1 | # -*- coding: utf-8 -*- |
---|
2 | #GSASIImath - major mathematics routines |
---|
3 | ########### SVN repository information ################### |
---|
4 | # $Date: 2020-07-19 15:04:30 +0000 (Sun, 19 Jul 2020) $ |
---|
5 | # $Author: vondreele $ |
---|
6 | # $Revision: 4526 $ |
---|
7 | # $URL: trunk/GSASIImath.py $ |
---|
8 | # $Id: GSASIImath.py 4526 2020-07-19 15:04:30Z vondreele $ |
---|
9 | ########### SVN repository information ################### |
---|
10 | ''' |
---|
11 | *GSASIImath: computation module* |
---|
12 | ================================ |
---|
13 | |
---|
14 | Routines for least-squares minimization and other stuff |
---|
15 | |
---|
16 | ''' |
---|
17 | from __future__ import division, print_function |
---|
18 | import random as rn |
---|
19 | import numpy as np |
---|
20 | import numpy.linalg as nl |
---|
21 | import numpy.ma as ma |
---|
22 | import time |
---|
23 | import math |
---|
24 | import copy |
---|
25 | import GSASIIpath |
---|
26 | GSASIIpath.SetVersionNumber("$Revision: 4526 $") |
---|
27 | import GSASIIElem as G2el |
---|
28 | import GSASIIlattice as G2lat |
---|
29 | import GSASIIspc as G2spc |
---|
30 | import GSASIIpwd as G2pwd |
---|
31 | import GSASIIfiles as G2fil |
---|
32 | import numpy.fft as fft |
---|
33 | import scipy.optimize as so |
---|
34 | try: |
---|
35 | import pypowder as pwd |
---|
36 | except ImportError: |
---|
37 | print ('pypowder is not available - profile calcs. not allowed') |
---|
38 | |
---|
39 | sind = lambda x: np.sin(x*np.pi/180.) |
---|
40 | cosd = lambda x: np.cos(x*np.pi/180.) |
---|
41 | tand = lambda x: np.tan(x*np.pi/180.) |
---|
42 | asind = lambda x: 180.*np.arcsin(x)/np.pi |
---|
43 | acosd = lambda x: 180.*np.arccos(x)/np.pi |
---|
44 | atand = lambda x: 180.*np.arctan(x)/np.pi |
---|
45 | atan2d = lambda y,x: 180.*np.arctan2(y,x)/np.pi |
---|
46 | try: # fails on doc build |
---|
47 | twopi = 2.0*np.pi |
---|
48 | twopisq = 2.0*np.pi**2 |
---|
49 | _double_min = np.finfo(float).min |
---|
50 | _double_max = np.finfo(float).max |
---|
51 | except TypeError: |
---|
52 | pass |
---|
53 | nxs = np.newaxis |
---|
54 | |
---|
55 | ################################################################################ |
---|
56 | ##### Hessian least-squares Levenberg-Marquardt routine |
---|
57 | ################################################################################ |
---|
58 | |
---|
59 | def pinv(a, rcond=1e-15 ): |
---|
60 | """ |
---|
61 | Compute the (Moore-Penrose) pseudo-inverse of a matrix. |
---|
62 | Modified from numpy.linalg.pinv; assumes a is Hessian & returns no. zeros found |
---|
63 | Calculate the generalized inverse of a matrix using its |
---|
64 | singular-value decomposition (SVD) and including all |
---|
65 | *large* singular values. |
---|
66 | |
---|
67 | :param array a: (M, M) array_like - here assumed to be LS Hessian |
---|
68 | Matrix to be pseudo-inverted. |
---|
69 | :param float rcond: Cutoff for small singular values. |
---|
70 | Singular values smaller (in modulus) than |
---|
71 | `rcond` * largest_singular_value (again, in modulus) |
---|
72 | are set to zero. |
---|
73 | |
---|
74 | :returns: B : (M, M) ndarray |
---|
75 | The pseudo-inverse of `a` |
---|
76 | |
---|
77 | Raises: LinAlgError |
---|
78 | If the SVD computation does not converge. |
---|
79 | |
---|
80 | Notes: |
---|
81 | The pseudo-inverse of a matrix A, denoted :math:`A^+`, is |
---|
82 | defined as: "the matrix that 'solves' [the least-squares problem] |
---|
83 | :math:`Ax = b`," i.e., if :math:`\\bar{x}` is said solution, then |
---|
84 | :math:`A^+` is that matrix such that :math:`\\bar{x} = A^+b`. |
---|
85 | |
---|
86 | It can be shown that if :math:`Q_1 \\Sigma Q_2^T = A` is the singular |
---|
87 | value decomposition of A, then |
---|
88 | :math:`A^+ = Q_2 \\Sigma^+ Q_1^T`, where :math:`Q_{1,2}` are |
---|
89 | orthogonal matrices, :math:`\\Sigma` is a diagonal matrix consisting |
---|
90 | of A's so-called singular values, (followed, typically, by |
---|
91 | zeros), and then :math:`\\Sigma^+` is simply the diagonal matrix |
---|
92 | consisting of the reciprocals of A's singular values |
---|
93 | (again, followed by zeros). [1] |
---|
94 | |
---|
95 | References: |
---|
96 | .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pp. 139-142. |
---|
97 | |
---|
98 | """ |
---|
99 | u, s, vt = nl.svd(a) |
---|
100 | cutoff = rcond*np.maximum.reduce(s) |
---|
101 | s = np.where(s>cutoff,1./s,0.) |
---|
102 | nzero = s.shape[0]-np.count_nonzero(s) |
---|
103 | # res = np.dot(np.transpose(vt), np.multiply(s[:, np.newaxis], np.transpose(u))) |
---|
104 | res = np.dot(vt.T,s[:,nxs]*u.T) |
---|
105 | return res,nzero |
---|
106 | |
---|
107 | def HessianLSQ(func,x0,Hess,args=(),ftol=1.49012e-8,xtol=1.e-6, maxcyc=0,lamda=-3,Print=False,refPlotUpdate=None): |
---|
108 | """ |
---|
109 | Minimize the sum of squares of a function (:math:`f`) evaluated on a series of |
---|
110 | values (y): :math:`\sum_{y=0}^{N_{obs}} f(y,{args})` |
---|
111 | where :math:`x = arg min(\sum_{y=0}^{N_{obs}} (func(y)^2,axis=0))` |
---|
112 | |
---|
113 | :param function func: callable method or function |
---|
114 | should take at least one (possibly length N vector) argument and |
---|
115 | returns M floating point numbers. |
---|
116 | :param np.ndarray x0: The starting estimate for the minimization of length N |
---|
117 | :param function Hess: callable method or function |
---|
118 | A required function or method to compute the weighted vector and Hessian for func. |
---|
119 | It must be a symmetric NxN array |
---|
120 | :param tuple args: Any extra arguments to func are placed in this tuple. |
---|
121 | :param float ftol: Relative error desired in the sum of squares. |
---|
122 | :param float xtol: Relative tolerance of zeros in the SVD solution in nl.pinv. |
---|
123 | :param int maxcyc: The maximum number of cycles of refinement to execute, if -1 refine |
---|
124 | until other limits are met (ftol, xtol) |
---|
125 | :param int lamda: initial Marquardt lambda=10**lamda |
---|
126 | :param bool Print: True for printing results (residuals & times) by cycle |
---|
127 | |
---|
128 | :returns: (x,cov_x,infodict) where |
---|
129 | |
---|
130 | * x : ndarray |
---|
131 | The solution (or the result of the last iteration for an unsuccessful |
---|
132 | call). |
---|
133 | * cov_x : ndarray |
---|
134 | Uses the fjac and ipvt optional outputs to construct an |
---|
135 | estimate of the jacobian around the solution. ``None`` if a |
---|
136 | singular matrix encountered (indicates very flat curvature in |
---|
137 | some direction). This matrix must be multiplied by the |
---|
138 | residual standard deviation to get the covariance of the |
---|
139 | parameter estimates -- see curve_fit. |
---|
140 | * infodict : dict |
---|
141 | a dictionary of optional outputs with the keys: |
---|
142 | |
---|
143 | * 'fvec' : the function evaluated at the output |
---|
144 | * 'num cyc': |
---|
145 | * 'nfev': |
---|
146 | * 'lamMax': |
---|
147 | * 'psing': |
---|
148 | * 'SVD0': |
---|
149 | |
---|
150 | """ |
---|
151 | |
---|
152 | ifConverged = False |
---|
153 | deltaChi2 = -10. |
---|
154 | x0 = np.array(x0, ndmin=1) #might be redundant? |
---|
155 | n = len(x0) |
---|
156 | if type(args) != type(()): |
---|
157 | args = (args,) |
---|
158 | |
---|
159 | icycle = 0 |
---|
160 | One = np.ones((n,n)) |
---|
161 | lam = 10.**lamda |
---|
162 | lamMax = lam |
