1 | # -*- coding: utf-8 -*- |
---|
2 | #GSASIImath - major mathematics routines |
---|
3 | ########### SVN repository information ################### |
---|
4 | # $Date: 2013-05-28 21:29:16 +0000 (Tue, 28 May 2013) $ |
---|
5 | # $Author: vondreele $ |
---|
6 | # $Revision: 934 $ |
---|
7 | # $URL: trunk/GSASIImath.py $ |
---|
8 | # $Id: GSASIImath.py 934 2013-05-28 21:29:16Z vondreele $ |
---|
9 | ########### SVN repository information ################### |
---|
10 | import sys |
---|
11 | import os |
---|
12 | import os.path as ospath |
---|
13 | import random as rn |
---|
14 | import numpy as np |
---|
15 | import numpy.linalg as nl |
---|
16 | import numpy.ma as ma |
---|
17 | import cPickle |
---|
18 | import time |
---|
19 | import math |
---|
20 | import copy |
---|
21 | import GSASIIpath |
---|
22 | GSASIIpath.SetVersionNumber("$Revision: 934 $") |
---|
23 | import GSASIIElem as G2el |
---|
24 | import GSASIIlattice as G2lat |
---|
25 | import GSASIIspc as G2spc |
---|
26 | import numpy.fft as fft |
---|
27 | |
---|
28 | sind = lambda x: np.sin(x*np.pi/180.) |
---|
29 | cosd = lambda x: np.cos(x*np.pi/180.) |
---|
30 | tand = lambda x: np.tan(x*np.pi/180.) |
---|
31 | asind = lambda x: 180.*np.arcsin(x)/np.pi |
---|
32 | acosd = lambda x: 180.*np.arccos(x)/np.pi |
---|
33 | atand = lambda x: 180.*np.arctan(x)/np.pi |
---|
34 | atan2d = lambda y,x: 180.*np.arctan2(y,x)/np.pi |
---|
35 | |
---|
36 | def HessianLSQ(func,x0,Hess,args=(),ftol=1.49012e-8,xtol=1.49012e-8, maxcyc=0): |
---|
37 | |
---|
38 | """ |
---|
39 | Minimize the sum of squares of a set of equations. |
---|
40 | |
---|
41 | :: |
---|
42 | |
---|
43 | Nobs |
---|
44 | x = arg min(sum(func(y)**2,axis=0)) |
---|
45 | y=0 |
---|
46 | |
---|
47 | Parameters |
---|
48 | ---------- |
---|
49 | func : callable |
---|
50 | should take at least one (possibly length N vector) argument and |
---|
51 | returns M floating point numbers. |
---|
52 | x0 : ndarray |
---|
53 | The starting estimate for the minimization of length N |
---|
54 | Hess : callable |
---|
55 | A required function or method to compute the weighted vector and Hessian for func. |
---|
56 | It must be a symmetric NxN array |
---|
57 | args : tuple |
---|
58 | Any extra arguments to func are placed in this tuple. |
---|
59 | ftol : float |
---|
60 | Relative error desired in the sum of squares. |
---|
61 | xtol : float |
---|
62 | Relative error desired in the approximate solution. |
---|
63 | maxcyc : int |
---|
64 | The maximum number of cycles of refinement to execute, if -1 refine |
---|
65 | until other limits are met (ftol, xtol) |
---|
66 | |
---|
67 | Returns |
---|
68 | ------- |
---|
69 | x : ndarray |
---|
70 | The solution (or the result of the last iteration for an unsuccessful |
---|
71 | call). |
---|
72 | cov_x : ndarray |
---|
73 | Uses the fjac and ipvt optional outputs to construct an |
---|
74 | estimate of the jacobian around the solution. ``None`` if a |
---|
75 | singular matrix encountered (indicates very flat curvature in |
---|
76 | some direction). This matrix must be multiplied by the |
---|
77 | residual standard deviation to get the covariance of the |
---|
78 | parameter estimates -- see curve_fit. |
---|
79 | infodict : dict |
---|
80 | a dictionary of optional outputs with the key s:: |
---|
81 | |
---|
82 | - 'fvec' : the function evaluated at the output |
---|
83 | |
---|
84 | |
---|
85 | Notes |
---|
86 | ----- |
---|
87 | |
---|
88 | """ |
---|
89 | |
---|
90 | x0 = np.array(x0, ndmin=1) #might be redundant? |
---|
91 | n = len(x0) |
---|
92 | if type(args) != type(()): |
---|
93 | args = (args,) |
---|
94 | |
---|
95 | icycle = 0 |
---|
96 | One = np.ones((n,n)) |
---|
97 | lam = 0.001 |
---|
98 | lamMax = lam |
---|
99 | nfev = 0 |
---|
100 | while icycle < maxcyc: |
---|
101 | lamMax = max(lamMax,lam) |
---|
102 | M = func(x0,*args) |
---|
103 | nfev += 1 |
---|
104 | chisq0 = np.sum(M**2) |
---|
105 | Yvec,Amat = Hess(x0,*args) |
---|
106 | Adiag = np.sqrt(np.diag(Amat)) |
---|
107 | psing = np.where(np.abs(Adiag) < 1.e-14,True,False) |
---|
108 | if np.any(psing): #hard singularity in matrix |
---|
109 | return [x0,None,{'num cyc':icycle,'fvec':M,'nfev':nfev,'lamMax':lamMax,'psing':psing}] |
---|
110 | Anorm = np.outer(Adiag,Adiag) |
---|
111 | Yvec /= Adiag |
---|
112 | Amat /= Anorm |
---|
113 | while True: |
---|
114 | Lam = np.eye(Amat.shape[0])*lam |
---|
115 | Amatlam = Amat*(One+Lam) |
---|
116 | try: |
---|
117 | Xvec = nl.solve(Amatlam,Yvec) |
---|
118 | except nl.LinAlgError: |
---|
119 | print 'ouch #1' |
---|
120 | psing = list(np.where(np.diag(nl.qr(Amatlam)[1]) < 1.e-14)[0]) |
---|
121 | return [x0,None,{'num cyc':icycle,'fvec':M,'nfev':nfev,'lamMax':lamMax,'psing':psing}] |
---|
122 | Xvec /= Adiag |
---|
123 | M2 = func(x0+Xvec,*args) |
---|
124 | nfev += 1 |
---|
125 | chisq1 = np.sum(M2**2) |
---|
126 | if chisq1 > chisq0: |
---|
127 | lam *= 10. |
---|
128 | else: |
---|
129 | x0 += Xvec |
---|
130 | lam /= 10. |
---|
131 | break |
---|
132 | if (chisq0-chisq1)/chisq0 < ftol: |
---|
133 | break |
---|
134 | icycle += 1 |
---|
135 | M = func(x0,*args) |
---|
136 | nfev += 1 |
---|
137 | Yvec,Amat = Hess(x0,*args) |
---|
138 | try: |
---|
139 | Bmat = nl.inv(Amat) |
---|
140 | return [x0,Bmat,{'num cyc':icycle,'fvec':M,'nfev':nfev,'lamMax':lamMax,'psing':[]}] |
---|
141 | except nl.LinAlgError: |
---|
142 | print 'ouch #2 linear algebra error in LS' |
---|
143 | psing = [] |
---|
144 | if maxcyc: |
---|
145 | psing = list(np.where(np.diag(nl.qr(Amat)[1]) < 1.e-14)[0]) |
---|
146 | return [x0,None,{'num cyc':icycle,'fvec':M,'nfev':nfev,'lamMax':lamMax,'psing':psing}] |
---|
147 | |
---|
148 | def getVCov(varyNames,varyList,covMatrix): |
---|
149 | vcov = np.zeros((len(varyNames),len(varyNames))) |
---|
150 | for i1,name1 in enumerate(varyNames): |
---|
151 | for i2,name2 in enumerate(varyNames): |
---|
152 | try: |
---|
153 | vcov[i1][i2] = covMatrix[varyList.index(name1)][varyList.index(name2)] |
---|
154 | except ValueError: |
---|
155 | vcov[i1][i2] = 0.0 |
---|
156 | return vcov |
---|
157 | |
---|
158 | def FindAtomIndexByIDs(atomData,IDs,Draw=True): |
---|
159 | indx = [] |
---|
160 | for i,atom in enumerate(atomData): |
---|
161 | if Draw and atom[-3] in IDs: |
---|
162 | indx.append(i) |
---|
163 | elif atom[-1] in IDs: |
---|
164 | indx.append(i) |
---|
165 | return indx |
---|
166 | |
---|
167 | def FillAtomLookUp(atomData): |
---|
168 | atomLookUp = {} |
---|
169 | for iatm,atom in enumerate(atomData): |
---|
170 | atomLookUp[atom[-1]] = iatm |
---|
171 | return atomLookUp |
---|
172 | |
---|
173 | def GetAtomsById(atomData,atomLookUp,IdList): |
---|
174 | atoms = [] |
---|
175 | for id in IdList: |
---|
176 | atoms.append(atomData[atomLookUp[id]]) |
---|
177 | return atoms |
---|
178 | |
---|
179 | def GetAtomItemsById(atomData,atomLookUp,IdList,itemLoc,numItems=1): |
---|
180 | Items = [] |
---|
181 | if not isinstance(IdList,list): |
---|
182 | IdList = [IdList,] |
---|
183 | for id in IdList: |
---|
184 | if numItems == 1: |
---|
185 | Items.append(atomData[atomLookUp[id]][itemLoc]) |
---|
186 | else: |
---|
187 | Items.append(atomData[atomLookUp[id]][itemLoc:itemLoc+numItems]) |
---|
188 | return Items |
---|
189 | |
---|
190 | def GetAtomCoordsByID(pId,parmDict,AtLookup,indx): |
---|
191 | pfx = [str(pId)+'::A'+i+':' for i in ['x','y','z']] |
---|
192 | dpfx = [str(pId)+'::dA'+i+':' for i in ['x','y','z']] |
---|
193 | XYZ = [] |
---|
194 | for ind in indx: |
---|
195 | names = [pfx[i]+str(AtLookup[ind]) for i in range(3)] |
---|
196 | dnames = [dpfx[i]+str(AtLookup[ind]) for i in range(3)] |
---|
197 | XYZ.append([parmDict[name]+parmDict[dname] for name,dname in zip(names,dnames)]) |
---|
198 | return XYZ |
---|
199 | |
---|
200 | def AtomUij2TLS(atomData,atPtrs,Amat,Bmat,rbObj): #unfinished & not used |
---|
201 | for atom in atomData: |
