems there is an
1021obvious choice for the direction of the unique axis and then only a single
1022term needs to be refined. If the number is close to 1, then the correction
1023is not needed.
1024
1025The second method for reducing the effect of texture in a structural
1026refinement is to create a probability surface as an expansion in
1027terms spherical harmonic functions. Only functions consistent with
1028cylindrical diffraction suymmetry and having texture symmetry
1029consistent with the Laue class of phase are used and are allowed,
1030so the higher the symmetry
1031the fewer terms that are available for a given spherical harmonics order.
1032For use of this correction, select the lowest order that provides
1033refinable terms and perform a refinement. If the texture index remains close to
1034one, then the correction is not needed. If a significant improvement is
1035noted in the profile Rwp, one may wish to see if a higher order expansion
1036gives an even larger improvement.
1037
1038To characterize texture in a material, one needs data collected with the
1039sample at multiple orientations or, for TOF, with detectors at multiple
1040locations around the sample. In this case the detector orientation is given in
1041each histogram's Sample Parameters and the sample's orientation is described
1042with the Euler angles specifed on the phase's Texture tab, which is also
1043where the texture type (cylindrical, rolling,...) and the sherical
1044harmonic order is selected. This should not be used with a single dataset and
1045should not be used if the preferred orientations corrections are used.
1046
1047The coordinate system used for texture characterization is defined where
1048the sample coordinates (Psi, gamma) are defined with an instrument coordinate
1049system (I, J, K) such that I is normal to the diffraction plane and J is coincident with the
1050direction of the incident radiation beam pointing away from the source. We further define
1051a standard set of right-handed goniometer eulerian angles (Omega, Chi, Phi) so that Omega and Phi are
1052rotations about I and Chi is a rotation about J when Omega, Chi, Phi = 0. Finally, as the sample
1053may be mounted so that the sample coordinate system (Is, Js, Ks) does not coincide with
1054the instrument coordinate system (I, J, K), we define three eulerian sample rotation angles
1055(Omega-s, Chi-s, Phi-s) that describe the rotation from (I, J, K) to (Is, Js, Ks). The sample rotation
1056angles are defined so that with the goniometer angles at zero Omega-s and Phi-s are rotations
1057about I and Chi-s is a rotation about J.
1058
1059ISODISTORT implementation
1060------------------------------
1061
1062CIFs prepared with the ISODISTORT web site
1063https://stokes.byu.edu/iso/isodistort_version5.6.1/isodistort.php
1064[B. J. Campbell, H. T. Stokes, D. E. Tanner, and D. M. Hatch, "ISODISPLACE: An Internet Tool for Exploring Structural Distortions." J. Appl. Cryst. 39, 607-614 (2006).]
1065can be read into GSAS-II using import CIF. This will cause constraints to be established for structural distortion modes read from the CIF.
1066At present, of the five types of modes  only displacive(``_iso_displacivemode``...) and occupancy (``_iso_occupancymode``...) are processed. Not yet processed: ``_iso_magneticmode``..., ``_iso_rotationalmode``... & ``_iso_strainmode``...
1067
1068The CIF importer :mod:`G2phase_CIF` implements class :class:`G2phase_CIF.CIFPhaseReader` which offers two methods associated with ISODISTORT (ID) input. Method :meth:`G2phase_CIF.CIFPhaseReader.ISODISTORT_test`
1069checks to see if a CIF block contains the loops with ``_iso_displacivemode_label`` or  ``_iso_occupancymode_label`` items.
1070If so, method :meth:`G2phase_CIF.CIFPhaseReader.ISODISTORT_proc` is called to read and interpret them.
1071The results are placed into the reader object's ``.Phase`` class variable as a dict item with key ``'ISODISTORT'``.
1072
1073Note that each mode ID has a long label with a name such as  Pm-3m[1/2,1/2,1/2]R5+(a,a,0)[La:b:dsp]T1u(a). Function :func:`G2phase_CIF.ISODISTORT_shortLbl` is used to create a short name for this,
1074such as R5_T1u(a) which is made unique by addition of _n if the short name is duplicated.
1075As each mode is processed, a constraint corresponding to that mode is
1076created and is added to list in the reader object's ``.Constraints`` class variable. Items placed into that list can either be a list, which corresponds to a function (new var) type :ref:`constraint definition <Constraints_table>` entry, or an item can be a dict, which provides help information for each constraint.
1077
1078------------------------------
1079Displacive modes
1080------------------------------
1081
1082The coordinate variables, as named by ISODISTORT, are placed in
1083``.Phase['ISODISTORT']['IsoVarList']`` and the corresponding :class:`GSASIIobj.G2VarObj` objects for each are placed in ``.Phase['ISODISTORT']['G2VarList']``. The mode variables,
1084as named by ISODISTORT, are placed in ``.Phase['ISODISTORT']['IsoModeList']`` and the corresponding :class:`GSASIIobj.G2VarObj` objects for each are placed in ``.Phase['ISODISTORT']['G2ModeList']``.
1085[Use ``str(G2VarObj)`` to get the variable name from the G2VarObj object, but note that the phase number, *n*, for the prefix "*n*::" cannot be determined as the phase number is not yet assigned.]
1086
1087Displacive modes are a bit complex in that they relate to delta displacements, relative to an offset value for each coordinate, and because the modes are normalized, while GSAS-II also uses displacements, but these are added to the coordinates after each refinement cycle and the delta values are set to zero. ISODISTORT uses fixed offsets (subtracted from the actual position to obtain the delta values) that are taken from ``_iso_coordinate_formula`` and these are placed in ``.Phase['ISODISTORT']['ParentStructure]`` (keyed by atom label). The normalization factors (which the delta values are divided by) are taken from ``_iso_displacivemodenorm_value`` and are placed in ``.Phase['ISODISTORT']['NormList']`` in the same order as as ``...['IsoModeList']`` and
1088``...['G2ModeList']``.
1089
1090The CIF contains a sparse matrix, from the ``loop_`` containing
1091``_iso_displacivemodematrix_value`` which provides the equations for determining the mode values from the coordinates, that matrix is placed in ``.Phase['ISODISTORT']['Mode2VarMatrix']``. The matrix is inverted to produce
1092``.Phase['ISODISTORT']['Var2ModeMatrix']``, which determines how to compute the
1093mode values from the delta coordinate values. These values are used for the
1094in :func:`GSASIIconstrGUI.ShowIsoDistortCalc` which shows coordinate and mode
1095values, the latter with s.u. values.
1096
1097
1098------------------------------
1099Occupancy modes
1100------------------------------
1101
1102
1103The delta occupancy variables, as named by ISODISTORT, are placed in
1104``.Phase['ISODISTORT']['OccVarList']`` and the corresponding :class:`GSASIIobj.G2VarObj` objects for each are placed in ``.Phase['ISODISTORT']['G2OccVarList']``. The mode variables, as named by ISODISTORT, are placed in ``.Phase['ISODISTORT']['OccModeList']`` and the corresponding :class:`GSASIIobj.G2VarObj` objects for each are placed in ``.Phase['ISODISTORT']['G2OccModeList']``.
1105
1106Occupancy modes, like Displacive modes, are also refined as delta values.  However, GSAS-II directly refines the fractional occupancies.
1107Offset values for each atom, are taken from ``_iso_occupancy_formula`` and are placed in
1108``.Phase['ISODISTORT']['ParentOcc]``.
1109(Offset values are subtracted from the actual position to obtain the delta values.)
1110Modes are normalized (where the mode values are divided by the normalization factor)
1111are taken from ``_iso_occupancymodenorm_value`` and are placed in ``.Phase['ISODISTORT']['OccNormList']`` in the same order as as ``...['OccModeList']`` and
1112``...['G2OccModeList']``.
1113
1114The CIF contains a sparse matrix, from the ``loop_`` containing
1115``_iso_occupancymodematrix_value``, which provides the equations for determining the mode values from the coordinates. That matrix is placed in ``.Phase['ISODISTORT']['Occ2VarMatrix']``. The matrix is inverted to produce
1116``.Phase['ISODISTORT']['Var2OccMatrix']``, which determines how to compute the
1117mode values from the delta coordinate values.
1118
1119
1120------------------------------
1121Mode Computations
1122------------------------------
1123
1124Constraints are processed after the CIF has been read in
1125:meth:`GSASIIdataGUI.GSASII.OnImportPhase` or 
1126:meth:`GSASIIscriptable.G2Project.add_phase` by moving them from the reader
1127object's ``.Constraints`` class variable to
1128the Constraints tree entry's ['Phase'] list (for list items defining constraints) or
1129the Constraints tree entry's ['_Explain'] dict (for dict items defining constraint help information)
1130
1131The information in ``.Phase['ISODISTORT']`` is used
1132in :func:`GSASIIconstrGUI.ShowIsoDistortCalc` which shows coordinate and mode
1133values, the latter with s.u. values. This can be called from the Constraints and Phase/Atoms tree items.
1134
1135Before each refinement, constraints are processed as
1136:ref:`described elsewhere <Constraints_processing>`. After a refinement
1137is complete, :func:`GSASIImapvars.PrintIndependentVars` shows the
1138shifts and s.u.'s on the refined modes, using GSAS-II values, but
1139:func:`GSASIIstrIO.PrintISOmodes` prints the ISODISTORT modes as computed
1140in the web site.
1141
1142
1143.. _ParameterLimits:
1144
1145.. index::
1146   single: Parameter limits
1147
1148Parameter Limits
1149------------------------------
1150
1151One of the most often requested "enhancements" for GSAS-II would be the inclusion
1152of constraints to force parameters such as occupancies or Uiso values to stay within
1153expected ranges. While it is possible for users to supply their own restraints that would
1154perform this by supplying an appropriate expression with the "General" restraints, the
1155GSAS-II authors do not feel that use of restraints or constraints are a good solution for
1156this common problem where parameters refine to non-physical values. This is because when
1157this occurs, most likely one of the following cases is occurring:
1158
1159#. there is a significant problem
1160   with the model, for example for an x-ray fit if an O atom is placed where a S is actually
1161   present, the Uiso will refine artificially small or the occupancy much larger than unity
1162   to try to compensate for the missing electrons; or
1163 
1164#. the data are simply insensitive
1165   to the parameter or combination of parameters, for example unless very high-Q data
1166   are included, the effects of a occupancy and Uiso value can have compensating effects,
1167   so an assumption must be made; likewise, with neutron data natural-abundance V atoms
1168   are nearly invisible due to weak coherent scattering. No parameters can be fit for a
1169   V atom with neutrons.
1170
1171#. the parameter is non-physical (such as a negative Uiso value) but within
1172   two sigma (sigma = standard uncertainty, aka e.s.d.) of a reasonable value,
1173   in which case the
1174   value is not problematic as it is experimentally indistinguishable from an
1175   expected value. 
1176
1177#. there is a systematic problem with the data (experimental error)
1178
1179In all these cases, this situation needs to be reviewed by a crystallographer to decide
1180how to best determine a structural model for these data. An implementation with a constraint
1181or restraint is likely to simply hide the problem from the user, making it more probable
1182that a poor model choice is obtained.
1183
1184What GSAS-II does implement is to allow users to specify ranges for parameters
1185that works by disabling
1186refinement of parameters that refine beyond either a lower limit or an upper limit, where
1187either or both may be optionally specified. Parameters limits are specified in the Controls
1188tree entry in dicts named as ``Controls['parmMaxDict']`` and ``Controls['parmMinDict']``, where
1189the keys are :class:`G2VarObj` objects corresponding to standard GSAS-II variable
1190(see :func:`getVarDescr` and :func:`CompileVarDesc`) names, where a
1191wildcard ('*') may optionally be used for histogram number or atom number
1192(phase number is intentionally not  allowed as a wildcard as it makes little sense
1193to group the same parameter together different phases). Note
1194that :func:`prmLookup` is used to see if a name matches a wildcard. The upper or lower limit
1195is placed into these dicts as a float value. These values can be edited using the window
1196created by the Calculate/"View LS parms" menu command or in scripting with the
1197:meth:`GSASIIscriptable.G2Project.set_Controls` function.
1198In the GUI, a checkbox labeled "match all histograms/atoms" is used to insert a wildcard
1199into the appropriate part of the variable name.
1200
1201When a refinement is conducted, routine :func:`GSASIIstrMain.dropOOBvars` is used to
1202find parameters that have refined to values outside their limits. If this occurs, the parameter
1203is set to the limiting value and the variable name is added to a list of frozen variables
1204(as a :class:`G2VarObj` objects) kept in a list in the
1205``Controls['parmFrozen']`` dict. In a sequential refinement, this is kept separate for
1206each histogram as a list in
1207``Controls['parmFrozen'][histogram]`` (where the key is the histogram name) or as a list in
1208``Controls['parmFrozen']['FrozenList']`` for a non-sequential fit.
1209This allows different variables
1210to be frozen in each section of a sequential fit.
1211Frozen parameters are not included in refinements through removal from the
1212list of parameters to be refined (``varyList``) in :func:`GSASIIstrMain.Refine` or
1213:func:`GSASIIstrMain.SeqRefine`.
1214The data window for the Controls tree item shows the number of Frozen variables and
1215the individual variables can be viewed with the Calculate/"View LS parms" menu window or
1216obtained with :meth:`GSASIIscriptable.G2Project.get_Frozen`.