---|
163 | nfev = 0 |
---|
164 | if Print: |
---|
165 | G2fil.G2Print(' Hessian Levenberg-Marquardt SVD refinement on %d variables:'%(n)) |
---|
166 | Lam = np.zeros((n,n)) |
---|
167 | Xvec = np.zeros(len(x0)) |
---|
168 | while icycle < maxcyc: |
---|
169 | time0 = time.time() |
---|
170 | M = func(x0,*args) |
---|
171 | Nobs = len(M) |
---|
172 | nfev += 1 |
---|
173 | chisq0 = np.sum(M**2) |
---|
174 | Yvec,Amat = Hess(x0,*args) |
---|
175 | Adiag = np.sqrt(np.diag(Amat)) |
---|
176 | psing = np.where(np.abs(Adiag) < 1.e-14,True,False) |
---|
177 | if np.any(psing): #hard singularity in matrix |
---|
178 | return [x0,None,{'num cyc':icycle,'fvec':M,'nfev':nfev,'lamMax':lamMax,'psing':psing,'SVD0':-1}] |
---|
179 | Anorm = np.outer(Adiag,Adiag) |
---|
180 | Yvec /= Adiag |
---|
181 | Amat /= Anorm |
---|
182 | if Print: |
---|
183 | G2fil.G2Print('initial chi^2 %.5g on %d obs.'%(chisq0,Nobs)) |
---|
184 | chitol = ftol |
---|
185 | while True: |
---|
186 | Lam = np.eye(Amat.shape[0])*lam |
---|
187 | Amatlam = Amat*(One+Lam) |
---|
188 | try: |
---|
189 | Ainv,Nzeros = pinv(Amatlam,xtol) #do Moore-Penrose inversion (via SVD) |
---|
190 | except nl.LinAlgError: |
---|
191 | psing = list(np.where(np.diag(nl.qr(Amatlam)[1]) < 1.e-14)[0]) |
---|
192 | G2fil.G2Print('ouch #1 bad SVD inversion; change parameterization for ',psing, mode='error') |
---|
193 | return [x0,None,{'num cyc':icycle,'fvec':M,'nfev':nfev,'lamMax':lamMax,'psing':psing,'SVD0':-1}] |
---|
194 | Xvec = np.inner(Ainv,Yvec) #solve |
---|
195 | Xvec /= Adiag |
---|
196 | M2 = func(x0+Xvec,*args) |
---|
197 | nfev += 1 |
---|
198 | chisq1 = np.sum(M2**2) |
---|
199 | if chisq1 > chisq0*(1.+chitol): #TODO put Alan Coehlo's criteria for lambda here? |
---|
200 | lam *= 10. |
---|
201 | if Print: |
---|
202 | G2fil.G2Print('new chi^2 %.5g on %d obs., %d SVD zeros ; matrix modification needed; lambda now %.1e' \ |
---|
203 | %(chisq1,Nobs,Nzeros,lam)) |
---|
204 | else: |
---|
205 | x0 += Xvec |
---|
206 | lam /= 10. |
---|
207 | break |
---|
208 | if lam > 10.: |
---|
209 | G2fil.G2Print('ouch #3 chisq1 %g.4 stuck > chisq0 %g.4'%(chisq1,chisq0), mode='warn') |
---|
210 | break |
---|
211 | chitol *= 2 |
---|
212 | lamMax = max(lamMax,lam) |
---|
213 | deltaChi2 = (chisq0-chisq1)/chisq0 |
---|
214 | if Print: |
---|
215 | G2fil.G2Print(' Cycle: %d, Time: %.2fs, Chi**2: %.5g for %d obs., Lambda: %.3g, Delta: %.3g'%( |
---|
216 | icycle,time.time()-time0,chisq1,Nobs,lamMax,deltaChi2)) |
---|
217 | Histograms = args[0][0] |
---|
218 | if refPlotUpdate is not None: refPlotUpdate(Histograms,icycle) # update plot |
---|
219 | if deltaChi2 < ftol: |
---|
220 | ifConverged = True |
---|
221 | if Print: G2fil.G2Print("converged") |
---|
222 | break |
---|
223 | icycle += 1 |
---|
224 | M = func(x0,*args) |
---|
225 | nfev += 1 |
---|
226 | Yvec,Amat = Hess(x0,*args) |
---|
227 | Adiag = np.sqrt(np.diag(Amat)) |
---|
228 | Anorm = np.outer(Adiag,Adiag) |
---|
229 | Lam = np.eye(Amat.shape[0])*lam |
---|
230 | Amatlam = Amat/Anorm |
---|
231 | try: |
---|
232 | Bmat,Nzero = pinv(Amatlam,xtol) #Moore-Penrose inversion (via SVD) & count of zeros |
---|
233 | if Print: G2fil.G2Print('Found %d SVD zeros'%(Nzero), mode='warn') |
---|
234 | Bmat = Bmat/Anorm |
---|
235 | return [x0,Bmat,{'num cyc':icycle,'fvec':M,'nfev':nfev,'lamMax':lamMax,'psing':[], |
---|
236 | 'SVD0':Nzero,'Converged': ifConverged, 'DelChi2':deltaChi2,'Xvec':Xvec}] |
---|
237 | except nl.LinAlgError: |
---|
238 | G2fil.G2Print('ouch #2 linear algebra error in making v-cov matrix', mode='error') |
---|
239 | psing = [] |
---|
240 | if maxcyc: |
---|
241 | psing = list(np.where(np.diag(nl.qr(Amat)[1]) < 1.e-14)[0]) |
---|
242 | return [x0,None,{'num cyc':icycle,'fvec':M,'nfev':nfev,'lamMax':lamMax,'psing':psing,'SVD0':-1,'Xvec':None}] |
---|
243 | |
---|
244 | def HessianSVD(func,x0,Hess,args=(),ftol=1.49012e-8,xtol=1.e-6, maxcyc=0,lamda=-3,Print=False,refPlotUpdate=None): |
---|
245 | |
---|
246 | """ |
---|
247 | Minimize the sum of squares of a function (:math:`f`) evaluated on a series of |
---|
248 | values (y): :math:`\sum_{y=0}^{N_{obs}} f(y,{args})` |
---|
249 | where :math:`x = arg min(\sum_{y=0}^{N_{obs}} (func(y)^2,axis=0))` |
---|
250 | |
---|
251 | :param function func: callable method or function |
---|
252 | should take at least one (possibly length N vector) argument and |
---|
253 | returns M floating point numbers. |
---|
254 | :param np.ndarray x0: The starting estimate for the minimization of length N |
---|
255 | :param function Hess: callable method or function |
---|
256 | A required function or method to compute the weighted vector and Hessian for func. |
---|
257 | It must be a symmetric NxN array |
---|
258 | :param tuple args: Any extra arguments to func are placed in this tuple. |
---|
259 | :param float ftol: Relative error desired in the sum of squares. |
---|
260 | :param float xtol: Relative tolerance of zeros in the SVD solution in nl.pinv. |
---|
261 | :param int maxcyc: The maximum number of cycles of refinement to execute, if -1 refine |
---|
262 | until other limits are met (ftol, xtol) |
---|
263 | :param bool Print: True for printing results (residuals & times) by cycle |
---|
264 | |
---|
265 | :returns: (x,cov_x,infodict) where |
---|
266 | |
---|
267 | * x : ndarray |
---|
268 | The solution (or the result of the last iteration for an unsuccessful |
---|
269 | call). |
---|
270 | * cov_x : ndarray |
---|
271 | Uses the fjac and ipvt optional outputs to construct an |
---|
272 | estimate of the jacobian around the solution. ``None`` if a |
---|
273 | singular matrix encountered (indicates very flat curvature in |
---|
274 | some direction). This matrix must be multiplied by the |
---|
275 | residual standard deviation to get the covariance of the |
---|
276 | parameter estimates -- see curve_fit. |
---|
277 | * infodict : dict |
---|
278 | a dictionary of optional outputs with the keys: |
---|
279 | |
---|
280 | * 'fvec' : the function evaluated at the output |
---|
281 | * 'num cyc': |
---|
282 | * 'nfev': |
---|
283 | * 'lamMax':0. |
---|
284 | * 'psing': |
---|
285 | * 'SVD0': |
---|
286 | |
---|
287 | """ |
---|
288 | |
---|
289 | ifConverged = False |
---|
290 | deltaChi2 = -10. |
---|
291 | x0 = np.array(x0, ndmin=1) #might be redundant? |
---|
292 | n = len(x0) |
---|
293 | if type(args) != type(()): |
---|
294 | args = (args,) |
---|
295 | |
---|
296 | icycle = 0 |
---|
297 | nfev = 0 |
---|
298 | if Print: |
---|
299 | G2fil.G2Print(' Hessian SVD refinement on %d variables:'%(n)) |
---|
300 | while icycle < maxcyc: |
---|
301 | time0 = time.time() |
---|
302 | M = func(x0,*args) |
---|
303 | nfev += 1 |
---|
304 | chisq0 = np.sum(M**2) |
---|
305 | Yvec,Amat = Hess(x0,*args) |
---|
306 | Adiag = np.sqrt(np.diag(Amat)) |
---|
307 | psing = np.where(np.abs(Adiag) < 1.e-14,True,False) |
---|
308 | if np.any(psing): #hard singularity in matrix |
---|
309 | return [x0,None,{'num cyc':icycle,'fvec':M,'nfev':nfev,'lamMax':0.,'psing':psing,'SVD0':-1}] |
---|
310 | Anorm = np.outer(Adiag,Adiag) |
---|
311 | Yvec /= Adiag |
---|
312 | Amat /= Anorm |
---|
313 | if Print: |
---|
314 | G2fil.G2Print('initial chi^2 %.5g'%(chisq0)) |
---|
315 | try: |
---|
316 | Ainv,Nzeros = pinv(Amat,xtol) #do Moore-Penrose inversion (via SVD) |
---|
317 | except nl.LinAlgError: |
---|
318 | G2fil.G2Print('ouch #1 bad SVD inversion; change parameterization', mode='warn') |
---|