---|
202 | XYZ = np.inner(Amat,atom[cx:cx+3]) |
---|
203 | if atom[cia] == 'A': |
---|
204 | UIJ = atom[cia+2:cia+8] |
---|
205 | |
---|
206 | def TLS2Uij(xyz,g,Amat,rbObj): #not used anywhere, but could be? |
---|
207 | TLStype,TLS = rbObj['ThermalMotion'][:2] |
---|
208 | Tmat = np.zeros((3,3)) |
---|
209 | Lmat = np.zeros((3,3)) |
---|
210 | Smat = np.zeros((3,3)) |
---|
211 | gvec = np.sqrt(np.array([g[0][0]**2,g[1][1]**2,g[2][2]**2, |
---|
212 | g[0][0]*g[1][1],g[0][0]*g[2][2],g[1][1]*g[2][2]])) |
---|
213 | if 'T' in TLStype: |
---|
214 | Tmat = G2lat.U6toUij(TLS[:6]) |
---|
215 | if 'L' in TLStype: |
---|
216 | Lmat = G2lat.U6toUij(TLS[6:12]) |
---|
217 | if 'S' in TLStype: |
---|
218 | Smat = np.array([[TLS[18],TLS[12],TLS[13]],[TLS[14],TLS[19],TLS[15]],[TLS[16],TLS[17],0] ]) |
---|
219 | XYZ = np.inner(Amat,xyz) |
---|
220 | Axyz = np.array([[ 0,XYZ[2],-XYZ[1]], [-XYZ[2],0,XYZ[0]], [XYZ[1],-XYZ[0],0]] ) |
---|
221 | Umat = Tmat+np.inner(Axyz,Smat)+np.inner(Smat.T,Axyz.T)+np.inner(np.inner(Axyz,Lmat),Axyz.T) |
---|
222 | beta = np.inner(np.inner(g,Umat),g) |
---|
223 | return G2lat.UijtoU6(beta)*gvec |
---|
224 | |
---|
225 | def AtomTLS2UIJ(atomData,atPtrs,Amat,rbObj): #not used anywhere, but could be? |
---|
226 | cx,ct,cs,cia = atPtrs |
---|
227 | TLStype,TLS = rbObj['ThermalMotion'][:2] |
---|
228 | Tmat = np.zeros((3,3)) |
---|
229 | Lmat = np.zeros((3,3)) |
---|
230 | Smat = np.zeros((3,3)) |
---|
231 | G,g = G2lat.A2Gmat(Amat) |
---|
232 | gvec = 1./np.sqrt(np.array([g[0][0],g[1][1],g[2][2],g[0][1],g[0][2],g[1][2]])) |
---|
233 | if 'T' in TLStype: |
---|
234 | Tmat = G2lat.U6toUij(TLS[:6]) |
---|
235 | if 'L' in TLStype: |
---|
236 | Lmat = G2lat.U6toUij(TLS[6:12]) |
---|
237 | if 'S' in TLStype: |
---|
238 | Smat = np.array([ [TLS[18],TLS[12],TLS[13]], [TLS[14],TLS[19],TLS[15]], [TLS[16],TLS[17],0] ]) |
---|
239 | for atom in atomData: |
---|
240 | XYZ = np.inner(Amat,atom[cx:cx+3]) |
---|
241 | Axyz = np.array([ 0,XYZ[2],-XYZ[1], -XYZ[2],0,XYZ[0], XYZ[1],-XYZ[0],0],ndmin=2 ) |
---|
242 | if 'U' in TSLtype: |
---|
243 | atom[cia+1] = TLS[0] |
---|
244 | atom[cia] = 'I' |
---|
245 | else: |
---|
246 | atom[cia] = 'A' |
---|
247 | Umat = Tmat+np.inner(Axyz,Smat)+np.inner(Smat.T,Axyz.T)+np.inner(np.inner(Axyz,Lmat),Axyz.T) |
---|
248 | beta = np.inner(np.inner(g,Umat),g) |
---|
249 | atom[cia+2:cia+8] = G2spc.U2Uij(beta/gvec) |
---|
250 | |
---|
251 | def GetXYZDist(xyz,XYZ,Amat): |
---|
252 | ''' gets distance from position xyz to all XYZ, xyz & XYZ are np.array |
---|
253 | and are in crystal coordinates; Amat is crystal to Cart matrix |
---|
254 | ''' |
---|
255 | return np.sqrt(np.sum(np.inner(Amat,XYZ-xyz)**2,axis=0)) |
---|
256 | |
---|
257 | def getAtomXYZ(atoms,cx): |
---|
258 | XYZ = [] |
---|
259 | for atom in atoms: |
---|
260 | XYZ.append(atom[cx:cx+3]) |
---|
261 | return np.array(XYZ) |
---|
262 | |
---|
263 | def UpdateRBXYZ(Bmat,RBObj,RBData,RBType): |
---|
264 | ''' Returns crystal coordinates for atoms described by RBObj |
---|
265 | ''' |
---|
266 | RBRes = RBData[RBType][RBObj['RBId']] |
---|
267 | if RBType == 'Vector': |
---|
268 | vecs = RBRes['rbVect'] |
---|
269 | mags = RBRes['VectMag'] |
---|
270 | Cart = np.zeros_like(vecs[0]) |
---|
271 | for vec,mag in zip(vecs,mags): |
---|
272 | Cart += vec*mag |
---|
273 | elif RBType == 'Residue': |
---|
274 | Cart = np.array(RBRes['rbXYZ']) |
---|
275 | for tor,seq in zip(RBObj['Torsions'],RBRes['rbSeq']): |
---|
276 | QuatA = AVdeg2Q(tor[0],Cart[seq[0]]-Cart[seq[1]]) |
---|
277 | for ride in seq[3]: |
---|
278 | Cart[ride] = prodQVQ(QuatA,Cart[ride]-Cart[seq[1]])+Cart[seq[1]] |
---|
279 | XYZ = np.zeros_like(Cart) |
---|
280 | for i,xyz in enumerate(Cart): |
---|
281 | X = prodQVQ(RBObj['Orient'][0],xyz) |
---|
282 | XYZ[i] = np.inner(Bmat,X)+RBObj['Orig'][0] |
---|
283 | return XYZ,Cart |
---|
284 | |
---|
285 | def UpdateMCSAxyz(Bmat,mcsaModels,RBData): |
---|
286 | xyz = [] |
---|
287 | atTypes = [] |
---|
288 | iatm = 0 |
---|
289 | for model in mcsaModels[1:]: #skip the MD model |
---|
290 | if model['Type'] == 'Atom': |
---|
291 | xyz.append(model['Pos'][0]) |
---|
292 | atTypes.append(model['atType']) |
---|
293 | iatm += 1 |
---|
294 | else: |
---|
295 | rideList = [] |
---|
296 | RBRes = RBData[model['Type']][model['RBId']] |
---|
297 | Pos = np.array(model['Pos'][0]) |
---|
298 | Qori = np.array(model['Ori'][0]) |
---|
299 | if model['Type'] == 'Vector': |
---|
300 | vecs = RBRes['rbVect'] |
---|
301 | mags = RBRes['VectMag'] |
---|
302 | Cart = np.zeros_like(vecs[0]) |
---|
303 | for vec,mag in zip(vecs,mags): |
---|
304 | Cart += vec*mag |
---|
305 | elif model['Type'] == 'Residue': |
---|
306 | Cart = np.array(RBRes['rbXYZ']) |
---|
307 | for itor,seq in enumerate(RBRes['rbSeq']): |
---|
308 | QuatA = AVdeg2Q(model['Tor'][0][itor],Cart[seq[0]]-Cart[seq[1]]) |
---|
309 | for ride in seq[3]: |
---|
310 | Cart[ride] = prodQVQ(QuatA,Cart[ride]-Cart[seq[1]])+Cart[seq[1]] |
---|
311 | rideList += seq[3] |
---|
312 | centList = set(range(len(Cart)))-set(rideList) |
---|
313 | if model['MolCent']: |
---|
314 | cent = np.zeros(3) |
---|
315 | for i in centList: |
---|
316 | cent += Cart[i] |
---|
317 | Cart -= cent/len(centList) |
---|
318 | for i,x in enumerate(Cart): |
---|
319 | xyz.append(np.inner(Bmat,prodQVQ(Qori,x))+Pos) |
---|
320 | atType = RBRes['rbTypes'][i] |
---|
321 | atTypes.append(atType) |
---|
322 | iatm += 1 |
---|
323 | return np.array(xyz),atTypes |
---|
324 | |
---|
325 | def UpdateRBUIJ(Bmat,Cart,RBObj): |
---|
326 | ''' Returns atom I/A, Uiso or UIJ for atoms at XYZ as described by RBObj |
---|
327 | ''' |
---|
328 | TLStype,TLS = RBObj['ThermalMotion'][:2] |
---|
329 | T = np.zeros(6) |
---|
330 | L = np.zeros(6) |
---|
331 | S = np.zeros(8) |
---|
332 | if 'T' in TLStype: |
---|
333 | T = TLS[:6] |
---|
334 | if 'L' in TLStype: |
---|
335 | L = np.array(TLS[6:12])*(np.pi/180.)**2 |
---|
336 | if 'S' in TLStype: |
---|
337 | S = np.array(TLS[12:])*(np.pi/180.) |
---|
338 | g = nl.inv(np.inner(Bmat,Bmat)) |
---|
339 | gvec = np.sqrt(np.array([g[0][0]**2,g[1][1]**2,g[2][2]**2, |
---|
340 | g[0][0]*g[1][1],g[0][0]*g[2][2],g[1][1]*g[2][2]])) |
---|
341 | Uout = [] |
---|
342 | Q = RBObj['Orient'][0] |
---|
343 | for X in Cart: |
---|
344 | X = prodQVQ(Q,X) |
---|
345 | if 'U' in TLStype: |
---|
346 | Uout.append(['I',TLS[0],0,0,0,0,0,0]) |
---|
347 | elif not 'N' in TLStype: |
---|
348 | U = [0,0,0,0,0,0] |
---|
349 | U[0] = T[0]+L[1]*X[2]**2+L[2]*X[1]**2-2.0*L[5]*X[1]*X[2]+2.0*(S[2]*X[2]-S[4]*X[1]) |
---|
350 | U[1] = T[1]+L[0]*X[2]**2+L[2]*X[0]**2-2.0*L[4]*X[0]*X[2]+2.0*(S[5]*X[0]-S[0]*X[2]) |
---|
351 | U[2] = T[2]+L[1]*X[0]**2+L[0]*X[1]**2-2.0*L[3]*X[1]*X[0]+2.0*(S[1]*X[1]-S[3]*X[0]) |
---|
352 | U[3] = T[3]+L[4]*X[1]*X[2]+L[5]*X[0]*X[2]-L[3]*X[2]**2-L[2]*X[0]*X[1]+ \ |
---|
353 | S[4]*X[0]-S[5]*X[1]-(S[6]+S[7])*X[2] |
---|
354 | U[4] = T[4]+L[3]*X[1]*X[2]+L[5]*X[0]*X[1]-L[4]*X[1]**2-L[1]*X[0]*X[2]+ \ |
---|
355 | S[3]*X[2]-S[2]*X[0]+S[6]*X[1] |
---|
356 | U[5] = T[5]+L[3]*X[0]*X[2]+L[4]*X[0]*X[1]-L[5]*X[0]**2-L[0]*X[2]*X[1]+ \ |
---|
357 | S[0]*X[1]-S[1]*X[2]+S[7]*X[0] |
---|
358 | Umat = G2lat.U6toUij(U) |
---|
359 | beta = np.inner(np.inner(Bmat.T,Umat),Bmat) |
---|
360 | Uout.append(['A',0.0,]+list(G2lat.UijtoU6(beta)*gvec)) |
---|
361 | else: |
---|
362 | Uout.append(['N',]) |
---|
363 | return Uout |
---|
364 | |
---|
365 | def GetSHCoeff(pId,parmDict,SHkeys): |
---|
366 | SHCoeff = {} |
---|
367 | for shkey in SHkeys: |
---|
368 | shname = str(pId)+'::'+shkey |
---|
369 | SHCoeff[shkey] = parmDict[shname] |
---|
370 | return SHCoeff |
---|
371 | |
---|
372 | def getMass(generalData): |
---|
373 | mass = 0. |
---|
374 | for i,elem in enumerate(generalData['AtomTypes']): |
---|
375 | mass += generalData['NoAtoms'][elem]*generalData['AtomMass'][i] |
---|
376 | return mass |
---|
377 | |
---|
378 | def getDensity(generalData): |