1217Once a variable is frozen, it will not be refined in any
1218future refinements unless the the variable is removed (manually) from the list. This can also
1219be done with the Calculate/"View LS parms" menu window or
1220:meth:`GSASIIscriptable.G2Project.set_Frozen`.
1221
1222
1223.. seealso::
1224  :class:`G2VarObj`
1225  :func:`getVarDescr`
1226  :func:`CompileVarDesc`
1227  :func:`prmLookup`
1228  :class:`GSASIIctrlGUI.ShowLSParms`
1229  :class:`GSASIIctrlGUI.VirtualVarBox`
1230  :func:`GSASIIstrIO.SetUsedHistogramsAndPhases`
1231  :func:`GSASIIstrIO.SaveUpdatedHistogramsAndPhases`
1232  :func:`GSASIIstrIO.SetSeqResult`
1233  :func:`GSASIIstrMain.dropOOBvars`
1234  :meth:`GSASIIscriptable.G2Project.set_Controls`
1235  :meth:`GSASIIscriptable.G2Project.get_Frozen`
1236  :meth:`GSASIIscriptable.G2Project.set_Frozen`
1237
1238*Classes and routines*
1239----------------------
1240
1241'''
1242from __future__ import division, print_function
1243import platform
1244import re
1245import random as ran
1246import sys
1247import os.path as ospath
1248if '2' in platform.python_version_tuple()[0]:
1249    import cPickle
1250else:
1251    import pickle as cPickle
1252import GSASIIpath
1253import GSASIImath as G2mth
1254import GSASIIspc as G2spc
1255import numpy as np
1256
1257GSASIIpath.SetVersionNumber("$Revision: 4654 $")
1258
1259DefaultControls = {
1260    'deriv type':'analytic Hessian',
1261    'min dM/M':0.001,'shift factor':1.,'max cyc':3,'F**2':False,'SVDtol':1.e-6,
1262    'UsrReject':{'minF/sig':0.,'MinExt':0.01,'MaxDF/F':100.,'MaxD':500.,'MinD':0.05},
1263    'Copy2Next':False,'Reverse Seq':False,'HatomFix':False,
1264    'Author':'no name',
1265    'FreePrm1':'Sample humidity (%)',
1266    'FreePrm2':'Sample voltage (V)',
1267    'FreePrm3':'Applied load (MN)',
1268    'ShowCell':False,
1269    }
1270'''Values to be used as defaults for the initial contents of the ``Controls``
1271data tree item.
1272'''
1273def StripUnicode(string,subs='.'):
1274    '''Strip non-ASCII characters from strings
1275
1276    :param str string: string to strip Unicode characters from
1277    :param str subs: character(s) to place into string in place of each
1278      Unicode character. Defaults to '.'
1279
1280    :returns: a new string with only ASCII characters
1281    '''
1282    s = ''
1283    for c in string:
1284        if ord(c) < 128:
1285            s += c
1286        else:
1287            s += subs
1288    return s
1289#    return s.encode('ascii','replace')
1290
1291def MakeUniqueLabel(lbl,labellist):
1292    '''Make sure that every a label is unique against a list by adding
1293    digits at the end until it is not found in list.
1294
1295    :param str lbl: the input label
1296    :param list labellist: the labels that have already been encountered
1297    :returns: lbl if not found in labellist or lbl with ``_1-9`` (or
1298      ``_10-99``, etc.) appended at the end
1299    '''
1300    lbl = StripUnicode(lbl.strip(),'_')
1301    if not lbl: # deal with a blank label
1302        lbl = '_1'
1303    if lbl not in labellist:
1304        labellist.append(lbl)
1305        return lbl
1306    i = 1
1307    prefix = lbl
1308    if '_' in lbl:
1309        prefix = lbl[:lbl.rfind('_')]
1310        suffix = lbl[lbl.rfind('_')+1:]
1311        try:
1312            i = int(suffix)+1
1313        except: # suffix could not be parsed
1314            i = 1
1315            prefix = lbl
1316    while prefix+'_'+str(i) in labellist:
1317        i += 1
1318    else:
1319        lbl = prefix+'_'+str(i)
1320        labellist.append(lbl)
1321    return lbl
1322
1323PhaseIdLookup = {}
1324'''dict listing phase name and random Id keyed by sequential phase index as a str;
1325best to access this using :func:`LookupPhaseName`
1326'''
1327PhaseRanIdLookup = {}
1328'''dict listing phase sequential index keyed by phase random Id;
1329best to access this using :func:`LookupPhaseId`
1330'''
1331HistIdLookup = {}
1332'''dict listing histogram name and random Id, keyed by sequential histogram index as a str;
1333best to access this using :func:`LookupHistName`
1334'''
1335HistRanIdLookup = {}
1336'''dict listing histogram sequential index keyed by histogram random Id;
1337best to access this using :func:`LookupHistId`
1338'''
1339AtomIdLookup = {}
1340'''dict listing for each phase index as a str, the atom label and atom random Id,
1341keyed by atom sequential index as a str;
1342best to access this using :func:`LookupAtomLabel`
1343'''
1344AtomRanIdLookup = {}
1345'''dict listing for each phase the atom sequential index keyed by atom random Id;
1346best to access this using :func:`LookupAtomId`
1347'''
1348ShortPhaseNames = {}
1349'''a dict containing a possibly shortened and when non-unique numbered
1350version of the phase name. Keyed by the phase sequential index.
1351'''
1352ShortHistNames = {}
1353'''a dict containing a possibly shortened and when non-unique numbered
1354version of the histogram name. Keyed by the histogram sequential index.
1355'''
1356
1357#VarDesc = {}  # removed 1/30/19 BHT as no longer needed (I think)
1358#''' This dictionary lists descriptions for GSAS-II variables,
1359#as set in :func:`CompileVarDesc`. See that function for a description
1360#for how keys and values are written.
1361#'''
1362
1363reVarDesc = {}
1364''' This dictionary lists descriptions for GSAS-II variables where
1365keys are compiled regular expressions that will match the name portion
1366of a parameter name. Initialized in :func:`CompileVarDesc`.
1367'''
1368
1369reVarStep = {}
1370''' This dictionary lists the preferred step size for numerical
1371derivative computation w/r to a GSAS-II variable. Keys are compiled
1372regular expressions and values are the step size for that parameter.
1373Initialized in :func:`CompileVarDesc`.
1374'''
1375# create a default space group object for P1; N.B. fails when building documentation
1376try:
1377    P1SGData = G2spc.SpcGroup('P 1')[1] # data structure for default space group
1378except:
1379    pass
1380
1381def GetPhaseNames(fl):
1382    ''' Returns a list of phase names found under 'Phases' in GSASII gpx file
1383    NB: there is another one of these in GSASIIstrIO.py that uses the gpx filename
1384
1385    :param file fl: opened .gpx file
1386    :return: list of phase names
1387    '''
1388    PhaseNames = []
1389    while True:
1390        try:
1391            data = cPickle.load(fl)
1392        except EOFError:
1393            break
1394        datum = data[0]
1395        if 'Phases' == datum[0]:
1396            for datus in data[1:]:
1397                PhaseNames.append(datus[0])
1398    fl.seek(0)          #reposition file
1399    return PhaseNames
1400
1401def SetNewPhase(Name='New Phase',SGData=None,cell=None,Super=None):
1402    '''Create a new phase dict with default values for various parameters
1403
1404    :param str Name: Name for new Phase
1405
1406    :param dict SGData: space group data from :func:`GSASIIspc:SpcGroup`;
1407      defaults to data for P 1
1408
1409    :param list cell: unit cell parameter list; defaults to
1410      [1.0,1.0,1.0,90.,90,90.,1.]
1411
1412    '''
1413    if SGData is None: SGData = P1SGData
1414    if cell is None: cell=[1.0,1.0,1.0,90.,90.,90.,1.]
1415    phaseData = {
1416        'ranId':ran.randint(0,sys.maxsize),
1417        'General':{
1418            'Name':Name,
1419            'Type':'nuclear',
1420            'Modulated':False,
1421            'AtomPtrs':[3,1,7,9],
1422            'SGData':SGData,
1423            'Cell':[False,]+cell,
1424            'Pawley dmin':1.0,
1425            'Data plot type':'None',
1426            'SH Texture':{
1427                'Order':0,
1428                'Model':'cylindrical',
1429                'Sample omega':[False,0.0],
1430                'Sample chi':[False,0.0],
1431                'Sample phi':[False,0.0],
1432                'SH Coeff':[False,{}],
1433                'SHShow':False,
1434                'PFhkl':[0,0,1],
1435                'PFxyz':[0,0,1],
1436                'PlotType':'Pole figure',
1437                'Penalty':[['',],0.1,False,1.0]}},
1438        'Atoms':[],
1439        'Drawing':{},
1440        'Histograms':{},
1441        'Pawley ref':[],
1442        'RBModels':{},
1443        }
1444    if Super and Super.get('Use',False):
1445        phaseData['General'].update({'Modulated':True,'Super':True,'SuperSg':Super['ssSymb']})
1446        phaseData['General']['SSGData'] = G2spc.SSpcGroup(SGData,Super['ssSymb'])[1]
1447        phaseData['General']['SuperVec'] = [Super['ModVec'],False,Super['maxH']]
1448
1449    return phaseData
1450
1451def ReadCIF(URLorFile):
1452    '''Open a CIF, which may be specified as a file name or as a URL using PyCifRW
1453    (from James Hester).
1454    The open routine gets confused with DOS names that begin with a letter and colon
1455    "C:\\dir\" so this routine will try to open the passed name as a file and if that
1456    fails, try it as a URL
1457
1458    :param str URLorFile: string containing a URL or a file name. Code will try first
1459      to open it as a file and then as a URL.
1460
1461    :returns: a PyCifRW CIF object.
1462    '''
1463    import CifFile as cif # PyCifRW from James Hester
1464
1465    # alternate approach:
1466    #import urllib
1467    #ciffile = 'file:'+urllib.pathname2url(filename)
1468
1469    try:
1470        fp = open(URLorFile,'r')
1471        cf = cif.ReadCif(fp)
1472        fp.close()
1473        return cf
1474    except IOError:
1475        return cif.ReadCif(URLorFile)
1476
1477def TestIndexAll():
1478    '''Test if :func:`IndexAllIds` has been called to index all phases and
1479    histograms (this is needed before :func:`G2VarObj` can be used.
1480
1481    :returns: Returns True if indexing is needed.
1482    '''
1483    if PhaseIdLookup or AtomIdLookup or HistIdLookup:
1484        return False
1485    return True
1486       
1487def IndexAllIds(Histograms,Phases):
1488    '''Scan through the used phases & histograms and create an index
1489    to the random numbers of phases, histograms and atoms. While doing this,
1490    confirm that assigned random numbers are unique -- just in case lightning
1491    strikes twice in the same place.
1492
1493    Note: this code assumes that the atom random Id (ranId) is the last
1494    element each atom record.
1495
1496    This is called in three places (only): :func:`GSASIIstrIO.GetUsedHistogramsAndPhases`
1497    (which loads the histograms and phases from a GPX file),
1498    :meth:`~GSASIIdataGUI.GSASII.GetUsedHistogramsAndPhasesfromTree`
1499    (which loads the histograms and phases from the data tree.) and
1500    :meth:`GSASIIconstrGUI.UpdateConstraints`
1501    (which displays & edits the constraints in a GUI)
