1 | # -*- coding: utf-8 -*- |
---|
2 | #GSASIImath - major mathematics routines |
---|
3 | ########### SVN repository information ################### |
---|
4 | # $Date: 2013-06-28 20:04:31 +0000 (Fri, 28 Jun 2013) $ |
---|
5 | # $Author: vondreele $ |
---|
6 | # $Revision: 974 $ |
---|
7 | # $URL: trunk/GSASIImath.py $ |
---|
8 | # $Id: GSASIImath.py 974 2013-06-28 20:04:31Z vondreele $ |
---|
9 | ########### SVN repository information ################### |
---|
10 | ''' |
---|
11 | *GSASIImath: computation module* |
---|
12 | ================================ |
---|
13 | |
---|
14 | Routines for least-squares minimization and other stuff |
---|
15 | |
---|
16 | ''' |
---|
17 | import sys |
---|
18 | import os |
---|
19 | import os.path as ospath |
---|
20 | import random as rn |
---|
21 | import numpy as np |
---|
22 | import numpy.linalg as nl |
---|
23 | import numpy.ma as ma |
---|
24 | import cPickle |
---|
25 | import time |
---|
26 | import math |
---|
27 | import copy |
---|
28 | import GSASIIpath |
---|
29 | GSASIIpath.SetVersionNumber("$Revision: 974 $") |
---|
30 | import GSASIIElem as G2el |
---|
31 | import GSASIIlattice as G2lat |
---|
32 | import GSASIIspc as G2spc |
---|
33 | import numpy.fft as fft |
---|
34 | import pypowder as pyd |
---|
35 | |
---|
36 | sind = lambda x: np.sin(x*np.pi/180.) |
---|
37 | cosd = lambda x: np.cos(x*np.pi/180.) |
---|
38 | tand = lambda x: np.tan(x*np.pi/180.) |
---|
39 | asind = lambda x: 180.*np.arcsin(x)/np.pi |
---|
40 | acosd = lambda x: 180.*np.arccos(x)/np.pi |
---|
41 | atand = lambda x: 180.*np.arctan(x)/np.pi |
---|
42 | atan2d = lambda y,x: 180.*np.arctan2(y,x)/np.pi |
---|
43 | |
---|
44 | def HessianLSQ(func,x0,Hess,args=(),ftol=1.49012e-8,xtol=1.49012e-8, maxcyc=0): |
---|
45 | |
---|
46 | """ |
---|
47 | Minimize the sum of squares of a function (:math:`f`) evaluated on a series of |
---|
48 | values (y): :math:`\sum_{y=0}^{N_{obs}} f(y,{args})` |
---|
49 | |
---|
50 | :: |
---|
51 | |
---|
52 | Nobs |
---|
53 | x = arg min(sum(func(y)**2,axis=0)) |
---|
54 | y=0 |
---|
55 | |
---|
56 | :param function func: callable method or function |
---|
57 | should take at least one (possibly length N vector) argument and |
---|
58 | returns M floating point numbers. |
---|
59 | :param np.ndarray x0: The starting estimate for the minimization of length N |
---|
60 | :param function Hess: callable method or function |
---|
61 | A required function or method to compute the weighted vector and Hessian for func. |
---|
62 | It must be a symmetric NxN array |
---|
63 | :param tuple args: Any extra arguments to func are placed in this tuple. |
---|
64 | :param float ftol: Relative error desired in the sum of squares. |
---|
65 | :param float xtol: Relative error desired in the approximate solution. |
---|
66 | :param int maxcyc: The maximum number of cycles of refinement to execute, if -1 refine |
---|
67 | until other limits are met (ftol, xtol) |
---|
68 | |
---|
69 | :returns: (x,cov_x,infodict) where |
---|
70 | |
---|
71 | * x : ndarray |
---|
72 | The solution (or the result of the last iteration for an unsuccessful |
---|
73 | call). |
---|
74 | * cov_x : ndarray |
---|
75 | Uses the fjac and ipvt optional outputs to construct an |
---|
76 | estimate of the jacobian around the solution. ``None`` if a |
---|
77 | singular matrix encountered (indicates very flat curvature in |
---|
78 | some direction). This matrix must be multiplied by the |
---|
79 | residual standard deviation to get the covariance of the |
---|
80 | parameter estimates -- see curve_fit. |
---|
81 | * infodict : dict |
---|
82 | a dictionary of optional outputs with the keys: |
---|
83 | |
---|
84 | * 'fvec' : the function evaluated at the output |
---|
85 | * 'num cyc': |
---|
86 | * 'nfev': |
---|
87 | * 'lamMax': |
---|
88 | * 'psing': |
---|
89 | |
---|
90 | """ |
---|
91 | |
---|
92 | x0 = np.array(x0, ndmin=1) #might be redundant? |
---|
93 | n = len(x0) |
---|
94 | if type(args) != type(()): |
---|
95 | args = (args,) |
---|
96 | |
---|
97 | icycle = 0 |
---|
98 | One = np.ones((n,n)) |
---|
99 | lam = 0.001 |
---|
100 | lamMax = lam |
---|
101 | nfev = 0 |
---|
102 | while icycle < maxcyc: |
---|
103 | lamMax = max(lamMax,lam) |
---|
104 | M = func(x0,*args) |
---|
105 | nfev += 1 |
---|
106 | chisq0 = np.sum(M**2) |
---|
107 | Yvec,Amat = Hess(x0,*args) |
---|
108 | Adiag = np.sqrt(np.diag(Amat)) |
---|
109 | psing = np.where(np.abs(Adiag) < 1.e-14,True,False) |
---|
110 | if np.any(psing): #hard singularity in matrix |
---|
111 | return [x0,None,{'num cyc':icycle,'fvec':M,'nfev':nfev,'lamMax':lamMax,'psing':psing}] |
---|
112 | Anorm = np.outer(Adiag,Adiag) |
---|
113 | Yvec /= Adiag |
---|
114 | Amat /= Anorm |
---|
115 | while True: |
---|
116 | Lam = np.eye(Amat.shape[0])*lam |
---|
117 | Amatlam = Amat*(One+Lam) |
---|
118 | try: |
---|
119 | Xvec = nl.solve(Amatlam,Yvec) |
---|
120 | except nl.LinAlgError: |
---|
121 | print 'ouch #1' |
---|
122 | psing = list(np.where(np.diag(nl.qr(Amatlam)[1]) < 1.e-14)[0]) |
---|
123 | return [x0,None,{'num cyc':icycle,'fvec':M,'nfev':nfev,'lamMax':lamMax,'psing':psing}] |
---|
124 | Xvec /= Adiag |
---|
125 | M2 = func(x0+Xvec,*args) |
---|
126 | nfev += 1 |
---|
127 | chisq1 = np.sum(M2**2) |
---|
128 | if chisq1 > chisq0: |
---|
129 | lam *= 10. |
---|
130 | else: |
---|
131 | x0 += Xvec |
---|
132 | lam /= 10. |
---|
133 | break |
---|
134 | if lam > 10.e5: |
---|
135 | print 'ouch #3 chisq1 ',chisq1,' stuck > chisq0 ',chisq0 |
---|
136 | break |
---|
137 | if (chisq0-chisq1)/chisq0 < ftol: |
---|
138 | break |
---|
139 | icycle += 1 |
---|
140 | M = func(x0,*args) |
---|
141 | nfev += 1 |
---|
142 | Yvec,Amat = Hess(x0,*args) |
---|
143 | try: |
---|
144 | Bmat = nl.inv(Amat) |
---|
145 | return [x0,Bmat,{'num cyc':icycle,'fvec':M,'nfev':nfev,'lamMax':lamMax,'psing':[]}] |
---|
146 | except nl.LinAlgError: |
---|
147 | print 'ouch #2 linear algebra error in LS' |
---|
148 | psing = [] |
---|
149 | if maxcyc: |
---|
150 | psing = list(np.where(np.diag(nl.qr(Amat)[1]) < 1.e-14)[0]) |
---|
151 | return [x0,None,{'num cyc':icycle,'fvec':M,'nfev':nfev,'lamMax':lamMax,'psing':psing}] |
---|
152 | |
---|
153 | def getVCov(varyNames,varyList,covMatrix): |
---|
154 | '''obtain variance-covariance terms for a set of variables. NB: the varyList |
---|
155 | and covMatrix were saved by the last least squares refinement so they must match. |
---|
156 | |
---|
157 | :param list varyNames: variable names to find v-cov matric for |
---|
158 | :param list varyList: full list of all variables in v-cov matrix |
---|
159 | :param nparray covMatrix: full variance-covariance matrix from the last |
---|
160 | least squares refinement |
---|
161 | |
---|
162 | :returns: nparray vcov: variance-covariance matrix for the variables given |
---|
163 | in varyNames |
---|
164 | |
---|
165 | ''' |
---|
166 | vcov = np.zeros((len(varyNames),len(varyNames))) |
---|
167 | for i1,name1 in enumerate(varyNames): |
---|
168 | for i2,name2 in enumerate(varyNames): |
---|
169 | try: |
---|
170 | vcov[i1][i2] = covMatrix[varyList.index(name1)][varyList.index(name2)] |
---|
171 | except ValueError: |
---|
172 | vcov[i1][i2] = 0.0 |
---|
173 | return vcov |
---|
174 | |
---|
175 | def FindAtomIndexByIDs(atomData,IDs,Draw=True): |
---|
176 | '''finds the set of atom array indices for a list of atom IDs. Will search |
---|
177 | either the Atom table or the drawAtom table. |
---|
178 | |
---|
179 | :param list atomData: Atom or drawAtom table containting coordinates, etc. |
---|
180 | :param list IDs: atom IDs to be found |
---|
181 | :param bool Draw: True if drawAtom table to be searched; False if Atom table |
---|
182 | is searched |
---|
183 | |
---|
184 | :returns: list indx: atom (or drawAtom) indices |
---|
185 | |
---|
186 | ''' |
---|
187 | indx = [] |
---|
188 | for i,atom in enumerate(atomData): |
---|
189 | if Draw and atom[-3] in IDs: |
---|
190 | indx.append(i) |
---|
191 | elif atom[-1] in IDs: |
---|
192 | indx.append(i) |
---|
193 | return indx |
---|
194 | |
---|
195 | def FillAtomLookUp(atomData): |
---|
196 | '''create a dictionary of atom indexes with atom IDs as keys |
---|
197 | |
---|
198 | :param list atomData: Atom table to be used |
---|
199 | |
---|
200 | :returns: dict atomLookUp: dictionary of atom indexes with atom IDs as keys |
---|
201 | |
---|
202 | ''' |
---|
203 | atomLookUp = {} |
---|
204 | for iatm,atom in enumerate(atomData): |
---|
205 | atomLookUp[atom[-1]] = iatm |
---|
206 | return atomLookUp |
---|
207 | |
---|
208 | def GetAtomsById(atomData,atomLookUp,IdList): |
---|
209 | '''gets a list of atoms from Atom table that match a set of atom IDs |
---|
210 | |
---|
211 | :param list atomData: Atom table to be used |
---|
212 | :param dict atomLookUp: dictionary of atom indexes with atom IDs as keys |
---|
213 | :param list IdList: atom IDs to be found |
---|
214 | |
---|
215 | :returns: list atoms: list of atoms found |
---|
216 | |
---|
217 | ''' |
---|
218 | atoms = [] |
---|
219 | for id in IdList: |
---|
220 | atoms.append(atomData[atomLookUp[id]]) |
---|
221 | return atoms |
---|
222 | |
---|
223 | def GetAtomItemsById(atomData,atomLookUp,IdList,itemLoc,numItems=1): |
---|
224 | '''gets atom parameters for atoms using atom IDs |
---|
225 | |
---|
226 | :param list atomData: Atom table to be used |
---|
227 | :param dict atomLookUp: dictionary of atom indexes with atom IDs as keys |
---|
228 | :param list IdList: atom IDs to be found |
---|
229 | :param int itemLoc: pointer to desired 1st item in an atom table entry |
---|
230 | :param int numItems: number of items to be retrieved |
---|
231 | |
---|
232 | :returns: type name: description |
---|
233 | |
---|
234 | ''' |
---|
235 | Items = [] |
---|
236 | if not isinstance(IdList,list): |
---|
237 | IdList = [IdList,] |
---|
238 | for id in IdList: |
---|
239 | if numItems == 1: |
---|
240 | Items.append(atomData[atomLookUp[id]][itemLoc]) |
---|
241 | else: |
---|
242 | Items.append(atomData[atomLookUp[id]][itemLoc:itemLoc+numItems]) |
---|
243 | return Items |
---|
244 | |
---|
245 | def GetAtomCoordsByID(pId,parmDict,AtLookup,indx): |
---|
246 | '''default doc string |
---|
247 | |
---|
248 | :param type name: description |
---|
249 | |
---|
250 | :returns: type name: description |
---|
251 | |
---|
252 | ''' |
---|
253 | pfx = [str(pId)+'::A'+i+':' for i in ['x','y','z']] |
---|
254 | dpfx = [str(pId)+'::dA'+i+':' for i in ['x','y','z']] |
---|
255 | XYZ = [] |
---|
256 | for ind in indx: |
---|
257 | names = [pfx[i]+str(AtLookup[ind]) for i in range(3)] |
---|
258 | dnames = [dpfx[i]+str(AtLookup[ind]) for i in range(3)] |
---|
259 | XYZ.append([parmDict[name]+parmDict[dname] for name,dname in zip(names,dnames)]) |
---|
260 | return XYZ |
---|
261 | |
---|
262 | def AtomUij2TLS(atomData,atPtrs,Amat,Bmat,rbObj): #unfinished & not used |
---|
263 | '''default doc string |
---|
264 | |
---|
265 | :param type name: description |
---|
266 | |
---|
267 | :returns: type name: description |
---|
268 | |
---|
269 | ''' |
---|
270 | for atom in atomData: |
---|
271 | XYZ = np.inner(Amat,atom[cx:cx+3]) |
---|
272 | if atom[cia] == 'A': |
---|
273 | UIJ = atom[cia+2:cia+8] |
---|
274 | |
---|
275 | def TLS2Uij(xyz,g,Amat,rbObj): #not used anywhere, but could be? |
---|
276 | '''default doc string |
---|
277 | |
---|
278 | :param type name: description |
---|
279 | |
---|
280 | :returns: type name: description |
---|
281 | |
---|
282 | ''' |
---|
283 | TLStype,TLS = rbObj['ThermalMotion'][:2] |
---|
284 | Tmat = np.zeros((3,3)) |
---|
285 | Lmat = np.zeros((3,3)) |
---|
286 | Smat = np.zeros((3,3)) |
---|
287 | gvec = np.sqrt(np.array([g[0][0]**2,g[1][1]**2,g[2][2]**2, |
---|
288 | g[0][0]*g[1][1],g[0][0]*g[2][2],g[1][1]*g[2][2]])) |
---|
289 | if 'T' in TLStype: |
---|
290 | Tmat = G2lat.U6toUij(TLS[:6]) |
---|
291 | if 'L' in TLStype: |
---|
292 | Lmat = G2lat.U6toUij(TLS[6:12]) |
---|
293 | if 'S' in TLStype: |
---|
294 | Smat = np.array([[TLS[18],TLS[12],TLS[13]],[TLS[14],TLS[19],TLS[15]],[TLS[16],TLS[17],0] ]) |
---|
295 | XYZ = np.inner(Amat,xyz) |
---|
296 | Axyz = np.array([[ 0,XYZ[2],-XYZ[1]], [-XYZ[2],0,XYZ[0]], [XYZ[1],-XYZ[0],0]] ) |
---|
297 | Umat = Tmat+np.inner(Axyz,Smat)+np.inner(Smat.T,Axyz.T)+np.inner(np.inner(Axyz,Lmat),Axyz.T) |
---|
298 | beta = np.inner(np.inner(g,Umat),g) |
---|
299 | return G2lat.UijtoU6(beta)*gvec |
---|
300 | |
---|
301 | def AtomTLS2UIJ(atomData,atPtrs,Amat,rbObj): #not used anywhere, but could be? |
---|
302 | '''default doc string |
---|
303 | |
---|
304 | :param type name: description |
---|
305 | |
---|
306 | :returns: type name: description |
---|
307 | |
---|
308 | ''' |
---|
309 | cx,ct,cs,cia = atPtrs |
---|
310 | TLStype,TLS = rbObj['ThermalMotion'][:2] |
---|
311 | Tmat = np.zeros((3,3)) |
---|
312 | Lmat = np.zeros((3,3)) |
---|
313 | Smat = np.zeros((3,3)) |
---|
314 | G,g = G2lat.A2Gmat(Amat) |
---|
315 | gvec = 1./np.sqrt(np.array([g[0][0],g[1][1],g[2][2],g[0][1],g[0][2],g[1][2]])) |
---|
316 | if 'T' in TLStype: |
---|
317 | Tmat = G2lat.U6toUij(TLS[:6]) |
---|
318 | if 'L' in TLStype: |
---|
319 | Lmat = G2lat.U6toUij(TLS[6:12]) |
---|
320 | if 'S' in TLStype: |
---|
321 | Smat = np.array([ [TLS[18],TLS[12],TLS[13]], [TLS[14],TLS[19],TLS[15]], [TLS[16],TLS[17],0] ]) |
---|
322 | for atom in atomData: |
---|
323 | XYZ = np.inner(Amat,atom[cx:cx+3]) |
---|
324 | Axyz = np.array([ 0,XYZ[2],-XYZ[1], -XYZ[2],0,XYZ[0], XYZ[1],-XYZ[0],0],ndmin=2 ) |
---|
325 | if 'U' in TSLtype: |
---|
326 | atom[cia+1] = TLS[0] |
---|
327 | atom[cia] = 'I' |
---|
328 | else: |
---|
329 | atom[cia] = 'A' |
---|
330 | Umat = Tmat+np.inner(Axyz,Smat)+np.inner(Smat.T,Axyz.T)+np.inner(np.inner(Axyz,Lmat),Axyz.T) |
---|
331 | beta = np.inner(np.inner(g,Umat),g) |
---|
332 | atom[cia+2:cia+8] = G2spc.U2Uij(beta/gvec) |
---|
333 | |
---|
334 | def GetXYZDist(xyz,XYZ,Amat): |
---|
335 | '''gets distance from position xyz to all XYZ, xyz & XYZ are np.array |
---|
336 | and are in crystal coordinates; Amat is crystal to Cart matrix |
---|
337 | |
---|
338 | :param type name: description |
---|
339 | |
---|
340 | :returns: type name: description |
---|
341 | |
---|
342 | ''' |
---|
343 | return np.sqrt(np.sum(np.inner(Amat,XYZ-xyz)**2,axis=0)) |
---|
344 | |
---|
345 | def getAtomXYZ(atoms,cx): |
---|
346 | '''default doc string |
---|
347 | |
---|
348 | :param type name: description |
---|
349 | |
---|
350 | :returns: type name: description |
---|
351 | |
---|
352 | ''' |
---|
353 | XYZ = [] |
---|
354 | for atom in atoms: |
---|
355 | XYZ.append(atom[cx:cx+3]) |
---|
356 | return np.array(XYZ) |
---|
357 | |
---|
358 | def RotateRBXYZ(Bmat,Cart,oriQ): |
---|