---|
379 | |
---|
380 | mass = getMass(generalData) |
---|
381 | Volume = generalData['Cell'][7] |
---|
382 | density = mass/(0.6022137*Volume) |
---|
383 | return density,Volume/mass |
---|
384 | |
---|
385 | def getSyXYZ(XYZ,ops,SGData): |
---|
386 | XYZout = np.zeros_like(XYZ) |
---|
387 | for i,[xyz,op] in enumerate(zip(XYZ,ops)): |
---|
388 | if op == '1': |
---|
389 | XYZout[i] = xyz |
---|
390 | else: |
---|
391 | oprs = op.split('+') |
---|
392 | unit = [0,0,0] |
---|
393 | if oprs[1]: |
---|
394 | unit = np.array(list(eval(oprs[1]))) |
---|
395 | syop =int(oprs[0]) |
---|
396 | inv = syop/abs(syop) |
---|
397 | syop *= inv |
---|
398 | cent = syop/100 |
---|
399 | syop %= 100 |
---|
400 | syop -= 1 |
---|
401 | M,T = SGData['SGOps'][syop] |
---|
402 | XYZout[i] = (np.inner(M,xyz)+T)*inv+SGData['SGCen'][cent]+unit |
---|
403 | return XYZout |
---|
404 | |
---|
405 | def getRestDist(XYZ,Amat): |
---|
406 | return np.sqrt(np.sum(np.inner(Amat,(XYZ[1]-XYZ[0]))**2)) |
---|
407 | |
---|
408 | def getRestDeriv(Func,XYZ,Amat,ops,SGData): |
---|
409 | deriv = np.zeros((len(XYZ),3)) |
---|
410 | dx = 0.00001 |
---|
411 | for j,xyz in enumerate(XYZ): |
---|
412 | for i,x in enumerate(np.array([[dx,0,0],[0,dx,0],[0,0,dx]])): |
---|
413 | XYZ[j] -= x |
---|
414 | d1 = Func(getSyXYZ(XYZ,ops,SGData),Amat) |
---|
415 | XYZ[j] += 2*x |
---|
416 | d2 = Func(getSyXYZ(XYZ,ops,SGData),Amat) |
---|
417 | XYZ[j] -= x |
---|
418 | deriv[j][i] = (d1-d2)/(2*dx) |
---|
419 | return deriv.flatten() |
---|
420 | |
---|
421 | def getRestAngle(XYZ,Amat): |
---|
422 | |
---|
423 | def calcVec(Ox,Tx,Amat): |
---|
424 | return np.inner(Amat,(Tx-Ox)) |
---|
425 | |
---|
426 | VecA = calcVec(XYZ[1],XYZ[0],Amat) |
---|
427 | VecA /= np.sqrt(np.sum(VecA**2)) |
---|
428 | VecB = calcVec(XYZ[1],XYZ[2],Amat) |
---|
429 | VecB /= np.sqrt(np.sum(VecB**2)) |
---|
430 | edge = VecB-VecA |
---|
431 | edge = np.sum(edge**2) |
---|
432 | angle = (2.-edge)/2. |
---|
433 | angle = max(angle,-1.) |
---|
434 | return acosd(angle) |
---|
435 | |
---|
436 | def getRestPlane(XYZ,Amat): |
---|
437 | sumXYZ = np.zeros(3) |
---|
438 | for xyz in XYZ: |
---|
439 | sumXYZ += xyz |
---|
440 | sumXYZ /= len(XYZ) |
---|
441 | XYZ = np.array(XYZ)-sumXYZ |
---|
442 | XYZ = np.inner(Amat,XYZ).T |
---|
443 | Zmat = np.zeros((3,3)) |
---|
444 | for i,xyz in enumerate(XYZ): |
---|
445 | Zmat += np.outer(xyz.T,xyz) |
---|
446 | Evec,Emat = nl.eig(Zmat) |
---|
447 | Evec = np.sqrt(Evec)/(len(XYZ)-3) |
---|
448 | Order = np.argsort(Evec) |
---|
449 | return Evec[Order[0]] |
---|
450 | |
---|
451 | def getRestChiral(XYZ,Amat): |
---|
452 | VecA = np.empty((3,3)) |
---|
453 | VecA[0] = np.inner(XYZ[1]-XYZ[0],Amat) |
---|
454 | VecA[1] = np.inner(XYZ[2]-XYZ[0],Amat) |
---|
455 | VecA[2] = np.inner(XYZ[3]-XYZ[0],Amat) |
---|
456 | return nl.det(VecA) |
---|
457 | |
---|
458 | def getRestTorsion(XYZ,Amat): |
---|
459 | VecA = np.empty((3,3)) |
---|
460 | VecA[0] = np.inner(XYZ[1]-XYZ[0],Amat) |
---|
461 | VecA[1] = np.inner(XYZ[2]-XYZ[1],Amat) |
---|
462 | VecA[2] = np.inner(XYZ[3]-XYZ[2],Amat) |
---|
463 | D = nl.det(VecA) |
---|
464 | Mag = np.sqrt(np.sum(VecA*VecA,axis=1)) |
---|
465 | P12 = np.sum(VecA[0]*VecA[1])/(Mag[0]*Mag[1]) |
---|
466 | P13 = np.sum(VecA[0]*VecA[2])/(Mag[0]*Mag[2]) |
---|
467 | P23 = np.sum(VecA[1]*VecA[2])/(Mag[1]*Mag[2]) |
---|
468 | Ang = 1.0 |
---|
469 | if abs(P12) < 1.0 and abs(P23) < 1.0: |
---|
470 | Ang = (P12*P23-P13)/(np.sqrt(1.-P12**2)*np.sqrt(1.-P23**2)) |
---|
471 | TOR = (acosd(Ang)*D/abs(D)+720.)%360. |
---|
472 | return TOR |
---|
473 | |
---|
474 | def calcTorsionEnergy(TOR,Coeff=[]): |
---|
475 | sum = 0. |
---|
476 | if len(Coeff): |
---|
477 | cof = np.reshape(Coeff,(3,3)).T |
---|
478 | delt = TOR-cof[1] |
---|
479 | delt = np.where(delt<-180.,delt+360.,delt) |
---|
480 | delt = np.where(delt>180.,delt-360.,delt) |
---|
481 | term = -cof[2]*delt**2 |
---|
482 | val = cof[0]*np.exp(term/1000.0) |
---|
483 | pMax = cof[0][np.argmin(val)] |
---|
484 | Eval = np.sum(val) |
---|
485 | sum = Eval-pMax |
---|
486 | return sum,Eval |
---|
487 | |
---|
488 | def getTorsionDeriv(XYZ,Amat,Coeff): |
---|
489 | deriv = np.zeros((len(XYZ),3)) |
---|
490 | dx = 0.00001 |
---|
491 | for j,xyz in enumerate(XYZ): |
---|
492 | for i,x in enumerate(np.array([[dx,0,0],[0,dx,0],[0,0,dx]])): |
---|
493 | XYZ[j] -= x |
---|
494 | tor = getRestTorsion(XYZ,Amat) |
---|
495 | p,d1 = calcTorsionEnergy(tor,Coeff) |
---|
496 | XYZ[j] += 2*x |
---|
497 | tor = getRestTorsion(XYZ,Amat) |
---|
498 | p,d2 = calcTorsionEnergy(tor,Coeff) |
---|
499 | XYZ[j] -= x |
---|
500 | deriv[j][i] = (d2-d1)/(2*dx) |
---|
501 | return deriv.flatten() |
---|
502 | |
---|
503 | def getRestRama(XYZ,Amat): |
---|
504 | phi = getRestTorsion(XYZ[:5],Amat) |
---|
505 | psi = getRestTorsion(XYZ[1:],Amat) |
---|
506 | return phi,psi |
---|
507 | |
---|
508 | def calcRamaEnergy(phi,psi,Coeff=[]): |
---|
509 | sum = 0. |
---|
510 | if len(Coeff): |
---|
511 | cof = Coeff.T |
---|
512 | dPhi = phi-cof[1] |
---|
513 | dPhi = np.where(dPhi<-180.,dPhi+360.,dPhi) |
---|
514 | dPhi = np.where(dPhi>180.,dPhi-360.,dPhi) |
---|
515 | dPsi = psi-cof[2] |
---|
516 | dPsi = np.where(dPsi<-180.,dPsi+360.,dPsi) |
---|
517 | dPsi = np.where(dPsi>180.,dPsi-360.,dPsi) |
---|
518 | val = -cof[3]*dPhi**2-cof[4]*dPsi**2-2.0*cof[5]*dPhi*dPsi |
---|
519 | val = cof[0]*np.exp(val/1000.) |
---|
520 | pMax = cof[0][np.argmin(val)] |
---|
521 | Eval = np.sum(val) |
---|
522 | sum = Eval-pMax |
---|
523 | return sum,Eval |
---|
524 | |
---|
525 | def getRamaDeriv(XYZ,Amat,Coeff): |
---|
526 | deriv = np.zeros((len(XYZ),3)) |
---|
527 | dx = 0.00001 |
---|
528 | for j,xyz in enumerate(XYZ): |
---|
529 | for i,x in enumerate(np.array([[dx,0,0],[0,dx,0],[0,0,dx]])): |
---|
530 | XYZ[j] -= x |
---|
531 | phi,psi = getRestRama(XYZ,Amat) |
---|
532 | p,d1 = calcRamaEnergy(phi,psi,Coeff) |
---|
533 | XYZ[j] += 2*x |
---|
534 | phi,psi = getRestRama(XYZ,Amat) |
---|
535 | p,d2 = calcRamaEnergy(phi,psi,Coeff) |
---|
536 | XYZ[j] -= x |
---|
537 | deriv[j][i] = (d2-d1)/(2*dx) |
---|
538 | return deriv.flatten() |
---|
539 | |
---|
540 | def getRestPolefig(ODFln,SamSym,Grid): |
---|
541 | X,Y = np.meshgrid(np.linspace(1.,-1.,Grid),np.linspace(-1.,1.,Grid)) |
---|
542 | R,P = np.sqrt(X**2+Y**2).flatten(),atan2d(Y,X).flatten() |
---|
543 | R = np.where(R <= 1.,2.*atand(R),0.0) |
---|
544 | Z = np.zeros_like(R) |
---|
545 | Z = G2lat.polfcal(ODFln,SamSym,R,P) |
---|
546 | Z = np.reshape(Z,(Grid,Grid)) |
---|
547 | return np.reshape(R,(Grid,Grid)),np.reshape(P,(Grid,Grid)),Z |
---|
548 | |
---|
549 | def getRestPolefigDerv(HKL,Grid,SHCoeff): |
---|
550 | pass |
---|
551 | |
---|
552 | def getDistDerv(Oxyz,Txyz,Amat,Tunit,Top,SGData): |
---|
553 | |
---|
554 | def calcDist(Ox,Tx,U,inv,C,M,T,Amat): |
---|
555 | TxT = inv*(np.inner(M,Tx)+T)+C+U |
---|
556 | return np.sqrt(np.sum(np.inner(Amat,(TxT-Ox))**2)) |
---|
557 | |
---|
558 | inv = Top/abs(Top) |
---|
559 | cent = abs(Top)/100 |
---|
560 | op = abs(Top)%100-1 |
---|
561 | M,T = SGData['SGOps'][op] |
---|
562 | C = SGData['SGCen'][cent] |
---|
563 | dx = .00001 |
---|
564 | deriv = np.zeros(6) |
---|
565 | for i in [0,1,2]: |
---|
566 | Oxyz[i] -= dx |
---|
567 | d0 = calcDist(Oxyz,Txyz,Tunit,inv,C,M,T,Amat) |
---|
568 | Oxyz[i] += 2*dx |
---|
569 | deriv[i] = (calcDist(Oxyz,Txyz,Tunit,inv,C,M,T,Amat)-d0)/(2.*dx) |
---|
570 | Oxyz[i] -= dx |
---|
571 | Txyz[i] -= dx |
---|
572 | d0 = calcDist(Oxyz,Txyz,Tunit,inv,C,M,T,Amat) |
---|
573 | Txyz[i] += 2*dx |
---|
574 | deriv[i+3] = (calcDist(Oxyz,Txyz,Tunit,inv,C,M,T,Amat)-d0)/(2.*dx) |
---|
575 | Txyz[i] -= dx |
---|
576 | return deriv |
---|
577 | |
---|
578 | def getAngSig(VA,VB,Amat,SGData,covData={}): |
---|
579 | |
---|
580 | def calcVec(Ox,Tx,U,inv,C,M,T,Amat): |
---|
581 | TxT = inv*(np.inner(M,Tx)+T)+C |
---|
582 | TxT = G2spc.MoveToUnitCell(TxT)+U |