1502
1503    TODO: do we need a lookup for rigid body variables?
1504    '''
1505    # process phases and atoms
1506    PhaseIdLookup.clear()
1507    PhaseRanIdLookup.clear()
1508    AtomIdLookup.clear()
1509    AtomRanIdLookup.clear()
1510    ShortPhaseNames.clear()
1511    for ph in Phases:
1512        cx,ct,cs,cia = Phases[ph]['General']['AtomPtrs']
1513        ranId = Phases[ph]['ranId']
1514        while ranId in PhaseRanIdLookup:
1515            # Found duplicate random Id! note and reassign
1516            print ("\n\n*** Phase "+str(ph)+" has repeated ranId. Fixing.\n")
1517            Phases[ph]['ranId'] = ranId = ran.randint(0,sys.maxsize)
1518        pId = str(Phases[ph]['pId'])
1519        PhaseIdLookup[pId] = (ph,ranId)
1520        PhaseRanIdLookup[ranId] = pId
1521        shortname = ph  #[:10]
1522        while shortname in ShortPhaseNames.values():
1523            shortname = ph[:8] + ' ('+ pId + ')'
1524        ShortPhaseNames[pId] = shortname
1525        AtomIdLookup[pId] = {}
1526        AtomRanIdLookup[pId] = {}
1527        for iatm,at in enumerate(Phases[ph]['Atoms']):
1528            ranId = at[cia+8]
1529            while ranId in AtomRanIdLookup[pId]: # check for dups
1530                print ("\n\n*** Phase "+str(ph)+" atom "+str(iatm)+" has repeated ranId. Fixing.\n")
1531                at[cia+8] = ranId = ran.randint(0,sys.maxsize)
1532            AtomRanIdLookup[pId][ranId] = str(iatm)
1533            if Phases[ph]['General']['Type'] == 'macromolecular':
1534                label = '%s_%s_%s_%s'%(at[ct-1],at[ct-3],at[ct-4],at[ct-2])
1535            else:
1536                label = at[ct-1]
1537            AtomIdLookup[pId][str(iatm)] = (label,ranId)
1538    # process histograms
1539    HistIdLookup.clear()
1540    HistRanIdLookup.clear()
1541    ShortHistNames.clear()
1542    for hist in Histograms:
1543        ranId = Histograms[hist]['ranId']
1544        while ranId in HistRanIdLookup:
1545            # Found duplicate random Id! note and reassign
1546            print ("\n\n*** Histogram "+str(hist)+" has repeated ranId. Fixing.\n")
1547            Histograms[hist]['ranId'] = ranId = ran.randint(0,sys.maxsize)
1548        hId = str(Histograms[hist]['hId'])
1549        HistIdLookup[hId] = (hist,ranId)
1550        HistRanIdLookup[ranId] = hId
1551        shortname = hist[:15]
1552        while shortname in ShortHistNames.values():
1553            shortname = hist[:11] + ' ('+ hId + ')'
1554        ShortHistNames[hId] = shortname
1555
1556def LookupAtomId(pId,ranId):
1557    '''Get the atom number from a phase and atom random Id
1558
1559    :param int/str pId: the sequential number of the phase
1560    :param int ranId: the random Id assigned to an atom
1561
1562    :returns: the index number of the atom (str)
1563    '''
1564    if not AtomRanIdLookup:
1565        raise Exception('Error: LookupAtomId called before IndexAllIds was run')
1566    if pId is None or pId == '':
1567        raise KeyError('Error: phase is invalid (None or blank)')
1568    pId = str(pId)
1569    if pId not in AtomRanIdLookup:
1570        raise KeyError('Error: LookupAtomId does not have phase '+pId)
1571    if ranId not in AtomRanIdLookup[pId]:
1572        raise KeyError('Error: LookupAtomId, ranId '+str(ranId)+' not in AtomRanIdLookup['+pId+']')
1573    return AtomRanIdLookup[pId][ranId]
1574
1575def LookupAtomLabel(pId,index):
1576    '''Get the atom label from a phase and atom index number
1577
1578    :param int/str pId: the sequential number of the phase
1579    :param int index: the index of the atom in the list of atoms
1580
1581    :returns: the label for the atom (str) and the random Id of the atom (int)
1582    '''
1583    if not AtomIdLookup:
1584        raise Exception('Error: LookupAtomLabel called before IndexAllIds was run')
1585    if pId is None or pId == '':
1586        raise KeyError('Error: phase is invalid (None or blank)')
1587    pId = str(pId)
1588    if pId not in AtomIdLookup:
1589        raise KeyError('Error: LookupAtomLabel does not have phase '+pId)
1590    if index not in AtomIdLookup[pId]:
1591        raise KeyError('Error: LookupAtomLabel, ranId '+str(index)+' not in AtomRanIdLookup['+pId+']')
1592    return AtomIdLookup[pId][index]
1593
1594def LookupPhaseId(ranId):
1595    '''Get the phase number and name from a phase random Id
1596
1597    :param int ranId: the random Id assigned to a phase
1598    :returns: the sequential Id (pId) number for the phase (str)
1599    '''
1600    if not PhaseRanIdLookup:
1601        raise Exception('Error: LookupPhaseId called before IndexAllIds was run')
1602    if ranId not in PhaseRanIdLookup:
1603        raise KeyError('Error: LookupPhaseId does not have ranId '+str(ranId))
1604    return PhaseRanIdLookup[ranId]
1605
1606def LookupPhaseName(pId):
1607    '''Get the phase number and name from a phase Id
1608
1609    :param int/str pId: the sequential assigned to a phase
1610    :returns:  (phase,ranId) where phase is the name of the phase (str)
1611      and ranId is the random # id for the phase (int)
1612    '''
1613    if not PhaseIdLookup:
1614        raise Exception('Error: LookupPhaseName called before IndexAllIds was run')
1615    if pId is None or pId == '':
1616        raise KeyError('Error: phase is invalid (None or blank)')
1617    pId = str(pId)
1618    if pId not in PhaseIdLookup:
1619        raise KeyError('Error: LookupPhaseName does not have index '+pId)
1620    return PhaseIdLookup[pId]
1621
1622def LookupHistId(ranId):
1623    '''Get the histogram number and name from a histogram random Id
1624
1625    :param int ranId: the random Id assigned to a histogram
1626    :returns: the sequential Id (hId) number for the histogram (str)
1627    '''
1628    if not HistRanIdLookup:
1629        raise Exception('Error: LookupHistId called before IndexAllIds was run')
1630    if ranId not in HistRanIdLookup:
1631        raise KeyError('Error: LookupHistId does not have ranId '+str(ranId))
1632    return HistRanIdLookup[ranId]
1633
1634def LookupHistName(hId):
1635    '''Get the histogram number and name from a histogram Id
1636
1637    :param int/str hId: the sequential assigned to a histogram
1638    :returns:  (hist,ranId) where hist is the name of the histogram (str)
1639      and ranId is the random # id for the histogram (int)
1640    '''
1641    if not HistIdLookup:
1642        raise Exception('Error: LookupHistName called before IndexAllIds was run')
1643    if hId is None or hId == '':
1644        raise KeyError('Error: histogram is invalid (None or blank)')
1645    hId = str(hId)
1646    if hId not in HistIdLookup:
1647        raise KeyError('Error: LookupHistName does not have index '+hId)
1648    return HistIdLookup[hId]
1649
1650def fmtVarDescr(varname):
1651    '''Return a string with a more complete description for a GSAS-II variable
1652
1653    :param str varname: A full G2 variable name with 2 or 3 or 4
1654       colons (<p>:<h>:name[:<a>] or <p>::RBname:<r>:<t>])
1655
1656    :returns: a string with the description
1657    '''
1658    s,l = VarDescr(varname)
1659    return s+": "+l
1660
1661def VarDescr(varname):
1662    '''Return two strings with a more complete description for a GSAS-II variable
1663
1664    :param str name: A full G2 variable name with 2 or 3 or 4
1665       colons (<p>:<h>:name[:<a>] or <p>::RBname:<r>:<t>])
1666
1667    :returns: (loc,meaning) where loc describes what item the variable is mapped
1668      (phase, histogram, etc.) and meaning describes what the variable does.
1669    '''
1670
1671    # special handling for parameter names without a colon
1672    # for now, assume self-defining
1673    if varname.find(':') == -1:
1674        return "Global",varname
1675
1676    l = getVarDescr(varname)
1677    if not l:
1678        return ("invalid variable name ("+str(varname)+")!"),""
1679#        return "invalid variable name!",""
1680
1681    if not l[-1]:
1682        l[-1] = "(variable needs a definition! Set it in CompileVarDesc)"
1683
1684    if len(l) == 3:         #SASD variable name!
1685        s = 'component:'+l[1]
1686        return s,l[-1]
1687    s = ""
1688    if l[0] is not None and l[1] is not None: # HAP: keep short
1689        if l[2] == "Scale": # fix up ambigous name
1690            l[5] = "Phase fraction"
1691        if l[0] == '*':
1692            lbl = 'Seq. ref.'
1693        else:
1694            lbl = ShortPhaseNames.get(l[0],'? #'+str(l[0]))
1695        if l[1] == '*':
1696            hlbl = 'Seq. ref.'
1697        else:
1698            hlbl = ShortHistNames.get(l[1],'? #'+str(l[1]))
1699        if hlbl[:4] == 'HKLF':
1700            hlbl = 'Xtl='+hlbl[5:]
1701        elif hlbl[:4] == 'PWDR':
1702            hlbl = 'Pwd='+hlbl[5:]
1703        else:
1704            hlbl = 'Hist='+hlbl
1705        s = "Ph="+str(lbl)+" * "+str(hlbl)
1706    else:
1707        if l[2] == "Scale": # fix up ambigous name: must be scale factor, since not HAP
1708            l[5] = "Scale factor"
1709        if l[2] == 'Back': # background parameters are "special", alas
1710            s = 'Hist='+ShortHistNames.get(l[1],'? #'+str(l[1]))
1711            l[-1] += ' #'+str(l[3])
1712        elif l[4] is not None: # rigid body parameter or modulation parm
1713            lbl = ShortPhaseNames.get(l[0],'phase?')
1714            if 'RB' in l[2]:    #rigid body parm
1715                s = "Res #"+str(l[3])+" body #"+str(l[4])+" in "+str(lbl)
1716            else: #modulation parm
1717                s = 'Atom %s wave %s in %s'%(LookupAtomLabel(l[0],l[3])[0],l[4],lbl)
1718        elif l[3] is not None: # atom parameter,
1719            lbl = ShortPhaseNames.get(l[0],'phase?')
1720            try:
1721                albl = LookupAtomLabel(l[0],l[3])[0]
1722            except KeyError:
1723                albl = 'Atom?'
1724            s = "Atom "+str(albl)+" in "+str(lbl)
1725        elif l[0] == '*':
1726            s = "All phases "
1727        elif l[0] is not None:
1728            lbl = ShortPhaseNames.get(l[0],'phase?')
1729            s = "Phase "+str(lbl)
1730        elif l[1] == '*':
1731            s = 'All hists'
1732        elif l[1] is not None:
1733            hlbl = ShortHistNames.get(l[1],'? #'+str(l[1]))
1734            if hlbl[:4] == 'HKLF':
1735                hlbl = 'Xtl='+hlbl[5:]
1736            elif hlbl[:4] == 'PWDR':
1737                hlbl = 'Pwd='+hlbl[5:]
1738            else:
1739                hlbl = 'Hist='+hlbl
1740            s = str(hlbl)
1741    if not s:
1742        s = 'Global'
1743    return s,l[-1]
1744
1745def getVarDescr(varname):
1746    '''Return a short description for a GSAS-II variable
1747
1748    :param str name: A full G2 variable name with 2 or 3 or 4
1749       colons (<p>:<h>:name[:<a1>][:<a2>])
1750
1751    :returns: a six element list as [`p`,`h`,`name`,`a1`,`a2`,`description`],
1752      where `p`, `h`, `a1`, `a2` are str values or `None`, for the phase number,
1753      the histogram number and the atom number; `name` will always be
1754      a str; and `description` is str or `None`.
1755      If the variable name is incorrectly formed (for example, wrong
1756      number of colons), `None` is returned instead of a list.
1757    '''
1758    l = varname.split(':')
1759    if len(l) == 2:     #SASD parameter name
1760        return varname,l[0],getDescr(l[1])
1761    if len(l) == 3:
1762        l += [None,None]
1763    elif len(l) == 4:
1764        l += [None]
1765    elif len(l) != 5:
1766        return None
1767    for i in (0,1,3,4):
1768        if l[i] == "":
1769            l[i] = None
1770    l += [getDescr(l[2])]
1771    return l
1772
1773def CompileVarDesc():
1774    '''Set the values in the variable lookup tables
1775    (:attr:`reVarDesc` and :attr:`reVarStep`).
1776    This is called in :func:`getDescr` and :func:`getVarStep` so this
1777    initialization is always done before use.
1778
1779    Note that keys may contain regular expressions, where '[xyz]'
1780    matches 'x' 'y' or 'z' (equivalently '[x-z]' describes this as range
1781    of values). '.*' matches any string. For example::
1782
1783    'AUiso':'Atomic isotropic displacement parameter',
1784
1785    will match variable ``'p::AUiso:a'``.
1786    If parentheses are used in the key, the contents of those parentheses can be
1787    used in the value, such as::
1788
1789    'AU([123][123])':'Atomic anisotropic displacement parameter U\\1',
1790
1791    will match ``AU11``, ``AU23``,.. and `U11`, `U23` etc will be displayed
1792    in the value when used.