319 | psing = list(np.where(np.diag(nl.qr(Amat)[1]) < 1.e-14)[0]) |
---|
320 | return [x0,None,{'num cyc':icycle,'fvec':M,'nfev':nfev,'lamMax':0.,'psing':psing,'SVD0':-1}] |
---|
321 | Xvec = np.inner(Ainv,Yvec) #solve |
---|
322 | Xvec /= Adiag |
---|
323 | M2 = func(x0+Xvec,*args) |
---|
324 | nfev += 1 |
---|
325 | chisq1 = np.sum(M2**2) |
---|
326 | deltaChi2 = (chisq0-chisq1)/chisq0 |
---|
327 | if Print: |
---|
328 | G2fil.G2Print(' Cycle: %d, Time: %.2fs, Chi**2: %.5g, Delta: %.3g'%( |
---|
329 | icycle,time.time()-time0,chisq1,deltaChi2)) |
---|
330 | Histograms = args[0][0] |
---|
331 | if refPlotUpdate is not None: refPlotUpdate(Histograms,icycle) # update plot |
---|
332 | if deltaChi2 < ftol: |
---|
333 | ifConverged = True |
---|
334 | if Print: G2fil.G2Print("converged") |
---|
335 | break |
---|
336 | icycle += 1 |
---|
337 | M = func(x0,*args) |
---|
338 | nfev += 1 |
---|
339 | Yvec,Amat = Hess(x0,*args) |
---|
340 | Adiag = np.sqrt(np.diag(Amat)) |
---|
341 | Anorm = np.outer(Adiag,Adiag) |
---|
342 | Amat = Amat/Anorm |
---|
343 | try: |
---|
344 | Bmat,Nzero = pinv(Amat,xtol) #Moore-Penrose inversion (via SVD) & count of zeros |
---|
345 | G2fil.G2Print('Found %d SVD zeros'%(Nzero), mode='warn') |
---|
346 | # Bmat = nl.inv(Amatlam); Nzeros = 0 |
---|
347 | Bmat = Bmat/Anorm |
---|
348 | return [x0,Bmat,{'num cyc':icycle,'fvec':M,'nfev':nfev,'lamMax':0.,'psing':[], |
---|
349 | 'SVD0':Nzero,'Converged': ifConverged, 'DelChi2':deltaChi2}] |
---|
350 | except nl.LinAlgError: |
---|
351 | G2fil.G2Print('ouch #2 linear algebra error in making v-cov matrix', mode='error') |
---|
352 | psing = [] |
---|
353 | if maxcyc: |
---|
354 | psing = list(np.where(np.diag(nl.qr(Amat)[1]) < 1.e-14)[0]) |
---|
355 | return [x0,None,{'num cyc':icycle,'fvec':M,'nfev':nfev,'lamMax':0.,'psing':psing,'SVD0':-1}] |
---|
356 | |
---|
357 | def getVCov(varyNames,varyList,covMatrix): |
---|
358 | '''obtain variance-covariance terms for a set of variables. NB: the varyList |
---|
359 | and covMatrix were saved by the last least squares refinement so they must match. |
---|
360 | |
---|
361 | :param list varyNames: variable names to find v-cov matric for |
---|
362 | :param list varyList: full list of all variables in v-cov matrix |
---|
363 | :param nparray covMatrix: full variance-covariance matrix from the last |
---|
364 | least squares refinement |
---|
365 | |
---|
366 | :returns: nparray vcov: variance-covariance matrix for the variables given |
---|
367 | in varyNames |
---|
368 | |
---|
369 | ''' |
---|
370 | vcov = np.zeros((len(varyNames),len(varyNames))) |
---|
371 | for i1,name1 in enumerate(varyNames): |
---|
372 | for i2,name2 in enumerate(varyNames): |
---|
373 | try: |
---|
374 | vcov[i1][i2] = covMatrix[varyList.index(name1)][varyList.index(name2)] |
---|
375 | except ValueError: |
---|
376 | vcov[i1][i2] = 0.0 |
---|
377 | # if i1 == i2: |
---|
378 | # vcov[i1][i2] = 1e-20 |
---|
379 | # else: |
---|
380 | # vcov[i1][i2] = 0.0 |
---|
381 | return vcov |
---|
382 | |
---|
383 | ################################################################################ |
---|
384 | ##### Atom manipulations |
---|
385 | ################################################################################ |
---|
386 | |
---|
387 | def FindMolecule(ind,generalData,atomData): #uses numpy & masks - very fast even for proteins! |
---|
388 | |
---|
389 | def getNeighbors(atom,radius): |
---|
390 | Dx = UAtoms-np.array(atom[cx:cx+3]) |
---|
391 | dist = ma.masked_less(np.sqrt(np.sum(np.inner(Amat,Dx)**2,axis=0)),0.5) #gets rid of disorder "bonds" < 0.5A |
---|
392 | sumR = Radii+radius |
---|
393 | return set(ma.nonzero(ma.masked_greater(dist-factor*sumR,0.))[0]) #get indices of bonded atoms |
---|
394 | |
---|
395 | import numpy.ma as ma |
---|
396 | indices = (-1,0,1) |
---|
397 | Units = np.array([[h,k,l] for h in indices for k in indices for l in indices],dtype='f') |
---|
398 | cx,ct,cs,ci = generalData['AtomPtrs'] |
---|
399 | DisAglCtls = generalData['DisAglCtls'] |
---|
400 | SGData = generalData['SGData'] |
---|
401 | Amat,Bmat = G2lat.cell2AB(generalData['Cell'][1:7]) |
---|
402 | radii = DisAglCtls['BondRadii'] |
---|
403 | atomTypes = DisAglCtls['AtomTypes'] |
---|
404 | factor = DisAglCtls['Factors'][0] |
---|
405 | unit = np.zeros(3) |
---|
406 | try: |
---|
407 | indH = atomTypes.index('H') |
---|
408 | radii[indH] = 0.5 |
---|
409 | except: |
---|
410 | pass |
---|
411 | nAtom = len(atomData) |
---|
412 | Indx = list(range(nAtom)) |
---|
413 | UAtoms = [] |
---|
414 | Radii = [] |
---|
415 | for atom in atomData: |
---|
416 | UAtoms.append(np.array(atom[cx:cx+3])) |
---|
417 | Radii.append(radii[atomTypes.index(atom[ct])]) |
---|
418 | UAtoms = np.array(UAtoms) |
---|
419 | Radii = np.array(Radii) |
---|
420 | for nOp,Op in enumerate(SGData['SGOps'][1:]): |
---|
421 | UAtoms = np.concatenate((UAtoms,(np.inner(Op[0],UAtoms[:nAtom]).T+Op[1]))) |
---|
422 | Radii = np.concatenate((Radii,Radii[:nAtom])) |
---|
423 | Indx += Indx[:nAtom] |
---|
424 | for icen,cen in enumerate(SGData['SGCen'][1:]): |
---|
425 | UAtoms = np.concatenate((UAtoms,(UAtoms+cen))) |
---|
426 | Radii = np.concatenate((Radii,Radii)) |
---|
427 | Indx += Indx[:nAtom] |
---|
428 | if SGData['SGInv']: |
---|
429 | UAtoms = np.concatenate((UAtoms,-UAtoms)) |
---|
430 | Radii = np.concatenate((Radii,Radii)) |
---|
431 | Indx += Indx |
---|
432 | UAtoms %= 1. |
---|
433 | mAtoms = len(UAtoms) |
---|
434 | for unit in Units: |
---|
435 | if np.any(unit): #skip origin cell |
---|
436 | UAtoms = np.concatenate((UAtoms,UAtoms[:mAtoms]+unit)) |
---|
437 | Radii = np.concatenate((Radii,Radii[:mAtoms])) |
---|
438 | Indx += Indx[:mAtoms] |
---|
439 | UAtoms = np.array(UAtoms) |
---|
440 | Radii = np.array(Radii) |
---|
441 | newAtoms = [atomData[ind],] |
---|
442 | atomData[ind] = None |
---|
443 | radius = Radii[ind] |
---|
444 | IndB = getNeighbors(newAtoms[-1],radius) |
---|
445 | while True: |
---|
446 | if not len(IndB): |
---|
447 | break |
---|
448 | indb = IndB.pop() |
---|
449 | if atomData[Indx[indb]] == None: |
---|
450 | continue |
---|
451 | while True: |
---|
452 | try: |
---|
453 | jndb = IndB.index(indb) |
---|
454 | IndB.remove(jndb) |
---|
455 | except: |
---|
456 | break |
---|
457 | newAtom = copy.copy(atomData[Indx[indb]]) |
---|
458 | newAtom[cx:cx+3] = UAtoms[indb] #NB: thermal Uij, etc. not transformed! |
---|
459 | newAtoms.append(newAtom) |
---|
460 | atomData[Indx[indb]] = None |
---|
461 | IndB = set(list(IndB)+list(getNeighbors(newAtoms[-1],radius))) |
---|
462 | if len(IndB) > nAtom: |
---|
463 | return 'Assemble molecule cannot be used on extended structures' |
---|
464 | for atom in atomData: |
---|
465 | if atom != None: |
---|
466 | newAtoms.append(atom) |
---|
467 | return newAtoms |
---|
468 | |
---|
469 | def FindAtomIndexByIDs(atomData,loc,IDs,Draw=True): |
---|
470 | '''finds the set of atom array indices for a list of atom IDs. Will search |
---|
471 | either the Atom table or the drawAtom table. |
---|
472 | |
---|
473 | :param list atomData: Atom or drawAtom table containting coordinates, etc. |
---|
474 | :param int loc: location of atom id in atomData record |
---|
475 | :param list IDs: atom IDs to be found |
---|
476 | :param bool Draw: True if drawAtom table to be searched; False if Atom table |
---|
477 | is searched |
---|
478 | |
---|
479 | :returns: list indx: atom (or drawAtom) indices |
---|
480 | |
---|
481 | ''' |
---|