---|
583 | return np.inner(Amat,(TxT-Ox)) |
---|
584 | |
---|
585 | def calcAngle(Ox,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat): |
---|
586 | VecA = calcVec(Ox,TxA,unitA,invA,CA,MA,TA,Amat) |
---|
587 | VecA /= np.sqrt(np.sum(VecA**2)) |
---|
588 | VecB = calcVec(Ox,TxB,unitB,invB,CB,MB,TB,Amat) |
---|
589 | VecB /= np.sqrt(np.sum(VecB**2)) |
---|
590 | edge = VecB-VecA |
---|
591 | edge = np.sum(edge**2) |
---|
592 | angle = (2.-edge)/2. |
---|
593 | angle = max(angle,-1.) |
---|
594 | return acosd(angle) |
---|
595 | |
---|
596 | OxAN,OxA,TxAN,TxA,unitA,TopA = VA |
---|
597 | OxBN,OxB,TxBN,TxB,unitB,TopB = VB |
---|
598 | invA = invB = 1 |
---|
599 | invA = TopA/abs(TopA) |
---|
600 | invB = TopB/abs(TopB) |
---|
601 | centA = abs(TopA)/100 |
---|
602 | centB = abs(TopB)/100 |
---|
603 | opA = abs(TopA)%100-1 |
---|
604 | opB = abs(TopB)%100-1 |
---|
605 | MA,TA = SGData['SGOps'][opA] |
---|
606 | MB,TB = SGData['SGOps'][opB] |
---|
607 | CA = SGData['SGCen'][centA] |
---|
608 | CB = SGData['SGCen'][centB] |
---|
609 | if 'covMatrix' in covData: |
---|
610 | covMatrix = covData['covMatrix'] |
---|
611 | varyList = covData['varyList'] |
---|
612 | AngVcov = getVCov(OxAN+TxAN+TxBN,varyList,covMatrix) |
---|
613 | dx = .00001 |
---|
614 | dadx = np.zeros(9) |
---|
615 | Ang = calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat) |
---|
616 | for i in [0,1,2]: |
---|
617 | OxA[i] -= dx |
---|
618 | a0 = calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat) |
---|
619 | OxA[i] += 2*dx |
---|
620 | dadx[i] = (calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat)-a0)/(2*dx) |
---|
621 | OxA[i] -= dx |
---|
622 | |
---|
623 | TxA[i] -= dx |
---|
624 | a0 = calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat) |
---|
625 | TxA[i] += 2*dx |
---|
626 | dadx[i+3] = (calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat)-a0)/(2*dx) |
---|
627 | TxA[i] -= dx |
---|
628 | |
---|
629 | TxB[i] -= dx |
---|
630 | a0 = calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat) |
---|
631 | TxB[i] += 2*dx |
---|
632 | dadx[i+6] = (calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat)-a0)/(2*dx) |
---|
633 | TxB[i] -= dx |
---|
634 | |
---|
635 | sigAng = np.sqrt(np.inner(dadx,np.inner(AngVcov,dadx))) |
---|
636 | if sigAng < 0.01: |
---|
637 | sigAng = 0.0 |
---|
638 | return Ang,sigAng |
---|
639 | else: |
---|
640 | return calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat),0.0 |
---|
641 | |
---|
642 | def GetDistSig(Oatoms,Atoms,Amat,SGData,covData={}): |
---|
643 | |
---|
644 | def calcDist(Atoms,SyOps,Amat): |
---|
645 | XYZ = [] |
---|
646 | for i,atom in enumerate(Atoms): |
---|
647 | Inv,M,T,C,U = SyOps[i] |
---|
648 | XYZ.append(np.array(atom[1:4])) |
---|
649 | XYZ[-1] = Inv*(np.inner(M,np.array(XYZ[-1]))+T)+C+U |
---|
650 | XYZ[-1] = np.inner(Amat,XYZ[-1]).T |
---|
651 | V1 = XYZ[1]-XYZ[0] |
---|
652 | return np.sqrt(np.sum(V1**2)) |
---|
653 | |
---|
654 | Inv = [] |
---|
655 | SyOps = [] |
---|
656 | names = [] |
---|
657 | for i,atom in enumerate(Oatoms): |
---|
658 | names += atom[-1] |
---|
659 | Op,unit = Atoms[i][-1] |
---|
660 | inv = Op/abs(Op) |
---|
661 | m,t = SGData['SGOps'][abs(Op)%100-1] |
---|
662 | c = SGData['SGCen'][abs(Op)/100] |
---|
663 | SyOps.append([inv,m,t,c,unit]) |
---|
664 | Dist = calcDist(Oatoms,SyOps,Amat) |
---|
665 | |
---|
666 | sig = -0.001 |
---|
667 | if 'covMatrix' in covData: |
---|
668 | parmNames = [] |
---|
669 | dx = .00001 |
---|
670 | dadx = np.zeros(6) |
---|
671 | for i in range(6): |
---|
672 | ia = i/3 |
---|
673 | ix = i%3 |
---|
674 | Oatoms[ia][ix+1] += dx |
---|
675 | a0 = calcDist(Oatoms,SyOps,Amat) |
---|
676 | Oatoms[ia][ix+1] -= 2*dx |
---|
677 | dadx[i] = (calcDist(Oatoms,SyOps,Amat)-a0)/(2.*dx) |
---|
678 | covMatrix = covData['covMatrix'] |
---|
679 | varyList = covData['varyList'] |
---|
680 | DistVcov = getVCov(names,varyList,covMatrix) |
---|
681 | sig = np.sqrt(np.inner(dadx,np.inner(DistVcov,dadx))) |
---|
682 | if sig < 0.001: |
---|
683 | sig = -0.001 |
---|
684 | |
---|
685 | return Dist,sig |
---|
686 | |
---|
687 | def GetAngleSig(Oatoms,Atoms,Amat,SGData,covData={}): |
---|
688 | |
---|
689 | def calcAngle(Atoms,SyOps,Amat): |
---|
690 | XYZ = [] |
---|
691 | for i,atom in enumerate(Atoms): |
---|
692 | Inv,M,T,C,U = SyOps[i] |
---|
693 | XYZ.append(np.array(atom[1:4])) |
---|
694 | XYZ[-1] = Inv*(np.inner(M,np.array(XYZ[-1]))+T)+C+U |
---|
695 | XYZ[-1] = np.inner(Amat,XYZ[-1]).T |
---|
696 | V1 = XYZ[1]-XYZ[0] |
---|
697 | V1 /= np.sqrt(np.sum(V1**2)) |
---|
698 | V2 = XYZ[1]-XYZ[2] |
---|
699 | V2 /= np.sqrt(np.sum(V2**2)) |
---|
700 | V3 = V2-V1 |
---|
701 | cang = min(1.,max((2.-np.sum(V3**2))/2.,-1.)) |
---|
702 | return acosd(cang) |
---|
703 | |
---|
704 | Inv = [] |
---|
705 | SyOps = [] |
---|
706 | names = [] |
---|
707 | for i,atom in enumerate(Oatoms): |
---|
708 | names += atom[-1] |
---|
709 | Op,unit = Atoms[i][-1] |
---|
710 | inv = Op/abs(Op) |
---|
711 | m,t = SGData['SGOps'][abs(Op)%100-1] |
---|
712 | c = SGData['SGCen'][abs(Op)/100] |
---|
713 | SyOps.append([inv,m,t,c,unit]) |
---|
714 | Angle = calcAngle(Oatoms,SyOps,Amat) |
---|
715 | |
---|
716 | sig = -0.01 |
---|
717 | if 'covMatrix' in covData: |
---|
718 | parmNames = [] |
---|
719 | dx = .00001 |
---|
720 | dadx = np.zeros(9) |
---|
721 | for i in range(9): |
---|
722 | ia = i/3 |
---|
723 | ix = i%3 |
---|
724 | Oatoms[ia][ix+1] += dx |
---|
725 | a0 = calcAngle(Oatoms,SyOps,Amat) |
---|
726 | Oatoms[ia][ix+1] -= 2*dx |
---|
727 | dadx[i] = (calcAngle(Oatoms,SyOps,Amat)-a0)/(2.*dx) |
---|
728 | covMatrix = covData['covMatrix'] |
---|
729 | varyList = covData['varyList'] |
---|
730 | AngVcov = getVCov(names,varyList,covMatrix) |
---|
731 | sig = np.sqrt(np.inner(dadx,np.inner(AngVcov,dadx))) |
---|
732 | if sig < 0.01: |
---|
733 | sig = -0.01 |
---|
734 | |
---|
735 | return Angle,sig |
---|
736 | |
---|
737 | def GetTorsionSig(Oatoms,Atoms,Amat,SGData,covData={}): |
---|
738 | |
---|
739 | def calcTorsion(Atoms,SyOps,Amat): |
---|
740 | |
---|
741 | XYZ = [] |
---|
742 | for i,atom in enumerate(Atoms): |
---|
743 | Inv,M,T,C,U = SyOps[i] |
---|
744 | XYZ.append(np.array(atom[1:4])) |
---|
745 | XYZ[-1] = Inv*(np.inner(M,np.array(XYZ[-1]))+T)+C+U |
---|
746 | XYZ[-1] = np.inner(Amat,XYZ[-1]).T |
---|
747 | V1 = XYZ[1]-XYZ[0] |
---|
748 | V2 = XYZ[2]-XYZ[1] |
---|
749 | V3 = XYZ[3]-XYZ[2] |
---|
750 | V1 /= np.sqrt(np.sum(V1**2)) |
---|
751 | V2 /= np.sqrt(np.sum(V2**2)) |
---|
752 | V3 /= np.sqrt(np.sum(V3**2)) |
---|
753 | M = np.array([V1,V2,V3]) |
---|
754 | D = nl.det(M) |
---|
755 | Ang = 1.0 |
---|
756 | P12 = np.dot(V1,V2) |
---|
757 | P13 = np.dot(V1,V3) |
---|
758 | P23 = np.dot(V2,V3) |
---|
759 | Tors = acosd((P12*P23-P13)/(np.sqrt(1.-P12**2)*np.sqrt(1.-P23**2)))*D/abs(D) |
---|
760 | return Tors |
---|
761 | |
---|
762 | Inv = [] |
---|
763 | SyOps = [] |
---|
764 | names = [] |
---|
765 | for i,atom in enumerate(Oatoms): |
---|
766 | names += atom[-1] |
---|
767 | Op,unit = Atoms[i][-1] |
---|
768 | inv = Op/abs(Op) |
---|
769 | m,t = SGData['SGOps'][abs(Op)%100-1] |
---|
770 | c = SGData['SGCen'][abs(Op)/100] |
---|
771 | SyOps.append([inv,m,t,c,unit]) |
---|
772 | Tors = calcTorsion(Oatoms,SyOps,Amat) |
---|
773 | |
---|
774 | sig = -0.01 |
---|
775 | if 'covMatrix' in covData: |
---|
776 | parmNames = [] |
---|
777 | dx = .00001 |
---|
778 | dadx = np.zeros(12) |
---|
779 | for i in range(12): |
---|
780 | ia = i/3 |
---|
781 | ix = i%3 |
---|
782 | Oatoms[ia][ix+1] -= dx |
---|
783 | a0 = calcTorsion(Oatoms,SyOps,Amat) |
---|
784 | Oatoms[ia][ix+1] += 2*dx |
---|
785 | dadx[i] = (calcTorsion(Oatoms,SyOps,Amat)-a0)/(2.*dx) |
---|
786 | Oatoms[ia][ix+1] -= dx |
---|
787 | covMatrix = covData['covMatrix'] |
---|
788 | varyList = covData['varyList'] |
---|
789 | TorVcov = getVCov(names,varyList,covMatrix) |
---|