359 | '''rotate & transform cartesian coordinates to crystallographic ones |
---|
360 | no translation applied. To be used for numerical derivatives |
---|
361 | |
---|
362 | :param type name: description |
---|
363 | |
---|
364 | :returns: type name: description |
---|
365 | |
---|
366 | ''' |
---|
367 | ''' returns crystal coordinates for atoms described by RBObj |
---|
368 | ''' |
---|
369 | XYZ = np.zeros_like(Cart) |
---|
370 | for i,xyz in enumerate(Cart): |
---|
371 | X = prodQVQ(oriQ,xyz) |
---|
372 | XYZ[i] = np.inner(Bmat,X) |
---|
373 | return XYZ |
---|
374 | |
---|
375 | def UpdateRBXYZ(Bmat,RBObj,RBData,RBType): |
---|
376 | '''default doc string |
---|
377 | |
---|
378 | :param type name: description |
---|
379 | |
---|
380 | :returns: type name: description |
---|
381 | |
---|
382 | ''' |
---|
383 | ''' returns crystal coordinates for atoms described by RBObj |
---|
384 | ''' |
---|
385 | RBRes = RBData[RBType][RBObj['RBId']] |
---|
386 | if RBType == 'Vector': |
---|
387 | vecs = RBRes['rbVect'] |
---|
388 | mags = RBRes['VectMag'] |
---|
389 | Cart = np.zeros_like(vecs[0]) |
---|
390 | for vec,mag in zip(vecs,mags): |
---|
391 | Cart += vec*mag |
---|
392 | elif RBType == 'Residue': |
---|
393 | Cart = np.array(RBRes['rbXYZ']) |
---|
394 | for tor,seq in zip(RBObj['Torsions'],RBRes['rbSeq']): |
---|
395 | QuatA = AVdeg2Q(tor[0],Cart[seq[0]]-Cart[seq[1]]) |
---|
396 | for ride in seq[3]: |
---|
397 | Cart[ride] = prodQVQ(QuatA,Cart[ride]-Cart[seq[1]])+Cart[seq[1]] |
---|
398 | XYZ = np.zeros_like(Cart) |
---|
399 | for i,xyz in enumerate(Cart): |
---|
400 | X = prodQVQ(RBObj['Orient'][0],xyz) |
---|
401 | XYZ[i] = np.inner(Bmat,X)+RBObj['Orig'][0] |
---|
402 | return XYZ,Cart |
---|
403 | |
---|
404 | def UpdateMCSAxyz(Bmat,MCSA): |
---|
405 | '''default doc string |
---|
406 | |
---|
407 | :param type name: description |
---|
408 | |
---|
409 | :returns: type name: description |
---|
410 | |
---|
411 | ''' |
---|
412 | xyz = [] |
---|
413 | atTypes = [] |
---|
414 | iatm = 0 |
---|
415 | for model in MCSA['Models'][1:]: #skip the MD model |
---|
416 | if model['Type'] == 'Atom': |
---|
417 | xyz.append(model['Pos'][0]) |
---|
418 | atTypes.append(model['atType']) |
---|
419 | iatm += 1 |
---|
420 | else: |
---|
421 | RBRes = MCSA['rbData'][model['Type']][model['RBId']] |
---|
422 | Pos = np.array(model['Pos'][0]) |
---|
423 | Qori = np.array(model['Ori'][0]) |
---|
424 | if model['Type'] == 'Vector': |
---|
425 | vecs = RBRes['rbVect'] |
---|
426 | mags = RBRes['VectMag'] |
---|
427 | Cart = np.zeros_like(vecs[0]) |
---|
428 | for vec,mag in zip(vecs,mags): |
---|
429 | Cart += vec*mag |
---|
430 | elif model['Type'] == 'Residue': |
---|
431 | Cart = np.array(RBRes['rbXYZ']) |
---|
432 | for itor,seq in enumerate(RBRes['rbSeq']): |
---|
433 | QuatA = AVdeg2Q(model['Tor'][0][itor],Cart[seq[0]]-Cart[seq[1]]) |
---|
434 | for ride in seq[3]: |
---|
435 | Cart[ride] = prodQVQ(QuatA,Cart[ride]-Cart[seq[1]])+Cart[seq[1]] |
---|
436 | if model['MolCent'][1]: |
---|
437 | Cart -= model['MolCent'][0] |
---|
438 | for i,x in enumerate(Cart): |
---|
439 | xyz.append(np.inner(Bmat,prodQVQ(Qori,x))+Pos) |
---|
440 | atType = RBRes['rbTypes'][i] |
---|
441 | atTypes.append(atType) |
---|
442 | iatm += 1 |
---|
443 | return np.array(xyz),atTypes |
---|
444 | |
---|
445 | def SetMolCent(model,RBData): |
---|
446 | '''default doc string |
---|
447 | |
---|
448 | :param type name: description |
---|
449 | |
---|
450 | :returns: type name: description |
---|
451 | |
---|
452 | ''' |
---|
453 | rideList = [] |
---|
454 | RBRes = RBData[model['Type']][model['RBId']] |
---|
455 | if model['Type'] == 'Vector': |
---|
456 | vecs = RBRes['rbVect'] |
---|
457 | mags = RBRes['VectMag'] |
---|
458 | Cart = np.zeros_like(vecs[0]) |
---|
459 | for vec,mag in zip(vecs,mags): |
---|
460 | Cart += vec*mag |
---|
461 | elif model['Type'] == 'Residue': |
---|
462 | Cart = np.array(RBRes['rbXYZ']) |
---|
463 | for seq in RBRes['rbSeq']: |
---|
464 | rideList += seq[3] |
---|
465 | centList = set(range(len(Cart)))-set(rideList) |
---|
466 | cent = np.zeros(3) |
---|
467 | for i in centList: |
---|
468 | cent += Cart[i] |
---|
469 | model['MolCent'][0] = cent/len(centList) |
---|
470 | |
---|
471 | def UpdateRBUIJ(Bmat,Cart,RBObj): |
---|
472 | '''default doc string |
---|
473 | |
---|
474 | :param type name: description |
---|
475 | |
---|
476 | :returns: type name: description |
---|
477 | |
---|
478 | ''' |
---|
479 | ''' returns atom I/A, Uiso or UIJ for atoms at XYZ as described by RBObj |
---|
480 | ''' |
---|
481 | TLStype,TLS = RBObj['ThermalMotion'][:2] |
---|
482 | T = np.zeros(6) |
---|
483 | L = np.zeros(6) |
---|
484 | S = np.zeros(8) |
---|
485 | if 'T' in TLStype: |
---|
486 | T = TLS[:6] |
---|
487 | if 'L' in TLStype: |
---|
488 | L = np.array(TLS[6:12])*(np.pi/180.)**2 |
---|
489 | if 'S' in TLStype: |
---|
490 | S = np.array(TLS[12:])*(np.pi/180.) |
---|
491 | g = nl.inv(np.inner(Bmat,Bmat)) |
---|
492 | gvec = np.sqrt(np.array([g[0][0]**2,g[1][1]**2,g[2][2]**2, |
---|
493 | g[0][0]*g[1][1],g[0][0]*g[2][2],g[1][1]*g[2][2]])) |
---|
494 | Uout = [] |
---|
495 | Q = RBObj['Orient'][0] |
---|
496 | for X in Cart: |
---|
497 | X = prodQVQ(Q,X) |
---|
498 | if 'U' in TLStype: |
---|
499 | Uout.append(['I',TLS[0],0,0,0,0,0,0]) |
---|
500 | elif not 'N' in TLStype: |
---|
501 | U = [0,0,0,0,0,0] |
---|
502 | U[0] = T[0]+L[1]*X[2]**2+L[2]*X[1]**2-2.0*L[5]*X[1]*X[2]+2.0*(S[2]*X[2]-S[4]*X[1]) |
---|
503 | U[1] = T[1]+L[0]*X[2]**2+L[2]*X[0]**2-2.0*L[4]*X[0]*X[2]+2.0*(S[5]*X[0]-S[0]*X[2]) |
---|
504 | U[2] = T[2]+L[1]*X[0]**2+L[0]*X[1]**2-2.0*L[3]*X[1]*X[0]+2.0*(S[1]*X[1]-S[3]*X[0]) |
---|
505 | U[3] = T[3]+L[4]*X[1]*X[2]+L[5]*X[0]*X[2]-L[3]*X[2]**2-L[2]*X[0]*X[1]+ \ |
---|
506 | S[4]*X[0]-S[5]*X[1]-(S[6]+S[7])*X[2] |
---|
507 | U[4] = T[4]+L[3]*X[1]*X[2]+L[5]*X[0]*X[1]-L[4]*X[1]**2-L[1]*X[0]*X[2]+ \ |
---|
508 | S[3]*X[2]-S[2]*X[0]+S[6]*X[1] |
---|
509 | U[5] = T[5]+L[3]*X[0]*X[2]+L[4]*X[0]*X[1]-L[5]*X[0]**2-L[0]*X[2]*X[1]+ \ |
---|
510 | S[0]*X[1]-S[1]*X[2]+S[7]*X[0] |
---|
511 | Umat = G2lat.U6toUij(U) |
---|
512 | beta = np.inner(np.inner(Bmat.T,Umat),Bmat) |
---|
513 | Uout.append(['A',0.0,]+list(G2lat.UijtoU6(beta)*gvec)) |
---|
514 | else: |
---|
515 | Uout.append(['N',]) |
---|
516 | return Uout |
---|
517 | |
---|
518 | def GetSHCoeff(pId,parmDict,SHkeys): |
---|
519 | '''default doc string |
---|
520 | |
---|
521 | :param type name: description |
---|
522 | |
---|
523 | :returns: type name: description |
---|
524 | |
---|
525 | ''' |
---|
526 | SHCoeff = {} |
---|
527 | for shkey in SHkeys: |
---|
528 | shname = str(pId)+'::'+shkey |
---|
529 | SHCoeff[shkey] = parmDict[shname] |
---|
530 | return SHCoeff |
---|
531 | |
---|
532 | def getMass(generalData): |
---|
533 | '''default doc string |
---|
534 | |
---|
535 | :param type name: description |
---|
536 | |
---|
537 | :returns: type name: description |
---|
538 | |
---|
539 | ''' |
---|
540 | 'Computes mass of unit cell contents' |
---|
541 | mass = 0. |
---|
542 | for i,elem in enumerate(generalData['AtomTypes']): |
---|
543 | mass += generalData['NoAtoms'][elem]*generalData['AtomMass'][i] |
---|
544 | return mass |
---|
545 | |
---|
546 | def getDensity(generalData): |
---|
547 | '''default doc string |
---|
548 | |
---|
549 | :param type name: description |
---|
550 | |
---|
551 | :returns: type name: description |
---|
552 | |
---|
553 | ''' |
---|
554 | mass = getMass(generalData) |
---|
555 | Volume = generalData['Cell'][7] |
---|
556 | density = mass/(0.6022137*Volume) |
---|
557 | return density,Volume/mass |
---|
558 | |
---|
559 | def getWave(Parms): |
---|
560 | '''default doc string |
---|
561 | |
---|
562 | :param type name: description |
---|
563 | |
---|
564 | :returns: type name: description |
---|
565 | |
---|
566 | ''' |
---|
567 | try: |
---|
568 | return Parms['Lam'][1] |
---|
569 | except KeyError: |
---|
570 | return Parms['Lam1'][1] |
---|
571 | |
---|
572 | ################################################################################ |
---|
573 | ##### distance, angle, planes, torsion stuff stuff |
---|
574 | ################################################################################ |
---|
575 | |
---|
576 | def getSyXYZ(XYZ,ops,SGData): |
---|
577 | '''default doc string |
---|
578 | |
---|
579 | :param type name: description |
---|
580 | |
---|
581 | :returns: type name: description |
---|
582 | |
---|
583 | ''' |
---|
584 | XYZout = np.zeros_like(XYZ) |
---|
585 | for i,[xyz,op] in enumerate(zip(XYZ,ops)): |
---|
586 | if op == '1': |
---|
587 | XYZout[i] = xyz |
---|
588 | else: |
---|
589 | oprs = op.split('+') |
---|
590 | unit = [0,0,0] |
---|
591 | if oprs[1]: |
---|
592 | unit = np.array(list(eval(oprs[1]))) |
---|
593 | syop =int(oprs[0]) |
---|
594 | inv = syop/abs(syop) |
---|
595 | syop *= inv |
---|
596 | cent = syop/100 |
---|
597 | syop %= 100 |
---|
598 | syop -= 1 |
---|
599 | M,T = SGData['SGOps'][syop] |
---|
600 | XYZout[i] = (np.inner(M,xyz)+T)*inv+SGData['SGCen'][cent]+unit |
---|
601 | return XYZout |
---|
602 | |
---|
603 | def getRestDist(XYZ,Amat): |
---|
604 | '''default doc string |
---|
605 | |
---|
606 | :param type name: description |
---|
607 | |
---|
608 | :returns: type name: description |
---|
609 | |
---|
610 | ''' |
---|
611 | return np.sqrt(np.sum(np.inner(Amat,(XYZ[1]-XYZ[0]))**2)) |
---|
612 | |
---|
613 | def getRestDeriv(Func,XYZ,Amat,ops,SGData): |
---|
614 | '''default doc string |
---|
615 | |
---|
616 | :param type name: description |
---|
617 | |
---|
618 | :returns: type name: description |
---|
619 | |
---|
620 | ''' |
---|
621 | deriv = np.zeros((len(XYZ),3)) |
---|
622 | dx = 0.00001 |
---|
623 | for j,xyz in enumerate(XYZ): |
---|
624 | for i,x in enumerate(np.array([[dx,0,0],[0,dx,0],[0,0,dx]])): |
---|
625 | XYZ[j] -= x |
---|
626 | d1 = Func(getSyXYZ(XYZ,ops,SGData),Amat) |
---|
627 | XYZ[j] += 2*x |
---|
628 | d2 = Func(getSyXYZ(XYZ,ops,SGData),Amat) |
---|
629 | XYZ[j] -= x |
---|
630 | deriv[j][i] = (d1-d2)/(2*dx) |
---|
631 | return deriv.flatten() |
---|
632 | |
---|
633 | def getRestAngle(XYZ,Amat): |
---|
634 | '''default doc string |
---|
635 | |
---|
636 | :param type name: description |
---|
637 | |
---|
638 | :returns: type name: description |
---|
639 | |
---|
640 | ''' |
---|
641 | |
---|
642 | def calcVec(Ox,Tx,Amat): |
---|
643 | return np.inner(Amat,(Tx-Ox)) |
---|
644 | |
---|
645 | VecA = calcVec(XYZ[1],XYZ[0],Amat) |
---|
646 | VecA /= np.sqrt(np.sum(VecA**2)) |
---|
647 | VecB = calcVec(XYZ[1],XYZ[2],Amat) |
---|
648 | VecB /= np.sqrt(np.sum(VecB**2)) |
---|
649 | edge = VecB-VecA |
---|
650 | edge = np.sum(edge**2) |
---|
651 | angle = (2.-edge)/2. |
---|
652 | angle = max(angle,-1.) |
---|
653 | return acosd(angle) |
---|
654 | |
---|
655 | def getRestPlane(XYZ,Amat): |
---|
656 | '''default doc string |
---|
657 | |
---|
658 | :param type name: description |
---|
659 | |
---|
660 | :returns: type name: description |
---|
661 | |
---|
662 | ''' |
---|
663 | sumXYZ = np.zeros(3) |
---|
664 | for xyz in XYZ: |
---|
665 | sumXYZ += xyz |
---|
666 | sumXYZ /= len(XYZ) |
---|
667 | XYZ = np.array(XYZ)-sumXYZ |
---|
668 | XYZ = np.inner(Amat,XYZ).T |
---|
669 | Zmat = np.zeros((3,3)) |
---|
670 | for i,xyz in enumerate(XYZ): |
---|
671 | Zmat += np.outer(xyz.T,xyz) |
---|
672 | Evec,Emat = nl.eig(Zmat) |
---|
673 | Evec = np.sqrt(Evec)/(len(XYZ)-3) |
---|
674 | Order = np.argsort(Evec) |
---|
675 | return Evec[Order[0]] |
---|
676 | |
---|
677 | def getRestChiral(XYZ,Amat): |
---|
678 | '''default doc string |
---|
679 | |
---|
680 | :param type name: description |
---|
681 | |
---|
682 | :returns: type name: description |
---|
683 | |
---|
684 | ''' |
---|
685 | VecA = np.empty((3,3)) |
---|
686 | VecA[0] = np.inner(XYZ[1]-XYZ[0],Amat) |
---|
687 | VecA[1] = np.inner(XYZ[2]-XYZ[0],Amat) |
---|
688 | VecA[2] = np.inner(XYZ[3]-XYZ[0],Amat) |
---|
689 | return nl.det(VecA) |
---|
690 | |
---|
691 | def getRestTorsion(XYZ,Amat): |
---|
692 | '''default doc string |
---|
693 | |
---|
694 | :param type name: description |
---|
695 | |
---|
696 | :returns: type name: description |
---|
697 | |
---|
698 | ''' |
---|
699 | VecA = np.empty((3,3)) |
---|
700 | VecA[0] = np.inner(XYZ[1]-XYZ[0],Amat) |
---|
701 | VecA[1] = np.inner(XYZ[2]-XYZ[1],Amat) |
---|
702 | VecA[2] = np.inner(XYZ[3]-XYZ[2],Amat) |
---|
703 | D = nl.det(VecA) |
---|
704 | Mag = np.sqrt(np.sum(VecA*VecA,axis=1)) |
---|
705 | P12 = np.sum(VecA[0]*VecA[1])/(Mag[0]*Mag[1]) |
---|
706 | P13 = np.sum(VecA[0]*VecA[2])/(Mag[0]*Mag[2]) |
---|
707 | P23 = np.sum(VecA[1]*VecA[2])/(Mag[1]*Mag[2]) |
---|
708 | Ang = 1.0 |
---|
709 | if abs(P12) < 1.0 and abs(P23) < 1.0: |
---|
710 | Ang = (P12*P23-P13)/(np.sqrt(1.-P12**2)*np.sqrt(1.-P23**2)) |
---|
711 | TOR = (acosd(Ang)*D/abs(D)+720.)%360. |
---|
712 | return TOR |
---|
713 | |
---|
714 | def calcTorsionEnergy(TOR,Coeff=[]): |
---|
715 | '''default doc string |
---|
716 | |
---|
717 | :param type name: description |
---|
718 | |
---|
719 | :returns: type name: description |
---|
720 | |
---|
721 | ''' |
---|
722 | sum = 0. |
---|
723 | if len(Coeff): |
---|
724 | cof = np.reshape(Coeff,(3,3)).T |
---|
725 | delt = TOR-cof[1] |
---|
726 | delt = np.where(delt<-180.,delt+360.,delt) |
---|
727 | delt = np.where(delt>180.,delt-360.,delt) |
---|
728 | term = -cof[2]*delt**2 |
---|
729 | val = cof[0]*np.exp(term/1000.0) |
---|
730 | pMax = cof[0][np.argmin(val)] |
---|
731 | Eval = np.sum(val) |
---|
732 | sum = Eval-pMax |
---|
733 | return sum,Eval |
---|
734 | |
---|
735 | def getTorsionDeriv(XYZ,Amat,Coeff): |
---|
736 | '''default doc string |
---|
737 | |
---|
738 | :param type name: description |
---|
739 | |
---|
740 | :returns: type name: description |
---|
741 | |
---|
742 | ''' |
---|
743 | deriv = np.zeros((len(XYZ),3)) |
---|
744 | dx = 0.00001 |
---|
745 | for j,xyz in enumerate(XYZ): |
---|
746 | for i,x in enumerate(np.array([[dx,0,0],[0,dx,0],[0,0,dx]])): |
---|
747 | XYZ[j] -= x |
---|
748 | tor = getRestTorsion(XYZ,Amat) |
---|
749 | p,d1 = calcTorsionEnergy(tor,Coeff) |
---|
750 | XYZ[j] += 2*x |
---|
751 | tor = getRestTorsion(XYZ,Amat) |
---|
752 | p,d2 = calcTorsionEnergy(tor,Coeff) |
---|
753 | XYZ[j] -= x |
---|
754 | deriv[j][i] = (d2-d1)/(2*dx) |
---|
755 | return deriv.flatten() |
---|
756 | |
---|
757 | def getRestRama(XYZ,Amat): |
---|
758 | '''Computes a pair of torsion angles in a 5 atom string |
---|
759 | |
---|
760 | :param nparray XYZ: crystallographic coordinates of 5 atoms |
---|
761 | :param nparray Amat: crystal to cartesian transformation matrix |
---|
762 | |
---|
763 | :returns: list (phi,psi) two torsion angles in degrees |
---|
764 | |