482 | indx = [] |
---|
483 | for i,atom in enumerate(atomData): |
---|
484 | if Draw and atom[loc] in IDs: |
---|
485 | indx.append(i) |
---|
486 | elif atom[loc] in IDs: |
---|
487 | indx.append(i) |
---|
488 | return indx |
---|
489 | |
---|
490 | def FillAtomLookUp(atomData,indx): |
---|
491 | '''create a dictionary of atom indexes with atom IDs as keys |
---|
492 | |
---|
493 | :param list atomData: Atom table to be used |
---|
494 | :param int indx: pointer to position of atom id in atom record (typically cia+8) |
---|
495 | |
---|
496 | :returns: dict atomLookUp: dictionary of atom indexes with atom IDs as keys |
---|
497 | |
---|
498 | ''' |
---|
499 | return {atom[indx]:iatm for iatm,atom in enumerate(atomData)} |
---|
500 | |
---|
501 | def GetAtomsById(atomData,atomLookUp,IdList): |
---|
502 | '''gets a list of atoms from Atom table that match a set of atom IDs |
---|
503 | |
---|
504 | :param list atomData: Atom table to be used |
---|
505 | :param dict atomLookUp: dictionary of atom indexes with atom IDs as keys |
---|
506 | :param list IdList: atom IDs to be found |
---|
507 | |
---|
508 | :returns: list atoms: list of atoms found |
---|
509 | |
---|
510 | ''' |
---|
511 | atoms = [] |
---|
512 | for Id in IdList: |
---|
513 | atoms.append(atomData[atomLookUp[Id]]) |
---|
514 | return atoms |
---|
515 | |
---|
516 | def GetAtomItemsById(atomData,atomLookUp,IdList,itemLoc,numItems=1): |
---|
517 | '''gets atom parameters for atoms using atom IDs |
---|
518 | |
---|
519 | :param list atomData: Atom table to be used |
---|
520 | :param dict atomLookUp: dictionary of atom indexes with atom IDs as keys |
---|
521 | :param list IdList: atom IDs to be found |
---|
522 | :param int itemLoc: pointer to desired 1st item in an atom table entry |
---|
523 | :param int numItems: number of items to be retrieved |
---|
524 | |
---|
525 | :returns: type name: description |
---|
526 | |
---|
527 | ''' |
---|
528 | Items = [] |
---|
529 | if not isinstance(IdList,list): |
---|
530 | IdList = [IdList,] |
---|
531 | for Id in IdList: |
---|
532 | if numItems == 1: |
---|
533 | Items.append(atomData[atomLookUp[Id]][itemLoc]) |
---|
534 | else: |
---|
535 | Items.append(atomData[atomLookUp[Id]][itemLoc:itemLoc+numItems]) |
---|
536 | return Items |
---|
537 | |
---|
538 | def GetAtomCoordsByID(pId,parmDict,AtLookup,indx): |
---|
539 | '''default doc string |
---|
540 | |
---|
541 | :param type name: description |
---|
542 | |
---|
543 | :returns: type name: description |
---|
544 | |
---|
545 | ''' |
---|
546 | pfx = [str(pId)+'::A'+i+':' for i in ['x','y','z']] |
---|
547 | dpfx = [str(pId)+'::dA'+i+':' for i in ['x','y','z']] |
---|
548 | XYZ = [] |
---|
549 | for ind in indx: |
---|
550 | names = [pfx[i]+str(AtLookup[ind]) for i in range(3)] |
---|
551 | dnames = [dpfx[i]+str(AtLookup[ind]) for i in range(3)] |
---|
552 | XYZ.append([parmDict[name]+parmDict[dname] for name,dname in zip(names,dnames)]) |
---|
553 | return XYZ |
---|
554 | |
---|
555 | def GetAtomFracByID(pId,parmDict,AtLookup,indx): |
---|
556 | '''default doc string |
---|
557 | |
---|
558 | :param type name: description |
---|
559 | |
---|
560 | :returns: type name: description |
---|
561 | |
---|
562 | ''' |
---|
563 | pfx = str(pId)+'::Afrac:' |
---|
564 | Frac = [] |
---|
565 | for ind in indx: |
---|
566 | name = pfx+str(AtLookup[ind]) |
---|
567 | Frac.append(parmDict[name]) |
---|
568 | return Frac |
---|
569 | |
---|
570 | # for Atom in Atoms: |
---|
571 | # XYZ = Atom[cx:cx+3] |
---|
572 | # if 'A' in Atom[cia]: |
---|
573 | # U6 = Atom[cia+2:cia+8] |
---|
574 | |
---|
575 | |
---|
576 | def ApplySeqData(data,seqData): |
---|
577 | '''Applies result from seq. refinement to drawing atom positions & Uijs |
---|
578 | ''' |
---|
579 | generalData = data['General'] |
---|
580 | SGData = generalData['SGData'] |
---|
581 | cx,ct,cs,cia = generalData['AtomPtrs'] |
---|
582 | drawingData = data['Drawing'] |
---|
583 | dcx,dct,dcs,dci = drawingData['atomPtrs'] |
---|
584 | atoms = data['Atoms'] |
---|
585 | drawAtoms = drawingData['Atoms'] |
---|
586 | pId = data['pId'] |
---|
587 | pfx = '%d::'%(pId) |
---|
588 | parmDict = seqData['parmDict'] |
---|
589 | for ia,atom in enumerate(atoms): |
---|
590 | dxyz = np.array([parmDict[pfx+'dAx:'+str(ia)],parmDict[pfx+'dAy:'+str(ia)],parmDict[pfx+'dAz:'+str(ia)]]) |
---|
591 | if atom[cia] == 'A': |
---|
592 | atuij = np.array([parmDict[pfx+'AU11:'+str(ia)],parmDict[pfx+'AU22:'+str(ia)],parmDict[pfx+'AU33:'+str(ia)], |
---|
593 | parmDict[pfx+'AU12:'+str(ia)],parmDict[pfx+'AU13:'+str(ia)],parmDict[pfx+'AU23:'+str(ia)]]) |
---|
594 | else: |
---|
595 | atuiso = parmDict[pfx+'AUiso:'+str(ia)] |
---|
596 | atxyz = G2spc.MoveToUnitCell(np.array(atom[cx:cx+3])+dxyz)[0] |
---|
597 | indx = FindAtomIndexByIDs(drawAtoms,dci,[atom[cia+8],],True) |
---|
598 | for ind in indx: |
---|
599 | drawatom = drawAtoms[ind] |
---|
600 | opr = drawatom[dcs-1] |
---|
601 | #how do I handle Sfrac? - fade the atoms? |
---|
602 | if atom[cia] == 'A': |
---|
603 | X,U = G2spc.ApplyStringOps(opr,SGData,atxyz,atuij) |
---|
604 | drawatom[dcx:dcx+3] = X |
---|
605 | drawatom[dci-6:dci] = U |
---|
606 | else: |
---|
607 | X = G2spc.ApplyStringOps(opr,SGData,atxyz) |
---|
608 | drawatom[dcx:dcx+3] = X |
---|
609 | drawatom[dci-7] = atuiso |
---|
610 | return drawAtoms |
---|
611 | |
---|
612 | def FindNeighbors(phase,FrstName,AtNames,notName=''): |
---|
613 | General = phase['General'] |
---|
614 | cx,ct,cs,cia = General['AtomPtrs'] |
---|
615 | Atoms = phase['Atoms'] |
---|
616 | atNames = [atom[ct-1] for atom in Atoms] |
---|
617 | Cell = General['Cell'][1:7] |
---|
618 | Amat,Bmat = G2lat.cell2AB(Cell) |
---|
619 | atTypes = General['AtomTypes'] |
---|
620 | Radii = np.array(General['BondRadii']) |
---|
621 | try: |
---|
622 | DisAglCtls = General['DisAglCtls'] |
---|
623 | radiusFactor = DisAglCtls['Factors'][0] |
---|
624 | except: |
---|
625 | radiusFactor = 0.85 |
---|
626 | AtInfo = dict(zip(atTypes,Radii)) #or General['BondRadii'] |
---|
627 | Orig = atNames.index(FrstName) |
---|
628 | OId = Atoms[Orig][cia+8] |
---|
629 | OType = Atoms[Orig][ct] |
---|
630 | XYZ = getAtomXYZ(Atoms,cx) |
---|
631 | Neigh = [] |
---|
632 | Ids = [] |
---|
633 | Dx = np.inner(Amat,XYZ-XYZ[Orig]).T |
---|
634 | dist = np.sqrt(np.sum(Dx**2,axis=1)) |
---|
635 | sumR = np.array([AtInfo[OType]+AtInfo[atom[ct]] for atom in Atoms]) |
---|
636 | IndB = ma.nonzero(ma.masked_greater(dist-radiusFactor*sumR,0.)) |
---|
637 | for j in IndB[0]: |
---|
638 | if j != Orig: |
---|
639 | if AtNames[j] not in notName: |
---|
640 | Neigh.append([AtNames[j],dist[j],True]) |
---|
641 | Ids.append(Atoms[j][cia+8]) |
---|
642 | return Neigh,[OId,Ids] |
---|
643 | |
---|
644 | def FindOctahedron(results): |
---|
645 | Octahedron = np.array([[1.,0,0],[0,1.,0],[0,0,1.],[-1.,0,0],[0,-1.,0],[0,0,-1.]]) |
---|
646 | Polygon = np.array([result[3] for result in results]) |
---|
647 | Dists = np.array([np.sqrt(np.sum(axis**2)) for axis in Polygon]) |
---|
648 | bond = np.mean(Dists) |
---|
649 | std = np.std(Dists) |
---|
650 | Norms = Polygon/Dists[:,nxs] |
---|
651 | Tilts = acosd(np.dot(Norms,Octahedron[0])) |
---|
652 | iAng = np.argmin(Tilts) |
---|
653 | Qavec = np.cross(Norms[iAng],Octahedron[0]) |
---|
654 | QA = AVdeg2Q(Tilts[iAng],Qavec) |
---|
655 | newNorms = prodQVQ(QA,Norms) |
---|
656 | Rots = acosd(np.dot(newNorms,Octahedron[1])) |
---|
657 | jAng = np.argmin(Rots) |