790 | sig = np.sqrt(np.inner(dadx,np.inner(TorVcov,dadx))) |
---|
791 | if sig < 0.01: |
---|
792 | sig = -0.01 |
---|
793 | |
---|
794 | return Tors,sig |
---|
795 | |
---|
796 | def GetDATSig(Oatoms,Atoms,Amat,SGData,covData={}): |
---|
797 | |
---|
798 | def calcDist(Atoms,SyOps,Amat): |
---|
799 | XYZ = [] |
---|
800 | for i,atom in enumerate(Atoms): |
---|
801 | Inv,M,T,C,U = SyOps[i] |
---|
802 | XYZ.append(np.array(atom[1:4])) |
---|
803 | XYZ[-1] = Inv*(np.inner(M,np.array(XYZ[-1]))+T)+C+U |
---|
804 | XYZ[-1] = np.inner(Amat,XYZ[-1]).T |
---|
805 | V1 = XYZ[1]-XYZ[0] |
---|
806 | return np.sqrt(np.sum(V1**2)) |
---|
807 | |
---|
808 | def calcAngle(Atoms,SyOps,Amat): |
---|
809 | XYZ = [] |
---|
810 | for i,atom in enumerate(Atoms): |
---|
811 | Inv,M,T,C,U = SyOps[i] |
---|
812 | XYZ.append(np.array(atom[1:4])) |
---|
813 | XYZ[-1] = Inv*(np.inner(M,np.array(XYZ[-1]))+T)+C+U |
---|
814 | XYZ[-1] = np.inner(Amat,XYZ[-1]).T |
---|
815 | V1 = XYZ[1]-XYZ[0] |
---|
816 | V1 /= np.sqrt(np.sum(V1**2)) |
---|
817 | V2 = XYZ[1]-XYZ[2] |
---|
818 | V2 /= np.sqrt(np.sum(V2**2)) |
---|
819 | V3 = V2-V1 |
---|
820 | cang = min(1.,max((2.-np.sum(V3**2))/2.,-1.)) |
---|
821 | return acosd(cang) |
---|
822 | |
---|
823 | def calcTorsion(Atoms,SyOps,Amat): |
---|
824 | |
---|
825 | XYZ = [] |
---|
826 | for i,atom in enumerate(Atoms): |
---|
827 | Inv,M,T,C,U = SyOps[i] |
---|
828 | XYZ.append(np.array(atom[1:4])) |
---|
829 | XYZ[-1] = Inv*(np.inner(M,np.array(XYZ[-1]))+T)+C+U |
---|
830 | XYZ[-1] = np.inner(Amat,XYZ[-1]).T |
---|
831 | V1 = XYZ[1]-XYZ[0] |
---|
832 | V2 = XYZ[2]-XYZ[1] |
---|
833 | V3 = XYZ[3]-XYZ[2] |
---|
834 | V1 /= np.sqrt(np.sum(V1**2)) |
---|
835 | V2 /= np.sqrt(np.sum(V2**2)) |
---|
836 | V3 /= np.sqrt(np.sum(V3**2)) |
---|
837 | M = np.array([V1,V2,V3]) |
---|
838 | D = nl.det(M) |
---|
839 | Ang = 1.0 |
---|
840 | P12 = np.dot(V1,V2) |
---|
841 | P13 = np.dot(V1,V3) |
---|
842 | P23 = np.dot(V2,V3) |
---|
843 | Tors = acosd((P12*P23-P13)/(np.sqrt(1.-P12**2)*np.sqrt(1.-P23**2)))*D/abs(D) |
---|
844 | return Tors |
---|
845 | |
---|
846 | Inv = [] |
---|
847 | SyOps = [] |
---|
848 | names = [] |
---|
849 | for i,atom in enumerate(Oatoms): |
---|
850 | names += atom[-1] |
---|
851 | Op,unit = Atoms[i][-1] |
---|
852 | inv = Op/abs(Op) |
---|
853 | m,t = SGData['SGOps'][abs(Op)%100-1] |
---|
854 | c = SGData['SGCen'][abs(Op)/100] |
---|
855 | SyOps.append([inv,m,t,c,unit]) |
---|
856 | M = len(Oatoms) |
---|
857 | if M == 2: |
---|
858 | Val = calcDist(Oatoms,SyOps,Amat) |
---|
859 | elif M == 3: |
---|
860 | Val = calcAngle(Oatoms,SyOps,Amat) |
---|
861 | else: |
---|
862 | Val = calcTorsion(Oatoms,SyOps,Amat) |
---|
863 | |
---|
864 | sigVals = [-0.001,-0.01,-0.01] |
---|
865 | sig = sigVals[M-3] |
---|
866 | if 'covMatrix' in covData: |
---|
867 | parmNames = [] |
---|
868 | dx = .00001 |
---|
869 | N = M*3 |
---|
870 | dadx = np.zeros(N) |
---|
871 | for i in range(N): |
---|
872 | ia = i/3 |
---|
873 | ix = i%3 |
---|
874 | Oatoms[ia][ix+1] += dx |
---|
875 | if M == 2: |
---|
876 | a0 = calcDist(Oatoms,SyOps,Amat) |
---|
877 | elif M == 3: |
---|
878 | a0 = calcAngle(Oatoms,SyOps,Amat) |
---|
879 | else: |
---|
880 | a0 = calcTorsion(Oatoms,SyOps,Amat) |
---|
881 | Oatoms[ia][ix+1] -= 2*dx |
---|
882 | if M == 2: |
---|
883 | dadx[i] = (calcDist(Oatoms,SyOps,Amat)-a0)/(2.*dx) |
---|
884 | elif M == 3: |
---|
885 | dadx[i] = (calcAngle(Oatoms,SyOps,Amat)-a0)/(2.*dx) |
---|
886 | else: |
---|
887 | dadx[i] = (calcTorsion(Oatoms,SyOps,Amat)-a0)/(2.*dx) |
---|
888 | covMatrix = covData['covMatrix'] |
---|
889 | varyList = covData['varyList'] |
---|
890 | Vcov = getVCov(names,varyList,covMatrix) |
---|
891 | sig = np.sqrt(np.inner(dadx,np.inner(Vcov,dadx))) |
---|
892 | if sig < sigVals[M-3]: |
---|
893 | sig = sigVals[M-3] |
---|
894 | |
---|
895 | return Val,sig |
---|
896 | |
---|
897 | |
---|
898 | def ValEsd(value,esd=0,nTZ=False): #NOT complete - don't use |
---|
899 | # returns value(esd) string; nTZ=True for no trailing zeros |
---|
900 | # use esd < 0 for level of precision shown e.g. esd=-0.01 gives 2 places beyond decimal |
---|
901 | #get the 2 significant digits in the esd |
---|
902 | edig = lambda esd: int(round(10**(math.log10(esd) % 1+1))) |
---|
903 | #get the number of digits to represent them |
---|
904 | epl = lambda esd: 2+int(1.545-math.log10(10*edig(esd))) |
---|
905 | |
---|
906 | mdec = lambda esd: -int(round(math.log10(abs(esd))))+1 |
---|
907 | ndec = lambda esd: int(1.545-math.log10(abs(esd))) |
---|
908 | if esd > 0: |
---|
909 | fmt = '"%.'+str(ndec(esd))+'f(%d)"' |
---|
910 | return str(fmt%(value,int(round(esd*10**(mdec(esd)))))).strip('"') |
---|
911 | elif esd < 0: |
---|
912 | return str(round(value,mdec(esd)-1)) |
---|
913 | else: |
---|
914 | text = str("%f"%(value)) |
---|
915 | if nTZ: |
---|
916 | return text.rstrip('0') |
---|
917 | else: |
---|
918 | return text |
---|
919 | |
---|
920 | def adjHKLmax(SGData,Hmax): |
---|
921 | if SGData['SGLaue'] in ['3','3m1','31m','6/m','6/mmm']: |
---|
922 | Hmax[0] = ((Hmax[0]+3)/6)*6 |
---|
923 | Hmax[1] = ((Hmax[1]+3)/6)*6 |
---|
924 | Hmax[2] = ((Hmax[2]+1)/4)*4 |
---|
925 | else: |
---|
926 | Hmax[0] = ((Hmax[0]+2)/4)*4 |
---|
927 | Hmax[1] = ((Hmax[1]+2)/4)*4 |
---|
928 | Hmax[2] = ((Hmax[2]+1)/4)*4 |
---|
929 | |
---|
930 | def OmitMap(data,reflData): |
---|
931 | generalData = data['General'] |
---|
932 | if not generalData['Map']['MapType']: |
---|
933 | print '**** ERROR - Fourier map not defined' |
---|
934 | return |
---|
935 | mapData = generalData['Map'] |
---|
936 | dmin = mapData['Resolution'] |
---|
937 | SGData = generalData['SGData'] |
---|
938 | cell = generalData['Cell'][1:8] |
---|
939 | A = G2lat.cell2A(cell[:6]) |
---|
940 | Hmax = np.asarray(G2lat.getHKLmax(dmin,SGData,A),dtype='i')+1 |
---|
941 | adjHKLmax(SGData,Hmax) |
---|
942 | Fhkl = np.zeros(shape=2*Hmax,dtype='c16') |
---|
943 | time0 = time.time() |
---|
944 | for ref in reflData: |
---|
945 | if ref[4] >= dmin: |
---|
946 | Fosq,Fcsq,ph = ref[8:11] |
---|
947 | for i,hkl in enumerate(ref[11]): |
---|
948 | hkl = np.asarray(hkl,dtype='i') |
---|
949 | dp = 360.*ref[12][i] |
---|
950 | a = cosd(ph+dp) |
---|
951 | b = sind(ph+dp) |
---|
952 | phasep = complex(a,b) |
---|
953 | phasem = complex(a,-b) |
---|
954 | F = np.sqrt(Fosq) |
---|
955 | h,k,l = hkl+Hmax |
---|
956 | Fhkl[h,k,l] = F*phasep |
---|
957 | h,k,l = -hkl+Hmax |
---|
958 | Fhkl[h,k,l] = F*phasem |
---|
959 | rho = fft.fftn(fft.fftshift(Fhkl))/cell[6] |
---|
960 | print 'NB: this is just an Fobs map for now - under development' |
---|
961 | print 'Omit map time: %.4f'%(time.time()-time0),'no. elements: %d'%(Fhkl.size) |
---|
962 | print rho.shape |
---|
963 | mapData['rho'] = np.real(rho) |
---|
964 | mapData['rhoMax'] = max(np.max(mapData['rho']),-np.min(mapData['rho'])) |
---|
965 | return mapData |
---|
966 | |
---|
967 | def FourierMap(data,reflData): |
---|
968 | |
---|
969 | generalData = data['General'] |
---|
970 | if not generalData['Map']['MapType']: |
---|
971 | print '**** ERROR - Fourier map not defined' |
---|
972 | return |
---|
973 | mapData = generalData['Map'] |
---|
974 | dmin = mapData['Resolution'] |
---|
975 | SGData = generalData['SGData'] |
---|
976 | cell = generalData['Cell'][1:8] |
---|
977 | A = G2lat.cell2A(cell[:6]) |
---|
978 | Hmax = np.asarray(G2lat.getHKLmax(dmin,SGData,A),dtype='i')+1 |
---|
979 | adjHKLmax(SGData,Hmax) |
---|
980 | Fhkl = np.zeros(shape=2*Hmax,dtype='c16') |
---|
981 | # Fhkl[0,0,0] = generalData['F000X'] |
---|
982 | time0 = time.time() |
---|
983 | for ref in reflData: |
---|
984 | if ref[4] >= dmin: |
---|
985 | Fosq,Fcsq,ph = ref[8:11] |
---|
986 | for i,hkl in enumerate(ref[11]): |
---|
987 | hkl = np.asarray(hkl,dtype='i') |
---|
988 | dp = 360.*ref[12][i] |
---|
989 | a = cosd(ph+dp) |
---|
990 | b = sind(ph+dp) |
---|
991 | phasep = complex(a,b) |