---|
765 | ''' |
---|
766 | phi = getRestTorsion(XYZ[:5],Amat) |
---|
767 | psi = getRestTorsion(XYZ[1:],Amat) |
---|
768 | return phi,psi |
---|
769 | |
---|
770 | def calcRamaEnergy(phi,psi,Coeff=[]): |
---|
771 | '''Computes pseudo potential energy from a pair of torsion angles and a |
---|
772 | numerical description of the potential energy surface. Used to create |
---|
773 | penalty function in LS refinement: |
---|
774 | :math:`Eval(\\phi,\\psi) = C[0]*exp(-V/1000)` |
---|
775 | |
---|
776 | where :math:`V = -C[3] * (\\phi-C[1])^2 - C[4]*(\\psi-C[2])^2 - 2*(\\phi-C[1])*(\\psi-C[2])` |
---|
777 | |
---|
778 | :param float phi: first torsion angle (:math:`\\phi`) |
---|
779 | :param float psi: second torsion angle (:math:`\\psi`) |
---|
780 | :param list Coeff: pseudo potential coefficients |
---|
781 | |
---|
782 | :returns: list (sum,Eval): pseudo-potential difference from minimum & value; |
---|
783 | sum is used for penalty function. |
---|
784 | |
---|
785 | ''' |
---|
786 | sum = 0. |
---|
787 | Eval = 0. |
---|
788 | if len(Coeff): |
---|
789 | cof = Coeff.T |
---|
790 | dPhi = phi-cof[1] |
---|
791 | dPhi = np.where(dPhi<-180.,dPhi+360.,dPhi) |
---|
792 | dPhi = np.where(dPhi>180.,dPhi-360.,dPhi) |
---|
793 | dPsi = psi-cof[2] |
---|
794 | dPsi = np.where(dPsi<-180.,dPsi+360.,dPsi) |
---|
795 | dPsi = np.where(dPsi>180.,dPsi-360.,dPsi) |
---|
796 | val = -cof[3]*dPhi**2-cof[4]*dPsi**2-2.0*cof[5]*dPhi*dPsi |
---|
797 | val = cof[0]*np.exp(val/1000.) |
---|
798 | pMax = cof[0][np.argmin(val)] |
---|
799 | Eval = np.sum(val) |
---|
800 | sum = Eval-pMax |
---|
801 | return sum,Eval |
---|
802 | |
---|
803 | def getRamaDeriv(XYZ,Amat,Coeff): |
---|
804 | '''Computes numerical derivatives of torsion angle pair pseudo potential |
---|
805 | with respect of crystallographic atom coordinates of the 5 atom sequence |
---|
806 | |
---|
807 | :param nparray XYZ: crystallographic coordinates of 5 atoms |
---|
808 | :param nparray Amat: crystal to cartesian transformation matrix |
---|
809 | :param list Coeff: pseudo potential coefficients |
---|
810 | |
---|
811 | :returns: list (deriv) derivatives of pseudopotential with respect to 5 atom |
---|
812 | crystallographic xyz coordinates. |
---|
813 | |
---|
814 | ''' |
---|
815 | deriv = np.zeros((len(XYZ),3)) |
---|
816 | dx = 0.00001 |
---|
817 | for j,xyz in enumerate(XYZ): |
---|
818 | for i,x in enumerate(np.array([[dx,0,0],[0,dx,0],[0,0,dx]])): |
---|
819 | XYZ[j] -= x |
---|
820 | phi,psi = getRestRama(XYZ,Amat) |
---|
821 | p,d1 = calcRamaEnergy(phi,psi,Coeff) |
---|
822 | XYZ[j] += 2*x |
---|
823 | phi,psi = getRestRama(XYZ,Amat) |
---|
824 | p,d2 = calcRamaEnergy(phi,psi,Coeff) |
---|
825 | XYZ[j] -= x |
---|
826 | deriv[j][i] = (d2-d1)/(2*dx) |
---|
827 | return deriv.flatten() |
---|
828 | |
---|
829 | def getRestPolefig(ODFln,SamSym,Grid): |
---|
830 | '''default doc string |
---|
831 | |
---|
832 | :param type name: description |
---|
833 | |
---|
834 | :returns: type name: description |
---|
835 | |
---|
836 | ''' |
---|
837 | X,Y = np.meshgrid(np.linspace(1.,-1.,Grid),np.linspace(-1.,1.,Grid)) |
---|
838 | R,P = np.sqrt(X**2+Y**2).flatten(),atan2d(Y,X).flatten() |
---|
839 | R = np.where(R <= 1.,2.*atand(R),0.0) |
---|
840 | Z = np.zeros_like(R) |
---|
841 | Z = G2lat.polfcal(ODFln,SamSym,R,P) |
---|
842 | Z = np.reshape(Z,(Grid,Grid)) |
---|
843 | return np.reshape(R,(Grid,Grid)),np.reshape(P,(Grid,Grid)),Z |
---|
844 | |
---|
845 | def getRestPolefigDerv(HKL,Grid,SHCoeff): |
---|
846 | '''default doc string |
---|
847 | |
---|
848 | :param type name: description |
---|
849 | |
---|
850 | :returns: type name: description |
---|
851 | |
---|
852 | ''' |
---|
853 | pass |
---|
854 | |
---|
855 | def getDistDerv(Oxyz,Txyz,Amat,Tunit,Top,SGData): |
---|
856 | '''default doc string |
---|
857 | |
---|
858 | :param type name: description |
---|
859 | |
---|
860 | :returns: type name: description |
---|
861 | |
---|
862 | ''' |
---|
863 | def calcDist(Ox,Tx,U,inv,C,M,T,Amat): |
---|
864 | TxT = inv*(np.inner(M,Tx)+T)+C+U |
---|
865 | return np.sqrt(np.sum(np.inner(Amat,(TxT-Ox))**2)) |
---|
866 | |
---|
867 | inv = Top/abs(Top) |
---|
868 | cent = abs(Top)/100 |
---|
869 | op = abs(Top)%100-1 |
---|
870 | M,T = SGData['SGOps'][op] |
---|
871 | C = SGData['SGCen'][cent] |
---|
872 | dx = .00001 |
---|
873 | deriv = np.zeros(6) |
---|
874 | for i in [0,1,2]: |
---|
875 | Oxyz[i] -= dx |
---|
876 | d0 = calcDist(Oxyz,Txyz,Tunit,inv,C,M,T,Amat) |
---|
877 | Oxyz[i] += 2*dx |
---|
878 | deriv[i] = (calcDist(Oxyz,Txyz,Tunit,inv,C,M,T,Amat)-d0)/(2.*dx) |
---|
879 | Oxyz[i] -= dx |
---|
880 | Txyz[i] -= dx |
---|
881 | d0 = calcDist(Oxyz,Txyz,Tunit,inv,C,M,T,Amat) |
---|
882 | Txyz[i] += 2*dx |
---|
883 | deriv[i+3] = (calcDist(Oxyz,Txyz,Tunit,inv,C,M,T,Amat)-d0)/(2.*dx) |
---|
884 | Txyz[i] -= dx |
---|
885 | return deriv |
---|
886 | |
---|
887 | def getAngSig(VA,VB,Amat,SGData,covData={}): |
---|
888 | '''default doc string |
---|
889 | |
---|
890 | :param type name: description |
---|
891 | |
---|
892 | :returns: type name: description |
---|
893 | |
---|
894 | ''' |
---|
895 | def calcVec(Ox,Tx,U,inv,C,M,T,Amat): |
---|
896 | TxT = inv*(np.inner(M,Tx)+T)+C |
---|
897 | TxT = G2spc.MoveToUnitCell(TxT)+U |
---|
898 | return np.inner(Amat,(TxT-Ox)) |
---|
899 | |
---|
900 | def calcAngle(Ox,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat): |
---|
901 | VecA = calcVec(Ox,TxA,unitA,invA,CA,MA,TA,Amat) |
---|
902 | VecA /= np.sqrt(np.sum(VecA**2)) |
---|
903 | VecB = calcVec(Ox,TxB,unitB,invB,CB,MB,TB,Amat) |
---|
904 | VecB /= np.sqrt(np.sum(VecB**2)) |
---|
905 | edge = VecB-VecA |
---|
906 | edge = np.sum(edge**2) |
---|
907 | angle = (2.-edge)/2. |
---|
908 | angle = max(angle,-1.) |
---|
909 | return acosd(angle) |
---|
910 | |
---|
911 | OxAN,OxA,TxAN,TxA,unitA,TopA = VA |
---|
912 | OxBN,OxB,TxBN,TxB,unitB,TopB = VB |
---|
913 | invA = invB = 1 |
---|
914 | invA = TopA/abs(TopA) |
---|
915 | invB = TopB/abs(TopB) |
---|
916 | centA = abs(TopA)/100 |
---|
917 | centB = abs(TopB)/100 |
---|
918 | opA = abs(TopA)%100-1 |
---|
919 | opB = abs(TopB)%100-1 |
---|
920 | MA,TA = SGData['SGOps'][opA] |
---|
921 | MB,TB = SGData['SGOps'][opB] |
---|
922 | CA = SGData['SGCen'][centA] |
---|
923 | CB = SGData['SGCen'][centB] |
---|
924 | if 'covMatrix' in covData: |
---|
925 | covMatrix = covData['covMatrix'] |
---|
926 | varyList = covData['varyList'] |
---|
927 | AngVcov = getVCov(OxAN+TxAN+TxBN,varyList,covMatrix) |
---|
928 | dx = .00001 |
---|
929 | dadx = np.zeros(9) |
---|
930 | Ang = calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat) |
---|
931 | for i in [0,1,2]: |
---|
932 | OxA[i] -= dx |
---|
933 | a0 = calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat) |
---|
934 | OxA[i] += 2*dx |
---|
935 | dadx[i] = (calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat)-a0)/(2*dx) |
---|
936 | OxA[i] -= dx |
---|
937 | |
---|
938 | TxA[i] -= dx |
---|
939 | a0 = calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat) |
---|
940 | TxA[i] += 2*dx |
---|
941 | dadx[i+3] = (calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat)-a0)/(2*dx) |
---|
942 | TxA[i] -= dx |
---|
943 | |
---|
944 | TxB[i] -= dx |
---|
945 | a0 = calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat) |
---|
946 | TxB[i] += 2*dx |
---|
947 | dadx[i+6] = (calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat)-a0)/(2*dx) |
---|
948 | TxB[i] -= dx |
---|
949 | |
---|
950 | sigAng = np.sqrt(np.inner(dadx,np.inner(AngVcov,dadx))) |
---|
951 | if sigAng < 0.01: |
---|
952 | sigAng = 0.0 |
---|
953 | return Ang,sigAng |
---|
954 | else: |
---|
955 | return calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat),0.0 |
---|
956 | |
---|
957 | def GetDistSig(Oatoms,Atoms,Amat,SGData,covData={}): |
---|
958 | '''default doc string |
---|
959 | |
---|
960 | :param type name: description |
---|
961 | |
---|
962 | :returns: type name: description |
---|
963 | |
---|
964 | ''' |
---|
965 | def calcDist(Atoms,SyOps,Amat): |
---|
966 | XYZ = [] |
---|
967 | for i,atom in enumerate(Atoms): |
---|
968 | Inv,M,T,C,U = SyOps[i] |
---|
969 | XYZ.append(np.array(atom[1:4])) |
---|
970 | XYZ[-1] = Inv*(np.inner(M,np.array(XYZ[-1]))+T)+C+U |
---|
971 | XYZ[-1] = np.inner(Amat,XYZ[-1]).T |
---|
972 | V1 = XYZ[1]-XYZ[0] |
---|
973 | return np.sqrt(np.sum(V1**2)) |
---|
974 | |
---|
975 | Inv = [] |
---|
976 | SyOps = [] |
---|
977 | names = [] |
---|
978 | for i,atom in enumerate(Oatoms): |
---|
979 | names += atom[-1] |
---|
980 | Op,unit = Atoms[i][-1] |
---|
981 | inv = Op/abs(Op) |
---|
982 | m,t = SGData['SGOps'][abs(Op)%100-1] |
---|
983 | c = SGData['SGCen'][abs(Op)/100] |
---|
984 | SyOps.append([inv,m,t,c,unit]) |
---|
985 | Dist = calcDist(Oatoms,SyOps,Amat) |
---|
986 | |
---|
987 | sig = -0.001 |
---|
988 | if 'covMatrix' in covData: |
---|
989 | parmNames = [] |
---|
990 | dx = .00001 |
---|
991 | dadx = np.zeros(6) |
---|
992 | for i in range(6): |
---|
993 | ia = i/3 |
---|
994 | ix = i%3 |
---|
995 | Oatoms[ia][ix+1] += dx |
---|
996 | a0 = calcDist(Oatoms,SyOps,Amat) |
---|
997 | Oatoms[ia][ix+1] -= 2*dx |
---|
998 | dadx[i] = (calcDist(Oatoms,SyOps,Amat)-a0)/(2.*dx) |
---|
999 | covMatrix = covData['covMatrix'] |
---|
1000 | varyList = covData['varyList'] |
---|
1001 | DistVcov = getVCov(names,varyList,covMatrix) |
---|
1002 | sig = np.sqrt(np.inner(dadx,np.inner(DistVcov,dadx))) |
---|
1003 | if sig < 0.001: |
---|
1004 | sig = -0.001 |
---|
1005 | |
---|
1006 | return Dist,sig |
---|
1007 | |
---|
1008 | def GetAngleSig(Oatoms,Atoms,Amat,SGData,covData={}): |
---|
1009 | '''default doc string |
---|
1010 | |
---|
1011 | :param type name: description |
---|
1012 | |
---|
1013 | :returns: type name: description |
---|
1014 | |
---|
1015 | ''' |
---|
1016 | |
---|
1017 | def calcAngle(Atoms,SyOps,Amat): |
---|
1018 | XYZ = [] |
---|
1019 | for i,atom in enumerate(Atoms): |
---|
1020 | Inv,M,T,C,U = SyOps[i] |
---|
1021 | XYZ.append(np.array(atom[1:4])) |
---|
1022 | XYZ[-1] = Inv*(np.inner(M,np.array(XYZ[-1]))+T)+C+U |
---|
1023 | XYZ[-1] = np.inner(Amat,XYZ[-1]).T |
---|
1024 | V1 = XYZ[1]-XYZ[0] |
---|
1025 | V1 /= np.sqrt(np.sum(V1**2)) |
---|
1026 | V2 = XYZ[1]-XYZ[2] |
---|
1027 | V2 /= np.sqrt(np.sum(V2**2)) |
---|
1028 | V3 = V2-V1 |
---|
1029 | cang = min(1.,max((2.-np.sum(V3**2))/2.,-1.)) |
---|
1030 | return acosd(cang) |
---|
1031 | |
---|
1032 | Inv = [] |
---|
1033 | SyOps = [] |
---|
1034 | names = [] |
---|
1035 | for i,atom in enumerate(Oatoms): |
---|
1036 | names += atom[-1] |
---|
1037 | Op,unit = Atoms[i][-1] |
---|
1038 | inv = Op/abs(Op) |
---|
1039 | m,t = SGData['SGOps'][abs(Op)%100-1] |
---|
1040 | c = SGData['SGCen'][abs(Op)/100] |
---|
1041 | SyOps.append([inv,m,t,c,unit]) |
---|
1042 | Angle = calcAngle(Oatoms,SyOps,Amat) |
---|
1043 | |
---|
1044 | sig = -0.01 |
---|
1045 | if 'covMatrix' in covData: |
---|
1046 | parmNames = [] |
---|
1047 | dx = .00001 |
---|
1048 | dadx = np.zeros(9) |
---|
1049 | for i in range(9): |
---|
1050 | ia = i/3 |
---|
1051 | ix = i%3 |
---|
1052 | Oatoms[ia][ix+1] += dx |
---|
1053 | a0 = calcAngle(Oatoms,SyOps,Amat) |
---|
1054 | Oatoms[ia][ix+1] -= 2*dx |
---|
1055 | dadx[i] = (calcAngle(Oatoms,SyOps,Amat)-a0)/(2.*dx) |
---|
1056 | covMatrix = covData['covMatrix'] |
---|
1057 | varyList = covData['varyList'] |
---|
1058 | AngVcov = getVCov(names,varyList,covMatrix) |
---|
1059 | sig = np.sqrt(np.inner(dadx,np.inner(AngVcov,dadx))) |
---|
1060 | if sig < 0.01: |
---|
1061 | sig = -0.01 |
---|
1062 | |
---|
1063 | return Angle,sig |
---|
1064 | |
---|
1065 | def GetTorsionSig(Oatoms,Atoms,Amat,SGData,covData={}): |
---|
1066 | '''default doc string |
---|
1067 | |
---|
1068 | :param type name: description |
---|
1069 | |
---|
1070 | :returns: type name: description |
---|
1071 | |
---|
1072 | ''' |
---|
1073 | |
---|
1074 | def calcTorsion(Atoms,SyOps,Amat): |
---|
1075 | |
---|
1076 | XYZ = [] |
---|
1077 | for i,atom in enumerate(Atoms): |
---|
1078 | Inv,M,T,C,U = SyOps[i] |
---|
1079 | XYZ.append(np.array(atom[1:4])) |
---|
1080 | XYZ[-1] = Inv*(np.inner(M,np.array(XYZ[-1]))+T)+C+U |
---|
1081 | XYZ[-1] = np.inner(Amat,XYZ[-1]).T |
---|
1082 | V1 = XYZ[1]-XYZ[0] |
---|
1083 | V2 = XYZ[2]-XYZ[1] |
---|
1084 | V3 = XYZ[3]-XYZ[2] |
---|
1085 | V1 /= np.sqrt(np.sum(V1**2)) |
---|
1086 | V2 /= np.sqrt(np.sum(V2**2)) |
---|
1087 | V3 /= np.sqrt(np.sum(V3**2)) |
---|
1088 | M = np.array([V1,V2,V3]) |
---|
1089 | D = nl.det(M) |
---|
1090 | Ang = 1.0 |
---|
1091 | P12 = np.dot(V1,V2) |
---|
1092 | P13 = np.dot(V1,V3) |
---|
1093 | P23 = np.dot(V2,V3) |
---|
1094 | Tors = acosd((P12*P23-P13)/(np.sqrt(1.-P12**2)*np.sqrt(1.-P23**2)))*D/abs(D) |
---|
1095 | return Tors |
---|
1096 | |
---|
1097 | Inv = [] |
---|
1098 | SyOps = [] |
---|
1099 | names = [] |
---|
1100 | for i,atom in enumerate(Oatoms): |
---|
1101 | names += atom[-1] |
---|
1102 | Op,unit = Atoms[i][-1] |
---|
1103 | inv = Op/abs(Op) |
---|
1104 | m,t = SGData['SGOps'][abs(Op)%100-1] |
---|
1105 | c = SGData['SGCen'][abs(Op)/100] |
---|
1106 | SyOps.append([inv,m,t,c,unit]) |
---|
1107 | Tors = calcTorsion(Oatoms,SyOps,Amat) |
---|
1108 | |
---|
1109 | sig = -0.01 |
---|
1110 | if 'covMatrix' in covData: |
---|
1111 | parmNames = [] |
---|
1112 | dx = .00001 |
---|
1113 | dadx = np.zeros(12) |
---|
1114 | for i in range(12): |
---|
1115 | ia = i/3 |
---|
1116 | ix = i%3 |
---|
1117 | Oatoms[ia][ix+1] -= dx |
---|
1118 | a0 = calcTorsion(Oatoms,SyOps,Amat) |
---|
1119 | Oatoms[ia][ix+1] += 2*dx |
---|
1120 | dadx[i] = (calcTorsion(Oatoms,SyOps,Amat)-a0)/(2.*dx) |
---|
1121 | Oatoms[ia][ix+1] -= dx |
---|
1122 | covMatrix = covData['covMatrix'] |
---|
1123 | varyList = covData['varyList'] |
---|
1124 | TorVcov = getVCov(names,varyList,covMatrix) |
---|
1125 | sig = np.sqrt(np.inner(dadx,np.inner(TorVcov,dadx))) |
---|
1126 | if sig < 0.01: |
---|
1127 | sig = -0.01 |
---|
1128 | |
---|
1129 | return Tors,sig |
---|
1130 | |
---|
1131 | def GetDATSig(Oatoms,Atoms,Amat,SGData,covData={}): |
---|
1132 | '''default doc string |
---|
1133 | |
---|
1134 | :param type name: description |
---|
1135 | |
---|
1136 | :returns: type name: description |
---|
1137 | |
---|
1138 | ''' |
---|
1139 | |
---|
1140 | def calcDist(Atoms,SyOps,Amat): |
---|
1141 | XYZ = [] |
---|
1142 | for i,atom in enumerate(Atoms): |
---|
1143 | Inv,M,T,C,U = SyOps[i] |
---|
1144 | XYZ.append(np.array(atom[1:4])) |
---|
1145 | XYZ[-1] = Inv*(np.inner(M,np.array(XYZ[-1]))+T)+C+U |
---|
1146 | XYZ[-1] = np.inner(Amat,XYZ[-1]).T |
---|
1147 | V1 = XYZ[1]-XYZ[0] |
---|
1148 | return np.sqrt(np.sum(V1**2)) |
---|
1149 | |
---|
1150 | def calcAngle(Atoms,SyOps,Amat): |
---|
1151 | XYZ = [] |