---|
658 | Qbvec = np.cross(Norms[jAng],Octahedron[1]) |
---|
659 | QB = AVdeg2Q(Rots[jAng],Qbvec) |
---|
660 | QQ = prodQQ(QA,QB) |
---|
661 | newNorms = prodQVQ(QQ,Norms) |
---|
662 | dispVecs = np.array([norm[:,nxs]-Octahedron.T for norm in newNorms]) |
---|
663 | disp = np.sqrt(np.sum(dispVecs**2,axis=1)) |
---|
664 | dispids = np.argmin(disp,axis=1) |
---|
665 | vecDisp = np.array([dispVecs[i,:,dispid] for i,dispid in enumerate(dispids)]) |
---|
666 | Disps = np.array([disp[i,dispid] for i,dispid in enumerate(dispids)]) |
---|
667 | meanDisp = np.mean(Disps) |
---|
668 | stdDisp = np.std(Disps) |
---|
669 | A,V = Q2AVdeg(QQ) |
---|
670 | return bond,std,meanDisp,stdDisp,A,V,vecDisp |
---|
671 | |
---|
672 | def FindTetrahedron(results): |
---|
673 | Tetrahedron = np.array([[1.,1,1],[1,-1,-1],[-1,1,-1],[-1,-1,1]])/np.sqrt(3.) |
---|
674 | Polygon = np.array([result[3] for result in results]) |
---|
675 | Dists = np.array([np.sqrt(np.sum(axis**2)) for axis in Polygon]) |
---|
676 | bond = np.mean(Dists) |
---|
677 | std = np.std(Dists) |
---|
678 | Norms = Polygon/Dists[:,nxs] |
---|
679 | Tilts = acosd(np.dot(Norms,Tetrahedron[0])) |
---|
680 | iAng = np.argmin(Tilts) |
---|
681 | Qavec = np.cross(Norms[iAng],Tetrahedron[0]) |
---|
682 | QA = AVdeg2Q(Tilts[iAng],Qavec) |
---|
683 | newNorms = prodQVQ(QA,Norms) |
---|
684 | Rots = acosd(np.dot(newNorms,Tetrahedron[1])) |
---|
685 | jAng = np.argmin(Rots) |
---|
686 | Qbvec = np.cross(Norms[jAng],Tetrahedron[1]) |
---|
687 | QB = AVdeg2Q(Rots[jAng],Qbvec) |
---|
688 | QQ = prodQQ(QA,QB) |
---|
689 | newNorms = prodQVQ(QQ,Norms) |
---|
690 | dispVecs = np.array([norm[:,nxs]-Tetrahedron.T for norm in newNorms]) |
---|
691 | disp = np.sqrt(np.sum(dispVecs**2,axis=1)) |
---|
692 | dispids = np.argmin(disp,axis=1) |
---|
693 | vecDisp = np.array([dispVecs[i,:,dispid] for i,dispid in enumerate(dispids)]) |
---|
694 | Disps = np.array([disp[i,dispid] for i,dispid in enumerate(dispids)]) |
---|
695 | meanDisp = np.mean(Disps) |
---|
696 | stdDisp = np.std(Disps) |
---|
697 | A,V = Q2AVdeg(QQ) |
---|
698 | return bond,std,meanDisp,stdDisp,A,V,vecDisp |
---|
699 | |
---|
700 | def FindAllNeighbors(phase,FrstName,AtNames,notName='',Orig=None,Short=False): |
---|
701 | General = phase['General'] |
---|
702 | cx,ct,cs,cia = General['AtomPtrs'] |
---|
703 | Atoms = phase['Atoms'] |
---|
704 | atNames = [atom[ct-1] for atom in Atoms] |
---|
705 | atTypes = [atom[ct] for atom in Atoms] |
---|
706 | Cell = General['Cell'][1:7] |
---|
707 | Amat,Bmat = G2lat.cell2AB(Cell) |
---|
708 | SGData = General['SGData'] |
---|
709 | indices = (-1,0,1) |
---|
710 | Units = np.array([[h,k,l] for h in indices for k in indices for l in indices]) |
---|
711 | AtTypes = General['AtomTypes'] |
---|
712 | Radii = np.array(General['BondRadii']) |
---|
713 | try: |
---|
714 | DisAglCtls = General['DisAglCtls'] |
---|
715 | radiusFactor = DisAglCtls['Factors'][0] |
---|
716 | except: |
---|
717 | radiusFactor = 0.85 |
---|
718 | AtInfo = dict(zip(AtTypes,Radii)) #or General['BondRadii'] |
---|
719 | if Orig is None: |
---|
720 | Orig = atNames.index(FrstName) |
---|
721 | OId = Atoms[Orig][cia+8] |
---|
722 | OType = Atoms[Orig][ct] |
---|
723 | XYZ = getAtomXYZ(Atoms,cx) |
---|
724 | Oxyz = XYZ[Orig] |
---|
725 | Neigh = [] |
---|
726 | Ids = [] |
---|
727 | sumR = np.array([AtInfo[OType]+AtInfo[atom[ct]] for atom in Atoms]) |
---|
728 | sumR = np.reshape(np.tile(sumR,27),(27,-1)) |
---|
729 | results = [] |
---|
730 | for xyz in XYZ: |
---|
731 | results.append(G2spc.GenAtom(xyz,SGData,False,Move=False)) |
---|
732 | for iA,result in enumerate(results): |
---|
733 | if iA != Orig: |
---|
734 | for [Txyz,Top,Tunit,Spn] in result: |
---|
735 | Dx = np.array([Txyz-Oxyz+unit for unit in Units]) |
---|
736 | dx = np.inner(Dx,Amat) |
---|
737 | dist = np.sqrt(np.sum(dx**2,axis=1)) |
---|
738 | IndB = ma.nonzero(ma.masked_greater(dist-radiusFactor*sumR[:,iA],0.)) |
---|
739 | for iU in IndB[0]: |
---|
740 | if AtNames[iA%len(AtNames)] != notName: |
---|
741 | unit = Units[iU] |
---|
742 | if np.any(unit): |
---|
743 | Topstr = ' +(%4d)[%2d,%2d,%2d]'%(Top,unit[0],unit[1],unit[2]) |
---|
744 | else: |
---|
745 | Topstr = ' +(%4d)'%(Top) |
---|
746 | if Short: |
---|
747 | Neigh.append([AtNames[iA%len(AtNames)],dist[iU],True]) |
---|
748 | else: |
---|
749 | Neigh.append([AtNames[iA]+Topstr,atTypes[iA],dist[iU],dx[iU]]) |
---|
750 | Ids.append(Atoms[iA][cia+8]) |
---|
751 | return Neigh,[OId,Ids] |
---|
752 | |
---|
753 | def calcBond(A,Ax,Bx,MTCU): |
---|
754 | cell = G2lat.A2cell(A) |
---|
755 | Amat,Bmat = G2lat.cell2AB(cell) |
---|
756 | M,T,C,U = MTCU |
---|
757 | Btx = np.inner(M,Bx)+T+C+U |
---|
758 | Dx = Btx-Ax |
---|
759 | dist = np.sqrt(np.inner(Amat,Dx)) |
---|
760 | return dist |
---|
761 | |
---|
762 | def AddHydrogens(AtLookUp,General,Atoms,AddHydId): |
---|
763 | |
---|
764 | def getTransMat(RXYZ,OXYZ,TXYZ,Amat): |
---|
765 | Vec = np.inner(Amat,np.array([OXYZ-TXYZ[0],RXYZ-TXYZ[0]])).T |
---|
766 | Vec /= np.sqrt(np.sum(Vec**2,axis=1))[:,nxs] |
---|
767 | Mat2 = np.cross(Vec[0],Vec[1]) #UxV |
---|
768 | Mat2 /= np.sqrt(np.sum(Mat2**2)) |
---|
769 | Mat3 = np.cross(Mat2,Vec[0]) #(UxV)xU |
---|
770 | return nl.inv(np.array([Vec[0],Mat2,Mat3])) |
---|
771 | |
---|
772 | cx,ct,cs,cia = General['AtomPtrs'] |
---|
773 | Cell = General['Cell'][1:7] |
---|
774 | Amat,Bmat = G2lat.cell2AB(Cell) |
---|
775 | nBonds = AddHydId[-1]+len(AddHydId[1]) |
---|
776 | Oatom = GetAtomsById(Atoms,AtLookUp,[AddHydId[0],])[0] |
---|
777 | OXYZ = np.array(Oatom[cx:cx+3]) |
---|
778 | if 'I' in Oatom[cia]: |
---|
779 | Uiso = Oatom[cia+1] |
---|
780 | else: |
---|
781 | Uiso = (Oatom[cia+2]+Oatom[cia+3]+Oatom[cia+4])/3.0 #simple average |
---|
782 | Uiso = max(Uiso,0.005) #set floor! |
---|
783 | Tatoms = GetAtomsById(Atoms,AtLookUp,AddHydId[1]) |
---|
784 | TXYZ = np.array([tatom[cx:cx+3] for tatom in Tatoms]) #3 x xyz |
---|
785 | if nBonds == 4: |
---|
786 | if AddHydId[-1] == 1: |
---|
787 | Vec = TXYZ-OXYZ |
---|
788 | Len = np.sqrt(np.sum(np.inner(Amat,Vec).T**2,axis=0)) |
---|
789 | Vec = np.sum(Vec/Len,axis=0) |
---|
790 | Len = np.sqrt(np.sum(Vec**2)) |
---|
791 | Hpos = OXYZ-0.98*np.inner(Bmat,Vec).T/Len |
---|
792 | HU = 1.1*Uiso |
---|
793 | return [Hpos,],[HU,] |
---|
794 | elif AddHydId[-1] == 2: |
---|
795 | Vec = np.inner(Amat,TXYZ-OXYZ).T |
---|
796 | Vec[0] += Vec[1] #U - along bisector |
---|
797 | Vec /= np.sqrt(np.sum(Vec**2,axis=1))[:,nxs] |
---|
798 | Mat2 = np.cross(Vec[0],Vec[1]) #UxV |
---|
799 | Mat2 /= np.sqrt(np.sum(Mat2**2)) |
---|
800 | Mat3 = np.cross(Mat2,Vec[0]) #(UxV)xU |
---|
801 | iMat = nl.inv(np.array([Vec[0],Mat2,Mat3])) |
---|
802 | Hpos = np.array([[-0.97*cosd(54.75),0.97*sind(54.75),0.], |
---|
803 | [-0.97*cosd(54.75),-0.97*sind(54.75),0.]]) |
---|
804 | HU = 1.2*Uiso*np.ones(2) |
---|
805 | Hpos = np.inner(Bmat,np.inner(iMat,Hpos).T).T+OXYZ |
---|
806 | return Hpos,HU |
---|
807 | else: |
---|
808 | Ratom = GetAtomsById(Atoms,AtLookUp,[AddHydId[2],])[0] |
---|
809 | RXYZ = np.array(Ratom[cx:cx+3]) |
---|
810 | iMat = getTransMat(RXYZ,OXYZ,TXYZ,Amat) |
---|
811 | a = 0.96*cosd(70.5) |
---|
812 | b = 0.96*sind(70.5) |
---|
813 | Hpos = np.array([[a,0.,-b],[a,-b*cosd(30.),0.5*b],[a,b*cosd(30.),0.5*b]]) |
---|
814 | Hpos = np.inner(Bmat,np.inner(iMat,Hpos).T).T+OXYZ |
---|
815 | HU = 1.5*Uiso*np.ones(3) |
---|
816 | return Hpos,HU |
---|
817 | elif nBonds == 3: |
---|