---|
992 | phasem = complex(a,-b) |
---|
993 | if 'Fobs' in mapData['MapType']: |
---|
994 | F = np.sqrt(Fosq) |
---|
995 | h,k,l = hkl+Hmax |
---|
996 | Fhkl[h,k,l] = F*phasep |
---|
997 | h,k,l = -hkl+Hmax |
---|
998 | Fhkl[h,k,l] = F*phasem |
---|
999 | elif 'Fcalc' in mapData['MapType']: |
---|
1000 | F = np.sqrt(Fcsq) |
---|
1001 | h,k,l = hkl+Hmax |
---|
1002 | Fhkl[h,k,l] = F*phasep |
---|
1003 | h,k,l = -hkl+Hmax |
---|
1004 | Fhkl[h,k,l] = F*phasem |
---|
1005 | elif 'delt-F' in mapData['MapType']: |
---|
1006 | dF = np.sqrt(Fosq)-np.sqrt(Fcsq) |
---|
1007 | h,k,l = hkl+Hmax |
---|
1008 | Fhkl[h,k,l] = dF*phasep |
---|
1009 | h,k,l = -hkl+Hmax |
---|
1010 | Fhkl[h,k,l] = dF*phasem |
---|
1011 | elif '2*Fo-Fc' in mapData['MapType']: |
---|
1012 | F = 2.*np.sqrt(Fosq)-np.sqrt(Fcsq) |
---|
1013 | h,k,l = hkl+Hmax |
---|
1014 | Fhkl[h,k,l] = F*phasep |
---|
1015 | h,k,l = -hkl+Hmax |
---|
1016 | Fhkl[h,k,l] = F*phasem |
---|
1017 | elif 'Patterson' in mapData['MapType']: |
---|
1018 | h,k,l = hkl+Hmax |
---|
1019 | Fhkl[h,k,l] = complex(Fosq,0.) |
---|
1020 | h,k,l = -hkl+Hmax |
---|
1021 | Fhkl[h,k,l] = complex(Fosq,0.) |
---|
1022 | rho = fft.fftn(fft.fftshift(Fhkl))/cell[6] |
---|
1023 | print 'Fourier map time: %.4f'%(time.time()-time0),'no. elements: %d'%(Fhkl.size) |
---|
1024 | mapData['rho'] = np.real(rho) |
---|
1025 | mapData['rhoMax'] = max(np.max(mapData['rho']),-np.min(mapData['rho'])) |
---|
1026 | return mapData |
---|
1027 | |
---|
1028 | # map printing for testing purposes |
---|
1029 | def printRho(SGLaue,rho,rhoMax): |
---|
1030 | dim = len(rho.shape) |
---|
1031 | if dim == 2: |
---|
1032 | ix,jy = rho.shape |
---|
1033 | for j in range(jy): |
---|
1034 | line = '' |
---|
1035 | if SGLaue in ['3','3m1','31m','6/m','6/mmm']: |
---|
1036 | line += (jy-j)*' ' |
---|
1037 | for i in range(ix): |
---|
1038 | r = int(100*rho[i,j]/rhoMax) |
---|
1039 | line += '%4d'%(r) |
---|
1040 | print line+'\n' |
---|
1041 | else: |
---|
1042 | ix,jy,kz = rho.shape |
---|
1043 | for k in range(kz): |
---|
1044 | print 'k = ',k |
---|
1045 | for j in range(jy): |
---|
1046 | line = '' |
---|
1047 | if SGLaue in ['3','3m1','31m','6/m','6/mmm']: |
---|
1048 | line += (jy-j)*' ' |
---|
1049 | for i in range(ix): |
---|
1050 | r = int(100*rho[i,j,k]/rhoMax) |
---|
1051 | line += '%4d'%(r) |
---|
1052 | print line+'\n' |
---|
1053 | ## keep this |
---|
1054 | |
---|
1055 | def findOffset(SGData,A,Fhkl): |
---|
1056 | if SGData['SpGrp'] == 'P 1': |
---|
1057 | return [0,0,0] |
---|
1058 | hklShape = Fhkl.shape |
---|
1059 | hklHalf = np.array(hklShape)/2 |
---|
1060 | sortHKL = np.argsort(Fhkl.flatten()) |
---|
1061 | Fdict = {} |
---|
1062 | for hkl in sortHKL: |
---|
1063 | HKL = np.unravel_index(hkl,hklShape) |
---|
1064 | F = Fhkl[HKL[0]][HKL[1]][HKL[2]] |
---|
1065 | if F == 0.: |
---|
1066 | break |
---|
1067 | Fdict['%.6f'%(np.absolute(F))] = hkl |
---|
1068 | Flist = np.flipud(np.sort(Fdict.keys())) |
---|
1069 | F = str(1.e6) |
---|
1070 | i = 0 |
---|
1071 | DH = [] |
---|
1072 | Dphi = [] |
---|
1073 | Hmax = 2*np.asarray(G2lat.getHKLmax(3.5,SGData,A),dtype='i') |
---|
1074 | for F in Flist: |
---|
1075 | hkl = np.unravel_index(Fdict[F],hklShape) |
---|
1076 | iabsnt,mulp,Uniq,Phi = G2spc.GenHKLf(list(hkl-hklHalf),SGData) |
---|
1077 | Uniq = np.array(Uniq,dtype='i') |
---|
1078 | Phi = np.array(Phi) |
---|
1079 | Uniq = np.concatenate((Uniq,-Uniq))+hklHalf # put in Friedel pairs & make as index to Farray |
---|
1080 | Phi = np.concatenate((Phi,-Phi)) # and their phase shifts |
---|
1081 | Fh0 = Fhkl[hkl[0],hkl[1],hkl[2]] |
---|
1082 | ang0 = np.angle(Fh0,deg=True)/360. |
---|
1083 | for H,phi in zip(Uniq,Phi)[1:]: |
---|
1084 | ang = (np.angle(Fhkl[H[0],H[1],H[2]],deg=True)/360.-phi) |
---|
1085 | dH = H-hkl |
---|
1086 | dang = ang-ang0 |
---|
1087 | if np.any(np.abs(dH)-Hmax > 0): #keep low order DHs |
---|
1088 | continue |
---|
1089 | DH.append(dH) |
---|
1090 | Dphi.append((dang+.5) % 1.0) |
---|
1091 | if i > 20 or len(DH) > 30: |
---|
1092 | break |
---|
1093 | i += 1 |
---|
1094 | DH = np.array(DH) |
---|
1095 | print ' map offset no.of terms: %d from %d reflections'%(len(DH),len(Flist)) |
---|
1096 | Dphi = np.array(Dphi) |
---|
1097 | steps = np.array(hklShape) |
---|
1098 | X,Y,Z = np.mgrid[0:1:1./steps[0],0:1:1./steps[1],0:1:1./steps[2]] |
---|
1099 | XYZ = np.array(zip(X.flatten(),Y.flatten(),Z.flatten())) |
---|
1100 | Dang = (np.dot(XYZ,DH.T)+.5)%1.-Dphi |
---|
1101 | Mmap = np.reshape(np.sum((Dang)**2,axis=1),newshape=steps)/len(DH) |
---|
1102 | hist,bins = np.histogram(Mmap,bins=1000) |
---|
1103 | # for i,item in enumerate(hist[:10]): |
---|
1104 | # print item,bins[i] |
---|
1105 | chisq = np.min(Mmap) |
---|
1106 | DX = -np.array(np.unravel_index(np.argmin(Mmap),Mmap.shape)) |
---|
1107 | print ' map offset chi**2: %.3f, map offset: %d %d %d'%(chisq,DX[0],DX[1],DX[2]) |
---|
1108 | # print (np.dot(DX,DH.T)+.5)%1.-Dphi |
---|
1109 | return DX |
---|
1110 | |
---|
1111 | def ChargeFlip(data,reflData,pgbar): |
---|
1112 | generalData = data['General'] |
---|
1113 | mapData = generalData['Map'] |
---|
1114 | flipData = generalData['Flip'] |
---|
1115 | FFtable = {} |
---|
1116 | if 'None' not in flipData['Norm element']: |
---|
1117 | normElem = flipData['Norm element'].upper() |
---|
1118 | FFs = G2el.GetFormFactorCoeff(normElem.split('+')[0].split('-')[0]) |
---|
1119 | for ff in FFs: |
---|
1120 | if ff['Symbol'] == normElem: |
---|
1121 | FFtable.update(ff) |
---|
1122 | dmin = flipData['Resolution'] |
---|
1123 | SGData = generalData['SGData'] |
---|
1124 | cell = generalData['Cell'][1:8] |
---|
1125 | A = G2lat.cell2A(cell[:6]) |
---|
1126 | Vol = cell[6] |
---|
1127 | Hmax = np.asarray(G2lat.getHKLmax(dmin,SGData,A),dtype='i')+1 |
---|
1128 | adjHKLmax(SGData,Hmax) |
---|
1129 | Ehkl = np.zeros(shape=2*Hmax,dtype='c16') #2X64bits per complex no. |
---|
1130 | time0 = time.time() |
---|
1131 | for ref in reflData: |
---|
1132 | dsp = ref[4] |
---|
1133 | if dsp >= dmin: |
---|
1134 | ff = 0.1*Vol #est. no. atoms for ~10A**3/atom |
---|
1135 | if FFtable: |
---|
1136 | SQ = 0.25/dsp**2 |
---|
1137 | ff *= G2el.ScatFac(FFtable,SQ)[0] |
---|
1138 | if ref[8] > 0.: #use only +ve Fobs**2 |
---|
1139 | E = np.sqrt(ref[8])/ff |
---|
1140 | else: |
---|
1141 | E = 0. |
---|
1142 | ph = ref[10] |
---|
1143 | ph = rn.uniform(0.,360.) |
---|
1144 | for i,hkl in enumerate(ref[11]): |
---|
1145 | hkl = np.asarray(hkl,dtype='i') |
---|
1146 | dp = 360.*ref[12][i] |
---|
1147 | a = cosd(ph+dp) |
---|
1148 | b = sind(ph+dp) |
---|
1149 | phasep = complex(a,b) |
---|
1150 | phasem = complex(a,-b) |
---|
1151 | h,k,l = hkl+Hmax |
---|
1152 | Ehkl[h,k,l] = E*phasep |
---|
1153 | h,k,l = -hkl+Hmax #Friedel pair refl. |
---|
1154 | Ehkl[h,k,l] = E*phasem |
---|
1155 | # Ehkl[Hmax] = 0.00001 #this to preserve F[0,0,0] |
---|
1156 | CEhkl = copy.copy(Ehkl) |
---|
1157 | MEhkl = ma.array(Ehkl,mask=(Ehkl==0.0)) |
---|
1158 | Emask = ma.getmask(MEhkl) |
---|
1159 | sumE = np.sum(ma.array(np.absolute(CEhkl),mask=Emask)) |
---|
1160 | Ncyc = 0 |
---|
1161 | old = np.seterr(all='raise') |
---|
1162 | while True: |
---|
1163 | CErho = np.real(fft.fftn(fft.fftshift(CEhkl)))*(1.+0j) |
---|
1164 | CEsig = np.std(CErho) |
---|
1165 | CFrho = np.where(np.real(CErho) >= flipData['k-factor']*CEsig,CErho,-CErho) |
---|
1166 | CFrho = np.where(np.real(CErho) <= flipData['k-Max']*CEsig,CFrho,-CFrho) #solves U atom problem! make 20. adjustible |
---|
1167 | CFhkl = fft.ifftshift(fft.ifftn(CFrho)) |
---|
1168 | CFhkl = np.where(CFhkl,CFhkl,1.0) #avoid divide by zero |
---|
1169 | phase = CFhkl/np.absolute(CFhkl) |
---|
1170 | CEhkl = np.absolute(Ehkl)*phase |
---|
1171 | Ncyc += 1 |
---|
1172 | sumCF = np.sum(ma.array(np.absolute(CFhkl),mask=Emask)) |
---|
1173 | DEhkl = np.absolute(np.absolute(Ehkl)/sumE-np.absolute(CFhkl)/sumCF) |
---|