1793
1794    '''
1795    if reVarDesc: return # already done
1796    for key,value in {
1797        # derived or other sequential vars
1798        '([abc])$' : 'Lattice parameter, \\1, from Ai and Djk', # N.B. '$' prevents match if any characters follow
1799        u'\u03B1' : u'Lattice parameter, \u03B1, from Ai and Djk',
1800        u'\u03B2' : u'Lattice parameter, \u03B2, from Ai and Djk',
1801        u'\u03B3' : u'Lattice parameter, \u03B3, from Ai and Djk',
1802        # ambiguous, alas:
1803        'Scale' : 'Phase or Histogram scale factor',
1804        # Phase vars (p::<var>)
1805        'A([0-5])' : ('Reciprocal metric tensor component \\1',1e-5),
1806        '[vV]ol' : 'Unit cell volume', # probably an error that both upper and lower case are used
1807        # Atom vars (p::<var>:a)
1808        'dA([xyz])$' : ('change to atomic coordinate, \\1',1e-6),
1809        'A([xyz])$' : '\\1 fractional atomic coordinate',
1810        'AUiso':('Atomic isotropic displacement parameter',1e-4),
1811        'AU([123][123])':('Atomic anisotropic displacement parameter U\\1',1e-4),
1812        'Afrac': ('Atomic site fraction parameter',1e-5),
1813        'Amul': 'Atomic site multiplicity value',
1814        'AM([xyz])$' : 'Atomic magnetic moment parameter, \\1',
1815        # Hist & Phase (HAP) vars (p:h:<var>)
1816        'Back': 'Background term',
1817        'BkPkint;(.*)':'Background peak #\\1 intensity',
1818        'BkPkpos;(.*)':'Background peak #\\1 position',
1819        'BkPksig;(.*)':'Background peak #\\1 Gaussian width',
1820        'BkPkgam;(.*)':'Background peak #\\1 Cauchy width',
1821        'Bab([AU])': 'Babinet solvent scattering coef. \\1',
1822        'D([123][123])' : 'Anisotropic strain coef. \\1',
1823        'Extinction' : 'Extinction coef.',
1824        'MD' : 'March-Dollase coef.',
1825        'Mustrain;.*' : 'Microstrain coef.',
1826        'Size;.*' : 'Crystallite size value',
1827        'eA$' : 'Cubic mustrain value',
1828        'Ep$' : 'Primary extinction',
1829        'Es$' : 'Secondary type II extinction',
1830        'Eg$' : 'Secondary type I extinction',
1831        'Flack' : 'Flack parameter',
1832        'TwinFr' : 'Twin fraction',
1833        'Layer Disp'  : 'Layer displacement along beam',
1834        #Histogram vars (:h:<var>)
1835        'Absorption' : 'Absorption coef.',
1836        'Displace([XY])' : ('Debye-Scherrer sample displacement \\1',0.1),
1837        'Lam' : ('Wavelength',1e-6),
1838        'I\\(L2\\)\\/I\\(L1\\)' : ('Ka2/Ka1 intensity ratio',0.001),
1839        'Polariz\\.' : ('Polarization correction',1e-3),
1840        'SH/L' : ('FCJ peak asymmetry correction',1e-4),
1841        '([UVW])$' : ('Gaussian instrument broadening \\1',1e-5),
1842        '([XYZ])$' : ('Cauchy instrument broadening \\1',1e-5),
1843        'Zero' : 'Debye-Scherrer zero correction',
1844        'Shift' : 'Bragg-Brentano sample displ.',
1845        'SurfRoughA' : 'Bragg-Brenano surface roughness A',
1846        'SurfRoughB' : 'Bragg-Brenano surface roughness B',
1847        'Transparency' : 'Bragg-Brentano sample tranparency',
1848        'DebyeA' : 'Debye model amplitude',
1849        'DebyeR' : 'Debye model radius',
1850        'DebyeU' : 'Debye model Uiso',
1851        'RBV.*' : 'Vector rigid body parameter',
1852        'RBR.*' : 'Residue rigid body parameter',
1853        'RBRO([aijk])' : 'Residue rigid body orientation parameter',
1854        'RBRP([xyz])' : 'Residue rigid body position parameter',
1855        'RBRTr;.*' : 'Residue rigid body torsion parameter',
1856        'RBR([TLS])([123AB][123AB])' : 'Residue rigid body group disp. param.',
1857        'constr([0-9]*)' : 'Parameter from constraint',
1858        # supersymmetry parameters  p::<var>:a:o 'Flen','Fcent'?
1859        'mV([0-2])$' : 'Modulation vector component \\1',
1860        'Fsin'  :   'Sin site fraction modulation',
1861        'Fcos'  :   'Cos site fraction modulation',
1862        'Fzero'  :   'Crenel function offset',      #may go away
1863        'Fwid'   :   'Crenel function width',
1864        'Tmin'   :   'ZigZag/Block min location',
1865        'Tmax'   :   'ZigZag/Block max location',
1866        '([XYZ])max': 'ZigZag/Block max value for \\1',
1867        '([XYZ])sin'  : 'Sin position wave for \\1',
1868        '([XYZ])cos'  : 'Cos position wave for \\1',
1869        'U([123][123])sin$' :  'Sin thermal wave for U\\1',
1870        'U([123][123])cos$' :  'Cos thermal wave for U\\1',
1871        'M([XYZ])sin$' :  'Sin mag. moment wave for \\1',
1872        'M([XYZ])cos$' :  'Cos mag. moment wave for \\1',
1873        # PDF peak parms (l:<var>;l = peak no.)
1874        'PDFpos'  : 'PDF peak position',
1875        'PDFmag'  : 'PDF peak magnitude',
1876        'PDFsig'  : 'PDF peak std. dev.',
1877        # SASD vars (l:<var>;l = component)
1878        'Aspect ratio' : 'Particle aspect ratio',
1879        'Length' : 'Cylinder length',
1880        'Diameter' : 'Cylinder/disk diameter',
1881        'Thickness' : 'Disk thickness',
1882        'Shell thickness' : 'Multiplier to get inner(<1) or outer(>1) sphere radius',
1883        'Dist' : 'Interparticle distance',
1884        'VolFr' : 'Dense scatterer volume fraction',
1885        'epis' : 'Sticky sphere epsilon',
1886        'Sticky' : 'Stickyness',
1887        'Depth' : 'Well depth',
1888        'Width' : 'Well width',
1889        'Volume' : 'Particle volume',
1890        'Radius' : 'Sphere/cylinder/disk radius',
1891        'Mean' : 'Particle mean radius',
1892        'StdDev' : 'Standard deviation in Mean',
1893        'G$': 'Guinier prefactor',
1894        'Rg$': 'Guinier radius of gyration',
1895        'B$': 'Porod prefactor',
1896        'P$': 'Porod power',
1897        'Cutoff': 'Porod cutoff',
1898        'PkInt': 'Bragg peak intensity',
1899        'PkPos': 'Bragg peak position',
1900        'PkSig': 'Bragg peak sigma',
1901        'PkGam': 'Bragg peak gamma',
1902        'e([12][12])' : 'strain tensor e\1',   # strain vars e11, e22, e12
1903        'Dcalc': 'Calc. d-spacing',
1904        'Back$': 'background parameter',
1905        'pos$': 'peak position',
1906        'int$': 'peak intensity',
1907        'WgtFrac':'phase weight fraction',
1908        'alpha':'TOF profile term',
1909        'alpha-[01]':'Pink profile term',
1910        'beta-[01q]':'TOF/Pink profile term',
1911        'sig-[012q]':'TOF profile term',
1912        'dif[ABC]':'TOF to d-space calibration',
1913        'C\\([0-9]*,[0-9]*\\)' : 'spherical harmonics preferred orientation coef.',
1914        }.items():
1915        if len(value) == 2:
1916            #VarDesc[key] = value[0]
1917            reVarDesc[re.compile(key)] = value[0]
1918            reVarStep[re.compile(key)] = value[1]
1919        else:
1920            #VarDesc[key] = value
1921            reVarDesc[re.compile(key)] = value
1922
1923def removeNonRefined(parmList):
1924    '''Remove items from variable list that are not refined and should not
1925    appear as options for constraints
1926
1927    :param list parmList: a list of strings of form "p:h:VAR:a" where
1928      VAR is the variable name
1929
1930    :returns: a list after removing variables where VAR matches a
1931      entry in local variable NonRefinedList
1932    '''
1933    NonRefinedList = ['Omega','Type','Chi','Phi', 'Azimuth','Gonio. radius',
1934                          'Lam1','Lam2','Back','Temperature','Pressure',
1935                          'FreePrm1','FreePrm2','FreePrm3',
1936                          'Source','nPeaks','LeBail','newLeBail','Bank',
1937                          'nDebye', #'',
1938                    ]
1939    return [prm for prm in parmList if prm.split(':')[2] not in NonRefinedList]
1940       
1941def getDescr(name):
1942    '''Return a short description for a GSAS-II variable
1943
1944    :param str name: The descriptive part of the variable name without colons (:)
1945
1946    :returns: a short description or None if not found
1947    '''
1948
1949    CompileVarDesc() # compile the regular expressions, if needed
1950    for key in reVarDesc:
1951        m = key.match(name)
1952        if m:
1953            reVarDesc[key]
1954            return m.expand(reVarDesc[key])
1955    return None
1956
1957def getVarStep(name,parmDict=None):
1958    '''Return a step size for computing the derivative of a GSAS-II variable
1959
1960    :param str name: A complete variable name (with colons, :)
1961    :param dict parmDict: A dict with parameter values or None (default)
1962
1963    :returns: a float that should be an appropriate step size, either from
1964      the value supplied in :func:`CompileVarDesc` or based on the value for
1965      name in parmDict, if supplied. If not found or the value is zero,
1966      a default value of 1e-5 is used. If parmDict is None (default) and
1967      no value is provided in :func:`CompileVarDesc`, then None is returned.
1968    '''
1969    CompileVarDesc() # compile the regular expressions, if needed
1970    for key in reVarStep:
1971        m = key.match(name)
1972        if m:
1973            return reVarStep[key]
1974    if parmDict is None: return None
1975    val = parmDict.get(key,0.0)
1976    if abs(val) > 0.05:
1977        return abs(val)/1000.
1978    else:
1979        return 1e-5
1980
1981def GenWildCard(varlist):
1982    '''Generate wildcard versions of G2 variables. These introduce '*'
1983    for a phase, histogram or atom number (but only for one of these
1984    fields) but only when there is more than one matching variable in the
1985    input variable list. So if the input is this::
1986
1987      varlist = ['0::AUiso:0', '0::AUiso:1', '1::AUiso:0']
1988
1989    then the output will be this::
1990
1991       wildList = ['*::AUiso:0', '0::AUiso:*']
1992
1993    :param list varlist: an input list of GSAS-II variable names
1994      (such as 0::AUiso:0)
1995
1996    :returns: wildList, the generated list of wild card variable names.
1997    '''
1998    wild = []
1999    for i in (0,1,3):
2000        currentL = varlist[:]
2001        while currentL:
2002            item1 = currentL.pop(0)
2003            i1splt = item1.split(':')
2004            if i >= len(i1splt): continue
2005            if i1splt[i]:
2006                nextL = []
2007                i1splt[i] = '[0-9]+'
2008                rexp = re.compile(':'.join(i1splt))
2009                matchlist = [item1]
2010                for nxtitem in currentL:
2011                    if rexp.match(nxtitem):
2012                        matchlist += [nxtitem]
2013                    else:
2014                        nextL.append(nxtitem)
2015                if len(matchlist) > 1:
2016                    i1splt[i] = '*'
2017                    wild.append(':'.join(i1splt))
2018                currentL = nextL
2019    return wild
2020
2021def LookupWildCard(varname,varlist):
2022    '''returns a list of variable names from list varname
2023    that match wildcard name in varname
2024
2025    :param str varname: a G2 variable name containing a wildcard
2026      (such as \\*::var)
2027    :param list varlist: the list of all variable names used in
2028      the current project
2029    :returns: a list of matching GSAS-II variables (may be empty)
2030    '''
2031    rexp = re.compile(varname.replace('*','[0-9]+'))
2032    return sorted([var for var in varlist if rexp.match(var)])
2033
2034def prmLookup(name,prmDict):
2035    '''Looks for a parameter in a min/max dictionary, optionally
2036    considering a wild card for histogram or atom number (use of
2037    both will never occur at the same time).
2038
2039    :param name: a GSAS-II parameter name (str, see :func:`getVarDescr`
2040      and :func:`CompileVarDesc`) or a :class:`G2VarObj` object.
2041    :param dict prmDict: a min/max dictionary, (parmMinDict
2042      or parmMaxDict in Controls) where keys are :class:`G2VarObj`
2043      objects.
2044    :returns: Two values, (**matchname**, **value**), are returned where:
2045
2046       * **matchname** *(str)* is the :class:`G2VarObj` object
2047         corresponding to the actual matched name,
2048         which could contain a wildcard even if **name** does not; and
2049       * **value** *(float)* which contains the parameter limit.
2050    '''
2051    for key,value in prmDict.items():
2052        if str(key) == str(name): return key,value
2053        if key == name: return key,value
2054    return None,None
2055       
2056
2057def _lookup(dic,key):
2058    '''Lookup a key in a dictionary, where None returns an empty string
2059    but an unmatched key returns a question mark. Used in :class:`G2VarObj`
2060    '''
2061    if key is None:
2062        return ""
2063    elif key == "*":
2064        return "*"
2065    else:
2066        return dic.get(key,'?')
2067
2068def SortVariables(varlist):
2069    '''Sorts variable names in a sensible manner
2070    '''
2071    def cvnnums(var):
2072        v = []
2073        for i in var.split(':'):
2074            if i == '':
2075                v.append(-1)
2076                continue
2077            try:
2078                v.append(int(i))
2079            except:
2080                v.append(i)
2081        return v
2082    return sorted(varlist,key=cvnnums)
2083
2084class G2VarObj(object):
2085    '''Defines a GSAS-II variable either using the phase/atom/histogram
2086    unique Id numbers or using a character string that specifies
2087    variables by phase/atom/histogram number (which can change).
2088    Note that :func:`GSASIIstrIO.GetUsedHistogramsAndPhases`,
2089    which calls :func:`IndexAllIds` (or
2090    :func:`GSASIIscriptable.G2Project.index_ids`) should be used to
2091    (re)load the current Ids
2092    before creating or later using the G2VarObj object.
2093
2094    This can store rigid body variables, but does not translate the residue # and
2095    body # to/from random Ids
2096
2097    A :class:`G2VarObj` object can be created with a single parameter:
2098
2099    :param str/tuple varname: a single value can be used to create a :class:`G2VarObj`
2100      object. If a string, it must be of form "p:h:var" or "p:h:var:a", where
2101
2102     * p is the phase number (which may be left blank or may be '*' to indicate all phases);
2103     * h is the histogram number (which may be left blank or may be '*' to indicate all histograms);
2104     * a is the atom number (which may be left blank in which case the third colon is omitted).