818 | if AddHydId[-1] == 1: |
---|
819 | Vec = np.sum(TXYZ-OXYZ,axis=0) |
---|
820 | Len = np.sqrt(np.sum(np.inner(Amat,Vec).T**2)) |
---|
821 | Vec = -0.93*Vec/Len |
---|
822 | Hpos = OXYZ+Vec |
---|
823 | HU = 1.1*Uiso |
---|
824 | return [Hpos,],[HU,] |
---|
825 | elif AddHydId[-1] == 2: |
---|
826 | Ratom = GetAtomsById(Atoms,AtLookUp,[AddHydId[2],])[0] |
---|
827 | RXYZ = np.array(Ratom[cx:cx+3]) |
---|
828 | iMat = getTransMat(RXYZ,OXYZ,TXYZ,Amat) |
---|
829 | a = 0.93*cosd(60.) |
---|
830 | b = 0.93*sind(60.) |
---|
831 | Hpos = [[a,b,0],[a,-b,0]] |
---|
832 | Hpos = np.inner(Bmat,np.inner(iMat,Hpos).T).T+OXYZ |
---|
833 | HU = 1.2*Uiso*np.ones(2) |
---|
834 | return Hpos,HU |
---|
835 | else: #2 bonds |
---|
836 | if 'C' in Oatom[ct]: |
---|
837 | Vec = TXYZ[0]-OXYZ |
---|
838 | Len = np.sqrt(np.sum(np.inner(Amat,Vec).T**2)) |
---|
839 | Vec = -0.93*Vec/Len |
---|
840 | Hpos = OXYZ+Vec |
---|
841 | HU = 1.1*Uiso |
---|
842 | return [Hpos,],[HU,] |
---|
843 | elif 'O' in Oatom[ct]: |
---|
844 | mapData = General['Map'] |
---|
845 | Ratom = GetAtomsById(Atoms,AtLookUp,[AddHydId[2],])[0] |
---|
846 | RXYZ = np.array(Ratom[cx:cx+3]) |
---|
847 | iMat = getTransMat(RXYZ,OXYZ,TXYZ,Amat) |
---|
848 | a = 0.82*cosd(70.5) |
---|
849 | b = 0.82*sind(70.5) |
---|
850 | azm = np.arange(0.,360.,5.) |
---|
851 | Hpos = np.array([[a,b*cosd(x),b*sind(x)] for x in azm]) |
---|
852 | Hpos = np.inner(Bmat,np.inner(iMat,Hpos).T).T+OXYZ |
---|
853 | Rhos = np.array([getRho(pos,mapData) for pos in Hpos]) |
---|
854 | imax = np.argmax(Rhos) |
---|
855 | HU = 1.5*Uiso |
---|
856 | return [Hpos[imax],],[HU,] |
---|
857 | return [],[] |
---|
858 | |
---|
859 | #def AtomUij2TLS(atomData,atPtrs,Amat,Bmat,rbObj): #unfinished & not used |
---|
860 | # '''default doc string |
---|
861 | # |
---|
862 | # :param type name: description |
---|
863 | # |
---|
864 | # :returns: type name: description |
---|
865 | # |
---|
866 | # ''' |
---|
867 | # for atom in atomData: |
---|
868 | # XYZ = np.inner(Amat,atom[cx:cx+3]) |
---|
869 | # if atom[cia] == 'A': |
---|
870 | # UIJ = atom[cia+2:cia+8] |
---|
871 | |
---|
872 | def TLS2Uij(xyz,g,Amat,rbObj): #not used anywhere, but could be? |
---|
873 | '''default doc string |
---|
874 | |
---|
875 | :param type name: description |
---|
876 | |
---|
877 | :returns: type name: description |
---|
878 | |
---|
879 | ''' |
---|
880 | TLStype,TLS = rbObj['ThermalMotion'][:2] |
---|
881 | Tmat = np.zeros((3,3)) |
---|
882 | Lmat = np.zeros((3,3)) |
---|
883 | Smat = np.zeros((3,3)) |
---|
884 | gvec = np.sqrt(np.array([g[0][0]**2,g[1][1]**2,g[2][2]**2, |
---|
885 | g[0][0]*g[1][1],g[0][0]*g[2][2],g[1][1]*g[2][2]])) |
---|
886 | if 'T' in TLStype: |
---|
887 | Tmat = G2lat.U6toUij(TLS[:6]) |
---|
888 | if 'L' in TLStype: |
---|
889 | Lmat = G2lat.U6toUij(TLS[6:12]) |
---|
890 | if 'S' in TLStype: |
---|
891 | Smat = np.array([[TLS[18],TLS[12],TLS[13]],[TLS[14],TLS[19],TLS[15]],[TLS[16],TLS[17],0] ]) |
---|
892 | XYZ = np.inner(Amat,xyz) |
---|
893 | Axyz = np.array([[ 0,XYZ[2],-XYZ[1]], [-XYZ[2],0,XYZ[0]], [XYZ[1],-XYZ[0],0]] ) |
---|
894 | Umat = Tmat+np.inner(Axyz,Smat)+np.inner(Smat.T,Axyz.T)+np.inner(np.inner(Axyz,Lmat),Axyz.T) |
---|
895 | beta = np.inner(np.inner(g,Umat),g) |
---|
896 | return G2lat.UijtoU6(beta)*gvec |
---|
897 | |
---|
898 | def AtomTLS2UIJ(atomData,atPtrs,Amat,rbObj): #not used anywhere, but could be? |
---|
899 | '''default doc string |
---|
900 | |
---|
901 | :param type name: description |
---|
902 | |
---|
903 | :returns: type name: description |
---|
904 | |
---|
905 | ''' |
---|
906 | cx,ct,cs,cia = atPtrs |
---|
907 | TLStype,TLS = rbObj['ThermalMotion'][:2] |
---|
908 | Tmat = np.zeros((3,3)) |
---|
909 | Lmat = np.zeros((3,3)) |
---|
910 | Smat = np.zeros((3,3)) |
---|
911 | G,g = G2lat.A2Gmat(Amat) |
---|
912 | gvec = 1./np.sqrt(np.array([g[0][0],g[1][1],g[2][2],g[0][1],g[0][2],g[1][2]])) |
---|
913 | if 'T' in TLStype: |
---|
914 | Tmat = G2lat.U6toUij(TLS[:6]) |
---|
915 | if 'L' in TLStype: |
---|
916 | Lmat = G2lat.U6toUij(TLS[6:12]) |
---|
917 | if 'S' in TLStype: |
---|
918 | Smat = np.array([ [TLS[18],TLS[12],TLS[13]], [TLS[14],TLS[19],TLS[15]], [TLS[16],TLS[17],0] ]) |
---|
919 | for atom in atomData: |
---|
920 | XYZ = np.inner(Amat,atom[cx:cx+3]) |
---|
921 | Axyz = np.array([ 0,XYZ[2],-XYZ[1], -XYZ[2],0,XYZ[0], XYZ[1],-XYZ[0],0],ndmin=2 ) |
---|
922 | if 'U' in TLStype: |
---|
923 | atom[cia+1] = TLS[0] |
---|
924 | atom[cia] = 'I' |
---|
925 | else: |
---|
926 | atom[cia] = 'A' |
---|
927 | Umat = Tmat+np.inner(Axyz,Smat)+np.inner(Smat.T,Axyz.T)+np.inner(np.inner(Axyz,Lmat),Axyz.T) |
---|
928 | beta = np.inner(np.inner(g,Umat),g) |
---|
929 | atom[cia+2:cia+8] = G2spc.U2Uij(beta/gvec) |
---|
930 | |
---|
931 | def GetXYZDist(xyz,XYZ,Amat): |
---|
932 | '''gets distance from position xyz to all XYZ, xyz & XYZ are np.array |
---|
933 | and are in crystal coordinates; Amat is crystal to Cart matrix |
---|
934 | |
---|
935 | :param type name: description |
---|
936 | |
---|
937 | :returns: type name: description |
---|
938 | |
---|
939 | ''' |
---|
940 | return np.sqrt(np.sum(np.inner(Amat,XYZ-xyz)**2,axis=0)) |
---|
941 | |
---|
942 | def getAtomXYZ(atoms,cx): |
---|
943 | '''Create an array of fractional coordinates from the atoms list |
---|
944 | |
---|
945 | :param list atoms: atoms object as found in tree |
---|
946 | :param int cx: offset to where coordinates are found |
---|
947 | |
---|
948 | :returns: np.array with shape (n,3) |
---|
949 | ''' |
---|
950 | XYZ = [] |
---|
951 | for atom in atoms: |
---|
952 | XYZ.append(atom[cx:cx+3]) |
---|
953 | return np.array(XYZ) |
---|
954 | |
---|
955 | def getRBTransMat(X,Y): |
---|
956 | '''Get transformation for Cartesian axes given 2 vectors |
---|
957 | X will be parallel to new X-axis; X cross Y will be new Z-axis & |
---|
958 | (X cross Y) cross Y will be new Y-axis |
---|
959 | Useful for rigid body axes definintion |
---|
960 | |
---|
961 | :param array X: normalized vector |
---|
962 | :param array Y: normalized vector |
---|
963 | |
---|
964 | :returns: array M: transformation matrix |
---|
965 | |
---|
966 | use as XYZ' = np.inner(M,XYZ) where XYZ are Cartesian |
---|
967 | |
---|
968 | ''' |
---|
969 | Mat2 = np.cross(X,Y) #UxV-->Z |
---|
970 | Mat2 /= np.sqrt(np.sum(Mat2**2)) |
---|
971 | Mat3 = np.cross(Mat2,X) #(UxV)xU-->Y |
---|
972 | Mat3 /= np.sqrt(np.sum(Mat3**2)) |
---|
973 | return np.array([X,Mat3,Mat2]) |
---|
974 | |
---|
975 | def RotateRBXYZ(Bmat,Cart,oriQ): |
---|
976 | '''rotate & transform cartesian coordinates to crystallographic ones |
---|
977 | no translation applied. To be used for numerical derivatives |
---|
978 | |
---|
979 | :param type name: description |
---|
980 | |
---|
981 | :returns: type name: description |
---|
982 | |
---|
983 | ''' |
---|
984 | ''' returns crystal coordinates for atoms described by RBObj |
---|
985 | ''' |
---|
986 | XYZ = np.zeros_like(Cart) |
---|
987 | for i,xyz in enumerate(Cart): |
---|
988 | XYZ[i] = np.inner(Bmat,prodQVQ(oriQ,xyz)) |
---|
989 | return XYZ |
---|
990 | |
---|
991 | def UpdateRBXYZ(Bmat,RBObj,RBData,RBType): |
---|
992 | '''returns crystal coordinates for atoms described by RBObj |
---|
993 | |
---|
994 | :param np.array Bmat: see :func:`GSASIIlattice.cell2AB` |
---|
995 | :param dict rbObj: rigid body selection/orientation information |
---|
996 | :param dict RBData: rigid body tree data structure |
---|
997 | :param str RBType: rigid body type, 'Vector' or 'Residue' |