---|
1152 | for i,atom in enumerate(Atoms): |
---|
1153 | Inv,M,T,C,U = SyOps[i] |
---|
1154 | XYZ.append(np.array(atom[1:4])) |
---|
1155 | XYZ[-1] = Inv*(np.inner(M,np.array(XYZ[-1]))+T)+C+U |
---|
1156 | XYZ[-1] = np.inner(Amat,XYZ[-1]).T |
---|
1157 | V1 = XYZ[1]-XYZ[0] |
---|
1158 | V1 /= np.sqrt(np.sum(V1**2)) |
---|
1159 | V2 = XYZ[1]-XYZ[2] |
---|
1160 | V2 /= np.sqrt(np.sum(V2**2)) |
---|
1161 | V3 = V2-V1 |
---|
1162 | cang = min(1.,max((2.-np.sum(V3**2))/2.,-1.)) |
---|
1163 | return acosd(cang) |
---|
1164 | |
---|
1165 | def calcTorsion(Atoms,SyOps,Amat): |
---|
1166 | |
---|
1167 | XYZ = [] |
---|
1168 | for i,atom in enumerate(Atoms): |
---|
1169 | Inv,M,T,C,U = SyOps[i] |
---|
1170 | XYZ.append(np.array(atom[1:4])) |
---|
1171 | XYZ[-1] = Inv*(np.inner(M,np.array(XYZ[-1]))+T)+C+U |
---|
1172 | XYZ[-1] = np.inner(Amat,XYZ[-1]).T |
---|
1173 | V1 = XYZ[1]-XYZ[0] |
---|
1174 | V2 = XYZ[2]-XYZ[1] |
---|
1175 | V3 = XYZ[3]-XYZ[2] |
---|
1176 | V1 /= np.sqrt(np.sum(V1**2)) |
---|
1177 | V2 /= np.sqrt(np.sum(V2**2)) |
---|
1178 | V3 /= np.sqrt(np.sum(V3**2)) |
---|
1179 | M = np.array([V1,V2,V3]) |
---|
1180 | D = nl.det(M) |
---|
1181 | Ang = 1.0 |
---|
1182 | P12 = np.dot(V1,V2) |
---|
1183 | P13 = np.dot(V1,V3) |
---|
1184 | P23 = np.dot(V2,V3) |
---|
1185 | Tors = acosd((P12*P23-P13)/(np.sqrt(1.-P12**2)*np.sqrt(1.-P23**2)))*D/abs(D) |
---|
1186 | return Tors |
---|
1187 | |
---|
1188 | Inv = [] |
---|
1189 | SyOps = [] |
---|
1190 | names = [] |
---|
1191 | for i,atom in enumerate(Oatoms): |
---|
1192 | names += atom[-1] |
---|
1193 | Op,unit = Atoms[i][-1] |
---|
1194 | inv = Op/abs(Op) |
---|
1195 | m,t = SGData['SGOps'][abs(Op)%100-1] |
---|
1196 | c = SGData['SGCen'][abs(Op)/100] |
---|
1197 | SyOps.append([inv,m,t,c,unit]) |
---|
1198 | M = len(Oatoms) |
---|
1199 | if M == 2: |
---|
1200 | Val = calcDist(Oatoms,SyOps,Amat) |
---|
1201 | elif M == 3: |
---|
1202 | Val = calcAngle(Oatoms,SyOps,Amat) |
---|
1203 | else: |
---|
1204 | Val = calcTorsion(Oatoms,SyOps,Amat) |
---|
1205 | |
---|
1206 | sigVals = [-0.001,-0.01,-0.01] |
---|
1207 | sig = sigVals[M-3] |
---|
1208 | if 'covMatrix' in covData: |
---|
1209 | parmNames = [] |
---|
1210 | dx = .00001 |
---|
1211 | N = M*3 |
---|
1212 | dadx = np.zeros(N) |
---|
1213 | for i in range(N): |
---|
1214 | ia = i/3 |
---|
1215 | ix = i%3 |
---|
1216 | Oatoms[ia][ix+1] += dx |
---|
1217 | if M == 2: |
---|
1218 | a0 = calcDist(Oatoms,SyOps,Amat) |
---|
1219 | elif M == 3: |
---|
1220 | a0 = calcAngle(Oatoms,SyOps,Amat) |
---|
1221 | else: |
---|
1222 | a0 = calcTorsion(Oatoms,SyOps,Amat) |
---|
1223 | Oatoms[ia][ix+1] -= 2*dx |
---|
1224 | if M == 2: |
---|
1225 | dadx[i] = (calcDist(Oatoms,SyOps,Amat)-a0)/(2.*dx) |
---|
1226 | elif M == 3: |
---|
1227 | dadx[i] = (calcAngle(Oatoms,SyOps,Amat)-a0)/(2.*dx) |
---|
1228 | else: |
---|
1229 | dadx[i] = (calcTorsion(Oatoms,SyOps,Amat)-a0)/(2.*dx) |
---|
1230 | covMatrix = covData['covMatrix'] |
---|
1231 | varyList = covData['varyList'] |
---|
1232 | Vcov = getVCov(names,varyList,covMatrix) |
---|
1233 | sig = np.sqrt(np.inner(dadx,np.inner(Vcov,dadx))) |
---|
1234 | if sig < sigVals[M-3]: |
---|
1235 | sig = sigVals[M-3] |
---|
1236 | |
---|
1237 | return Val,sig |
---|
1238 | |
---|
1239 | def ValEsd(value,esd=0,nTZ=False): |
---|
1240 | '''Format a floating point number with a given level of precision or |
---|
1241 | with in crystallographic format with a "esd", as value(esd). If esd is |
---|
1242 | negative the number is formatted with the level of significant figures |
---|
1243 | appropriate if abs(esd) were the esd, but the esd is not included. |
---|
1244 | if the esd is zero, approximately 6 significant figures are printed. |
---|
1245 | nTZ=True causes "extra" zeros to be removed after the decimal place. |
---|
1246 | for example: |
---|
1247 | |
---|
1248 | * "1.235(3)" for value=1.2346 & esd=0.003 |
---|
1249 | * "1.235(3)e4" for value=12346. & esd=30 |
---|
1250 | * "1.235(3)e6" for value=0.12346e7 & esd=3000 |
---|
1251 | * "1.235" for value=1.2346 & esd=-0.003 |
---|
1252 | * "1.240" for value=1.2395 & esd=-0.003 |
---|
1253 | * "1.24" for value=1.2395 & esd=-0.003 with nTZ=True |
---|
1254 | * "1.23460" for value=1.2346 & esd=0.0 |
---|
1255 | |
---|
1256 | :param float value: number to be formatted |
---|
1257 | :param float esd: uncertainty or if esd < 0, specifies level of |
---|
1258 | precision to be shown e.g. esd=-0.01 gives 2 places beyond decimal |
---|
1259 | :param bool nTZ: True to remove trailing zeros (default is False) |
---|
1260 | :returns: value(esd) or value as a string |
---|
1261 | |
---|
1262 | ''' |
---|
1263 | # Note: this routine is Python 3 compatible -- I think |
---|
1264 | if esd != 0: |
---|
1265 | # transform the esd to a one or two digit integer |
---|
1266 | l = math.log10(abs(esd)) % 1 |
---|
1267 | # cut off of 19 1.9==>(19) but 1.95==>(2) N.B. log10(1.95) = 0.2900... |
---|
1268 | if l < 0.290034611362518: l+= 1. |
---|
1269 | intesd = int(round(10**l)) # esd as integer |
---|
1270 | # determine the number of digits offset for the esd |
---|
1271 | esdoff = int(round(math.log10(intesd*1./abs(esd)))) |
---|
1272 | else: |
---|
1273 | esdoff = 5 |
---|
1274 | valoff = 0 |
---|
1275 | if esdoff < 0 or abs(value) > 1.0e6 or abs(value) < 1.0e-4: # use scientific notation |
---|
1276 | # where the digit offset is to the left of the decimal place or where too many |
---|
1277 | # digits are needed |
---|
1278 | if abs(value) > 1: |
---|
1279 | valoff = int(math.log10(abs(value))) |
---|
1280 | elif abs(value) > 0: |
---|
1281 | valoff = int(math.log10(abs(value))-0.9999999) |
---|
1282 | else: |
---|
1283 | valoff = 0 |
---|
1284 | if esd != 0: |
---|
1285 | out = ("{:."+str(valoff+esdoff)+"f}").format(value/10**valoff) # format the value |
---|
1286 | elif valoff != 0: # esd = 0; exponential notation ==> esdoff decimal places |
---|
1287 | out = ("{:."+str(esdoff)+"f}").format(value/10**valoff) # format the value |
---|
1288 | else: # esd = 0; non-exponential notation ==> esdoff+1 significant digits |
---|
1289 | extra = -math.log10(abs(value)) |
---|
1290 | if extra > 0: extra += 1 |
---|
1291 | out = ("{:."+str(max(0,esdoff+int(extra)))+"f}").format(value) # format the value |
---|
1292 | if esd > 0: |
---|
1293 | out += ("({:d})").format(intesd) # add the esd |
---|
1294 | elif nTZ and '.' in out: |
---|
1295 | out = out.rstrip('0') # strip zeros to right of decimal |
---|
1296 | out = out.rstrip('.') # and decimal place when not needed |
---|
1297 | if valoff != 0: |
---|
1298 | out += ("e{:d}").format(valoff) # add an exponent, when needed |
---|
1299 | return out |
---|
1300 | |
---|
1301 | ################################################################################ |
---|
1302 | ##### Fourier & charge flip stuff |
---|
1303 | ################################################################################ |
---|
1304 | |
---|
1305 | def adjHKLmax(SGData,Hmax): |
---|
1306 | '''default doc string |
---|
1307 | |
---|
1308 | :param type name: description |
---|
1309 | |
---|
1310 | :returns: type name: description |
---|
1311 | |
---|
1312 | ''' |
---|
1313 | if SGData['SGLaue'] in ['3','3m1','31m','6/m','6/mmm']: |
---|
1314 | Hmax[0] = ((Hmax[0]+3)/6)*6 |
---|
1315 | Hmax[1] = ((Hmax[1]+3)/6)*6 |
---|
1316 | Hmax[2] = ((Hmax[2]+1)/4)*4 |
---|
1317 | else: |
---|
1318 | Hmax[0] = ((Hmax[0]+2)/4)*4 |
---|
1319 | Hmax[1] = ((Hmax[1]+2)/4)*4 |
---|
1320 | Hmax[2] = ((Hmax[2]+1)/4)*4 |
---|
1321 | |
---|
1322 | def OmitMap(data,reflData): |
---|
1323 | '''default doc string |
---|
1324 | |
---|
1325 | :param type name: description |
---|
1326 | |
---|
1327 | :returns: type name: description |
---|
1328 | |
---|
1329 | ''' |
---|
1330 | generalData = data['General'] |
---|
1331 | if not generalData['Map']['MapType']: |
---|
1332 | print '**** ERROR - Fourier map not defined' |
---|
1333 | return |
---|
1334 | mapData = generalData['Map'] |
---|
1335 | dmin = mapData['Resolution'] |
---|
1336 | SGData = generalData['SGData'] |
---|
1337 | cell = generalData['Cell'][1:8] |
---|
1338 | A = G2lat.cell2A(cell[:6]) |
---|
1339 | Hmax = np.asarray(G2lat.getHKLmax(dmin,SGData,A),dtype='i')+1 |
---|
1340 | adjHKLmax(SGData,Hmax) |
---|
1341 | Fhkl = np.zeros(shape=2*Hmax,dtype='c16') |
---|
1342 | time0 = time.time() |
---|
1343 | for ref in reflData: |
---|
1344 | if ref[4] >= dmin: |
---|
1345 | Fosq,Fcsq,ph = ref[8:11] |
---|
1346 | for i,hkl in enumerate(ref[11]): |
---|
1347 | hkl = np.asarray(hkl,dtype='i') |
---|
1348 | dp = 360.*ref[12][i] |
---|
1349 | a = cosd(ph+dp) |
---|
1350 | b = sind(ph+dp) |
---|
1351 | phasep = complex(a,b) |
---|
1352 | phasem = complex(a,-b) |
---|
1353 | F = np.sqrt(Fosq) |
---|
1354 | h,k,l = hkl+Hmax |
---|
1355 | Fhkl[h,k,l] = F*phasep |
---|
1356 | h,k,l = -hkl+Hmax |
---|
1357 | Fhkl[h,k,l] = F*phasem |
---|
1358 | rho = fft.fftn(fft.fftshift(Fhkl))/cell[6] |
---|
1359 | print 'NB: this is just an Fobs map for now - under development' |
---|
1360 | print 'Omit map time: %.4f'%(time.time()-time0),'no. elements: %d'%(Fhkl.size) |
---|
1361 | print rho.shape |
---|
1362 | mapData['rho'] = np.real(rho) |
---|
1363 | mapData['rhoMax'] = max(np.max(mapData['rho']),-np.min(mapData['rho'])) |
---|
1364 | return mapData |
---|
1365 | |
---|
1366 | def FourierMap(data,reflData): |
---|
1367 | '''default doc string |
---|
1368 | |
---|
1369 | :param type name: description |
---|
1370 | |
---|
1371 | :returns: type name: description |
---|
1372 | |
---|
1373 | ''' |
---|
1374 | generalData = data['General'] |
---|
1375 | if not generalData['Map']['MapType']: |
---|
1376 | print '**** ERROR - Fourier map not defined' |
---|
1377 | return |
---|
1378 | mapData = generalData['Map'] |
---|
1379 | dmin = mapData['Resolution'] |
---|
1380 | SGData = generalData['SGData'] |
---|
1381 | cell = generalData['Cell'][1:8] |
---|
1382 | A = G2lat.cell2A(cell[:6]) |
---|
1383 | Hmax = np.asarray(G2lat.getHKLmax(dmin,SGData,A),dtype='i')+1 |
---|
1384 | adjHKLmax(SGData,Hmax) |
---|
1385 | Fhkl = np.zeros(shape=2*Hmax,dtype='c16') |
---|
1386 | # Fhkl[0,0,0] = generalData['F000X'] |
---|
1387 | time0 = time.time() |
---|
1388 | for ref in reflData: |
---|
1389 | if ref[4] >= dmin: |
---|
1390 | Fosq,Fcsq,ph = ref[8:11] |
---|
1391 | for i,hkl in enumerate(ref[11]): |
---|
1392 | hkl = np.asarray(hkl,dtype='i') |
---|
1393 | dp = 360.*ref[12][i] |
---|
1394 | a = cosd(ph+dp) |
---|
1395 | b = sind(ph+dp) |
---|
1396 | phasep = complex(a,b) |
---|
1397 | phasem = complex(a,-b) |
---|
1398 | if 'Fobs' in mapData['MapType']: |
---|
1399 | F = np.sqrt(Fosq) |
---|
1400 | h,k,l = hkl+Hmax |
---|
1401 | Fhkl[h,k,l] = F*phasep |
---|
1402 | h,k,l = -hkl+Hmax |
---|
1403 | Fhkl[h,k,l] = F*phasem |
---|
1404 | elif 'Fcalc' in mapData['MapType']: |
---|
1405 | F = np.sqrt(Fcsq) |
---|
1406 | h,k,l = hkl+Hmax |
---|
1407 | Fhkl[h,k,l] = F*phasep |
---|
1408 | h,k,l = -hkl+Hmax |
---|
1409 | Fhkl[h,k,l] = F*phasem |
---|
1410 | elif 'delt-F' in mapData['MapType']: |
---|
1411 | dF = np.sqrt(Fosq)-np.sqrt(Fcsq) |
---|
1412 | h,k,l = hkl+Hmax |
---|
1413 | Fhkl[h,k,l] = dF*phasep |
---|
1414 | h,k,l = -hkl+Hmax |
---|
1415 | Fhkl[h,k,l] = dF*phasem |
---|
1416 | elif '2*Fo-Fc' in mapData['MapType']: |
---|
1417 | F = 2.*np.sqrt(Fosq)-np.sqrt(Fcsq) |
---|
1418 | h,k,l = hkl+Hmax |
---|
1419 | Fhkl[h,k,l] = F*phasep |
---|
1420 | h,k,l = -hkl+Hmax |
---|
1421 | Fhkl[h,k,l] = F*phasem |
---|
1422 | elif 'Patterson' in mapData['MapType']: |
---|
1423 | h,k,l = hkl+Hmax |
---|
1424 | Fhkl[h,k,l] = complex(Fosq,0.) |
---|
1425 | h,k,l = -hkl+Hmax |
---|
1426 | Fhkl[h,k,l] = complex(Fosq,0.) |
---|
1427 | rho = fft.fftn(fft.fftshift(Fhkl))/cell[6] |
---|
1428 | print 'Fourier map time: %.4f'%(time.time()-time0),'no. elements: %d'%(Fhkl.size) |
---|
1429 | mapData['rho'] = np.real(rho) |
---|
1430 | mapData['rhoMax'] = max(np.max(mapData['rho']),-np.min(mapData['rho'])) |
---|
1431 | return mapData |
---|
1432 | |
---|
1433 | # map printing for testing purposes |
---|
1434 | def printRho(SGLaue,rho,rhoMax): |
---|
1435 | '''default doc string |
---|
1436 | |
---|
1437 | :param type name: description |
---|
1438 | |
---|
1439 | :returns: type name: description |
---|
1440 | |
---|
1441 | ''' |
---|
1442 | dim = len(rho.shape) |
---|
1443 | if dim == 2: |
---|
1444 | ix,jy = rho.shape |
---|
1445 | for j in range(jy): |
---|
1446 | line = '' |
---|
1447 | if SGLaue in ['3','3m1','31m','6/m','6/mmm']: |
---|
1448 | line += (jy-j)*' ' |
---|
1449 | for i in range(ix): |
---|
1450 | r = int(100*rho[i,j]/rhoMax) |
---|
1451 | line += '%4d'%(r) |
---|
1452 | print line+'\n' |
---|
1453 | else: |
---|
1454 | ix,jy,kz = rho.shape |
---|
1455 | for k in range(kz): |
---|
1456 | print 'k = ',k |
---|
1457 | for j in range(jy): |
---|
1458 | line = '' |
---|
1459 | if SGLaue in ['3','3m1','31m','6/m','6/mmm']: |
---|
1460 | line += (jy-j)*' ' |
---|
1461 | for i in range(ix): |
---|
1462 | r = int(100*rho[i,j,k]/rhoMax) |
---|
1463 | line += '%4d'%(r) |
---|
1464 | print line+'\n' |
---|
1465 | ## keep this |
---|
1466 | |
---|
1467 | def findOffset(SGData,A,Fhkl): |
---|
1468 | '''default doc string |
---|
1469 | |
---|
1470 | :param type name: description |
---|
1471 | |
---|
1472 | :returns: type name: description |
---|
1473 | |
---|
1474 | ''' |
---|
1475 | if SGData['SpGrp'] == 'P 1': |
---|
1476 | return [0,0,0] |
---|
1477 | hklShape = Fhkl.shape |
---|
1478 | hklHalf = np.array(hklShape)/2 |
---|
1479 | sortHKL = np.argsort(Fhkl.flatten()) |
---|
1480 | Fdict = {} |
---|
1481 | for hkl in sortHKL: |
---|
1482 | HKL = np.unravel_index(hkl,hklShape) |
---|
1483 | F = Fhkl[HKL[0]][HKL[1]][HKL[2]] |
---|
1484 | if F == 0.: |
---|
1485 | break |
---|
1486 | Fdict['%.6f'%(np.absolute(F))] = hkl |
---|
1487 | Flist = np.flipud(np.sort(Fdict.keys())) |
---|
1488 | F = str(1.e6) |
---|
1489 | i = 0 |
---|
1490 | DH = [] |
---|
1491 | Dphi = [] |
---|
1492 | Hmax = 2*np.asarray(G2lat.getHKLmax(3.5,SGData,A),dtype='i') |
---|
1493 | for F in Flist: |
---|
1494 | hkl = np.unravel_index(Fdict[F],hklShape) |
---|
1495 | iabsnt,mulp,Uniq,Phi = G2spc.GenHKLf(list(hkl-hklHalf),SGData) |
---|
1496 | Uniq = np.array(Uniq,dtype='i') |
---|
1497 | Phi = np.array(Phi) |
---|
1498 | Uniq = np.concatenate((Uniq,-Uniq))+hklHalf # put in Friedel pairs & make as index to Farray |
---|
1499 | Phi = np.concatenate((Phi,-Phi)) # and their phase shifts |
---|
1500 | Fh0 = Fhkl[hkl[0],hkl[1],hkl[2]] |
---|
1501 | ang0 = np.angle(Fh0,deg=True)/360. |
---|
1502 | for H,phi in zip(Uniq,Phi)[1:]: |
---|
1503 | ang = (np.angle(Fhkl[H[0],H[1],H[2]],deg=True)/360.-phi) |
---|
1504 | dH = H-hkl |
---|