2105       The atom number can be specified as '*' if a phase number is specified (not as '*').
2106       For rigid body variables, specify a will be a string of form "residue:body#"
2107
2108      Alternately a single tuple of form (Phase,Histogram,VarName,AtomID) can be used, where
2109      Phase, Histogram, and AtomID are None or are ranId values (or one can be '*')
2110      and VarName is a string. Note that if Phase is '*' then the AtomID is an atom number.
2111      For a rigid body variables, AtomID is a string of form "residue:body#".
2112
2113    If four positional arguments are supplied, they are:
2114
2115    :param str/int phasenum: The number for the phase (or None or '*')
2116    :param str/int histnum: The number for the histogram (or None or '*')
2117    :param str varname: a single value can be used to create a :class:`G2VarObj`
2118    :param str/int atomnum: The number for the atom (or None or '*')
2119
2120    '''
2121    IDdict = {}
2122    IDdict['phases'] = {}
2123    IDdict['hists'] = {}
2124    IDdict['atoms'] = {}
2125    def __init__(self,*args):
2126        self.phase = None
2127        self.histogram = None
2128        self.name = ''
2129        self.atom = None
2130        if len(args) == 1 and (type(args[0]) is list or type(args[0]) is tuple) and len(args[0]) == 4:
2131            # single arg with 4 values
2132            self.phase,self.histogram,self.name,self.atom = args[0]
2133        elif len(args) == 1 and ':' in args[0]:
2134            #parse a string
2135            lst = args[0].split(':')
2136            if lst[0] == '*':
2137                self.phase = '*'
2138                if len(lst) > 3:
2139                    self.atom = lst[3]
2140                self.histogram = HistIdLookup.get(lst[1],[None,None])[1]
2141            elif lst[1] == '*':
2142                self.histogram = '*'
2143                self.phase = PhaseIdLookup.get(lst[0],[None,None])[1]
2144            else:
2145                self.histogram = HistIdLookup.get(lst[1],[None,None])[1]
2146                self.phase = PhaseIdLookup.get(lst[0],[None,None])[1]
2147                if len(lst) == 4:
2148                    if lst[3] == '*':
2149                        self.atom = '*'
2150                    else:
2151                        self.atom = AtomIdLookup[lst[0]].get(lst[3],[None,None])[1]
2152                elif len(lst) == 5:
2153                    self.atom = lst[3]+":"+lst[4]
2154                elif len(lst) == 3:
2155                    pass
2156                else:
2157                    raise Exception("Too many colons in var name "+str(args[0]))
2158            self.name = lst[2]
2159        elif len(args) == 4:
2160            if args[0] == '*':
2161                self.phase = '*'
2162                self.atom = args[3]
2163            else:
2164                self.phase = PhaseIdLookup.get(str(args[0]),[None,None])[1]
2165                if args[3] == '*':
2166                    self.atom = '*'
2167                elif args[0] is not None:
2168                    self.atom = AtomIdLookup[args[0]].get(str(args[3]),[None,None])[1]
2169            if args[1] == '*':
2170                self.histogram = '*'
2171            else:
2172                self.histogram = HistIdLookup.get(str(args[1]),[None,None])[1]
2173            self.name = args[2]
2174        else:
2175            raise Exception("Incorrectly called GSAS-II parameter name")
2176
2177        #print "DEBUG: created ",self.phase,self.histogram,self.name,self.atom
2178
2179    def __str__(self):
2180        return self.varname()
2181
2182    def __hash__(self):
2183        'Allow G2VarObj to be a dict key by implementing hashing'
2184        return hash(self.varname())
2185
2186    def varname(self):
2187        '''Formats the GSAS-II variable name as a "traditional" GSAS-II variable
2188        string (p:h:<var>:a) or (p:h:<var>)
2189
2190        :returns: the variable name as a str
2191        '''
2192        a = ""
2193        if self.phase == "*":
2194            ph = "*"
2195            if self.atom:
2196                a = ":" + str(self.atom)
2197        else:
2198            ph = _lookup(PhaseRanIdLookup,self.phase)
2199            if self.atom == '*':
2200                a = ':*'
2201            elif self.atom:
2202                if ":" in str(self.atom):
2203                    a = ":" + str(self.atom)
2204                elif ph in AtomRanIdLookup:
2205                    a = ":" + AtomRanIdLookup[ph].get(self.atom,'?')
2206                else:
2207                    a = ":?"
2208        if self.histogram == "*":
2209            hist = "*"
2210        else:
2211            hist = _lookup(HistRanIdLookup,self.histogram)
2212        s = (ph + ":" + hist + ":" + str(self.name)) + a
2213        return s
2214
2215    def __repr__(self):
2216        '''Return the detailed contents of the object
2217        '''
2218        s = "<"
2219        if self.phase == '*':
2220            s += "Phases: all; "
2221            if self.atom is not None:
2222                if ":" in str(self.atom):
2223                    s += "Rigid body" + str(self.atom) + "; "
2224                else:
2225                    s += "Atom #" + str(self.atom) + "; "
2226        elif self.phase is not None:
2227            ph =  _lookup(PhaseRanIdLookup,self.phase)
2228            s += "Phase: rId=" + str(self.phase) + " (#"+ ph + "); "
2229            if self.atom == '*':
2230                s += "Atoms: all; "
2231            elif ":" in str(self.atom):
2232                s += "Rigid body" + str(self.atom) + "; "
2233            elif self.atom is not None:
2234                s += "Atom rId=" + str(self.atom)
2235                if ph in AtomRanIdLookup:
2236                    s += " (#" + AtomRanIdLookup[ph].get(self.atom,'?') + "); "
2237                else:
2238                    s += " (#? -- not found!); "
2239        if self.histogram == '*':
2240            s += "Histograms: all; "
2241        elif self.histogram is not None:
2242            hist = _lookup(HistRanIdLookup,self.histogram)
2243            s += "Histogram: rId=" + str(self.histogram) + " (#"+ hist + "); "
2244        s += 'Variable name="' + str(self.name) + '">'
2245        return s+" ("+self.varname()+")"
2246
2247    def __eq__(self, other):
2248        '''Allow comparison of G2VarObj to other G2VarObj objects or strings.
2249        If any field is a wildcard ('*') that field matches.
2250        '''
2251        if type(other) is str:
2252            other = G2VarObj(other)
2253        elif type(other) is not G2VarObj:
2254            raise Exception("Invalid type ({}) for G2VarObj comparison with {}"
2255                            .format(type(other),other))
2256        if self.phase != other.phase and self.phase != '*' and other.phase != '*':
2257            return False
2258        if self.histogram != other.histogram and self.histogram != '*' and other.histogram != '*':
2259            return False
2260        if self.atom != other.atom and self.atom != '*' and other.atom != '*':
2261            return False
2262        if self.name != other.name:
2263            return False
2264        return True
2265
2266    def _show(self):
2267        'For testing, shows the current lookup table'
2268        print ('phases'+ self.IDdict['phases'])
2269        print ('hists'+ self.IDdict['hists'])
2270        print ('atomDict'+ self.IDdict['atoms'])
2271
2272#==========================================================================
2273def SetDefaultSample():
2274    'Fills in default items for the Sample dictionary for Debye-Scherrer & SASD'
2275    return {
2276        'InstrName':'',
2277        'ranId':ran.randint(0,sys.maxsize),
2278        'Scale':[1.0,True],'Type':'Debye-Scherrer','Absorption':[0.0,False],
2279        'DisplaceX':[0.0,False],'DisplaceY':[0.0,False],
2280        'Temperature':300.,'Pressure':0.1,'Time':0.0,
2281        'FreePrm1':0.,'FreePrm2':0.,'FreePrm3':0.,
2282        'Gonio. radius':200.0,
2283        'Omega':0.0,'Chi':0.0,'Phi':0.0,'Azimuth':0.0,
2284#SASD items
2285        'Materials':[{'Name':'vacuum','VolFrac':1.0,},{'Name':'vacuum','VolFrac':0.0,}],
2286        'Thick':1.0,'Contrast':[0.0,0.0],       #contrast & anomalous contrast
2287        'Trans':1.0,                            #measured transmission
2288        'SlitLen':0.0,                          #Slit length - in Q(A-1)
2289        }
2290######################################################################
2291class ImportBaseclass(object):
2292    '''Defines a base class for the reading of input files (diffraction
2293    data, coordinates,...). See :ref:`Writing a Import Routine<import_routines>`
2294    for an explanation on how to use a subclass of this class.
2295    '''
2296    class ImportException(Exception):
2297        '''Defines an Exception that is used when an import routine hits an expected error,
2298        usually in .Reader.
2299
2300        Good practice is that the Reader should define a value in self.errors that
2301        tells the user some information about what is wrong with their file.
2302        '''
2303        pass
2304
2305    UseReader = True  # in __init__ set value of self.UseReader to False to skip use of current importer
2306    def __init__(self,formatName,longFormatName=None,
2307                 extensionlist=[],strictExtension=False,):
2308        self.formatName = formatName # short string naming file type
2309        if longFormatName: # longer string naming file type
2310            self.longFormatName = longFormatName
2311        else:
2312            self.longFormatName = formatName
2313        # define extensions that are allowed for the file type
2314        # for windows, remove any extensions that are duplicate, as case is ignored
2315        if sys.platform == 'windows' and extensionlist:
2316            extensionlist = list(set([s.lower() for s in extensionlist]))
2317        self.extensionlist = extensionlist
2318        # If strictExtension is True, the file will not be read, unless
2319        # the extension matches one in the extensionlist
2320        self.strictExtension = strictExtension
2321        self.errors = ''
2322        self.warnings = ''
2323        self.SciPy = False          #image reader needed scipy
2324        # used for readers that will use multiple passes to read
2325        # more than one data block
2326        self.repeat = False
2327        self.selections = []
2328        self.repeatcount = 0
2329        self.readfilename = '?'
2330        self.scriptable = False
2331        #print 'created',self.__class__
2332
2333    def ReInitialize(self):
2334        'Reinitialize the Reader to initial settings'
2335        self.errors = ''
2336        self.warnings = ''
2337        self.SciPy = False          #image reader needed scipy
2338        self.repeat = False
2339        self.repeatcount = 0
2340        self.readfilename = '?'
2341
2342
2343#    def Reader(self, filename, filepointer, ParentFrame=None, **unused):
2344#        '''This method must be supplied in the child class to read the file.
2345#        if the read fails either return False or raise an Exception
2346#        preferably of type ImportException.
2347#        '''
2348#        #start reading
2349#        raise ImportException("Error occurred while...")
2350#        self.errors += "Hint for user on why the error occur
2351#        return False # if an error occurs
2352#        return True # if read OK
2353
2354    def ExtensionValidator(self, filename):
2355        '''This methods checks if the file has the correct extension
2356       
2357        :returns:
2358       
2359          * False if this filename will not be supported by this reader (only
2360            when strictExtension is True)
2361          * True if the extension matches the list supplied by the reader
2362          * None if the reader allows un-registered extensions
2363         
2364        '''
2365        if filename:
2366            ext = ospath.splitext(filename)[1]
2367            if not ext and self.strictExtension: return False
2368            for ext in self.extensionlist:               
2369                if sys.platform == 'windows':
2370                    if filename.lower().endswith(ext): return True
2371                else:
2372                    if filename.endswith(ext): return True
2373        if self.strictExtension:
2374            return False
2375        else:
2376            return None
2377
2378    def ContentsValidator(self, filename):
2379        '''This routine will attempt to determine if the file can be read
2380        with the current format.
2381        This will typically be overridden with a method that
2382        takes a quick scan of [some of]
2383        the file contents to do a "sanity" check if the file
2384        appears to match the selected format.
2385        the file must be opened here with the correct format (binary/text)
2386        '''
2387        #filepointer.seek(0) # rewind the file pointer
2388        return True
2389
2390    def CIFValidator(self, filepointer):
2391        '''A :meth:`ContentsValidator` for use to validate CIF files.
2392        '''
2393        filepointer.seek(0)
2394        for i,l in enumerate(filepointer):
2395            if i >= 1000: return True
2396            '''Encountered only blank lines or comments in first 1000
2397            lines. This is unlikely, but assume it is CIF anyway, since we are
2398            even less likely to find a file with nothing but hashes and
2399            blank lines'''
2400            line = l.strip()
2401            if len(line) == 0: # ignore blank lines
2402                continue
2403            elif line.startswith('#'): # ignore comments
2404                continue
2405            elif line.startswith('data_'): # on the right track, accept this file
2406                return True
2407            else: # found something invalid
2408                self.errors = 'line '+str(i+1)+' contains unexpected data:\n'
2409                if all([ord(c) < 128 and ord(c) != 0 for c in str(l)]): # show only if ASCII
2410                    self.errors += '  '+str(l)
2411                else:
2412                    self.errors += '  (binary)'
2413                self.errors += '\n  Note: a CIF should only have blank lines or comments before'
2414                self.errors += '\n        a data_ statement begins a block.'