---|
998 | |
---|
999 | :returns: coordinates for rigid body as XYZ,Cart where XYZ is |
---|
1000 | the location in crystal coordinates and Cart is in cartesian |
---|
1001 | ''' |
---|
1002 | RBRes = RBData[RBType][RBObj['RBId']] |
---|
1003 | if RBType == 'Vector': |
---|
1004 | vecs = RBRes['rbVect'] |
---|
1005 | mags = RBRes['VectMag'] |
---|
1006 | Cart = np.zeros_like(vecs[0]) |
---|
1007 | for vec,mag in zip(vecs,mags): |
---|
1008 | Cart += vec*mag |
---|
1009 | elif RBType == 'Residue': |
---|
1010 | Cart = np.array(RBRes['rbXYZ']) |
---|
1011 | for tor,seq in zip(RBObj['Torsions'],RBRes['rbSeq']): |
---|
1012 | QuatA = AVdeg2Q(tor[0],Cart[seq[0]]-Cart[seq[1]]) |
---|
1013 | Cart[seq[3]] = prodQVQ(QuatA,(Cart[seq[3]]-Cart[seq[1]]))+Cart[seq[1]] |
---|
1014 | XYZ = np.zeros_like(Cart) |
---|
1015 | for i,xyz in enumerate(Cart): |
---|
1016 | XYZ[i] = np.inner(Bmat,prodQVQ(RBObj['Orient'][0],xyz))+RBObj['Orig'][0] |
---|
1017 | return XYZ,Cart |
---|
1018 | |
---|
1019 | def UpdateMCSAxyz(Bmat,MCSA): |
---|
1020 | '''default doc string |
---|
1021 | |
---|
1022 | :param type name: description |
---|
1023 | |
---|
1024 | :returns: type name: description |
---|
1025 | |
---|
1026 | ''' |
---|
1027 | xyz = [] |
---|
1028 | atTypes = [] |
---|
1029 | iatm = 0 |
---|
1030 | for model in MCSA['Models'][1:]: #skip the MD model |
---|
1031 | if model['Type'] == 'Atom': |
---|
1032 | xyz.append(model['Pos'][0]) |
---|
1033 | atTypes.append(model['atType']) |
---|
1034 | iatm += 1 |
---|
1035 | else: |
---|
1036 | RBRes = MCSA['rbData'][model['Type']][model['RBId']] |
---|
1037 | Pos = np.array(model['Pos'][0]) |
---|
1038 | Ori = np.array(model['Ori'][0]) |
---|
1039 | Qori = AVdeg2Q(Ori[0],Ori[1:]) |
---|
1040 | if model['Type'] == 'Vector': |
---|
1041 | vecs = RBRes['rbVect'] |
---|
1042 | mags = RBRes['VectMag'] |
---|
1043 | Cart = np.zeros_like(vecs[0]) |
---|
1044 | for vec,mag in zip(vecs,mags): |
---|
1045 | Cart += vec*mag |
---|
1046 | elif model['Type'] == 'Residue': |
---|
1047 | Cart = np.array(RBRes['rbXYZ']) |
---|
1048 | for itor,seq in enumerate(RBRes['rbSeq']): |
---|
1049 | QuatA = AVdeg2Q(model['Tor'][0][itor],Cart[seq[0]]-Cart[seq[1]]) |
---|
1050 | Cart[seq[3]] = prodQVQ(QuatA,(Cart[seq[3]]-Cart[seq[1]]))+Cart[seq[1]] |
---|
1051 | if model['MolCent'][1]: |
---|
1052 | Cart -= model['MolCent'][0] |
---|
1053 | for i,x in enumerate(Cart): |
---|
1054 | xyz.append(np.inner(Bmat,prodQVQ(Qori,x))+Pos) |
---|
1055 | atType = RBRes['rbTypes'][i] |
---|
1056 | atTypes.append(atType) |
---|
1057 | iatm += 1 |
---|
1058 | return np.array(xyz),atTypes |
---|
1059 | |
---|
1060 | def SetMolCent(model,RBData): |
---|
1061 | '''default doc string |
---|
1062 | |
---|
1063 | :param type name: description |
---|
1064 | |
---|
1065 | :returns: type name: description |
---|
1066 | |
---|
1067 | ''' |
---|
1068 | rideList = [] |
---|
1069 | RBRes = RBData[model['Type']][model['RBId']] |
---|
1070 | if model['Type'] == 'Vector': |
---|
1071 | vecs = RBRes['rbVect'] |
---|
1072 | mags = RBRes['VectMag'] |
---|
1073 | Cart = np.zeros_like(vecs[0]) |
---|
1074 | for vec,mag in zip(vecs,mags): |
---|
1075 | Cart += vec*mag |
---|
1076 | elif model['Type'] == 'Residue': |
---|
1077 | Cart = np.array(RBRes['rbXYZ']) |
---|
1078 | for seq in RBRes['rbSeq']: |
---|
1079 | rideList += seq[3] |
---|
1080 | centList = set(range(len(Cart)))-set(rideList) |
---|
1081 | cent = np.zeros(3) |
---|
1082 | for i in centList: |
---|
1083 | cent += Cart[i] |
---|
1084 | model['MolCent'][0] = cent/len(centList) |
---|
1085 | |
---|
1086 | def UpdateRBUIJ(Bmat,Cart,RBObj): |
---|
1087 | '''default doc string |
---|
1088 | |
---|
1089 | :param type name: description |
---|
1090 | |
---|
1091 | :returns: type name: description |
---|
1092 | |
---|
1093 | ''' |
---|
1094 | ''' returns atom I/A, Uiso or UIJ for atoms at XYZ as described by RBObj |
---|
1095 | ''' |
---|
1096 | TLStype,TLS = RBObj['ThermalMotion'][:2] |
---|
1097 | T = np.zeros(6) |
---|
1098 | L = np.zeros(6) |
---|
1099 | S = np.zeros(8) |
---|
1100 | if 'T' in TLStype: |
---|
1101 | T = TLS[:6] |
---|
1102 | if 'L' in TLStype: |
---|
1103 | L = np.array(TLS[6:12])*(np.pi/180.)**2 |
---|
1104 | if 'S' in TLStype: |
---|
1105 | S = np.array(TLS[12:])*(np.pi/180.) |
---|
1106 | g = nl.inv(np.inner(Bmat,Bmat)) |
---|
1107 | gvec = np.sqrt(np.array([g[0][0]**2,g[1][1]**2,g[2][2]**2, |
---|
1108 | g[0][0]*g[1][1],g[0][0]*g[2][2],g[1][1]*g[2][2]])) |
---|
1109 | Uout = [] |
---|
1110 | Q = RBObj['Orient'][0] |
---|
1111 | for X in Cart: |
---|
1112 | X = prodQVQ(Q,X) |
---|
1113 | if 'U' in TLStype: |
---|
1114 | Uout.append(['I',TLS[0],0,0,0,0,0,0]) |
---|
1115 | elif not 'N' in TLStype: |
---|
1116 | U = [0,0,0,0,0,0] |
---|
1117 | U[0] = T[0]+L[1]*X[2]**2+L[2]*X[1]**2-2.0*L[5]*X[1]*X[2]+2.0*(S[2]*X[2]-S[4]*X[1]) |
---|
1118 | U[1] = T[1]+L[0]*X[2]**2+L[2]*X[0]**2-2.0*L[4]*X[0]*X[2]+2.0*(S[5]*X[0]-S[0]*X[2]) |
---|
1119 | U[2] = T[2]+L[1]*X[0]**2+L[0]*X[1]**2-2.0*L[3]*X[1]*X[0]+2.0*(S[1]*X[1]-S[3]*X[0]) |
---|
1120 | U[3] = T[3]+L[4]*X[1]*X[2]+L[5]*X[0]*X[2]-L[3]*X[2]**2-L[2]*X[0]*X[1]+ \ |
---|
1121 | S[4]*X[0]-S[5]*X[1]-(S[6]+S[7])*X[2] |
---|
1122 | U[4] = T[4]+L[3]*X[1]*X[2]+L[5]*X[0]*X[1]-L[4]*X[1]**2-L[1]*X[0]*X[2]+ \ |
---|
1123 | S[3]*X[2]-S[2]*X[0]+S[6]*X[1] |
---|
1124 | U[5] = T[5]+L[3]*X[0]*X[2]+L[4]*X[0]*X[1]-L[5]*X[0]**2-L[0]*X[2]*X[1]+ \ |
---|
1125 | S[0]*X[1]-S[1]*X[2]+S[7]*X[0] |
---|
1126 | Umat = G2lat.U6toUij(U) |
---|
1127 | beta = np.inner(np.inner(Bmat.T,Umat),Bmat) |
---|
1128 | Uout.append(['A',0.0,]+list(G2lat.UijtoU6(beta)*gvec)) |
---|
1129 | else: |
---|
1130 | Uout.append(['N',]) |
---|
1131 | return Uout |
---|
1132 | |
---|
1133 | def GetSHCoeff(pId,parmDict,SHkeys): |
---|
1134 | '''default doc string |
---|
1135 | |
---|
1136 | :param type name: description |
---|
1137 | |
---|
1138 | :returns: type name: description |
---|
1139 | |
---|
1140 | ''' |
---|
1141 | SHCoeff = {} |
---|
1142 | for shkey in SHkeys: |
---|
1143 | shname = str(pId)+'::'+shkey |
---|
1144 | SHCoeff[shkey] = parmDict[shname] |
---|
1145 | return SHCoeff |
---|
1146 | |
---|
1147 | def getMass(generalData): |
---|
1148 | '''Computes mass of unit cell contents |
---|
1149 | |
---|
1150 | :param dict generalData: The General dictionary in Phase |
---|
1151 | |
---|
1152 | :returns: float mass: Crystal unit cell mass in AMU. |
---|
1153 | |
---|
1154 | ''' |
---|
1155 | mass = 0. |
---|
1156 | for i,elem in enumerate(generalData['AtomTypes']): |
---|
1157 | mass += generalData['NoAtoms'][elem]*generalData['AtomMass'][i] |
---|
1158 | return max(mass,1.0) |
---|
1159 | |
---|
1160 | def getDensity(generalData): |
---|
1161 | '''calculate crystal structure density |
---|
1162 | |
---|
1163 | :param dict generalData: The General dictionary in Phase |
---|
1164 | |
---|
1165 | :returns: float density: crystal density in gm/cm^3 |
---|
1166 | |
---|
1167 | ''' |
---|
1168 | mass = getMass(generalData) |
---|
1169 | Volume = generalData['Cell'][7] |
---|
1170 | density = mass/(0.6022137*Volume) |
---|
1171 | return density,Volume/mass |
---|
1172 | |
---|
1173 | def getWave(Parms): |
---|
1174 | '''returns wavelength from Instrument parameters dictionary |
---|
1175 | |
---|
1176 | :param dict Parms: Instrument parameters; |
---|
1177 | must contain: |
---|
1178 | Lam: single wavelength |
---|
1179 | or |
---|
1180 | Lam1: Ka1 radiation wavelength |
---|