1174 | Rcf = min(100.,np.sum(ma.array(DEhkl,mask=Emask)*100.)) |
---|
1175 | if Rcf < 5.: |
---|
1176 | break |
---|
1177 | GoOn = pgbar.Update(Rcf,newmsg='%s%8.3f%s\n%s %d'%('Residual Rcf =',Rcf,'%','No.cycles = ',Ncyc))[0] |
---|
1178 | if not GoOn or Ncyc > 10000: |
---|
1179 | break |
---|
1180 | np.seterr(**old) |
---|
1181 | print ' Charge flip time: %.4f'%(time.time()-time0),'no. elements: %d'%(Ehkl.size) |
---|
1182 | CErho = np.real(fft.fftn(fft.fftshift(CEhkl))) |
---|
1183 | print ' No.cycles = ',Ncyc,'Residual Rcf =%8.3f%s'%(Rcf,'%')+' Map size:',CErho.shape |
---|
1184 | roll = findOffset(SGData,A,CEhkl) |
---|
1185 | |
---|
1186 | mapData['Rcf'] = Rcf |
---|
1187 | mapData['rho'] = np.roll(np.roll(np.roll(CErho,roll[0],axis=0),roll[1],axis=1),roll[2],axis=2) |
---|
1188 | mapData['rhoMax'] = max(np.max(mapData['rho']),-np.min(mapData['rho'])) |
---|
1189 | mapData['rollMap'] = [0,0,0] |
---|
1190 | return mapData |
---|
1191 | |
---|
1192 | def SearchMap(data): |
---|
1193 | rollMap = lambda rho,roll: np.roll(np.roll(np.roll(rho,roll[0],axis=0),roll[1],axis=1),roll[2],axis=2) |
---|
1194 | |
---|
1195 | norm = 1./(np.sqrt(3.)*np.sqrt(2.*np.pi)**3) |
---|
1196 | |
---|
1197 | def noDuplicate(xyz,peaks,Amat): |
---|
1198 | XYZ = np.inner(Amat,xyz) |
---|
1199 | if True in [np.allclose(XYZ,np.inner(Amat,peak),atol=0.5) for peak in peaks]: |
---|
1200 | print ' Peak',xyz,' <0.5A from another peak' |
---|
1201 | return False |
---|
1202 | return True |
---|
1203 | |
---|
1204 | def fixSpecialPos(xyz,SGData,Amat): |
---|
1205 | equivs = G2spc.GenAtom(xyz,SGData,Move=True) |
---|
1206 | X = [] |
---|
1207 | xyzs = [equiv[0] for equiv in equivs] |
---|
1208 | for x in xyzs: |
---|
1209 | if np.sqrt(np.sum(np.inner(Amat,xyz-x)**2,axis=0))<0.5: |
---|
1210 | X.append(x) |
---|
1211 | if len(X) > 1: |
---|
1212 | return np.average(X,axis=0) |
---|
1213 | else: |
---|
1214 | return xyz |
---|
1215 | |
---|
1216 | def rhoCalc(parms,rX,rY,rZ,res,SGLaue): |
---|
1217 | Mag,x0,y0,z0,sig = parms |
---|
1218 | z = -((x0-rX)**2+(y0-rY)**2+(z0-rZ)**2)/(2.*sig**2) |
---|
1219 | # return norm*Mag*np.exp(z)/(sig*res**3) #not slower but some faults in LS |
---|
1220 | return norm*Mag*(1.+z+z**2/2.)/(sig*res**3) |
---|
1221 | |
---|
1222 | def peakFunc(parms,rX,rY,rZ,rho,res,SGLaue): |
---|
1223 | Mag,x0,y0,z0,sig = parms |
---|
1224 | M = rho-rhoCalc(parms,rX,rY,rZ,res,SGLaue) |
---|
1225 | return M |
---|
1226 | |
---|
1227 | def peakHess(parms,rX,rY,rZ,rho,res,SGLaue): |
---|
1228 | Mag,x0,y0,z0,sig = parms |
---|
1229 | dMdv = np.zeros(([5,]+list(rX.shape))) |
---|
1230 | delt = .01 |
---|
1231 | for i in range(5): |
---|
1232 | parms[i] -= delt |
---|
1233 | rhoCm = rhoCalc(parms,rX,rY,rZ,res,SGLaue) |
---|
1234 | parms[i] += 2.*delt |
---|
1235 | rhoCp = rhoCalc(parms,rX,rY,rZ,res,SGLaue) |
---|
1236 | parms[i] -= delt |
---|
1237 | dMdv[i] = (rhoCp-rhoCm)/(2.*delt) |
---|
1238 | rhoC = rhoCalc(parms,rX,rY,rZ,res,SGLaue) |
---|
1239 | Vec = np.sum(np.sum(np.sum(dMdv*(rho-rhoC),axis=3),axis=2),axis=1) |
---|
1240 | dMdv = np.reshape(dMdv,(5,rX.size)) |
---|
1241 | Hess = np.inner(dMdv,dMdv) |
---|
1242 | |
---|
1243 | return Vec,Hess |
---|
1244 | |
---|
1245 | generalData = data['General'] |
---|
1246 | phaseName = generalData['Name'] |
---|
1247 | SGData = generalData['SGData'] |
---|
1248 | Amat,Bmat = G2lat.cell2AB(generalData['Cell'][1:7]) |
---|
1249 | drawingData = data['Drawing'] |
---|
1250 | peaks = [] |
---|
1251 | mags = [] |
---|
1252 | dzeros = [] |
---|
1253 | try: |
---|
1254 | mapData = generalData['Map'] |
---|
1255 | contLevel = mapData['cutOff']*mapData['rhoMax']/100. |
---|
1256 | rho = copy.copy(mapData['rho']) #don't mess up original |
---|
1257 | mapHalf = np.array(rho.shape)/2 |
---|
1258 | res = mapData['Resolution'] |
---|
1259 | incre = np.array(rho.shape,dtype=np.float) |
---|
1260 | step = max(1.0,1./res)+1 |
---|
1261 | steps = np.array(3*[step,]) |
---|
1262 | except KeyError: |
---|
1263 | print '**** ERROR - Fourier map not defined' |
---|
1264 | return peaks,mags |
---|
1265 | rhoMask = ma.array(rho,mask=(rho<contLevel)) |
---|
1266 | indices = (-1,0,1) |
---|
1267 | rolls = np.array([[h,k,l] for h in indices for k in indices for l in indices]) |
---|
1268 | for roll in rolls: |
---|
1269 | if np.any(roll): |
---|
1270 | rhoMask = ma.array(rhoMask,mask=(rhoMask-rollMap(rho,roll)<=0.)) |
---|
1271 | indx = np.transpose(rhoMask.nonzero()) |
---|
1272 | peaks = indx/incre |
---|
1273 | mags = rhoMask[rhoMask.nonzero()] |
---|
1274 | for i,[ind,peak,mag] in enumerate(zip(indx,peaks,mags)): |
---|
1275 | rho = rollMap(rho,ind) |
---|
1276 | rMM = mapHalf-steps |
---|
1277 | rMP = mapHalf+steps+1 |
---|
1278 | rhoPeak = rho[rMM[0]:rMP[0],rMM[1]:rMP[1],rMM[2]:rMP[2]] |
---|
1279 | peakInt = np.sum(rhoPeak)*res**3 |
---|
1280 | rX,rY,rZ = np.mgrid[rMM[0]:rMP[0],rMM[1]:rMP[1],rMM[2]:rMP[2]] |
---|
1281 | x0 = [peakInt,mapHalf[0],mapHalf[1],mapHalf[2],2.0] #magnitude, position & width(sig) |
---|
1282 | result = HessianLSQ(peakFunc,x0,Hess=peakHess, |
---|
1283 | args=(rX,rY,rZ,rhoPeak,res,SGData['SGLaue']),ftol=.01,maxcyc=10) |
---|
1284 | x1 = result[0] |
---|
1285 | if not np.any(x1 < 0): |
---|
1286 | mag = x1[0] |
---|
1287 | peak = (np.array(x1[1:4])-ind)/incre |
---|
1288 | peak = fixSpecialPos(peak,SGData,Amat) |
---|
1289 | rho = rollMap(rho,-ind) |
---|
1290 | dzeros = np.sqrt(np.sum(np.inner(Amat,peaks)**2,axis=0)) |
---|
1291 | return np.array(peaks),np.array([mags,]).T,np.array([dzeros,]).T |
---|
1292 | |
---|
1293 | def sortArray(data,pos,reverse=False): |
---|
1294 | #data is a list of items |
---|
1295 | #sort by pos in list; reverse if True |
---|
1296 | T = [] |
---|
1297 | for i,M in enumerate(data): |
---|
1298 | T.append((M[pos],i)) |
---|
1299 | D = dict(zip(T,data)) |
---|
1300 | T.sort() |
---|
1301 | if reverse: |
---|
1302 | T.reverse() |
---|
1303 | X = [] |
---|
1304 | for key in T: |
---|
1305 | X.append(D[key]) |
---|
1306 | return X |
---|
1307 | |
---|
1308 | def PeaksEquiv(data,Ind): |
---|
1309 | |
---|
1310 | def Duplicate(xyz,peaks,Amat): |
---|
1311 | if True in [np.allclose(np.inner(Amat,xyz),np.inner(Amat,peak),atol=0.5) for peak in peaks]: |
---|
1312 | return True |
---|
1313 | return False |
---|
1314 | |
---|
1315 | generalData = data['General'] |
---|
1316 | cell = generalData['Cell'][1:7] |
---|
1317 | Amat,Bmat = G2lat.cell2AB(generalData['Cell'][1:7]) |
---|
1318 | A = G2lat.cell2A(cell) |
---|
1319 | SGData = generalData['SGData'] |
---|
1320 | mapPeaks = data['Map Peaks'] |
---|
1321 | XYZ = np.array([xyz[1:4] for xyz in mapPeaks]) |
---|
1322 | Indx = {} |
---|
1323 | for ind in Ind: |
---|
1324 | xyz = np.array(mapPeaks[ind][1:4]) |
---|
1325 | xyzs = np.array([equiv[0] for equiv in G2spc.GenAtom(xyz,SGData,Move=True)]) |
---|
1326 | # for x in xyzs: print x |
---|
1327 | for jnd,xyz in enumerate(XYZ): |
---|
1328 | Indx[jnd] = Duplicate(xyz,xyzs,Amat) |
---|
1329 | Ind = [] |
---|
1330 | for ind in Indx: |
---|
1331 | if Indx[ind]: |
---|
1332 | Ind.append(ind) |
---|
1333 | return Ind |
---|
1334 | |
---|
1335 | def PeaksUnique(data,Ind): |
---|
1336 | # XYZE = np.array([[equiv[0] for equiv in G2spc.GenAtom(xyz[1:4],SGData,Move=True)] for xyz in mapPeaks]) #keep this!! |
---|
1337 | |
---|
1338 | def noDuplicate(xyz,peaks,Amat): |
---|
1339 | if True in [np.allclose(np.inner(Amat,xyz),np.inner(Amat,peak),atol=0.5) for peak in peaks]: |
---|
1340 | return False |
---|
1341 | return True |
---|
1342 | |
---|
1343 | generalData = data['General'] |
---|
1344 | cell = generalData['Cell'][1:7] |
---|
1345 | Amat,Bmat = G2lat.cell2AB(generalData['Cell'][1:7]) |
---|
1346 | A = G2lat.cell2A(cell) |
---|
1347 | SGData = generalData['SGData'] |
---|
1348 | mapPeaks = data['Map Peaks'] |
---|
1349 | Indx = {} |
---|
1350 | XYZ = {} |
---|
1351 | for ind in Ind: |
---|