2415                return False
2416
2417######################################################################
2418class ImportPhase(ImportBaseclass):
2419    '''Defines a base class for the reading of files with coordinates
2420
2421    Objects constructed that subclass this (in import/G2phase_*.py etc.) will be used
2422    in :meth:`GSASIIdataGUI.GSASII.OnImportPhase` and in
2423    :func:`GSASIIscriptable.import_generic`.
2424    See :ref:`Writing a Import Routine<import_routines>`
2425    for an explanation on how to use this class.
2426
2427    '''
2428    def __init__(self,formatName,longFormatName=None,extensionlist=[],
2429        strictExtension=False,):
2430        # call parent __init__
2431        ImportBaseclass.__init__(self,formatName,longFormatName,
2432            extensionlist,strictExtension)
2433        self.Phase = None # a phase must be created with G2IO.SetNewPhase in the Reader
2434        self.Constraints = None
2435
2436######################################################################
2437class ImportStructFactor(ImportBaseclass):
2438    '''Defines a base class for the reading of files with tables
2439    of structure factors.
2440
2441    Structure factors are read with a call to :meth:`GSASIIdataGUI.GSASII.OnImportSfact`
2442    which in turn calls :meth:`GSASIIdataGUI.GSASII.OnImportGeneric`, which calls
2443    methods :meth:`ExtensionValidator`, :meth:`ContentsValidator` and
2444    :meth:`Reader`.
2445
2446    See :ref:`Writing a Import Routine<import_routines>`
2447    for an explanation on how to use import classes in general. The specifics
2448    for reading a structure factor histogram require that
2449    the ``Reader()`` routine in the import
2450    class need to do only a few things: It
2451    should load :attr:`RefDict` item ``'RefList'`` with the reflection list,
2452    and set :attr:`Parameters` with the instrument parameters
2453    (initialized with :meth:`InitParameters` and set with :meth:`UpdateParameters`).
2454    '''
2455    def __init__(self,formatName,longFormatName=None,extensionlist=[],
2456        strictExtension=False,):
2457        ImportBaseclass.__init__(self,formatName,longFormatName,
2458            extensionlist,strictExtension)
2459
2460        # define contents of Structure Factor entry
2461        self.Parameters = []
2462        'self.Parameters is a list with two dicts for data parameter settings'
2463        self.InitParameters()
2464        self.RefDict = {'RefList':[],'FF':{},'Super':0}
2465        self.Banks = []             #for multi bank data (usually TOF)
2466        '''self.RefDict is a dict containing the reflection information, as read from the file.
2467        Item 'RefList' contains the reflection information. See the
2468        :ref:`Single Crystal Reflection Data Structure<XtalRefl_table>`
2469        for the contents of each row. Dict element 'FF'
2470        contains the form factor values for each element type; if this entry
2471        is left as initialized (an empty list) it will be initialized as needed later.
2472        '''
2473    def ReInitialize(self):
2474        'Reinitialize the Reader to initial settings'
2475        ImportBaseclass.ReInitialize(self)
2476        self.InitParameters()
2477        self.Banks = []             #for multi bank data (usually TOF)
2478        self.RefDict = {'RefList':[],'FF':{},'Super':0}
2479
2480    def InitParameters(self):
2481        'initialize the instrument parameters structure'
2482        Lambda = 0.70926
2483        HistType = 'SXC'
2484        self.Parameters = [{'Type':[HistType,HistType], # create the structure
2485                            'Lam':[Lambda,Lambda]
2486                            }, {}]
2487        'Parameters is a list with two dicts for data parameter settings'
2488
2489    def UpdateParameters(self,Type=None,Wave=None):
2490        'Revise the instrument parameters'
2491        if Type is not None:
2492            self.Parameters[0]['Type'] = [Type,Type]
2493        if Wave is not None:
2494            self.Parameters[0]['Lam'] = [Wave,Wave]
2495
2496######################################################################
2497class ImportPowderData(ImportBaseclass):
2498    '''Defines a base class for the reading of files with powder data.
2499
2500    Objects constructed that subclass this (in import/G2pwd_*.py etc.) will be used
2501    in :meth:`GSASIIdataGUI.GSASII.OnImportPowder` and in
2502    :func:`GSASIIscriptable.import_generic`.
2503    See :ref:`Writing a Import Routine<import_routines>`
2504    for an explanation on how to use this class.
2505    '''
2506    def __init__(self,formatName,longFormatName=None,
2507        extensionlist=[],strictExtension=False,):
2508        ImportBaseclass.__init__(self,formatName,longFormatName,
2509            extensionlist,strictExtension)
2510        self.clockWd = None  # used in TOF
2511        self.ReInitialize()
2512
2513    def ReInitialize(self):
2514        'Reinitialize the Reader to initial settings'
2515        ImportBaseclass.ReInitialize(self)
2516        self.powderentry = ['',None,None] #  (filename,Pos,Bank)
2517        self.powderdata = [] # Powder dataset
2518        '''A powder data set is a list with items [x,y,w,yc,yb,yd]:
2519                np.array(x), # x-axis values
2520                np.array(y), # powder pattern intensities
2521                np.array(w), # 1/sig(intensity)^2 values (weights)
2522                np.array(yc), # calc. intensities (zero)
2523                np.array(yb), # calc. background (zero)
2524                np.array(yd), # obs-calc profiles
2525        '''
2526        self.comments = []
2527        self.idstring = ''
2528        self.Sample = SetDefaultSample() # default sample parameters
2529        self.Controls = {}  # items to be placed in top-level Controls
2530        self.GSAS = None     # used in TOF
2531        self.repeat_instparm = True # Should a parm file be
2532        #                             used for multiple histograms?
2533        self.instparm = None # name hint from file of instparm to use
2534        self.instfile = '' # full path name to instrument parameter file
2535        self.instbank = '' # inst parm bank number
2536        self.instmsg = ''  # a label that gets printed to show
2537                           # where instrument parameters are from
2538        self.numbanks = 1
2539        self.instdict = {} # place items here that will be transferred to the instrument parameters
2540        self.pwdparms = {} # place parameters that are transferred directly to the tree
2541                           # here (typically from an existing GPX file)
2542######################################################################
2543class ImportSmallAngleData(ImportBaseclass):
2544    '''Defines a base class for the reading of files with small angle data.
2545    See :ref:`Writing a Import Routine<import_routines>`
2546    for an explanation on how to use this class.
2547    '''
2548    def __init__(self,formatName,longFormatName=None,extensionlist=[],
2549        strictExtension=False,):
2550
2551        ImportBaseclass.__init__(self,formatName,longFormatName,extensionlist,
2552            strictExtension)
2553        self.ReInitialize()
2554
2555    def ReInitialize(self):
2556        'Reinitialize the Reader to initial settings'
2557        ImportBaseclass.ReInitialize(self)
2558        self.smallangleentry = ['',None,None] #  (filename,Pos,Bank)
2559        self.smallangledata = [] # SASD dataset
2560        '''A small angle data set is a list with items [x,y,w,yc,yd]:
2561                np.array(x), # x-axis values
2562                np.array(y), # powder pattern intensities
2563                np.array(w), # 1/sig(intensity)^2 values (weights)
2564                np.array(yc), # calc. intensities (zero)
2565                np.array(yd), # obs-calc profiles
2566                np.array(yb), # preset bkg
2567        '''
2568        self.comments = []
2569        self.idstring = ''
2570        self.Sample = SetDefaultSample()
2571        self.GSAS = None     # used in TOF
2572        self.clockWd = None  # used in TOF
2573        self.numbanks = 1
2574        self.instdict = {} # place items here that will be transferred to the instrument parameters
2575
2576######################################################################
2577class ImportReflectometryData(ImportBaseclass):
2578    '''Defines a base class for the reading of files with reflectometry data.
2579    See :ref:`Writing a Import Routine<import_routines>`
2580    for an explanation on how to use this class.
2581    '''
2582    def __init__(self,formatName,longFormatName=None,extensionlist=[],
2583        strictExtension=False,):
2584
2585        ImportBaseclass.__init__(self,formatName,longFormatName,extensionlist,
2586            strictExtension)
2587        self.ReInitialize()
2588
2589    def ReInitialize(self):
2590        'Reinitialize the Reader to initial settings'
2591        ImportBaseclass.ReInitialize(self)
2592        self.reflectometryentry = ['',None,None] #  (filename,Pos,Bank)
2593        self.reflectometrydata = [] # SASD dataset
2594        '''A small angle data set is a list with items [x,y,w,yc,yd]:
2595                np.array(x), # x-axis values
2596                np.array(y), # powder pattern intensities
2597                np.array(w), # 1/sig(intensity)^2 values (weights)
2598                np.array(yc), # calc. intensities (zero)
2599                np.array(yd), # obs-calc profiles
2600                np.array(yb), # preset bkg
2601        '''
2602        self.comments = []
2603        self.idstring = ''
2604        self.Sample = SetDefaultSample()
2605        self.GSAS = None     # used in TOF
2606        self.clockWd = None  # used in TOF
2607        self.numbanks = 1
2608        self.instdict = {} # place items here that will be transferred to the instrument parameters
2609
2610######################################################################
2611class ImportPDFData(ImportBaseclass):
2612    '''Defines a base class for the reading of files with PDF G(R) data.
2613    See :ref:`Writing a Import Routine<import_routines>`
2614    for an explanation on how to use this class.
2615    '''
2616    def __init__(self,formatName,longFormatName=None,extensionlist=[],
2617        strictExtension=False,):
2618
2619        ImportBaseclass.__init__(self,formatName,longFormatName,extensionlist,
2620            strictExtension)
2621        self.ReInitialize()
2622
2623    def ReInitialize(self):
2624        'Reinitialize the Reader to initial settings'
2625        ImportBaseclass.ReInitialize(self)
2626        self.pdfentry = ['',None,None] #  (filename,Pos,Bank)
2627        self.pdfdata = [] # PDF G(R) dataset
2628        '''A pdf g(r) data set is a list with items [x,y]:
2629                np.array(x), # r-axis values
2630                np.array(y), # pdf g(r)
2631        '''
2632        self.comments = []
2633        self.idstring = ''
2634        self.numbanks = 1
2635
2636######################################################################
2637class ImportImage(ImportBaseclass):
2638    '''Defines a base class for the reading of images
2639
2640    Images are read in only these places:
2641
2642      * Initial reading is typically done from a menu item
2643        with a call to :meth:`GSASIIdataGUI.GSASII.OnImportImage`
2644        which in turn calls :meth:`GSASIIdataGUI.GSASII.OnImportGeneric`. That calls
2645        methods :meth:`ExtensionValidator`, :meth:`ContentsValidator` and
2646        :meth:`Reader`. This returns a list of reader objects for each read image.
2647        Also used in :func:`GSASIIscriptable.import_generic`.
2648
2649      * Images are read alternatively in :func:`GSASIIIO.ReadImages`, which puts image info
2650        directly into the data tree.
2651
2652      * Images are reloaded with :func:`GSASIIIO.GetImageData`.
2653
2654    When reading an image, the ``Reader()`` routine in the ImportImage class
2655    should set:
2656
2657      * :attr:`Comments`: a list of strings (str),
2658      * :attr:`Npix`: the number of pixels in the image (int),
2659      * :attr:`Image`: the actual image as a numpy array (np.array)
2660      * :attr:`Data`: a dict defining image parameters (dict). Within this dict the following
2661        data items are needed:
2662
2663         * 'pixelSize': size of each pixel in microns (such as ``[200.,200.]``.
2664         * 'wavelength': wavelength in :math:`\\AA`.
2665         * 'distance': distance of detector from sample in cm.
2666         * 'center': uncalibrated center of beam on detector (such as ``[204.8,204.8]``.
2667         * 'size': size of image (such as ``[2048,2048]``).
2668         * 'ImageTag': image number or other keyword used to retrieve image from
2669           a multi-image data file (defaults to ``1`` if not specified).
2670         * 'sumfile': holds sum image file name if a sum was produced from a multi image file
2671
2672    optional data items:
2673
2674      * :attr:`repeat`: set to True if there are additional images to
2675        read in the file, False otherwise
2676      * :attr:`repeatcount`: set to the number of the image.
2677
2678    Note that the above is initialized with :meth:`InitParameters`.
2679    (Also see :ref:`Writing a Import Routine<import_routines>`
2680    for an explanation on how to use import classes in general.)
2681    '''
2682    def __init__(self,formatName,longFormatName=None,extensionlist=[],
2683        strictExtension=False,):
2684        ImportBaseclass.__init__(self,formatName,longFormatName,
2685            extensionlist,strictExtension)
2686        self.InitParameters()
2687
2688    def ReInitialize(self):
2689        'Reinitialize the Reader to initial settings -- not used at present'
2690        ImportBaseclass.ReInitialize(self)
2691        self.InitParameters()
2692
2693    def InitParameters(self):
2694        'initialize the instrument parameters structure'
2695        self.Comments = ['No comments']
2696        self.Data = {}
2697        self.Npix = 0
2698        self.Image = None
2699        self.repeat = False
2700        self.repeatcount = 1
2701        self.sumfile = ''
2702
2703    def LoadImage(self,ParentFrame,imagefile,imagetag=None):
2704        '''Optionally, call this after reading in an image to load it into the tree.