1505 | dang = ang-ang0 |
---|
1506 | if np.any(np.abs(dH)-Hmax > 0): #keep low order DHs |
---|
1507 | continue |
---|
1508 | DH.append(dH) |
---|
1509 | Dphi.append((dang+.5) % 1.0) |
---|
1510 | if i > 20 or len(DH) > 30: |
---|
1511 | break |
---|
1512 | i += 1 |
---|
1513 | DH = np.array(DH) |
---|
1514 | print ' map offset no.of terms: %d from %d reflections'%(len(DH),len(Flist)) |
---|
1515 | Dphi = np.array(Dphi) |
---|
1516 | steps = np.array(hklShape) |
---|
1517 | X,Y,Z = np.mgrid[0:1:1./steps[0],0:1:1./steps[1],0:1:1./steps[2]] |
---|
1518 | XYZ = np.array(zip(X.flatten(),Y.flatten(),Z.flatten())) |
---|
1519 | Dang = (np.dot(XYZ,DH.T)+.5)%1.-Dphi |
---|
1520 | Mmap = np.reshape(np.sum((Dang)**2,axis=1),newshape=steps)/len(DH) |
---|
1521 | hist,bins = np.histogram(Mmap,bins=1000) |
---|
1522 | # for i,item in enumerate(hist[:10]): |
---|
1523 | # print item,bins[i] |
---|
1524 | chisq = np.min(Mmap) |
---|
1525 | DX = -np.array(np.unravel_index(np.argmin(Mmap),Mmap.shape)) |
---|
1526 | print ' map offset chi**2: %.3f, map offset: %d %d %d'%(chisq,DX[0],DX[1],DX[2]) |
---|
1527 | # print (np.dot(DX,DH.T)+.5)%1.-Dphi |
---|
1528 | return DX |
---|
1529 | |
---|
1530 | def ChargeFlip(data,reflData,pgbar): |
---|
1531 | '''default doc string |
---|
1532 | |
---|
1533 | :param type name: description |
---|
1534 | |
---|
1535 | :returns: type name: description |
---|
1536 | |
---|
1537 | ''' |
---|
1538 | generalData = data['General'] |
---|
1539 | mapData = generalData['Map'] |
---|
1540 | flipData = generalData['Flip'] |
---|
1541 | FFtable = {} |
---|
1542 | if 'None' not in flipData['Norm element']: |
---|
1543 | normElem = flipData['Norm element'].upper() |
---|
1544 | FFs = G2el.GetFormFactorCoeff(normElem.split('+')[0].split('-')[0]) |
---|
1545 | for ff in FFs: |
---|
1546 | if ff['Symbol'] == normElem: |
---|
1547 | FFtable.update(ff) |
---|
1548 | dmin = flipData['Resolution'] |
---|
1549 | SGData = generalData['SGData'] |
---|
1550 | cell = generalData['Cell'][1:8] |
---|
1551 | A = G2lat.cell2A(cell[:6]) |
---|
1552 | Vol = cell[6] |
---|
1553 | Hmax = np.asarray(G2lat.getHKLmax(dmin,SGData,A),dtype='i')+1 |
---|
1554 | adjHKLmax(SGData,Hmax) |
---|
1555 | Ehkl = np.zeros(shape=2*Hmax,dtype='c16') #2X64bits per complex no. |
---|
1556 | time0 = time.time() |
---|
1557 | for ref in reflData: |
---|
1558 | dsp = ref[4] |
---|
1559 | if dsp >= dmin: |
---|
1560 | ff = 0.1*Vol #est. no. atoms for ~10A**3/atom |
---|
1561 | if FFtable: |
---|
1562 | SQ = 0.25/dsp**2 |
---|
1563 | ff *= G2el.ScatFac(FFtable,SQ)[0] |
---|
1564 | if ref[8] > 0.: #use only +ve Fobs**2 |
---|
1565 | E = np.sqrt(ref[8])/ff |
---|
1566 | else: |
---|
1567 | E = 0. |
---|
1568 | ph = ref[10] |
---|
1569 | ph = rn.uniform(0.,360.) |
---|
1570 | for i,hkl in enumerate(ref[11]): |
---|
1571 | hkl = np.asarray(hkl,dtype='i') |
---|
1572 | dp = 360.*ref[12][i] |
---|
1573 | a = cosd(ph+dp) |
---|
1574 | b = sind(ph+dp) |
---|
1575 | phasep = complex(a,b) |
---|
1576 | phasem = complex(a,-b) |
---|
1577 | h,k,l = hkl+Hmax |
---|
1578 | Ehkl[h,k,l] = E*phasep |
---|
1579 | h,k,l = -hkl+Hmax #Friedel pair refl. |
---|
1580 | Ehkl[h,k,l] = E*phasem |
---|
1581 | # Ehkl[Hmax] = 0.00001 #this to preserve F[0,0,0] |
---|
1582 | CEhkl = copy.copy(Ehkl) |
---|
1583 | MEhkl = ma.array(Ehkl,mask=(Ehkl==0.0)) |
---|
1584 | Emask = ma.getmask(MEhkl) |
---|
1585 | sumE = np.sum(ma.array(np.absolute(CEhkl),mask=Emask)) |
---|
1586 | Ncyc = 0 |
---|
1587 | old = np.seterr(all='raise') |
---|
1588 | while True: |
---|
1589 | CErho = np.real(fft.fftn(fft.fftshift(CEhkl)))*(1.+0j) |
---|
1590 | CEsig = np.std(CErho) |
---|
1591 | CFrho = np.where(np.real(CErho) >= flipData['k-factor']*CEsig,CErho,-CErho) |
---|
1592 | CFrho = np.where(np.real(CErho) <= flipData['k-Max']*CEsig,CFrho,-CFrho) #solves U atom problem! make 20. adjustible |
---|
1593 | CFhkl = fft.ifftshift(fft.ifftn(CFrho)) |
---|
1594 | CFhkl = np.where(CFhkl,CFhkl,1.0) #avoid divide by zero |
---|
1595 | phase = CFhkl/np.absolute(CFhkl) |
---|
1596 | CEhkl = np.absolute(Ehkl)*phase |
---|
1597 | Ncyc += 1 |
---|
1598 | sumCF = np.sum(ma.array(np.absolute(CFhkl),mask=Emask)) |
---|
1599 | DEhkl = np.absolute(np.absolute(Ehkl)/sumE-np.absolute(CFhkl)/sumCF) |
---|
1600 | Rcf = min(100.,np.sum(ma.array(DEhkl,mask=Emask)*100.)) |
---|
1601 | if Rcf < 5.: |
---|
1602 | break |
---|
1603 | GoOn = pgbar.Update(Rcf,newmsg='%s%8.3f%s\n%s %d'%('Residual Rcf =',Rcf,'%','No.cycles = ',Ncyc))[0] |
---|
1604 | if not GoOn or Ncyc > 10000: |
---|
1605 | break |
---|
1606 | np.seterr(**old) |
---|
1607 | print ' Charge flip time: %.4f'%(time.time()-time0),'no. elements: %d'%(Ehkl.size) |
---|
1608 | CErho = np.real(fft.fftn(fft.fftshift(CEhkl))) |
---|
1609 | print ' No.cycles = ',Ncyc,'Residual Rcf =%8.3f%s'%(Rcf,'%')+' Map size:',CErho.shape |
---|
1610 | roll = findOffset(SGData,A,CEhkl) |
---|
1611 | |
---|
1612 | mapData['Rcf'] = Rcf |
---|
1613 | mapData['rho'] = np.roll(np.roll(np.roll(CErho,roll[0],axis=0),roll[1],axis=1),roll[2],axis=2) |
---|
1614 | mapData['rhoMax'] = max(np.max(mapData['rho']),-np.min(mapData['rho'])) |
---|
1615 | mapData['rollMap'] = [0,0,0] |
---|
1616 | return mapData |
---|
1617 | |
---|
1618 | def SearchMap(data): |
---|
1619 | '''Does a search of a density map for peaks meeting the criterion of peak |
---|
1620 | height is greater than mapData['cutOff']/100 of mapData['rhoMax'] where |
---|
1621 | mapData is data['General']['mapData']; the map is also in mapData. |
---|
1622 | |
---|
1623 | :param data: the phase data structure |
---|
1624 | |
---|
1625 | :returns: (peaks,mags,dzeros) where |
---|
1626 | |
---|
1627 | * peaks : ndarray |
---|
1628 | x,y,z positions of the peaks found in the map |
---|
1629 | * mags : ndarray |
---|
1630 | the magnitudes of the peaks |
---|
1631 | * dzeros : ndarray |
---|
1632 | the distance of the peaks from the unit cell origin |
---|
1633 | |
---|
1634 | ''' |
---|
1635 | rollMap = lambda rho,roll: np.roll(np.roll(np.roll(rho,roll[0],axis=0),roll[1],axis=1),roll[2],axis=2) |
---|
1636 | |
---|
1637 | norm = 1./(np.sqrt(3.)*np.sqrt(2.*np.pi)**3) |
---|
1638 | |
---|
1639 | def noDuplicate(xyz,peaks,Amat): |
---|
1640 | XYZ = np.inner(Amat,xyz) |
---|
1641 | if True in [np.allclose(XYZ,np.inner(Amat,peak),atol=0.5) for peak in peaks]: |
---|
1642 | print ' Peak',xyz,' <0.5A from another peak' |
---|
1643 | return False |
---|
1644 | return True |
---|
1645 | |
---|
1646 | def fixSpecialPos(xyz,SGData,Amat): |
---|
1647 | equivs = G2spc.GenAtom(xyz,SGData,Move=True) |
---|
1648 | X = [] |
---|
1649 | xyzs = [equiv[0] for equiv in equivs] |
---|
1650 | for x in xyzs: |
---|
1651 | if np.sqrt(np.sum(np.inner(Amat,xyz-x)**2,axis=0))<0.5: |
---|
1652 | X.append(x) |
---|
1653 | if len(X) > 1: |
---|
1654 | return np.average(X,axis=0) |
---|
1655 | else: |
---|
1656 | return xyz |
---|
1657 | |
---|
1658 | def rhoCalc(parms,rX,rY,rZ,res,SGLaue): |
---|
1659 | Mag,x0,y0,z0,sig = parms |
---|
1660 | z = -((x0-rX)**2+(y0-rY)**2+(z0-rZ)**2)/(2.*sig**2) |
---|
1661 | # return norm*Mag*np.exp(z)/(sig*res**3) #not slower but some faults in LS |
---|
1662 | return norm*Mag*(1.+z+z**2/2.)/(sig*res**3) |
---|
1663 | |
---|
1664 | def peakFunc(parms,rX,rY,rZ,rho,res,SGLaue): |
---|
1665 | Mag,x0,y0,z0,sig = parms |
---|
1666 | M = rho-rhoCalc(parms,rX,rY,rZ,res,SGLaue) |
---|
1667 | return M |
---|
1668 | |
---|
1669 | def peakHess(parms,rX,rY,rZ,rho,res,SGLaue): |
---|
1670 | Mag,x0,y0,z0,sig = parms |
---|
1671 | dMdv = np.zeros(([5,]+list(rX.shape))) |
---|
1672 | delt = .01 |
---|
1673 | for i in range(5): |
---|
1674 | parms[i] -= delt |
---|
1675 | rhoCm = rhoCalc(parms,rX,rY,rZ,res,SGLaue) |
---|
1676 | parms[i] += 2.*delt |
---|
1677 | rhoCp = rhoCalc(parms,rX,rY,rZ,res,SGLaue) |
---|
1678 | parms[i] -= delt |
---|
1679 | dMdv[i] = (rhoCp-rhoCm)/(2.*delt) |
---|
1680 | rhoC = rhoCalc(parms,rX,rY,rZ,res,SGLaue) |
---|
1681 | Vec = np.sum(np.sum(np.sum(dMdv*(rho-rhoC),axis=3),axis=2),axis=1) |
---|
1682 | dMdv = np.reshape(dMdv,(5,rX.size)) |
---|
1683 | Hess = np.inner(dMdv,dMdv) |
---|
1684 | |
---|
1685 | return Vec,Hess |
---|
1686 | |
---|
1687 | generalData = data['General'] |
---|
1688 | phaseName = generalData['Name'] |
---|
1689 | SGData = generalData['SGData'] |
---|
1690 | Amat,Bmat = G2lat.cell2AB(generalData['Cell'][1:7]) |
---|
1691 | drawingData = data['Drawing'] |
---|
1692 | peaks = [] |
---|
1693 | mags = [] |
---|
1694 | dzeros = [] |
---|
1695 | try: |
---|
1696 | mapData = generalData['Map'] |
---|
1697 | contLevel = mapData['cutOff']*mapData['rhoMax']/100. |
---|
1698 | rho = copy.copy(mapData['rho']) #don't mess up original |
---|
1699 | mapHalf = np.array(rho.shape)/2 |
---|
1700 | res = mapData['Resolution'] |
---|
1701 | incre = np.array(rho.shape,dtype=np.float) |
---|
1702 | step = max(1.0,1./res)+1 |
---|
1703 | steps = np.array(3*[step,]) |
---|
1704 | except KeyError: |
---|
1705 | print '**** ERROR - Fourier map not defined' |
---|
1706 | return peaks,mags |
---|
1707 | rhoMask = ma.array(rho,mask=(rho<contLevel)) |
---|
1708 | indices = (-1,0,1) |
---|
1709 | rolls = np.array([[h,k,l] for h in indices for k in indices for l in indices]) |
---|
1710 | for roll in rolls: |
---|
1711 | if np.any(roll): |
---|
1712 | rhoMask = ma.array(rhoMask,mask=(rhoMask-rollMap(rho,roll)<=0.)) |
---|
1713 | indx = np.transpose(rhoMask.nonzero()) |
---|
1714 | peaks = indx/incre |
---|
1715 | mags = rhoMask[rhoMask.nonzero()] |
---|
1716 | for i,[ind,peak,mag] in enumerate(zip(indx,peaks,mags)): |
---|
1717 | rho = rollMap(rho,ind) |
---|
1718 | rMM = mapHalf-steps |
---|
1719 | rMP = mapHalf+steps+1 |
---|
1720 | rhoPeak = rho[rMM[0]:rMP[0],rMM[1]:rMP[1],rMM[2]:rMP[2]] |
---|
1721 | peakInt = np.sum(rhoPeak)*res**3 |
---|
1722 | rX,rY,rZ = np.mgrid[rMM[0]:rMP[0],rMM[1]:rMP[1],rMM[2]:rMP[2]] |
---|
1723 | x0 = [peakInt,mapHalf[0],mapHalf[1],mapHalf[2],2.0] #magnitude, position & width(sig) |
---|
1724 | result = HessianLSQ(peakFunc,x0,Hess=peakHess, |
---|
1725 | args=(rX,rY,rZ,rhoPeak,res,SGData['SGLaue']),ftol=.01,maxcyc=10) |
---|
1726 | x1 = result[0] |
---|
1727 | if not np.any(x1 < 0): |
---|
1728 | mag = x1[0] |
---|
1729 | peak = (np.array(x1[1:4])-ind)/incre |
---|
1730 | peak = fixSpecialPos(peak,SGData,Amat) |
---|
1731 | rho = rollMap(rho,-ind) |
---|
1732 | dzeros = np.sqrt(np.sum(np.inner(Amat,peaks)**2,axis=0)) |
---|
1733 | return np.array(peaks),np.array([mags,]).T,np.array([dzeros,]).T |
---|
1734 | |
---|
1735 | def sortArray(data,pos,reverse=False): |
---|
1736 | '''data is a list of items |
---|
1737 | sort by pos in list; reverse if True |
---|
1738 | ''' |
---|
1739 | T = [] |
---|
1740 | for i,M in enumerate(data): |
---|
1741 | T.append((M[pos],i)) |
---|
1742 | D = dict(zip(T,data)) |
---|
1743 | T.sort() |
---|
1744 | if reverse: |
---|
1745 | T.reverse() |
---|
1746 | X = [] |
---|
1747 | for key in T: |
---|
1748 | X.append(D[key]) |
---|
1749 | return X |
---|
1750 | |
---|
1751 | def PeaksEquiv(data,Ind): |
---|
1752 | '''Find the equivalent map peaks for those selected. Works on the |
---|
1753 | contents of data['Map Peaks']. |
---|
1754 | |
---|
1755 | :param data: the phase data structure |
---|
1756 | :param list Ind: list of selected peak indices |
---|
1757 | :returns: augmented list of peaks including those related by symmetry to the |
---|
1758 | ones in Ind |
---|
1759 | |
---|
1760 | ''' |
---|
1761 | def Duplicate(xyz,peaks,Amat): |
---|
1762 | if True in [np.allclose(np.inner(Amat,xyz),np.inner(Amat,peak),atol=0.5) for peak in peaks]: |
---|
1763 | return True |
---|
1764 | return False |
---|
1765 | |
---|
1766 | generalData = data['General'] |
---|
1767 | cell = generalData['Cell'][1:7] |
---|
1768 | Amat,Bmat = G2lat.cell2AB(generalData['Cell'][1:7]) |
---|
1769 | A = G2lat.cell2A(cell) |
---|
1770 | SGData = generalData['SGData'] |
---|
1771 | mapPeaks = data['Map Peaks'] |
---|
1772 | XYZ = np.array([xyz[1:4] for xyz in mapPeaks]) |
---|
1773 | Indx = {} |
---|
1774 | for ind in Ind: |
---|
1775 | xyz = np.array(mapPeaks[ind][1:4]) |
---|
1776 | xyzs = np.array([equiv[0] for equiv in G2spc.GenAtom(xyz,SGData,Move=True)]) |
---|
1777 | # for x in xyzs: print x |
---|
1778 | for jnd,xyz in enumerate(XYZ): |
---|
1779 | Indx[jnd] = Duplicate(xyz,xyzs,Amat) |
---|
1780 | Ind = [] |
---|
1781 | for ind in Indx: |
---|
1782 | if Indx[ind]: |
---|
1783 | Ind.append(ind) |
---|
1784 | return Ind |
---|
1785 | |
---|
1786 | def PeaksUnique(data,Ind): |
---|
1787 | '''Finds the symmetry unique set of peaks from those selected. Works on the |
---|
1788 | contents of data['Map Peaks']. |
---|
1789 | |
---|
1790 | :param data: the phase data structure |
---|
1791 | :param list Ind: list of selected peak indices |
---|
1792 | :returns: the list of symmetry unique peaks from among those given in Ind |
---|
1793 | |
---|
1794 | ''' |
---|
1795 | # XYZE = np.array([[equiv[0] for equiv in G2spc.GenAtom(xyz[1:4],SGData,Move=True)] for xyz in mapPeaks]) #keep this!! |
---|
1796 | |
---|
1797 | def noDuplicate(xyz,peaks,Amat): |
---|
1798 | if True in [np.allclose(np.inner(Amat,xyz),np.inner(Amat,peak),atol=0.5) for peak in peaks]: |
---|
1799 | return False |
---|
1800 | return True |
---|
1801 | |
---|
1802 | generalData = data['General'] |
---|
1803 | cell = generalData['Cell'][1:7] |
---|
1804 | Amat,Bmat = G2lat.cell2AB(generalData['Cell'][1:7]) |
---|
1805 | A = G2lat.cell2A(cell) |
---|
1806 | SGData = generalData['SGData'] |
---|
1807 | mapPeaks = data['Map Peaks'] |
---|
1808 | Indx = {} |
---|
1809 | XYZ = {} |
---|
1810 | for ind in Ind: |
---|
1811 | XYZ[ind] = np.array(mapPeaks[ind][1:4]) |
---|
1812 | Indx[ind] = True |
---|
1813 | for ind in Ind: |
---|
1814 | if Indx[ind]: |
---|
1815 | xyz = XYZ[ind] |
---|
1816 | for jnd in Ind: |
---|
1817 | if ind != jnd and Indx[jnd]: |
---|
1818 | Equiv = G2spc.GenAtom(XYZ[jnd],SGData,Move=True) |
---|
1819 | xyzs = np.array([equiv[0] for equiv in Equiv]) |
---|
1820 | Indx[jnd] = noDuplicate(xyz,xyzs,Amat) |
---|
1821 | Ind = [] |
---|
1822 | for ind in Indx: |
---|
1823 | if Indx[ind]: |
---|
1824 | Ind.append(ind) |
---|
1825 | return Ind |
---|
1826 | |
---|
1827 | ################################################################################ |
---|
1828 | ##### single peak fitting profile fxn stuff |
---|
1829 | ################################################################################ |
---|
1830 | |
---|
1831 | def getCWsig(ins,pos): |
---|
1832 | '''default doc string |
---|
1833 | |
---|
1834 | :param type name: description |
---|
1835 | |
---|
1836 | :returns: type name: description |
---|
1837 | |
---|
1838 | ''' |
---|