1352 | XYZ[ind] = np.array(mapPeaks[ind][1:4]) |
---|
1353 | Indx[ind] = True |
---|
1354 | for ind in Ind: |
---|
1355 | if Indx[ind]: |
---|
1356 | xyz = XYZ[ind] |
---|
1357 | for jnd in Ind: |
---|
1358 | if ind != jnd and Indx[jnd]: |
---|
1359 | Equiv = G2spc.GenAtom(XYZ[jnd],SGData,Move=True) |
---|
1360 | xyzs = np.array([equiv[0] for equiv in Equiv]) |
---|
1361 | Indx[jnd] = noDuplicate(xyz,xyzs,Amat) |
---|
1362 | Ind = [] |
---|
1363 | for ind in Indx: |
---|
1364 | if Indx[ind]: |
---|
1365 | Ind.append(ind) |
---|
1366 | return Ind |
---|
1367 | |
---|
1368 | def setPeakparms(Parms,Parms2,pos,mag,ifQ=False,useFit=False): |
---|
1369 | ind = 0 |
---|
1370 | if useFit: |
---|
1371 | ind = 1 |
---|
1372 | ins = {} |
---|
1373 | if 'C' in Parms['Type'][0]: #CW data - TOF later in an elif |
---|
1374 | for x in ['U','V','W','X','Y']: |
---|
1375 | ins[x] = Parms[x][ind] |
---|
1376 | if ifQ: #qplot - convert back to 2-theta |
---|
1377 | pos = 2.0*asind(pos*wave/(4*math.pi)) |
---|
1378 | sig = ins['U']*tand(pos/2.0)**2+ins['V']*tand(pos/2.0)+ins['W'] |
---|
1379 | gam = ins['X']/cosd(pos/2.0)+ins['Y']*tand(pos/2.0) |
---|
1380 | XY = [pos,0, mag,1, sig,0, gam,0] #default refine intensity 1st |
---|
1381 | else: |
---|
1382 | if ifQ: |
---|
1383 | dsp = 2.*np.pi/pos |
---|
1384 | pos = Parms['difC']*dsp |
---|
1385 | else: |
---|
1386 | dsp = pos/Parms['difC'][1] |
---|
1387 | if 'Pdabc' in Parms2: |
---|
1388 | for x in ['sig-0','sig-1','X','Y']: |
---|
1389 | ins[x] = Parms[x][ind] |
---|
1390 | Pdabc = Parms2['Pdabc'].T |
---|
1391 | alp = np.interp(dsp,Pdabc[0],Pdabc[1]) |
---|
1392 | bet = np.interp(dsp,Pdabc[0],Pdabc[2]) |
---|
1393 | else: |
---|
1394 | for x in ['alpha','beta-0','beta-1','sig-0','sig-1','X','Y']: |
---|
1395 | ins[x] = Parms[x][ind] |
---|
1396 | alp = ins['alpha']/dsp |
---|
1397 | bet = ins['beta-0']+ins['beta-1']/dsp**4 |
---|
1398 | sig = ins['sig-0']+ins['sig-1']*dsp**2 |
---|
1399 | gam = ins['X']*dsp+ins['Y']*dsp**2 |
---|
1400 | XY = [pos,0,mag,1,alp,0,bet,0,sig,0,gam,0] |
---|
1401 | return XY |
---|
1402 | |
---|
1403 | def mcsaSearch(data,reflType,reflData,covData,pgbar): |
---|
1404 | generalData = data['General'] |
---|
1405 | mcsaControls = generalData['MCSA controls'] |
---|
1406 | reflName = mcsaData['Data source'] |
---|
1407 | phaseName = generalData['Name'] |
---|
1408 | MCSAObjs = data['MCSAModels'] |
---|
1409 | |
---|
1410 | # = {'':'','Annealing':[50.0,0.001,0.90,1000], |
---|
1411 | # 'dmin':2.0,'Algolrithm':'Normal','Jump coeff':[0.95,0.5]} #'Normal','Random jump','Tremayne jump' |
---|
1412 | |
---|
1413 | return {} |
---|
1414 | |
---|
1415 | |
---|
1416 | def getWave(Parms): |
---|
1417 | try: |
---|
1418 | return Parms['Lam'][1] |
---|
1419 | except KeyError: |
---|
1420 | return Parms['Lam1'][1] |
---|
1421 | |
---|
1422 | def prodQQ(QA,QB): |
---|
1423 | ''' Grassman quaternion product |
---|
1424 | QA,QB quaternions; q=r+ai+bj+ck |
---|
1425 | ''' |
---|
1426 | D = np.zeros(4) |
---|
1427 | D[0] = QA[0]*QB[0]-QA[1]*QB[1]-QA[2]*QB[2]-QA[3]*QB[3] |
---|
1428 | D[1] = QA[0]*QB[1]+QA[1]*QB[0]+QA[2]*QB[3]-QA[3]*QB[2] |
---|
1429 | D[2] = QA[0]*QB[2]-QA[1]*QB[3]+QA[2]*QB[0]+QA[3]*QB[1] |
---|
1430 | D[3] = QA[0]*QB[3]+QA[1]*QB[2]-QA[2]*QB[1]+QA[3]*QB[0] |
---|
1431 | return D |
---|
1432 | |
---|
1433 | def normQ(QA): |
---|
1434 | ''' get length of quaternion & normalize it |
---|
1435 | q=r+ai+bj+ck |
---|
1436 | ''' |
---|
1437 | n = np.sqrt(np.sum(np.array(QA)**2)) |
---|
1438 | return QA/n |
---|
1439 | |
---|
1440 | def invQ(Q): |
---|
1441 | ''' |
---|
1442 | get inverse of quaternion |
---|
1443 | q=r+ai+bj+ck; q* = r-ai-bj-ck |
---|
1444 | ''' |
---|
1445 | return Q*np.array([1,-1,-1,-1]) |
---|
1446 | |
---|
1447 | def prodQVQ(Q,V): |
---|
1448 | ''' compute the quaternion vector rotation qvq-1 = v' |
---|
1449 | q=r+ai+bj+ck |
---|
1450 | ''' |
---|
1451 | VP = np.zeros(3) |
---|
1452 | T2 = Q[0]*Q[1] |
---|
1453 | T3 = Q[0]*Q[2] |
---|
1454 | T4 = Q[0]*Q[3] |
---|
1455 | T5 = -Q[1]*Q[1] |
---|
1456 | T6 = Q[1]*Q[2] |
---|
1457 | T7 = Q[1]*Q[3] |
---|
1458 | T8 = -Q[2]*Q[2] |
---|
1459 | T9 = Q[2]*Q[3] |
---|
1460 | T10 = -Q[3]*Q[3] |
---|
1461 | VP[0] = 2.*((T8+T10)*V[0]+(T6-T4)*V[1]+(T3+T7)*V[2])+V[0] |
---|
1462 | VP[1] = 2.*((T4+T6)*V[0]+(T5+T10)*V[1]+(T9-T2)*V[2])+V[1] |
---|
1463 | VP[2] = 2.*((T7-T3)*V[0]+(T2+T9)*V[1]+(T5+T8)*V[2])+V[2] |
---|
1464 | return VP |
---|
1465 | |
---|
1466 | def Q2Mat(Q): |
---|
1467 | ''' make rotation matrix from quaternion |
---|
1468 | q=r+ai+bj+ck |
---|
1469 | ''' |
---|
1470 | QN = normQ(Q) |
---|
1471 | aa = QN[0]**2 |
---|
1472 | ab = QN[0]*QN[1] |
---|
1473 | ac = QN[0]*QN[2] |
---|
1474 | ad = QN[0]*QN[3] |
---|
1475 | bb = QN[1]**2 |
---|
1476 | bc = QN[1]*QN[2] |
---|
1477 | bd = QN[1]*QN[3] |
---|
1478 | cc = QN[2]**2 |
---|
1479 | cd = QN[2]*QN[3] |
---|
1480 | dd = QN[3]**2 |
---|
1481 | M = [[aa+bb-cc-dd, 2.*(bc-ad), 2.*(ac+bd)], |
---|
1482 | [2*(ad+bc), aa-bb+cc-dd, 2.*(cd-ab)], |
---|
1483 | [2*(bd-ac), 2.*(ab+cd), aa-bb-cc+dd]] |
---|
1484 | return np.array(M) |
---|
1485 | |
---|
1486 | def AV2Q(A,V): |
---|
1487 | ''' convert angle (radians) & vector to quaternion |
---|
1488 | q=r+ai+bj+ck |
---|
1489 | ''' |
---|
1490 | Q = np.zeros(4) |
---|
1491 | d = np.sqrt(np.sum(np.array(V)**2)) |
---|
1492 | if d: |
---|
1493 | V /= d |
---|
1494 | else: |
---|
1495 | V = np.array([0.,0.,1.]) |
---|
1496 | p = A/2. |
---|
1497 | Q[0] = np.cos(p) |
---|
1498 | Q[1:4] = V*np.sin(p) |
---|
1499 | return Q |
---|
1500 | |
---|
1501 | def AVdeg2Q(A,V): |
---|
1502 | ''' convert angle (degrees) & vector to quaternion |
---|
1503 | q=r+ai+bj+ck |
---|
1504 | ''' |
---|
1505 | Q = np.zeros(4) |
---|
1506 | d = np.sqrt(np.sum(np.array(V)**2)) |
---|
1507 | if d: |
---|
1508 | V /= d |
---|
1509 | else: |
---|
1510 | V = np.array([0.,0.,1.]) |
---|
1511 | p = A/2. |
---|
1512 | Q[0] = cosd(p) |
---|
1513 | Q[1:4] = V*sind(p) |
---|
1514 | return Q |
---|
1515 | |
---|
1516 | def Q2AVdeg(Q): |
---|
1517 | ''' convert quaternion to angle (degrees 0-360) & normalized vector |
---|
1518 | q=r+ai+bj+ck |
---|
1519 | ''' |
---|
1520 | A = 2.*acosd(Q[0]) |
---|
1521 | V = np.array(Q[1:]) |
---|
1522 | d = np.sqrt(np.sum(V**2)) |
---|
1523 | if d: |
---|
1524 | V /= d |
---|
1525 | else: |
---|
1526 | A = 0. |
---|
1527 | V = np.array([0.,0.,0.]) |
---|
1528 | return A,V |
---|
1529 | |
---|
1530 | def Q2AV(Q): |
---|
1531 | ''' convert quaternion to angle (radians 0-2pi) & normalized vector |
---|
1532 | q=r+ai+bj+ck |
---|
1533 | ''' |
---|
1534 | A = 2.*np.arccos(Q[0]) |
---|
1535 | V = np.array(Q[1:]) |
---|
1536 | d = np.sqrt(np.sum(V**2)) |
---|
1537 | if d: |
---|
1538 | V /= d |
---|
1539 | else: |
---|
1540 | A = 0. |
---|
1541 | V = np.array([0.,0.,0.]) |
---|
1542 | return A,V |
---|
1543 | |
---|
1544 | def makeQuat(A,B,C): |
---|
1545 | ''' Make quaternion from rotation of A vector to B vector about C axis |
---|
1546 | A,B,C are np.array Cartesian 3-vectors |
---|
1547 | Returns quaternion & rotation angle in radians |
---|
1548 | q=r+ai+bj+ck |
---|
1549 | ''' |
---|
1550 | |
---|
1551 | V1 = np.cross(A,C) |
---|
1552 | V2 = np.cross(B,C) |
---|
1553 | if nl.norm(V1)*nl.norm(V2): |
---|
1554 | V1 /= nl.norm(V1) |
---|
1555 | V2 /= nl.norm(V2) |
---|
1556 | V3 = np.cross(V1,V2) |
---|
1557 | else: |
---|
1558 | V3 = np.zeros(3) |
---|
1559 | Q = np.array([0.,0.,0.,1.]) |
---|
1560 | D = 0. |
---|
1561 | if nl.norm(V3): |
---|
1562 | V3 /= nl.norm(V3) |
---|
1563 | D1 = min(1.0,max(-1.0,np.vdot(V1,V2))) |
---|
1564 | D = np.arccos(D1)/2.0 |
---|
1565 | V1 = C-V3 |
---|
1566 | V2 = C+V3 |
---|
1567 | DM = nl.norm(V1) |
---|
1568 | DP = nl.norm(V2) |
---|
1569 | S = np.sin(D) |
---|
1570 | Q[0] = np.cos(D) |
---|
1571 | Q[1:] = V3*S |
---|
1572 | D *= 2. |
---|
1573 | if DM > DP: |
---|
1574 | D *= -1. |
---|
1575 | return Q,D |
---|
1576 | |
---|