2705        This saves time by preventing a reread of the same information.
2706        '''
2707        if ParentFrame:
2708            ParentFrame.ImageZ = self.Image   # store the image for plotting
2709            ParentFrame.oldImagefile = imagefile # save the name of the last image file read
2710            ParentFrame.oldImageTag = imagetag   # save the tag of the last image file read
2711
2712#################################################################################################
2713# shortcut routines
2714exp = np.exp
2715sind = sin = s = lambda x: np.sin(x*np.pi/180.)
2716cosd = cos = c = lambda x: np.cos(x*np.pi/180.)
2717tand = tan = t = lambda x: np.tan(x*np.pi/180.)
2718sqrt = sq = lambda x: np.sqrt(x)
2719pi = lambda: np.pi
2720class ExpressionObj(object):
2721    '''Defines an object with a user-defined expression, to be used for
2722    secondary fits or restraints. Object is created null, but is changed
2723    using :meth:`LoadExpression`. This contains only the minimum
2724    information that needs to be stored to save and load the expression
2725    and how it is mapped to GSAS-II variables.
2726    '''
2727    def __init__(self):
2728        self.expression = ''
2729        'The expression as a text string'
2730        self.assgnVars = {}
2731        '''A dict where keys are label names in the expression mapping to a GSAS-II
2732        variable. The value a G2 variable name.
2733        Note that the G2 variable name may contain a wild-card and correspond to
2734        multiple values.
2735        '''
2736        self.freeVars = {}
2737        '''A dict where keys are label names in the expression mapping to a free
2738        parameter. The value is a list with:
2739
2740         * a name assigned to the parameter
2741         * a value for to the parameter and
2742         * a flag to determine if the variable is refined.
2743        '''
2744        self.depVar = None
2745
2746        self.lastError = ('','')
2747        '''Shows last encountered error in processing expression
2748        (list of 1-3 str values)'''
2749
2750        self.distance_dict  = None  # to be used for defining atom phase/symmetry info
2751        self.distance_atoms = None  # to be used for defining atom distances
2752
2753    def LoadExpression(self,expr,exprVarLst,varSelect,varName,varValue,varRefflag):
2754        '''Load the expression and associated settings into the object. Raises
2755        an exception if the expression is not parsed, if not all functions
2756        are defined or if not all needed parameter labels in the expression
2757        are defined.
2758
2759        This will not test if the variable referenced in these definitions
2760        are actually in the parameter dictionary. This is checked when the
2761        computation for the expression is done in :meth:`SetupCalc`.
2762
2763        :param str expr: the expression
2764        :param list exprVarLst: parameter labels found in the expression
2765        :param dict varSelect: this will be 0 for Free parameters
2766          and non-zero for expression labels linked to G2 variables.
2767        :param dict varName: Defines a name (str) associated with each free parameter
2768        :param dict varValue: Defines a value (float) associated with each free parameter
2769        :param dict varRefflag: Defines a refinement flag (bool)
2770          associated with each free parameter
2771        '''
2772        self.expression = expr
2773        self.compiledExpr = None
2774        self.freeVars = {}
2775        self.assgnVars = {}
2776        for v in exprVarLst:
2777            if varSelect[v] == 0:
2778                self.freeVars[v] = [
2779                    varName.get(v),
2780                    varValue.get(v),
2781                    varRefflag.get(v),
2782                    ]
2783            else:
2784                self.assgnVars[v] = varName[v]
2785        self.CheckVars()
2786
2787    def EditExpression(self,exprVarLst,varSelect,varName,varValue,varRefflag):
2788        '''Load the expression and associated settings from the object into
2789        arrays used for editing.
2790
2791        :param list exprVarLst: parameter labels found in the expression
2792        :param dict varSelect: this will be 0 for Free parameters
2793          and non-zero for expression labels linked to G2 variables.
2794        :param dict varName: Defines a name (str) associated with each free parameter
2795        :param dict varValue: Defines a value (float) associated with each free parameter
2796        :param dict varRefflag: Defines a refinement flag (bool)
2797          associated with each free parameter
2798
2799        :returns: the expression as a str
2800        '''
2801        for v in self.freeVars:
2802            varSelect[v] = 0
2803            varName[v] = self.freeVars[v][0]
2804            varValue[v] = self.freeVars[v][1]
2805            varRefflag[v] = self.freeVars[v][2]
2806        for v in self.assgnVars:
2807            varSelect[v] = 1
2808            varName[v] = self.assgnVars[v]
2809        return self.expression
2810
2811    def GetVaried(self):
2812        'Returns the names of the free parameters that will be refined'
2813        return ["::"+self.freeVars[v][0] for v in self.freeVars if self.freeVars[v][2]]
2814
2815    def GetVariedVarVal(self):
2816        'Returns the names and values of the free parameters that will be refined'
2817        return [("::"+self.freeVars[v][0],self.freeVars[v][1]) for v in self.freeVars if self.freeVars[v][2]]
2818
2819    def UpdateVariedVars(self,varyList,values):
2820        'Updates values for the free parameters (after a refinement); only updates refined vars'
2821        for v in self.freeVars:
2822            if not self.freeVars[v][2]: continue
2823            if "::"+self.freeVars[v][0] not in varyList: continue
2824            indx = list(varyList).index("::"+self.freeVars[v][0])
2825            self.freeVars[v][1] = values[indx]
2826
2827    def GetIndependentVars(self):
2828        'Returns the names of the required independent parameters used in expression'
2829        return [self.assgnVars[v] for v in self.assgnVars]
2830
2831    def CheckVars(self):
2832        '''Check that the expression can be parsed, all functions are
2833        defined and that input loaded into the object is internally
2834        consistent. If not an Exception is raised.
2835
2836        :returns: a dict with references to packages needed to
2837          find functions referenced in the expression.
2838        '''
2839        ret = self.ParseExpression(self.expression)
2840        if not ret:
2841            raise Exception("Expression parse error")
2842        exprLblList,fxnpkgdict = ret
2843        # check each var used in expression is defined
2844        defined = list(self.assgnVars.keys()) + list(self.freeVars.keys())
2845        notfound = []
2846        for var in exprLblList:
2847            if var not in defined:
2848                notfound.append(var)
2849        if notfound:
2850            msg = 'Not all variables defined'
2851            msg1 = 'The following variables were not defined: '
2852            msg2 = ''
2853            for var in notfound:
2854                if msg: msg += ', '
2855                msg += var
2856            self.lastError = (msg1,'  '+msg2)
2857            raise Exception(msg)
2858        return fxnpkgdict
2859
2860    def ParseExpression(self,expr):
2861        '''Parse an expression and return a dict of called functions and
2862        the variables used in the expression. Returns None in case an error
2863        is encountered. If packages are referenced in functions, they are loaded
2864        and the functions are looked up into the modules global
2865        workspace.
2866
2867        Note that no changes are made to the object other than
2868        saving an error message, so that this can be used for testing prior
2869        to the save.
2870
2871        :returns: a list of used variables
2872        '''
2873        self.lastError = ('','')
2874        import ast
2875        def FindFunction(f):
2876            '''Find the object corresponding to function f
2877            :param str f: a function name such as 'numpy.exp'
2878            :returns: (pkgdict,pkgobj) where pkgdict contains a dict
2879              that defines the package location(s) and where pkgobj
2880              defines the object associated with the function.
2881              If the function is not found, pkgobj is None.
2882            '''
2883            df = f.split('.')
2884            pkgdict = {}
2885            # no listed module name, try in current namespace
2886            if len(df) == 1:
2887                try:
2888                    fxnobj = eval(f)
2889                    return pkgdict,fxnobj
2890                except (AttributeError, NameError):
2891                    return None,None
2892
2893            # includes a package, see if package is already imported
2894            pkgnam = '.'.join(df[:-1])
2895            try:
2896                fxnobj = eval(f)
2897                pkgdict[pkgnam] = eval(pkgnam)
2898                return pkgdict,fxnobj
2899            except (AttributeError, NameError):
2900                pass
2901            # package not yet imported, so let's try
2902            if '.' not in sys.path: sys.path.append('.')
2903            pkgnam = '.'.join(df[:-1])
2904            #for pkg in f.split('.')[:-1]: # if needed, descend down the tree
2905            #    if pkgname:
2906            #        pkgname += '.' + pkg
2907            #    else:
2908            #        pkgname = pkg
2909            try:
2910                exec('import '+pkgnam)
2911                pkgdict[pkgnam] = eval(pkgnam)
2912                fxnobj = eval(f)
2913            except Exception as msg:
2914                print('load of '+pkgnam+' failed with error='+str(msg))
2915                return {},None
2916            # can we access the function? I am not exactly sure what
2917            #    I intended this to test originally (BHT)
2918            try:
2919                fxnobj = eval(f,globals(),pkgdict)
2920                return pkgdict,fxnobj
2921            except Exception as msg:
2922                print('call to',f,' failed with error=',str(msg))
2923                return None,None # not found
2924        def ASTtransverse(node,fxn=False):
2925            '''Transverse a AST-parsed expresson, compiling a list of variables
2926            referenced in the expression. This routine is used recursively.
2927
2928            :returns: varlist,fxnlist where
2929              varlist is a list of referenced variable names and
2930              fxnlist is a list of used functions
2931            '''
2932            varlist = []
2933            fxnlist = []
2934            if isinstance(node, list):
2935                for b in node:
2936                    v,f = ASTtransverse(b,fxn)
2937                    varlist += v
2938                    fxnlist += f
2939            elif isinstance(node, ast.AST):
2940                for a, b in ast.iter_fields(node):
2941                    if isinstance(b, ast.AST):
2942                        if a == 'func':
2943                            fxnlist += ['.'.join(ASTtransverse(b,True)[0])]
2944                            continue
2945                        v,f = ASTtransverse(b,fxn)
2946                        varlist += v
2947                        fxnlist += f
2948                    elif isinstance(b, list):
2949                        v,f = ASTtransverse(b,fxn)
2950                        varlist += v
2951                        fxnlist += f
2952                    elif node.__class__.__name__ == "Name":
2953                        varlist += [b]
2954                    elif fxn and node.__class__.__name__ == "Attribute":
2955                        varlist += [b]
2956            return varlist,fxnlist
2957        try:
2958            exprast = ast.parse(expr)
2959        except SyntaxError:
2960            s = ''
2961            import traceback
2962            for i in traceback.format_exc().splitlines()[-3:-1]:
2963                if s: s += "\n"
2964                s += str(i)
2965            self.lastError = ("Error parsing expression:",s)
2966            return
2967        # find the variables & functions
2968        v,f = ASTtransverse(exprast)
2969        varlist = sorted(list(set(v)))
2970        fxnlist = list(set(f))
2971        pkgdict = {}
2972        # check the functions are defined
2973        for fxn in fxnlist:
2974            fxndict,fxnobj = FindFunction(fxn)
2975            if not fxnobj:
2976                self.lastError = ("Error: Invalid function",fxn,
2977                                  "is not defined")
2978                return
2979            if not hasattr(fxnobj,'__call__'):
2980                self.lastError = ("Error: Not a function.",fxn,
2981                                  "cannot be called as a function")
2982                return
2983            pkgdict.update(fxndict)
2984        return varlist,pkgdict
2985
2986    def GetDepVar(self):
2987        'return the dependent variable, or None'
2988        return self.depVar
2989
2990    def SetDepVar(self,var):
2991        'Set the dependent variable, if used'
2992        self.depVar = var
2993#==========================================================================
2994class ExpressionCalcObj(object):
2995    '''An object used to evaluate an expression from a :class:`ExpressionObj`
2996    object.
2997
2998    :param ExpressionObj exprObj: a :class:`~ExpressionObj` expression object with
2999      an expression string and mappings for the parameter labels in that object.
3000    '''
3001    def __init__(self,exprObj):
3002        self.eObj = exprObj
3003        'The expression and mappings; a :class:`ExpressionObj` object'
3004        self.compiledExpr = None
3005        'The expression as compiled byte-code'
3006        self.exprDict = {}
3007        '''dict that defines values for labels used in expression and packages
3008        referenced by functions
3009        '''
3010        self.lblLookup = {}
3011        '''Lookup table that specifies the expression label name that is
3012        tied to a particular GSAS-II parameters in the parmDict.
3013        '''
3014        self.fxnpkgdict = {}
3015        '''a dict with references to packages needed to
3016        find functions referenced in the expression.
3017        '''
3018        self.varLookup = {}
3019        '''Lookup table that specifies the GSAS-II variable(s)
3020        indexed by the expression label name. (Used for only for diagnostics
3021        not evaluation of expression.)
3022        '''
3023        self.su = None
3024        '''Standard error evaluation where supplied by the evaluator
3025        '''
3026        # Patch: for old-style expressions with a (now removed step size)
3027        if '2' in platform.python_version_tuple()[0]: 
3028            basestr = basestring
3029        else:
3030            basestr = str
3031        for v in self.eObj.assgnVars:
3032            if not isinstance(self.eObj.assgnVars[v], basestr):
3033                self.eObj.assgnVars[v] = self.eObj.assgnVars[v][0]
3034        self.parmDict = {}
3035        '''A copy of the parameter dictionary, for distance and angle computation
3036        '''
3037
3038    def SetupCalc(self,parmDict):
3039        '''Do all preparations to use the expression for computation.