1839 | tp = tand(pos/2.0) |
---|
1840 | return ins['U']*tp**2+ins['V']*tp+ins['W'] |
---|
1841 | |
---|
1842 | def getCWsigDeriv(pos): |
---|
1843 | '''default doc string |
---|
1844 | |
---|
1845 | :param type name: description |
---|
1846 | |
---|
1847 | :returns: type name: description |
---|
1848 | |
---|
1849 | ''' |
---|
1850 | tp = tand(pos/2.0) |
---|
1851 | return tp**2,tp,1.0 |
---|
1852 | |
---|
1853 | def getCWgam(ins,pos): |
---|
1854 | '''default doc string |
---|
1855 | |
---|
1856 | :param type name: description |
---|
1857 | |
---|
1858 | :returns: type name: description |
---|
1859 | |
---|
1860 | ''' |
---|
1861 | return ins['X']/cosd(pos/2.0)+ins['Y']*tand(pos/2.0) |
---|
1862 | |
---|
1863 | def getCWgamDeriv(pos): |
---|
1864 | '''default doc string |
---|
1865 | |
---|
1866 | :param type name: description |
---|
1867 | |
---|
1868 | :returns: type name: description |
---|
1869 | |
---|
1870 | ''' |
---|
1871 | return 1./cosd(pos/2.0),tand(pos/2.0) |
---|
1872 | |
---|
1873 | def getTOFsig(ins,dsp): |
---|
1874 | '''default doc string |
---|
1875 | |
---|
1876 | :param type name: description |
---|
1877 | |
---|
1878 | :returns: type name: description |
---|
1879 | |
---|
1880 | ''' |
---|
1881 | return ins['sig-0']+ins['sig-1']*dsp**2+ins['sig-q']*dsp |
---|
1882 | |
---|
1883 | def getTOFsigDeriv(dsp): |
---|
1884 | '''default doc string |
---|
1885 | |
---|
1886 | :param type name: description |
---|
1887 | |
---|
1888 | :returns: type name: description |
---|
1889 | |
---|
1890 | ''' |
---|
1891 | return 1.0,dsp**2,dsp |
---|
1892 | |
---|
1893 | def getTOFgamma(ins,dsp): |
---|
1894 | '''default doc string |
---|
1895 | |
---|
1896 | :param type name: description |
---|
1897 | |
---|
1898 | :returns: type name: description |
---|
1899 | |
---|
1900 | ''' |
---|
1901 | return ins['X']*dsp+ins['Y']*dsp**2 |
---|
1902 | |
---|
1903 | def getTOFgammaDeriv(dsp): |
---|
1904 | '''default doc string |
---|
1905 | |
---|
1906 | :param type name: description |
---|
1907 | |
---|
1908 | :returns: type name: description |
---|
1909 | |
---|
1910 | ''' |
---|
1911 | return dsp,dsp**2 |
---|
1912 | |
---|
1913 | def getTOFbeta(ins,dsp): |
---|
1914 | '''default doc string |
---|
1915 | |
---|
1916 | :param type name: description |
---|
1917 | |
---|
1918 | :returns: type name: description |
---|
1919 | |
---|
1920 | ''' |
---|
1921 | return ins['beta-0']+ins['beta-1']/dsp**4+ins['beta-q']/dsp |
---|
1922 | |
---|
1923 | def getTOFbetaDeriv(dsp): |
---|
1924 | '''default doc string |
---|
1925 | |
---|
1926 | :param type name: description |
---|
1927 | |
---|
1928 | :returns: type name: description |
---|
1929 | |
---|
1930 | ''' |
---|
1931 | return 1.0,1./dsp**4,1./dsp |
---|
1932 | |
---|
1933 | def getTOFalpha(ins,dsp): |
---|
1934 | '''default doc string |
---|
1935 | |
---|
1936 | :param type name: description |
---|
1937 | |
---|
1938 | :returns: type name: description |
---|
1939 | |
---|
1940 | ''' |
---|
1941 | return ins['alpha']/dsp |
---|
1942 | |
---|
1943 | def getTOFalphaDeriv(dsp): |
---|
1944 | '''default doc string |
---|
1945 | |
---|
1946 | :param type name: description |
---|
1947 | |
---|
1948 | :returns: type name: description |
---|
1949 | |
---|
1950 | ''' |
---|
1951 | return 1./dsp |
---|
1952 | |
---|
1953 | def setPeakparms(Parms,Parms2,pos,mag,ifQ=False,useFit=False): |
---|
1954 | '''default doc string |
---|
1955 | |
---|
1956 | :param type name: description |
---|
1957 | |
---|
1958 | :returns: type name: description |
---|
1959 | |
---|
1960 | ''' |
---|
1961 | ind = 0 |
---|
1962 | if useFit: |
---|
1963 | ind = 1 |
---|
1964 | ins = {} |
---|
1965 | if 'C' in Parms['Type'][0]: #CW data - TOF later in an elif |
---|
1966 | for x in ['U','V','W','X','Y']: |
---|
1967 | ins[x] = Parms[x][ind] |
---|
1968 | if ifQ: #qplot - convert back to 2-theta |
---|
1969 | pos = 2.0*asind(pos*wave/(4*math.pi)) |
---|
1970 | sig = getCWsig(ins,pos) |
---|
1971 | gam = getCWgam(ins,pos) |
---|
1972 | XY = [pos,0, mag,1, sig,0, gam,0] #default refine intensity 1st |
---|
1973 | else: |
---|
1974 | if ifQ: |
---|
1975 | dsp = 2.*np.pi/pos |
---|
1976 | pos = Parms['difC']*dsp |
---|
1977 | else: |
---|
1978 | dsp = pos/Parms['difC'][1] |
---|
1979 | if 'Pdabc' in Parms2: |
---|
1980 | for x in ['sig-0','sig-1','sig-q','X','Y']: |
---|
1981 | ins[x] = Parms[x][ind] |
---|
1982 | Pdabc = Parms2['Pdabc'].T |
---|
1983 | alp = np.interp(dsp,Pdabc[0],Pdabc[1]) |
---|
1984 | bet = np.interp(dsp,Pdabc[0],Pdabc[2]) |
---|
1985 | else: |
---|
1986 | for x in ['alpha','beta-0','beta-1','beta-q','sig-0','sig-1','sig-q','X','Y']: |
---|
1987 | ins[x] = Parms[x][ind] |
---|
1988 | alp = getTOFalpha(ins,dsp) |
---|
1989 | bet = getTOFbeta(ins,dsp) |
---|
1990 | sig = getTOFsig(ins,dsp) |
---|
1991 | gam = getTOFgamma(ins,dsp) |
---|
1992 | XY = [pos,0,mag,1,alp,0,bet,0,sig,0,gam,0] |
---|
1993 | return XY |
---|
1994 | |
---|
1995 | ################################################################################ |
---|
1996 | ##### MC/SA stuff |
---|
1997 | ################################################################################ |
---|
1998 | |
---|
1999 | #scipy/optimize/anneal.py code modified by R. Von Dreele 2013 |
---|
2000 | # Original Author: Travis Oliphant 2002 |
---|
2001 | # Bug-fixes in 2006 by Tim Leslie |
---|
2002 | |
---|
2003 | |
---|
2004 | import numpy |
---|
2005 | from numpy import asarray, tan, exp, ones, squeeze, sign, \ |
---|
2006 | all, log, sqrt, pi, shape, array, minimum, where |
---|
2007 | from numpy import random |
---|
2008 | |
---|
2009 | #__all__ = ['anneal'] |
---|
2010 | |
---|
2011 | _double_min = numpy.finfo(float).min |
---|
2012 | _double_max = numpy.finfo(float).max |
---|
2013 | class base_schedule(object): |
---|
2014 | def __init__(self): |
---|
2015 | self.dwell = 20 |
---|
2016 | self.learn_rate = 0.5 |
---|
2017 | self.lower = -10 |
---|
2018 | self.upper = 10 |
---|
2019 | self.Ninit = 50 |
---|
2020 | self.accepted = 0 |
---|
2021 | self.tests = 0 |
---|
2022 | self.feval = 0 |
---|
2023 | self.k = 0 |
---|
2024 | self.T = None |
---|
2025 | |
---|
2026 | def init(self, **options): |
---|
2027 | self.__dict__.update(options) |
---|
2028 | self.lower = asarray(self.lower) |
---|
2029 | self.lower = where(self.lower == numpy.NINF, -_double_max, self.lower) |
---|
2030 | self.upper = asarray(self.upper) |
---|
2031 | self.upper = where(self.upper == numpy.PINF, _double_max, self.upper) |
---|
2032 | self.k = 0 |
---|
2033 | self.accepted = 0 |
---|
2034 | self.feval = 0 |
---|
2035 | self.tests = 0 |
---|
2036 | |
---|
2037 | def getstart_temp(self, best_state): |
---|
2038 | """ Find a matching starting temperature and starting parameters vector |
---|
2039 | i.e. find x0 such that func(x0) = T0. |
---|
2040 | |
---|
2041 | Parameters |
---|
2042 | ---------- |
---|
2043 | best_state : _state |
---|
2044 | A _state object to store the function value and x0 found. |
---|
2045 | |
---|
2046 | returns |
---|
2047 | ------- |
---|
2048 | x0 : array |
---|
2049 | The starting parameters vector. |
---|
2050 | """ |
---|
2051 | |
---|
2052 | assert(not self.dims is None) |
---|
2053 | lrange = self.lower |
---|
2054 | urange = self.upper |
---|
2055 | fmax = _double_min |
---|
2056 | fmin = _double_max |
---|
2057 | for _ in range(self.Ninit): |
---|
2058 | x0 = random.uniform(size=self.dims)*(urange-lrange) + lrange |
---|
2059 | fval = self.func(x0, *self.args) |
---|
2060 | self.feval += 1 |
---|
2061 | if fval > fmax: |
---|
2062 | fmax = fval |
---|
2063 | if fval < fmin: |
---|
2064 | fmin = fval |
---|
2065 | best_state.cost = fval |
---|
2066 | best_state.x = array(x0) |
---|
2067 | |
---|
2068 | self.T0 = (fmax-fmin)*1.5 |
---|
2069 | return best_state.x |
---|
2070 | |
---|
2071 | def accept_test(self, dE): |
---|
2072 | T = self.T |
---|
2073 | self.tests += 1 |
---|
2074 | if dE < 0: |
---|
2075 | self.accepted += 1 |
---|
2076 | return 1 |
---|
2077 | p = exp(-dE*1.0/self.boltzmann/T) |
---|
2078 | if (p > random.uniform(0.0, 1.0)): |
---|
2079 | self.accepted += 1 |
---|
2080 | return 1 |
---|
2081 | return 0 |
---|
2082 | |
---|
2083 | def update_guess(self, x0): |
---|
2084 | return np.squeeze(np.random.uniform(0.,1.,size=self.dims))*(self.upper-self.lower)+self.lower |
---|
2085 | |
---|
2086 | def update_temp(self, x0): |
---|
2087 | pass |
---|
2088 | |
---|
2089 | |
---|
2090 | # A schedule due to Lester Ingber modified to use bounds - OK |
---|
2091 | class fast_sa(base_schedule): |
---|
2092 | def init(self, **options): |
---|
2093 | self.__dict__.update(options) |
---|
2094 | if self.m is None: |
---|
2095 | self.m = 1.0 |
---|
2096 | if self.n is None: |
---|
2097 | self.n = 1.0 |
---|
2098 | self.c = self.m * exp(-self.n * self.quench) |
---|
2099 | |
---|
2100 | def update_guess(self, x0): |
---|
2101 | x0 = asarray(x0) |
---|
2102 | u = squeeze(random.uniform(0.0, 1.0, size=self.dims)) |
---|
2103 | T = self.T |
---|
2104 | xc = (sign(u-0.5)*T*((1+1.0/T)**abs(2*u-1)-1.0)+1.0)/2.0 |
---|
2105 | xnew = xc*(self.upper - self.lower)+self.lower |
---|
2106 | return xnew |
---|
2107 | # y = sign(u-0.5)*T*((1+1.0/T)**abs(2*u-1)-1.0) |
---|
2108 | # xc = y*(self.upper - self.lower) |
---|
2109 | # xnew = x0 + xc |
---|
2110 | # return xnew |
---|
2111 | |
---|
2112 | def update_temp(self): |
---|
2113 | self.T = self.T0*exp(-self.c * self.k**(self.quench)) |
---|
2114 | self.k += 1 |
---|
2115 | return |
---|
2116 | |
---|
2117 | class cauchy_sa(base_schedule): #modified to use bounds - not good |
---|
2118 | def update_guess(self, x0): |
---|
2119 | x0 = asarray(x0) |
---|
2120 | numbers = squeeze(random.uniform(-pi/4, pi/4, size=self.dims)) |
---|
2121 | xc = (1.+(self.learn_rate * self.T * tan(numbers))%1.) |
---|
2122 | xnew = xc*(self.upper - self.lower)+self.lower |
---|
2123 | return xnew |
---|
2124 | # numbers = squeeze(random.uniform(-pi/2, pi/2, size=self.dims)) |
---|
2125 | # xc = self.learn_rate * self.T * tan(numbers) |
---|
2126 | # xnew = x0 + xc |
---|
2127 | # return xnew |
---|
2128 | |
---|
2129 | def update_temp(self): |
---|
2130 | self.T = self.T0/(1+self.k) |
---|
2131 | self.k += 1 |
---|
2132 | return |
---|
2133 | |
---|
2134 | class boltzmann_sa(base_schedule): |
---|
2135 | # def update_guess(self, x0): |
---|
2136 | # std = minimum(sqrt(self.T)*ones(self.dims), (self.upper-self.lower)/3.0/self.learn_rate) |
---|
2137 | # x0 = asarray(x0) |
---|
2138 | # xc = squeeze(random.normal(0, 1.0, size=self.dims)) |
---|
2139 | # |
---|
2140 | # xnew = x0 + xc*std*self.learn_rate |
---|
2141 | # return xnew |
---|
2142 | |
---|
2143 | def update_temp(self): |
---|
2144 | self.k += 1 |
---|
2145 | self.T = self.T0 / log(self.k+1.0) |
---|
2146 | return |
---|
2147 | |
---|
2148 | class log_sa(base_schedule): #OK |
---|
2149 | |
---|
2150 | def init(self,**options): |
---|
2151 | self.__dict__.update(options) |
---|
2152 | |
---|
2153 | # def update_guess(self,x0): |
---|
2154 | # return np.squeeze(np.random.uniform(0.,1.,size=self.dims))*(self.upper-self.lower)+self.lower |
---|
2155 | |
---|
2156 | def update_temp(self): |
---|
2157 | self.k += 1 |
---|
2158 | self.T = self.T0*self.slope**self.k |
---|
2159 | |
---|
2160 | class Tremayne_sa(base_schedule): #needs fixing for two steps |
---|
2161 | |
---|
2162 | def init(self,**options): |
---|
2163 | self.__dict__.update(options) |
---|
2164 | |
---|
2165 | # def update_guess(self,x0): |
---|
2166 | # x0 = np.asarray(x0) |
---|
2167 | # u = np.squeeze(np.random.uniform(0.,1.,size=self.dims)) |
---|
2168 | # xnew = x0+u |
---|
2169 | # return xnew |
---|
2170 | |
---|
2171 | def update_temp(self): |
---|
2172 | self.k += 1 |
---|
2173 | self.T = self.T0*self.slope**k |
---|
2174 | |
---|
2175 | class _state(object): |
---|
2176 | def __init__(self): |
---|
2177 | self.x = None |
---|
2178 | self.cost = None |
---|
2179 | |
---|
2180 | # TODO: |
---|
2181 | # allow for general annealing temperature profile |
---|
2182 | # in that case use update given by alpha and omega and |
---|
2183 | # variation of all previous updates and temperature? |
---|
2184 | |
---|
2185 | # Simulated annealing |
---|
2186 | |
---|
2187 | def anneal(func, x0, args=(), schedule='fast', full_output=0, |
---|
2188 | T0=None, Tf=1e-12, maxeval=None, maxaccept=None, maxiter=400, |
---|
2189 | boltzmann=1.0, learn_rate=0.5, feps=1e-6, quench=1.0, m=1.0, n=1.0, |
---|
2190 | lower=-100, upper=100, dwell=50, slope=0.9,dlg=None): |
---|
2191 | """Minimize a function using simulated annealing. |
---|
2192 | |
---|
2193 | Schedule is a schedule class implementing the annealing schedule. |
---|
2194 | Available ones are 'fast', 'cauchy', 'boltzmann' |
---|
2195 | |
---|
2196 | :param callable func: f(x, \*args) |
---|
2197 | Function to be optimized. |
---|
2198 | :param ndarray x0: |
---|
2199 | Initial guess. |
---|
2200 | :param tuple args: |
---|
2201 | Extra parameters to `func`. |
---|
2202 | :param base_schedule schedule: |
---|
2203 | Annealing schedule to use (a class). |
---|
2204 | :param bool full_output: |
---|
2205 | Whether to return optional outputs. |
---|
2206 | :param float T0: |
---|
2207 | Initial Temperature (estimated as 1.2 times the largest |
---|
2208 | cost-function deviation over random points in the range). |
---|
2209 | :param float Tf: |
---|
2210 | Final goal temperature. |
---|
2211 | :param int maxeval: |
---|
2212 | Maximum function evaluations. |
---|
2213 | :param int maxaccept: |
---|
2214 | Maximum changes to accept. |
---|
2215 | :param int maxiter: |
---|
2216 | Maximum cooling iterations. |
---|
2217 | :param float learn_rate: |
---|
2218 | Scale constant for adjusting guesses. |
---|
2219 | :param float boltzmann: |
---|
2220 | Boltzmann constant in acceptance test |
---|
2221 | (increase for less stringent test at each temperature). |
---|
2222 | :param float feps: |
---|
2223 | Stopping relative error tolerance for the function value in |
---|
2224 | last four coolings. |
---|
2225 | :param float quench,m,n: |
---|
2226 | Parameters to alter fast_sa schedule. |
---|
2227 | :param float/ndarray lower,upper: |
---|
2228 | Lower and upper bounds on `x`. |
---|
2229 | :param int dwell: |
---|
2230 | The number of times to search the space at each temperature. |
---|
2231 | :param float slope: |
---|
2232 | Parameter for log schedule |
---|
2233 | |
---|
2234 | :returns: (xmin, Jmin, T, feval, iters, accept, retval) where |
---|
2235 | |
---|
2236 | * xmin (ndarray): Point giving smallest value found. |
---|
2237 | * Jmin (float): Minimum value of function found. |
---|
2238 | * T (float): Final temperature. |
---|
2239 | * feval (int): Number of function evaluations. |
---|
2240 | * iters (int): Number of cooling iterations. |
---|
2241 | * accept (int): Number of tests accepted. |
---|
2242 | * retval (int): Flag indicating stopping condition: |
---|
2243 | |
---|
2244 | * 0: Points no longer changing |
---|
2245 | * 1: Cooled to final temperature |
---|
2246 | * 2: Maximum function evaluations |
---|
2247 | * 3: Maximum cooling iterations reached |
---|
2248 | * 4: Maximum accepted query locations reached |
---|
2249 | * 5: Final point not the minimum amongst encountered points |
---|
2250 | |
---|
2251 | *Notes*: |
---|
2252 | Simulated annealing is a random algorithm which uses no derivative |
---|
2253 | information from the function being optimized. In practice it has |
---|
2254 | been more useful in discrete optimization than continuous |
---|
2255 | optimization, as there are usually better algorithms for continuous |
---|
2256 | optimization problems. |
---|
2257 | |
---|
2258 | Some experimentation by trying the difference temperature |
---|
2259 | schedules and altering their parameters is likely required to |
---|
2260 | obtain good performance. |
---|
2261 | |
---|
2262 | The randomness in the algorithm comes from random sampling in numpy. |
---|
2263 | To obtain the same results you can call numpy.random.seed with the |
---|
2264 | same seed immediately before calling scipy.optimize.anneal. |
---|
2265 | |
---|
2266 | We give a brief description of how the three temperature schedules |
---|
2267 | generate new points and vary their temperature. Temperatures are |
---|
2268 | only updated with iterations in the outer loop. The inner loop is |
---|
2269 | over xrange(dwell), and new points are generated for |
---|
2270 | every iteration in the inner loop. (Though whether the proposed |
---|
2271 | new points are accepted is probabilistic.) |
---|
2272 | |
---|
2273 | For readability, let d denote the dimension of the inputs to func. |
---|
2274 | Also, let x_old denote the previous state, and k denote the |
---|
2275 | iteration number of the outer loop. All other variables not |
---|
2276 | defined below are input variables to scipy.optimize.anneal itself. |
---|
2277 | |
---|
2278 | In the 'fast' schedule the updates are :: |
---|
2279 | |
---|
2280 | u ~ Uniform(0, 1, size=d) |
---|
2281 | y = sgn(u - 0.5) * T * ((1+ 1/T)**abs(2u-1) -1.0) |
---|
2282 | xc = y * (upper - lower) |
---|
2283 | x_new = x_old + xc |
---|
2284 | |
---|
2285 | c = n * exp(-n * quench) |
---|
2286 | T_new = T0 * exp(-c * k**quench) |
---|
2287 | |
---|
2288 | |
---|
2289 | In the 'cauchy' schedule the updates are :: |
---|
2290 | |
---|
2291 | u ~ Uniform(-pi/2, pi/2, size=d) |
---|
2292 | xc = learn_rate * T * tan(u) |
---|
2293 | x_new = x_old + xc |
---|
2294 | |
---|
2295 | T_new = T0 / (1+k) |
---|
2296 | |
---|
2297 | In the 'boltzmann' schedule the updates are :: |
---|
2298 | |
---|
2299 | std = minimum( sqrt(T) * ones(d), (upper-lower) / (3*learn_rate) ) |
---|
2300 | y ~ Normal(0, std, size=d) |
---|
2301 | x_new = x_old + learn_rate * y |
---|
2302 | |
---|
2303 | T_new = T0 / log(1+k) |
---|
2304 | |
---|
2305 | """ |
---|
2306 | x0 = asarray(x0) |
---|
2307 | lower = asarray(lower) |
---|
2308 | upper = asarray(upper) |
---|
2309 | |
---|
2310 | schedule = eval(schedule+'_sa()') |
---|
2311 | # initialize the schedule |
---|
2312 | schedule.init(dims=shape(x0),func=func,args=args,boltzmann=boltzmann,T0=T0, |
---|
2313 | learn_rate=learn_rate, lower=lower, upper=upper, |
---|
2314 | m=m, n=n, quench=quench, dwell=dwell, slope=slope) |
---|
2315 | |
---|
2316 | current_state, last_state, best_state = _state(), _state(), _state() |
---|
2317 | if T0 is None: |
---|
2318 | x0 = schedule.getstart_temp(best_state) |
---|
2319 | else: |
---|
2320 | x0 = random.uniform(size=len(x0))*(upper-lower) + lower |
---|
2321 | best_state.x = None |
---|
2322 | best_state.cost = numpy.Inf |
---|
2323 | |
---|
2324 | last_state.x = asarray(x0).copy() |
---|
2325 | fval = func(x0,*args) |
---|
2326 | schedule.feval += 1 |
---|
2327 | last_state.cost = fval |
---|
2328 | if last_state.cost < best_state.cost: |
---|
2329 | best_state.cost = fval |
---|
2330 | best_state.x = asarray(x0).copy() |
---|
2331 | schedule.T = schedule.T0 |
---|
2332 | fqueue = [100, 300, 500, 700] |
---|
2333 | iters = 0 |
---|
2334 | keepGoing = True |
---|
2335 | while keepGoing: |
---|
2336 | retval = 0 |
---|
2337 | for n in xrange(dwell): |
---|
2338 | current_state.x = schedule.update_guess(last_state.x) |
---|
2339 | current_state.cost = func(current_state.x,*args) |
---|
2340 | schedule.feval += 1 |
---|
2341 | |
---|
2342 | dE = current_state.cost - last_state.cost |
---|
2343 | if schedule.accept_test(dE): |
---|
2344 | last_state.x = current_state.x.copy() |
---|
2345 | last_state.cost = current_state.cost |
---|
2346 | if last_state.cost < best_state.cost: |
---|
2347 | best_state.x = last_state.x.copy() |
---|
2348 | best_state.cost = last_state.cost |
---|
2349 | if dlg: |
---|
2350 | GoOn = dlg.Update(best_state.cost*100, |
---|
2351 | newmsg='%s%8.5f\n%s%8.4f%s'%('Temperature =',schedule.T,'MC/SA Residual =',best_state.cost*100,'%'))[0] |
---|
2352 | if not GoOn: |
---|
2353 | best_state.x = last_state.x.copy() |
---|
2354 | best_state.cost = last_state.cost |
---|
2355 | retval = 5 |
---|
2356 | schedule.update_temp() |
---|
2357 | iters += 1 |
---|
2358 | # Stopping conditions |
---|
2359 | # 0) last saved values of f from each cooling step |
---|
2360 | # are all very similar (effectively cooled) |
---|
2361 | # 1) Tf is set and we are below it |
---|
2362 | # 2) maxeval is set and we are past it |
---|
2363 | # 3) maxiter is set and we are past it |
---|
2364 | # 4) maxaccept is set and we are past it |
---|
2365 | # 5) user canceled run via progress bar |
---|
2366 | |
---|
2367 | fqueue.append(squeeze(last_state.cost)) |
---|
2368 | fqueue.pop(0) |
---|
2369 | af = asarray(fqueue)*1.0 |
---|
2370 | if retval == 5: |
---|
2371 | print ' User terminated run; incomplete MC/SA' |
---|
2372 | keepGoing = False |
---|
2373 | break |
---|
2374 | if all(abs((af-af[0])/af[0]) < feps): |
---|
2375 | retval = 0 |
---|
2376 | if abs(af[-1]-best_state.cost) > feps*10: |
---|
2377 | retval = 5 |
---|
2378 | # print "Warning: Cooled to %f at %s but this is not" \ |
---|
2379 | # % (squeeze(last_state.cost), str(squeeze(last_state.x))) \ |
---|
2380 | # + " the smallest point found." |
---|
2381 | break |
---|
2382 | if (Tf is not None) and (schedule.T < Tf): |
---|
2383 | retval = 1 |
---|
2384 | break |
---|
2385 | if (maxeval is not None) and (schedule.feval > maxeval): |
---|
2386 | retval = 2 |
---|
2387 | break |
---|
2388 | if (iters > maxiter): |
---|
2389 | print "Warning: Maximum number of iterations exceeded." |
---|
2390 | retval = 3 |
---|
2391 | break |
---|
2392 | if (maxaccept is not None) and (schedule.accepted > maxaccept): |
---|
2393 | retval = 4 |
---|
2394 | break |
---|
2395 | |
---|
2396 | if full_output: |
---|
2397 | return best_state.x, best_state.cost, schedule.T, \ |
---|
2398 | schedule.feval, iters, schedule.accepted, retval |
---|
2399 | else: |
---|
2400 | return best_state.x, retval |
---|
2401 | |
---|
2402 | def worker(iCyc,data,RBdata,reflType,reflData,covData,out_q): |
---|
2403 | outlist = [] |
---|
2404 | for n in range(iCyc): |
---|
2405 | result = mcsaSearch(data,RBdata,reflType,reflData,covData,None) |
---|
2406 | outlist.append(result[0]) |
---|
2407 | print ' MC/SA residual: %.3f%% structure factor time: %.3f'%(100*result[0][2],result[1]) |
---|
2408 | out_q.put(outlist) |
---|
2409 | |
---|
2410 | def MPmcsaSearch(nCyc,data,RBdata,reflType,reflData,covData): |
---|
2411 | import multiprocessing as mp |
---|
2412 | |
---|
2413 | nprocs = mp.cpu_count() |
---|
2414 | out_q = mp.Queue() |
---|
2415 | procs = [] |
---|
2416 | iCyc = np.zeros(nprocs) |
---|
2417 | for i in range(nCyc): |
---|
2418 | iCyc[i%nprocs] += 1 |
---|
2419 | for i in range(nprocs): |
---|
2420 | p = mp.Process(target=worker,args=(int(iCyc[i]),data,RBdata,reflType,reflData,covData,out_q)) |
---|
2421 | procs.append(p) |
---|
2422 | p.start() |
---|
2423 | resultlist = [] |
---|
2424 | for i in range(nprocs): |
---|
2425 | resultlist += out_q.get() |
---|
2426 | for p in procs: |
---|
2427 | p.join() |
---|
2428 | return resultlist |
---|
2429 | |
---|
2430 | def mcsaSearch(data,RBdata,reflType,reflData,covData,pgbar): |
---|
2431 | '''default doc string |
---|
2432 | |
---|
2433 | :param type name: description |
---|
2434 | |
---|
2435 | :returns: type name: description |
---|
2436 | |
---|
2437 | ''' |
---|
2438 | gamFW = lambda s,g: math.exp(math.log(s**5+2.69269*s**4*g+2.42843*s**3*g**2+4.47163*s**2*g**3+0.07842*s*g**4+g**5)/5.) |
---|
2439 | |
---|
2440 | twopi = 2.0*np.pi |
---|
2441 | global tsum |
---|
2442 | tsum = 0. |
---|
2443 | |
---|
2444 | def getMDparms(item,pfx,parmDict,varyList): |
---|
2445 | parmDict[pfx+'MDaxis'] = item['axis'] |
---|
2446 | parmDict[pfx+'MDval'] = item['Coef'][0] |
---|
2447 | if item['Coef'][1]: |
---|
2448 | varyList += [pfx+'MDval',] |
---|
2449 | limits = item['Coef'][2] |
---|
2450 | lower.append(limits[0]) |
---|
2451 | upper.append(limits[1]) |
---|
2452 | |
---|
2453 | def getAtomparms(item,pfx,aTypes,SGData,parmDict,varyList): |
---|
2454 | parmDict[pfx+'Atype'] = item['atType'] |
---|
2455 | aTypes |= set([item['atType'],]) |
---|
2456 | pstr = ['Ax','Ay','Az'] |
---|
2457 | XYZ = [0,0,0] |
---|
2458 | for i in range(3): |
---|
2459 | name = pfx+pstr[i] |
---|
2460 | parmDict[name] = item['Pos'][0][i] |
---|
2461 | XYZ[i] = parmDict[name] |
---|
2462 | if item['Pos'][1][i]: |
---|
2463 | varyList += [name,] |
---|
2464 | limits = item['Pos'][2][i] |
---|
2465 | lower.append(limits[0]) |
---|
2466 | upper.append(limits[1]) |
---|
2467 | parmDict[pfx+'Amul'] = len(G2spc.GenAtom(XYZ,SGData)) |
---|
2468 | |
---|
2469 | def getRBparms(item,mfx,aTypes,RBdata,SGData,atNo,parmDict,varyList): |
---|
2470 | parmDict[mfx+'MolCent'] = item['MolCent'] |
---|
2471 | parmDict[mfx+'RBId'] = item['RBId'] |
---|
2472 | pstr = ['Px','Py','Pz'] |
---|
2473 | ostr = ['Qa','Qi','Qj','Qk'] |
---|
2474 | for i in range(3): |
---|
2475 | name = mfx+pstr[i] |
---|
2476 | parmDict[name] = item['Pos'][0][i] |
---|
2477 | if item['Pos'][1][i]: |
---|
2478 | varyList += [name,] |
---|
2479 | limits = item['Pos'][2][i] |
---|
2480 | lower.append(limits[0]) |
---|
2481 | upper.append(limits[1]) |
---|
2482 | for i in range(4): |
---|
2483 | name = mfx+ostr[i] |
---|
2484 | parmDict[name] = item['Ori'][0][i] |
---|
2485 | if item['Ovar'] == 'AV' and i: |
---|
2486 | varyList += [name,] |
---|
2487 | limits = item['Ori'][2][i] |
---|
2488 | lower.append(limits[0]) |
---|
2489 | upper.append(limits[1]) |
---|
2490 | elif item['Ovar'] == 'A' and not i: |
---|
2491 | varyList += [name,] |
---|
2492 | limits = item['Ori'][2][i] |
---|
2493 | lower.append(limits[0]) |
---|
2494 | upper.append(limits[1]) |
---|
2495 | if 'Tor' in item: #'Tor' not there for 'Vector' RBs |
---|
2496 | for i in range(len(item['Tor'][0])): |
---|
2497 | name = mfx+'Tor'+str(i) |
---|
2498 | parmDict[name] = item['Tor'][0][i] |
---|
2499 | if item['Tor'][1][i]: |
---|
2500 | varyList += [name,] |
---|
2501 | limits = item['Tor'][2][i] |
---|
2502 | lower.append(limits[0]) |
---|
2503 | upper.append(limits[1]) |
---|
2504 | atypes = RBdata[item['Type']][item['RBId']]['rbTypes'] |
---|
2505 | aTypes |= set(atypes) |
---|
2506 | atNo += len(atypes) |
---|
2507 | return atNo |
---|
2508 | |
---|
2509 | def GetAtomM(Xdata,SGData): |
---|
2510 | Mdata = [] |
---|
2511 | for xyz in Xdata: |
---|
2512 | Mdata.append(float(len(G2spc.GenAtom(xyz,SGData)))) |
---|
2513 | return np.array(Mdata) |
---|
2514 | |
---|
2515 | def GetAtomTX(RBdata,parmDict): |
---|
2516 | 'Needs a doc string' |
---|
2517 | Bmat = parmDict['Bmat'] |
---|
2518 | atNo = parmDict['atNo'] |
---|
2519 | nfixAt = parmDict['nfixAt'] |
---|
2520 | Tdata = atNo*[' ',] |
---|
2521 | Xdata = np.zeros((3,atNo)) |
---|
2522 | keys = {':Atype':Tdata,':Ax':Xdata[0],':Ay':Xdata[1],':Az':Xdata[2]} |
---|
2523 | for iatm in range(nfixAt): |
---|
2524 | for key in keys: |
---|
2525 | parm = ':'+str(iatm)+key |
---|
2526 | if parm in parmDict: |
---|
2527 | if key == ':Atype': |
---|
2528 | keys[key][iatm] = aTypes.index(parmDict[parm]) |
---|
2529 | else: |
---|
2530 | keys[key][iatm] = parmDict[parm] |
---|
2531 | iatm = nfixAt |
---|
2532 | for iObj in range(parmDict['nObj']): |
---|
2533 | pfx = str(iObj)+':' |
---|
2534 | if parmDict[pfx+'Type'] in ['Vector','Residue']: |
---|
2535 | if parmDict[pfx+'Type'] == 'Vector': |
---|
2536 | RBRes = RBdata['Vector'][parmDict[pfx+'RBId']] |
---|
2537 | vecs = RBRes['rbVect'] |
---|
2538 | mags = RBRes['VectMag'] |
---|
2539 | Cart = np.zeros_like(vecs[0]) |
---|
2540 | for vec,mag in zip(vecs,mags): |
---|
2541 | Cart += vec*mag |
---|
2542 | elif parmDict[pfx+'Type'] == 'Residue': |
---|
2543 | RBRes = RBdata['Residue'][parmDict[pfx+'RBId']] |
---|
2544 | Cart = np.array(RBRes['rbXYZ']) |
---|
2545 | for itor,seq in enumerate(RBRes['rbSeq']): |
---|
2546 | tName = pfx+'Tor'+str(itor) |
---|
2547 | QuatA = AVdeg2Q(parmDict[tName],Cart[seq[0]]-Cart[seq[1]]) |
---|
2548 | for ride in seq[3]: |
---|
2549 | Cart[ride] = prodQVQ(QuatA,Cart[ride]-Cart[seq[1]])+Cart[seq[1]] |
---|
2550 | if parmDict[pfx+'MolCent'][1]: |
---|
2551 | Cart -= parmDict[pfx+'MolCent'][0] |
---|
2552 | Qori = normQ(np.array([parmDict[pfx+'Qa'],parmDict[pfx+'Qi'],parmDict[pfx+'Qj'],parmDict[pfx+'Qk']])) |
---|
2553 | Pos = np.array([parmDict[pfx+'Px'],parmDict[pfx+'Py'],parmDict[pfx+'Pz']]) |
---|
2554 | for i,x in enumerate(Cart): |
---|
2555 | X = np.inner(Bmat,prodQVQ(Qori,x))+Pos |
---|
2556 | for j in range(3): |
---|
2557 | Xdata[j][iatm] = X[j] |
---|
2558 | Tdata[iatm] = aTypes.index(RBRes['rbTypes'][i]) |
---|
2559 | iatm += 1 |
---|
2560 | elif parmDict[pfx+'Type'] == 'Atom': |
---|
2561 | atNo = parmDict[pfx+'atNo'] |
---|
2562 | for key in keys: |
---|
2563 | parm = pfx+key[1:] #remove extra ':' |
---|
2564 | if parm in parmDict: |
---|
2565 | if key == ':Atype': |
---|
2566 | keys[key][atNo] = aTypes.index(parmDict[parm]) |
---|
2567 | else: |
---|
2568 | keys[key][atNo] = parmDict[parm] |
---|
2569 | iatm += 1 |
---|
2570 | else: |
---|
2571 | continue #skips March Dollase |
---|
2572 | return Tdata,Xdata.T |
---|
2573 | |
---|
2574 | def calcMDcorr(MDval,MDaxis,Uniq,G): |
---|
2575 | ''' Calls fortran routine''' |
---|
2576 | MDcorr = pyd.pymdcalc(MDval,MDaxis,len(Uniq),Uniq.flatten(),G) |
---|
2577 | return MDcorr |
---|
2578 | |
---|
2579 | def mcsaMDSFcalc(ifInv,Tdata,Mdata,Xdata,MDval,MDaxis,G,mul,FFs,Uniq,Phi): |
---|