3040        Adds the free parameter values to the parameter dict (parmDict).
3041        '''
3042        if self.eObj.expression.startswith('Dist') or self.eObj.expression.startswith('Angle'):
3043            return
3044        self.fxnpkgdict = self.eObj.CheckVars()
3045        # all is OK, compile the expression
3046        self.compiledExpr = compile(self.eObj.expression,'','eval')
3047
3048        # look at first value in parmDict to determine its type
3049        parmsInList = True
3050        if '2' in platform.python_version_tuple()[0]: 
3051            basestr = basestring
3052        else:
3053            basestr = str
3054        for key in parmDict:
3055            val = parmDict[key]
3056            if isinstance(val, basestr):
3057                parmsInList = False
3058                break
3059            try: # check if values are in lists
3060                val = parmDict[key][0]
3061            except (TypeError,IndexError):
3062                parmsInList = False
3063            break
3064
3065        # set up the dicts needed to speed computations
3066        self.exprDict = {}
3067        self.lblLookup = {}
3068        self.varLookup = {}
3069        for v in self.eObj.freeVars:
3070            varname = self.eObj.freeVars[v][0]
3071            varname = "::" + varname.lstrip(':').replace(' ','_').replace(':',';')
3072            self.lblLookup[varname] = v
3073            self.varLookup[v] = varname
3074            if parmsInList:
3075                parmDict[varname] = [self.eObj.freeVars[v][1],self.eObj.freeVars[v][2]]
3076            else:
3077                parmDict[varname] = self.eObj.freeVars[v][1]
3078            self.exprDict[v] = self.eObj.freeVars[v][1]
3079        for v in self.eObj.assgnVars:
3080            varname = self.eObj.assgnVars[v]
3081            if varname in parmDict:
3082                self.lblLookup[varname] = v
3083                self.varLookup[v] = varname
3084                if parmsInList:
3085                    self.exprDict[v] = parmDict[varname][0]
3086                else:
3087                    self.exprDict[v] = parmDict[varname]
3088            elif '*' in varname:
3089                varlist = LookupWildCard(varname,list(parmDict.keys()))
3090                if len(varlist) == 0:
3091                    raise Exception("No variables match "+str(v))
3092                for var in varlist:
3093                    self.lblLookup[var] = v
3094                if parmsInList:
3095                    self.exprDict[v] = np.array([parmDict[var][0] for var in varlist])
3096                else:
3097                    self.exprDict[v] = np.array([parmDict[var] for var in varlist])
3098                self.varLookup[v] = [var for var in varlist]
3099            else:
3100                self.exprDict[v] = None
3101#                raise Exception,"No value for variable "+str(v)
3102        self.exprDict.update(self.fxnpkgdict)
3103
3104    def UpdateVars(self,varList,valList):
3105        '''Update the dict for the expression with a set of values
3106        :param list varList: a list of variable names
3107        :param list valList: a list of corresponding values
3108        '''
3109        for var,val in zip(varList,valList):
3110            self.exprDict[self.lblLookup.get(var,'undefined: '+var)] = val
3111
3112    def UpdateDict(self,parmDict):
3113        '''Update the dict for the expression with values in a dict
3114        :param dict parmDict: a dict of values, items not in use are ignored
3115        '''
3116        if self.eObj.expression.startswith('Dist') or self.eObj.expression.startswith('Angle'):
3117            self.parmDict = parmDict
3118            return
3119        for var in parmDict:
3120            if var in self.lblLookup:
3121                self.exprDict[self.lblLookup[var]] = parmDict[var]
3122
3123    def EvalExpression(self):
3124        '''Evaluate an expression. Note that the expression
3125        and mapping are taken from the :class:`ExpressionObj` expression object
3126        and the parameter values were specified in :meth:`SetupCalc`.
3127        :returns: a single value for the expression. If parameter
3128        values are arrays (for example, from wild-carded variable names),
3129        the sum of the resulting expression is returned.
3130
3131        For example, if the expression is ``'A*B'``,
3132        where A is 2.0 and B maps to ``'1::Afrac:*'``, which evaluates to::
3133
3134        [0.5, 1, 0.5]
3135
3136        then the result will be ``4.0``.
3137        '''
3138        self.su = None
3139        if self.eObj.expression.startswith('Dist'):
3140#            GSASIIpath.IPyBreak()
3141            dist = G2mth.CalcDist(self.eObj.distance_dict, self.eObj.distance_atoms, self.parmDict)
3142            return dist
3143        elif self.eObj.expression.startswith('Angle'):
3144            angle = G2mth.CalcAngle(self.eObj.angle_dict, self.eObj.angle_atoms, self.parmDict)
3145            return angle
3146        if self.compiledExpr is None:
3147            raise Exception("EvalExpression called before SetupCalc")
3148        try:
3149            val = eval(self.compiledExpr,globals(),self.exprDict)
3150        except TypeError:
3151            val = None
3152        if not np.isscalar(val):
3153            val = np.sum(val)
3154        return val
3155
3156class G2Exception(Exception):
3157    'A generic GSAS-II exception class'
3158    def __init__(self,msg):
3159        self.msg = msg
3160    def __str__(self):
3161        return repr(self.msg)
3162
3163class G2RefineCancel(Exception):
3164    'Raised when Cancel is pressed in a refinement dialog'
3165    def __init__(self,msg):
3166        self.msg = msg
3167    def __str__(self):
3168        return repr(self.msg)
3169   
3170def HowDidIgetHere(wherecalledonly=False):
3171    '''Show a traceback with calls that brought us to the current location.
3172    Used for debugging.
3173    '''
3174    import traceback
3175    if wherecalledonly:
3176        i = traceback.format_list(traceback.extract_stack()[:-1])[-2]
3177        print(i.strip().rstrip())
3178    else:
3179        print (70*'*')
3180        for i in traceback.format_list(traceback.extract_stack()[:-1]): print(i.strip().rstrip())
3181        print (70*'*')
3182
3183# Note that this is GUI code and should be moved at somepoint
3184def CreatePDFitems(G2frame,PWDRtree,ElList,Qlimits,numAtm=1,FltBkg=0,PDFnames=[]):
3185    '''Create and initialize a new set of PDF tree entries
3186
3187    :param Frame G2frame: main GSAS-II tree frame object
3188    :param str PWDRtree: name of PWDR to be used to create PDF item
3189    :param dict ElList: data structure with composition
3190    :param list Qlimits: Q limits to be used for computing the PDF
3191    :param float numAtm: no. atom in chemical formula
3192    :param float FltBkg: flat background value
3193    :param list PDFnames: previously used PDF names
3194
3195    :returns: the Id of the newly created PDF entry
3196    '''
3197    PDFname = 'PDF '+PWDRtree[4:] # this places two spaces after PDF, which is needed is some places
3198    if PDFname in PDFnames:
3199        print('Skipping, entry already exists: '+PDFname)
3200        return None
3201    #PDFname = MakeUniqueLabel(PDFname,PDFnames)
3202    Id = G2frame.GPXtree.AppendItem(parent=G2frame.root,text=PDFname)
3203    Data = {
3204        'Sample':{'Name':PWDRtree,'Mult':1.0},
3205        'Sample Bkg.':{'Name':'','Mult':-1.0,'Refine':False},
3206        'Container':{'Name':'','Mult':-1.0,'Refine':False},
3207        'Container Bkg.':{'Name':'','Mult':-1.0},'ElList':ElList,
3208        'Geometry':'Cylinder','Diam':1.0,'Pack':0.50,'Form Vol':10.0*numAtm,'Flat Bkg':FltBkg,
3209        'DetType':'Area detector','ObliqCoeff':0.2,'Ruland':0.025,'QScaleLim':Qlimits,
3210        'Lorch':False,'BackRatio':0.0,'Rmax':100.,'noRing':False,'IofQmin':1.0,'Rmin':1.0,
3211        'I(Q)':[],'S(Q)':[],'F(Q)':[],'G(R)':[]}
3212    G2frame.GPXtree.SetItemPyData(G2frame.GPXtree.AppendItem(Id,text='PDF Controls'),Data)
3213    G2frame.GPXtree.SetItemPyData(G2frame.GPXtree.AppendItem(Id,text='PDF Peaks'),
3214        {'Limits':[1.,5.],'Background':[2,[0.,-0.2*np.pi],False],'Peaks':[]})
3215    return Id
3216#%%
3217class ShowTiming(object):
3218    '''An object to use for timing repeated sections of code.
3219
3220    Create the object with::
3221       tim0 = ShowTiming()
3222
3223    Tag sections of code to be timed with::
3224       tim0.start('start')
3225       tim0.start('in section 1')
3226       tim0.start('in section 2')
3227       
3228    etc. (Note that each section should have a unique label.)
3229
3230    After the last section, end timing with::
3231       tim0.end()
3232
3233    Show timing results with::
3234       tim0.show()
3235       
3236    '''
3237    def __init__(self):
3238        self.timeSum =  []
3239        self.timeStart = []
3240        self.label = []
3241        self.prev = None
3242    def start(self,label):
3243        import time
3244        if label in self.label:
3245            i = self.label.index(label)
3246            self.timeStart[i] = time.time()
3247        else:
3248            i = len(self.label)
3249            self.timeSum.append(0.0)
3250            self.timeStart.append(time.time())
3251            self.label.append(label)
3252        if self.prev is not None:
3253            self.timeSum[self.prev] += self.timeStart[i] - self.timeStart[self.prev]
3254        self.prev = i
3255    def end(self):
3256        import time
3257        if self.prev is not None:
3258            self.timeSum[self.prev] += time.time() - self.timeStart[self.prev]
3259        self.prev = None
3260    def show(self):
3261        sumT = sum(self.timeSum)
3262        print('Timing results (total={:.2f} sec)'.format(sumT))
3263        for i,(lbl,val) in enumerate(zip(self.label,self.timeSum)):
3264            print('{} {:20} {:8.2f} ms {:5.2f}%'.format(i,lbl,1000.*val,100*val/sumT))
3265#%%
3266
3267def validateAtomDrawType(typ,generalData={}):
3268    '''Confirm that the selected Atom drawing type is valid for the current
3269    phase. If not, use 'vdW balls'. This is currently used only for setting a
3270    default when atoms are added to the atoms draw list.
3271    '''
3272    if typ in ('lines','vdW balls','sticks','balls & sticks','ellipsoids'):
3273        return typ
3274    # elif generalData.get('Type','') == 'macromolecular':
3275    #     if typ in ('backbone',):
3276    #         return typ
3277    return 'vdW balls'
3278
3279if __name__ == "__main__":
3280    # test variable descriptions
3281    for var in '0::Afrac:*',':1:Scale','1::dAx:0','::undefined':
3282        v = var.split(':')[2]
3283        print(var+':\t', getDescr(v),getVarStep(v))
3284    import sys; sys.exit()
3285    # test equation evaluation
3286    def showEQ(calcobj):
3287        print (50*'=')
3288        print (calcobj.eObj.expression+'='+calcobj.EvalExpression())
3289        for v in sorted(calcobj.varLookup):
3290            print ("  "+v+'='+calcobj.exprDict[v]+'='+calcobj.varLookup[v])
3291        # print '  Derivatives'
3292        # for v in calcobj.derivStep.keys():
3293        #     print '    d(Expr)/d('+v+') =',calcobj.EvalDeriv(v)
3294
3295    obj = ExpressionObj()
3296
3297    obj.expression = "A*np.exp(B)"
3298    obj.assgnVars =  {'B': '0::Afrac:1'}
3299    obj.freeVars =  {'A': [u'A', 0.5, True]}
3300    #obj.CheckVars()
3301    calcobj = ExpressionCalcObj(obj)
3302
3303    obj1 = ExpressionObj()
3304    obj1.expression = "A*np.exp(B)"
3305    obj1.assgnVars =  {'B': '0::Afrac:*'}
3306    obj1.freeVars =  {'A': [u'Free Prm A', 0.5, True]}
3307    #obj.CheckVars()
3308    calcobj1 = ExpressionCalcObj(obj1)
3309
3310    obj2 = ExpressionObj()
3311    obj2.distance_stuff = np.array([[0,1],[1,-1]])
3312    obj2.expression = "Dist(1,2)"
3313    GSASIIpath.InvokeDebugOpts()
3314    parmDict2 = {'0::Afrac:0':[0.0,True], '0::Afrac:1': [1.0,False]}
3315    calcobj2 = ExpressionCalcObj(obj2)
3316    calcobj2.SetupCalc(parmDict2)
3317    showEQ(calcobj2)
3318
3319    parmDict1 = {'0::Afrac:0':1.0, '0::Afrac:1': 1.0}
3320    print ('\nDict = '+parmDict1)
3321    calcobj.SetupCalc(parmDict1)
3322    showEQ(calcobj)
3323    calcobj1.SetupCalc(parmDict1)
3324    showEQ(calcobj1)
3325
3326    parmDict2 = {'0::Afrac:0':[0.0,True], '0::Afrac:1': [1.0,False]}
3327    print ('Dict = '+parmDict2)
3328    calcobj.SetupCalc(parmDict2)
3329    showEQ(calcobj)
3330    calcobj1.SetupCalc(parmDict2)
3331    showEQ(calcobj1)
3332    calcobj2.SetupCalc(parmDict2)
3333    showEQ(calcobj2)
Note: See TracBrowser for help on using the repository browser.