2580 | ''' Calls fortran routine''' |
---|
2581 | Icalc = pyd.pymcsamdsfcalc(ifInv,len(Tdata),Tdata,Mdata,Xdata.flatten(), |
---|
2582 | MDval,MDaxis,G,mul,len(FFs),FFs,len(Uniq),Uniq.flatten(),Phi) |
---|
2583 | return Icalc |
---|
2584 | |
---|
2585 | def mcsaSFcalc(ifInv,Tdata,Mdata,Xdata,mul,FFs,Uniq,Phi): |
---|
2586 | ''' Calls fortran routine''' |
---|
2587 | Icalc = pyd.pymcsasfcalc(ifInv,len(Tdata),Tdata,Mdata,Xdata.flatten(), |
---|
2588 | mul,len(FFs),FFs,len(Uniq),Uniq.flatten(),Phi) |
---|
2589 | return Icalc |
---|
2590 | |
---|
2591 | def mcsaCalc(values,refList,rcov,ifInv,RBdata,varyList,parmDict): |
---|
2592 | ''' Compute structure factors for all h,k,l for phase |
---|
2593 | input: |
---|
2594 | refList: [ref] where each ref = h,k,l,m,d,...,[equiv h,k,l],phase[equiv] |
---|
2595 | ParmDict: |
---|
2596 | puts result F^2 in each ref[8] in refList |
---|
2597 | ''' |
---|
2598 | global tsum |
---|
2599 | parmDict.update(dict(zip(varyList,values))) |
---|
2600 | Tdata,Xdata = GetAtomTX(RBdata,parmDict) |
---|
2601 | Mdata = parmDict['Mdata'] |
---|
2602 | MDval = parmDict['0:MDval'] |
---|
2603 | MDaxis = parmDict['0:MDaxis'] |
---|
2604 | Gmat = parmDict['Gmat'] |
---|
2605 | Srefs = np.zeros(len(refList)) |
---|
2606 | sumFcsq = 0. |
---|
2607 | for refl in refList: |
---|
2608 | t0 = time.time() |
---|
2609 | refl[5] = mcsaMDSFcalc(ifInv,Tdata,Mdata,Xdata,MDval,MDaxis,Gmat, |
---|
2610 | refl[3],refl[7],refl[8],refl[9]) |
---|
2611 | # refl[5] = mcsaSFcalc(ifInv,Tdata,Mdata,Xdata,refl[3],refl[7],refl[8],refl[9]) |
---|
2612 | # refl[5] *= calcMDcorr(MDval,MDaxis,refl[8],Gmat) |
---|
2613 | tsum += (time.time()-t0) |
---|
2614 | sumFcsq += refl[5] |
---|
2615 | scale = (parmDict['sumFosq']/sumFcsq) |
---|
2616 | for iref,refl in enumerate(refList): |
---|
2617 | refl[5] *= scale |
---|
2618 | Srefs[iref] = refl[4]-refl[5] |
---|
2619 | M = np.inner(Srefs,np.inner(rcov,Srefs)) |
---|
2620 | return M/parmDict['sumFosq']**2 |
---|
2621 | |
---|
2622 | sq8ln2 = np.sqrt(8*np.log(2)) |
---|
2623 | sq2pi = np.sqrt(2*np.pi) |
---|
2624 | sq4pi = np.sqrt(4*np.pi) |
---|
2625 | generalData = data['General'] |
---|
2626 | Amat,Bmat = G2lat.cell2AB(generalData['Cell'][1:7]) |
---|
2627 | Gmat = G2lat.cell2Gmat(generalData['Cell'][1:7])[0] |
---|
2628 | SGData = generalData['SGData'] |
---|
2629 | fixAtoms = data['Atoms'] #if any |
---|
2630 | cx,ct,cs = generalData['AtomPtrs'][:3] |
---|
2631 | aTypes = set([]) |
---|
2632 | parmDict = {'Bmat':Bmat,'Gmat':Gmat} |
---|
2633 | varyList = [] |
---|
2634 | atNo = 0 |
---|
2635 | for atm in fixAtoms: |
---|
2636 | pfx = ':'+str(atNo)+':' |
---|
2637 | parmDict[pfx+'Atype'] = atm[ct] |
---|
2638 | aTypes |= set([atm[ct],]) |
---|
2639 | pstr = ['Ax','Ay','Az'] |
---|
2640 | parmDict[pfx+'Amul'] = atm[cs+1] |
---|
2641 | for i in range(3): |
---|
2642 | name = pfx+pstr[i] |
---|
2643 | parmDict[name] = atm[cx+i] |
---|
2644 | atNo += 1 |
---|
2645 | parmDict['nfixAt'] = len(fixAtoms) |
---|
2646 | MCSA = generalData['MCSA controls'] |
---|
2647 | reflName = MCSA['Data source'] |
---|
2648 | phaseName = generalData['Name'] |
---|
2649 | MCSAObjs = data['MCSA']['Models'] #list of MCSA models |
---|
2650 | upper = [] |
---|
2651 | lower = [] |
---|
2652 | for i,item in enumerate(MCSAObjs): |
---|
2653 | mfx = str(i)+':' |
---|
2654 | parmDict[mfx+'Type'] = item['Type'] |
---|
2655 | if item['Type'] == 'MD': |
---|
2656 | getMDparms(item,mfx,parmDict,varyList) |
---|
2657 | elif item['Type'] == 'Atom': |
---|
2658 | getAtomparms(item,mfx,aTypes,SGData,parmDict,varyList) |
---|
2659 | parmDict[mfx+'atNo'] = atNo |
---|
2660 | atNo += 1 |
---|
2661 | elif item['Type'] in ['Residue','Vector']: |
---|
2662 | atNo = getRBparms(item,mfx,aTypes,RBdata,SGData,atNo,parmDict,varyList) |
---|
2663 | parmDict['atNo'] = atNo #total no. of atoms |
---|
2664 | parmDict['nObj'] = len(MCSAObjs) |
---|
2665 | aTypes = list(aTypes) |
---|
2666 | Tdata,Xdata = GetAtomTX(RBdata,parmDict) |
---|
2667 | parmDict['Mdata'] = GetAtomM(Xdata,SGData) |
---|
2668 | FFtables = G2el.GetFFtable(aTypes) |
---|
2669 | refs = [] |
---|
2670 | sumFosq = 0 |
---|
2671 | if 'PWDR' in reflName: |
---|
2672 | for ref in reflData: |
---|
2673 | h,k,l,m,d,pos,sig,gam,f = ref[:9] |
---|
2674 | if d >= MCSA['dmin']: |
---|
2675 | sig = gamFW(sig,gam)/sq8ln2 #--> sig from FWHM |
---|
2676 | SQ = 0.25/d**2 |
---|
2677 | Uniq,phi = G2spc.GenHKLf([h,k,l],SGData)[2:] |
---|
2678 | FFs = G2el.getFFvalues(FFtables,SQ,True) |
---|
2679 | refs.append([h,k,l,m,f*m,pos,sig,FFs,Uniq,phi]) |
---|
2680 | sumFosq += f*m |
---|
2681 | nRef = len(refs) |
---|
2682 | rcov = np.zeros((nRef,nRef)) |
---|
2683 | for iref,refI in enumerate(refs): |
---|
2684 | rcov[iref][iref] = 1./(sq4pi*refI[6]) |
---|
2685 | for jref,refJ in enumerate(refs[:iref]): |
---|
2686 | t1 = refI[6]**2+refJ[6]**2 |
---|
2687 | t2 = (refJ[5]-refI[5])**2/(2.*t1) |
---|
2688 | if t2 > 10.: |
---|
2689 | rcov[iref][jref] = 0. |
---|
2690 | else: |
---|
2691 | rcov[iref][jref] = 1./(sq2pi*np.sqrt(t1)*np.exp(t2)) |
---|
2692 | rcov += (rcov.T-np.diagflat(np.diagonal(rcov))) |
---|
2693 | Rdiag = np.sqrt(np.diag(rcov)) |
---|
2694 | Rnorm = np.outer(Rdiag,Rdiag) |
---|
2695 | rcov /= Rnorm |
---|
2696 | elif 'Pawley' in reflName: |
---|
2697 | covMatrix = covData['covMatrix'] |
---|
2698 | vList = covData['varyList'] |
---|
2699 | for iref,refI in enumerate(reflData): |
---|
2700 | h,k,l,m,d,v,f,s = refI |
---|
2701 | if d >= MCSA['dmin'] and v: #skip unrefined ones |
---|
2702 | SQ = 0.25/d**2 |
---|
2703 | Uniq,phi = G2spc.GenHKLf([h,k,l],SGData)[2:] |
---|
2704 | FFs = G2el.getFFvalues(FFtables,SQ,True) |
---|
2705 | refs.append([h,k,l,m,f*m,iref,0.,FFs,Uniq,phi]) |
---|
2706 | sumFosq += f*m |
---|
2707 | nRef = len(refs) |
---|
2708 | pfx = str(data['pId'])+'::PWLref:' |
---|
2709 | rcov = np.zeros((nRef,nRef)) |
---|
2710 | for iref,refI in enumerate(refs): |
---|
2711 | I = refI[5] |
---|
2712 | nameI = pfx+str(I) |
---|
2713 | if nameI in vList: |
---|
2714 | Iindx = vList.index(nameI) |
---|
2715 | rcov[iref][iref] = covMatrix[Iindx][Iindx] |
---|
2716 | for jref,refJ in enumerate(refs[:iref]): |
---|
2717 | J = refJ[5] |
---|
2718 | nameJ = pfx+str(J) |
---|
2719 | try: |
---|
2720 | rcov[iref][jref] = covMatrix[vList.index(nameI)][vList.index(nameJ)] |
---|
2721 | except ValueError: |
---|
2722 | rcov[iref][jref] = rcov[iref][jref-1] |
---|
2723 | else: |
---|
2724 | rcov[iref] = rcov[iref-1] |
---|
2725 | rcov[iref][iref] = rcov[iref-1][iref-1] |
---|
2726 | rcov += (rcov.T-np.diagflat(np.diagonal(rcov))) |
---|
2727 | Rdiag = np.sqrt(np.diag(rcov)) |
---|
2728 | Rnorm = np.outer(Rdiag,Rdiag) |
---|
2729 | rcov /= Rnorm |
---|
2730 | elif 'HKLF' in reflName: |
---|
2731 | for ref in reflData: |
---|
2732 | [h,k,l,m,d],f = ref[:5],ref[6] |
---|
2733 | if d >= MCSA['dmin']: |
---|
2734 | SQ = 0.25/d**2 |
---|
2735 | Uniq,phi = G2spc.GenHKLf([h,k,l],SGData)[2:] |
---|
2736 | FFs = G2el.getFFvalues(FFtables,SQ,True) |
---|
2737 | refs.append([h,k,l,m,f*m,0.,0.,FFs,Uniq,phi]) |
---|
2738 | sumFosq += f*m |
---|
2739 | nRef = len(refs) |
---|
2740 | rcov = np.identity(len(refs)) |
---|
2741 | print ' Minimum d-spacing used: %.2f No. reflections used: %d'%(MCSA['dmin'],nRef) |
---|
2742 | print ' Number of parameters varied: %d'%(len(varyList)) |
---|
2743 | parmDict['sumFosq'] = sumFosq |
---|
2744 | x0 = [parmDict[val] for val in varyList] |
---|
2745 | ifInv = SGData['SGInv'] |
---|
2746 | results = anneal(mcsaCalc,x0,args=(refs,rcov,ifInv,RBdata,varyList,parmDict), |
---|
2747 | schedule=MCSA['Algorithm'], full_output=True, |
---|
2748 | T0=MCSA['Annealing'][0], Tf=MCSA['Annealing'][1],dwell=MCSA['Annealing'][2], |
---|
2749 | boltzmann=MCSA['boltzmann'], learn_rate=0.5, |
---|
2750 | quench=MCSA['fast parms'][0], m=MCSA['fast parms'][1], n=MCSA['fast parms'][2], |
---|
2751 | lower=lower, upper=upper, slope=MCSA['log slope'],dlg=pgbar) |
---|
2752 | Result = [False,False,results[1],results[2],]+list(results[0]) |
---|
2753 | Result.append(varyList) |
---|
2754 | return Result,tsum |
---|
2755 | |
---|
2756 | |
---|
2757 | ################################################################################ |
---|
2758 | ##### Quaternion stuff |
---|
2759 | ################################################################################ |
---|
2760 | |
---|
2761 | def prodQQ(QA,QB): |
---|
2762 | ''' Grassman quaternion product |
---|
2763 | QA,QB quaternions; q=r+ai+bj+ck |
---|
2764 | ''' |
---|
2765 | D = np.zeros(4) |
---|
2766 | D[0] = QA[0]*QB[0]-QA[1]*QB[1]-QA[2]*QB[2]-QA[3]*QB[3] |
---|
2767 | D[1] = QA[0]*QB[1]+QA[1]*QB[0]+QA[2]*QB[3]-QA[3]*QB[2] |
---|
2768 | D[2] = QA[0]*QB[2]-QA[1]*QB[3]+QA[2]*QB[0]+QA[3]*QB[1] |
---|
2769 | D[3] = QA[0]*QB[3]+QA[1]*QB[2]-QA[2]*QB[1]+QA[3]*QB[0] |
---|
2770 | |
---|
2771 | # D[0] = QA[0]*QB[0]-np.dot(QA[1:],QB[1:]) |
---|
2772 | # D[1:] = QA[0]*QB[1:]+QB[0]*QA[1:]+np.cross(QA[1:],QB[1:]) |
---|
2773 | |
---|
2774 | return D |
---|
2775 | |
---|
2776 | def normQ(QA): |
---|
2777 | ''' get length of quaternion & normalize it |
---|
2778 | q=r+ai+bj+ck |
---|
2779 | ''' |
---|
2780 | n = np.sqrt(np.sum(np.array(QA)**2)) |
---|
2781 | return QA/n |
---|
2782 | |
---|
2783 | def invQ(Q): |
---|
2784 | ''' |
---|
2785 | get inverse of quaternion |
---|
2786 | q=r+ai+bj+ck; q* = r-ai-bj-ck |
---|
2787 | ''' |
---|
2788 | return Q*np.array([1,-1,-1,-1]) |
---|
2789 | |
---|
2790 | def prodQVQ(Q,V): |
---|
2791 | """ |
---|
2792 | compute the quaternion vector rotation qvq-1 = v' |
---|
2793 | q=r+ai+bj+ck |
---|
2794 | """ |
---|
2795 | VP = np.zeros(3) |
---|
2796 | T2 = Q[0]*Q[1] |
---|
2797 | T3 = Q[0]*Q[2] |
---|
2798 | T4 = Q[0]*Q[3] |
---|
2799 | T5 = -Q[1]*Q[1] |
---|
2800 | T6 = Q[1]*Q[2] |
---|
2801 | T7 = Q[1]*Q[3] |
---|
2802 | T8 = -Q[2]*Q[2] |
---|
2803 | T9 = Q[2]*Q[3] |
---|
2804 | T10 = -Q[3]*Q[3] |
---|
2805 | VP[0] = 2.*((T8+T10)*V[0]+(T6-T4)*V[1]+(T3+T7)*V[2])+V[0] |
---|
2806 | VP[1] = 2.*((T4+T6)*V[0]+(T5+T10)*V[1]+(T9-T2)*V[2])+V[1] |
---|
2807 | VP[2] = 2.*((T7-T3)*V[0]+(T2+T9)*V[1]+(T5+T8)*V[2])+V[2] |
---|
2808 | return VP |
---|
2809 | |
---|
2810 | def Q2Mat(Q): |
---|
2811 | ''' make rotation matrix from quaternion |
---|
2812 | q=r+ai+bj+ck |
---|
2813 | ''' |
---|
2814 | QN = normQ(Q) |
---|
2815 | aa = QN[0]**2 |
---|
2816 | ab = QN[0]*QN[1] |
---|
2817 | ac = QN[0]*QN[2] |
---|
2818 | ad = QN[0]*QN[3] |
---|
2819 | bb = QN[1]**2 |
---|
2820 | bc = QN[1]*QN[2] |
---|
2821 | bd = QN[1]*QN[3] |
---|
2822 | cc = QN[2]**2 |
---|
2823 | cd = QN[2]*QN[3] |
---|
2824 | dd = QN[3]**2 |
---|
2825 | M = [[aa+bb-cc-dd, 2.*(bc-ad), 2.*(ac+bd)], |
---|
2826 | [2*(ad+bc), aa-bb+cc-dd, 2.*(cd-ab)], |
---|
2827 | [2*(bd-ac), 2.*(ab+cd), aa-bb-cc+dd]] |
---|
2828 | return np.array(M) |
---|
2829 | |
---|
2830 | def AV2Q(A,V): |
---|
2831 | ''' convert angle (radians) & vector to quaternion |
---|
2832 | q=r+ai+bj+ck |
---|
2833 | ''' |
---|
2834 | Q = np.zeros(4) |
---|
2835 | d = np.sqrt(np.sum(np.array(V)**2)) |
---|
2836 | if d: |
---|
2837 | V /= d |
---|
2838 | else: |
---|
2839 | V = np.array([0.,0.,1.]) |
---|
2840 | p = A/2. |
---|
2841 | Q[0] = np.cos(p) |
---|
2842 | Q[1:4] = V*np.sin(p) |
---|
2843 | return Q |
---|
2844 | |
---|
2845 | def AVdeg2Q(A,V): |
---|
2846 | ''' convert angle (degrees) & vector to quaternion |
---|
2847 | q=r+ai+bj+ck |
---|
2848 | ''' |
---|
2849 | Q = np.zeros(4) |
---|
2850 | d = np.sqrt(np.sum(np.array(V)**2)) |
---|
2851 | if d: |
---|
2852 | V /= d |
---|
2853 | else: |
---|
2854 | V = np.array([0.,0.,1.]) |
---|
2855 | p = A/2. |
---|
2856 | Q[0] = cosd(p) |
---|
2857 | Q[1:4] = V*sind(p) |
---|
2858 | return Q |
---|
2859 | |
---|
2860 | def Q2AVdeg(Q): |
---|
2861 | ''' convert quaternion to angle (degrees 0-360) & normalized vector |
---|
2862 | q=r+ai+bj+ck |
---|
2863 | ''' |
---|
2864 | A = 2.*acosd(Q[0]) |
---|
2865 | V = np.array(Q[1:]) |
---|
2866 | d = np.sqrt(np.sum(V**2)) |
---|
2867 | if d: |
---|
2868 | V /= d |
---|
2869 | else: |
---|
2870 | A = 0. |
---|
2871 | V = np.array([0.,0.,0.]) |
---|
2872 | return A,V |
---|
2873 | |
---|
2874 | def Q2AV(Q): |
---|
2875 | ''' convert quaternion to angle (radians 0-2pi) & normalized vector |
---|
2876 | q=r+ai+bj+ck |
---|
2877 | ''' |
---|
2878 | A = 2.*np.arccos(Q[0]) |
---|
2879 | V = np.array(Q[1:]) |
---|
2880 | d = np.sqrt(np.sum(V**2)) |
---|
2881 | if d: |
---|
2882 | V /= d |
---|
2883 | else: |
---|
2884 | A = 0. |
---|
2885 | V = np.array([0.,0.,0.]) |
---|
2886 | return A,V |
---|
2887 | |
---|
2888 | def makeQuat(A,B,C): |
---|
2889 | ''' Make quaternion from rotation of A vector to B vector about C axis |
---|
2890 | |
---|
2891 | :param np.array A,B,C: Cartesian 3-vectors |
---|
2892 | :returns: quaternion & rotation angle in radians q=r+ai+bj+ck |
---|
2893 | ''' |
---|
2894 | |
---|
2895 | V1 = np.cross(A,C) |
---|
2896 | V2 = np.cross(B,C) |
---|
2897 | if nl.norm(V1)*nl.norm(V2): |
---|
2898 | V1 /= nl.norm(V1) |
---|
2899 | V2 /= nl.norm(V2) |
---|
2900 | V3 = np.cross(V1,V2) |
---|
2901 | else: |
---|
2902 | V3 = np.zeros(3) |
---|
2903 | Q = np.array([0.,0.,0.,1.]) |
---|
2904 | D = 0. |
---|
2905 | if nl.norm(V3): |
---|
2906 | V3 /= nl.norm(V3) |
---|
2907 | D1 = min(1.0,max(-1.0,np.vdot(V1,V2))) |
---|
2908 | D = np.arccos(D1)/2.0 |
---|
2909 | V1 = C-V3 |
---|
2910 | V2 = C+V3 |
---|
2911 | DM = nl.norm(V1) |
---|
2912 | DP = nl.norm(V2) |
---|
2913 | S = np.sin(D) |
---|
2914 | Q[0] = np.cos(D) |
---|
2915 | Q[1:] = V3*S |
---|
2916 | D *= 2. |
---|
2917 | if DM > DP: |
---|
2918 | D *= -1. |
---|
2919 | return Q,D |
---|
2920 | |
---|
2921 | if __name__ == "__main__": |
---|
2922 | from numpy import cos |
---|
2923 | # minimum expected at ~-0.195 |
---|
2924 | func = lambda x: cos(14.5*x-0.3) + (x+0.2)*x |
---|
2925 | print anneal(func,1.0,full_output=1,upper=3.0,lower=-3.0,feps=1e-4,maxiter=2000,schedule='cauchy') |
---|
2926 | print anneal(func,1.0,full_output=1,upper=3.0,lower=-3.0,feps=1e-4,maxiter=2000,schedule='fast') |
---|
2927 | print anneal(func,1.0,full_output=1,upper=3.0,lower=-3.0,feps=1e-4,maxiter=2000,schedule='boltzmann') |
---|
2928 | |
---|
2929 | # minimum expected at ~[-0.195, -0.1] |
---|
2930 | func = lambda x: cos(14.5*x[0]-0.3) + (x[1]+0.2)*x[1] + (x[0]+0.2)*x[0] |
---|
2931 | print anneal(func,[1.0, 1.0],full_output=1,upper=[3.0, 3.0],lower=[-3.0, -3.0],feps=1e-4,maxiter=2000,schedule='cauchy') |
---|
2932 | print anneal(func,[1.0, 1.0],full_output=1,upper=[3.0, 3.0],lower=[-3.0, -3.0],feps=1e-4,maxiter=2000,schedule='fast') |
---|
2933 | print anneal(func,[1.0, 1.0],full_output=1,upper=[3.0, 3.0],lower=[-3.0, -3.0],feps=1e-4,maxiter=2000,schedule='boltzmann') |
---|