1181 | |
---|
1182 | :returns: float wave: wavelength |
---|
1183 | |
---|
1184 | ''' |
---|
1185 | try: |
---|
1186 | return Parms['Lam'][1] |
---|
1187 | except KeyError: |
---|
1188 | return Parms['Lam1'][1] |
---|
1189 | |
---|
1190 | def getMeanWave(Parms): |
---|
1191 | '''returns mean wavelength from Instrument parameters dictionary |
---|
1192 | |
---|
1193 | :param dict Parms: Instrument parameters; |
---|
1194 | must contain: |
---|
1195 | Lam: single wavelength |
---|
1196 | or |
---|
1197 | Lam1,Lam2: Ka1,Ka2 radiation wavelength |
---|
1198 | I(L2)/I(L1): Ka2/Ka1 ratio |
---|
1199 | |
---|
1200 | :returns: float wave: mean wavelength |
---|
1201 | |
---|
1202 | ''' |
---|
1203 | try: |
---|
1204 | return Parms['Lam'][1] |
---|
1205 | except KeyError: |
---|
1206 | meanLam = (Parms['Lam1'][1]+Parms['I(L2)/I(L1)'][1]*Parms['Lam2'][1])/ \ |
---|
1207 | (1.+Parms['I(L2)/I(L1)'][1]) |
---|
1208 | return meanLam |
---|
1209 | |
---|
1210 | |
---|
1211 | def El2Mass(Elements): |
---|
1212 | '''compute molecular weight from Elements |
---|
1213 | |
---|
1214 | :param dict Elements: elements in molecular formula; |
---|
1215 | each must contain |
---|
1216 | Num: number of atoms in formula |
---|
1217 | Mass: at. wt. |
---|
1218 | |
---|
1219 | :returns: float mass: molecular weight. |
---|
1220 | |
---|
1221 | ''' |
---|
1222 | mass = 0 |
---|
1223 | for El in Elements: |
---|
1224 | mass += Elements[El]['Num']*Elements[El]['Mass'] |
---|
1225 | return mass |
---|
1226 | |
---|
1227 | def Den2Vol(Elements,density): |
---|
1228 | '''converts density to molecular volume |
---|
1229 | |
---|
1230 | :param dict Elements: elements in molecular formula; |
---|
1231 | each must contain |
---|
1232 | Num: number of atoms in formula |
---|
1233 | Mass: at. wt. |
---|
1234 | :param float density: material density in gm/cm^3 |
---|
1235 | |
---|
1236 | :returns: float volume: molecular volume in A^3 |
---|
1237 | |
---|
1238 | ''' |
---|
1239 | return El2Mass(Elements)/(density*0.6022137) |
---|
1240 | |
---|
1241 | def Vol2Den(Elements,volume): |
---|
1242 | '''converts volume to density |
---|
1243 | |
---|
1244 | :param dict Elements: elements in molecular formula; |
---|
1245 | each must contain |
---|
1246 | Num: number of atoms in formula |
---|
1247 | Mass: at. wt. |
---|
1248 | :param float volume: molecular volume in A^3 |
---|
1249 | |
---|
1250 | :returns: float density: material density in gm/cm^3 |
---|
1251 | |
---|
1252 | ''' |
---|
1253 | return El2Mass(Elements)/(volume*0.6022137) |
---|
1254 | |
---|
1255 | def El2EstVol(Elements): |
---|
1256 | '''Estimate volume from molecular formula; assumes atom volume = 10A^3 |
---|
1257 | |
---|
1258 | :param dict Elements: elements in molecular formula; |
---|
1259 | each must contain |
---|
1260 | Num: number of atoms in formula |
---|
1261 | |
---|
1262 | :returns: float volume: estimate of molecular volume in A^3 |
---|
1263 | |
---|
1264 | ''' |
---|
1265 | vol = 0 |
---|
1266 | for El in Elements: |
---|
1267 | vol += 10.*Elements[El]['Num'] |
---|
1268 | return vol |
---|
1269 | |
---|
1270 | def XScattDen(Elements,vol,wave=0.): |
---|
1271 | '''Estimate X-ray scattering density from molecular formula & volume; |
---|
1272 | ignores valence, but includes anomalous effects |
---|
1273 | |
---|
1274 | :param dict Elements: elements in molecular formula; |
---|
1275 | each element must contain |
---|
1276 | Num: number of atoms in formula |
---|
1277 | Z: atomic number |
---|
1278 | :param float vol: molecular volume in A^3 |
---|
1279 | :param float wave: optional wavelength in A |
---|
1280 | |
---|
1281 | :returns: float rho: scattering density in 10^10cm^-2; |
---|
1282 | if wave > 0 the includes f' contribution |
---|
1283 | :returns: float mu: if wave>0 absorption coeff in cm^-1 ; otherwise 0 |
---|
1284 | :returns: float fpp: if wave>0 f" in 10^10cm^-2; otherwise 0 |
---|
1285 | |
---|
1286 | ''' |
---|
1287 | rho = 0 |
---|
1288 | mu = 0 |
---|
1289 | fpp = 0 |
---|
1290 | if wave: |
---|
1291 | Xanom = XAnomAbs(Elements,wave) |
---|
1292 | for El in Elements: |
---|
1293 | f0 = Elements[El]['Z'] |
---|
1294 | if wave: |
---|
1295 | f0 += Xanom[El][0] |
---|
1296 | fpp += Xanom[El][1]*Elements[El]['Num'] |
---|
1297 | mu += Xanom[El][2]*Elements[El]['Num'] |
---|
1298 | rho += Elements[El]['Num']*f0 |
---|
1299 | return 28.179*rho/vol,0.1*mu/vol,28.179*fpp/vol |
---|
1300 | |
---|
1301 | def NCScattDen(Elements,vol,wave=0.): |
---|
1302 | '''Estimate neutron scattering density from molecular formula & volume; |
---|
1303 | ignores valence, but includes anomalous effects |
---|
1304 | |
---|
1305 | :param dict Elements: elements in molecular formula; |
---|
1306 | each element must contain |
---|
1307 | Num: number of atoms in formula |
---|
1308 | Z: atomic number |
---|
1309 | :param float vol: molecular volume in A^3 |
---|
1310 | :param float wave: optional wavelength in A |
---|
1311 | |
---|
1312 | :returns: float rho: scattering density in 10^10cm^-2; |
---|
1313 | if wave > 0 the includes f' contribution |
---|
1314 | :returns: float mu: if wave>0 absorption coeff in cm^-1 ; otherwise 0 |
---|
1315 | :returns: float fpp: if wave>0 f" in 10^10cm^-2; otherwise 0 |
---|
1316 | |
---|
1317 | ''' |
---|
1318 | rho = 0 |
---|
1319 | mu = 0 |
---|
1320 | bpp = 0 |
---|
1321 | for El in Elements: |
---|
1322 | isotope = Elements[El]['Isotope'] |
---|
1323 | b0 = Elements[El]['Isotopes'][isotope]['SL'][0] |
---|
1324 | mu += Elements[El]['Isotopes'][isotope].get('SA',0.)*Elements[El]['Num'] |
---|
1325 | if wave and 'BW-LS' in Elements[El]['Isotopes'][isotope]: |
---|
1326 | Re,Im,E0,gam,A,E1,B,E2 = Elements[El]['Isotopes'][isotope]['BW-LS'][1:] |
---|
1327 | Emev = 81.80703/wave**2 |
---|
1328 | T0 = Emev-E0 |
---|
1329 | T1 = Emev-E1 |
---|
1330 | T2 = Emev-E2 |
---|
1331 | D0 = T0**2+gam**2 |
---|
1332 | D1 = T1**2+gam**2 |
---|
1333 | D2 = T2**2+gam**2 |
---|
1334 | b0 += Re*(T0/D0+A*T1/D1+B*T2/D2) |
---|
1335 | bpp += Im*(1/D0+A/D1+B/D2) |
---|
1336 | else: |
---|
1337 | bpp += Elements[El]['Isotopes'][isotope]['SL'][1] |
---|
1338 | rho += Elements[El]['Num']*b0 |
---|
1339 | if wave: mu *= wave |
---|
1340 | return 100.*rho/vol,mu/vol,100.*bpp/vol |
---|
1341 | |
---|
1342 | def wavekE(wavekE): |
---|
1343 | '''Convert wavelength to energy & vise versa |
---|
1344 | |
---|
1345 | :param float waveKe:wavelength in A or energy in kE |
---|
1346 | |
---|
1347 | :returns float waveKe:the other one |
---|
1348 | |
---|
1349 | ''' |
---|
1350 | return 12.397639/wavekE |
---|
1351 | |
---|
1352 | def XAnomAbs(Elements,wave): |
---|
1353 | kE = wavekE(wave) |
---|
1354 | Xanom = {} |
---|
1355 | for El in Elements: |
---|
1356 | Orbs = G2el.GetXsectionCoeff(El) |
---|
1357 | Xanom[El] = G2el.FPcalc(Orbs, kE) |
---|
1358 | return Xanom #f',f", mu |
---|
1359 | |
---|
1360 | ################################################################################ |
---|
1361 | #### Modulation math |
---|
1362 | ################################################################################ |
---|
1363 | |
---|
1364 | def makeWaves(waveTypes,FSSdata,XSSdata,USSdata,MSSdata,Mast): |
---|
1365 | ''' |
---|
1366 | waveTypes: array nAtoms: 'Fourier','ZigZag' or 'Block' |
---|
1367 | FSSdata: array 2 x atoms x waves (sin,cos terms) |
---|
1368 | XSSdata: array 2x3 x atoms X waves (sin,cos terms) |
---|
1369 | USSdata: array 2x6 x atoms X waves (sin,cos terms) |
---|
1370 | MSSdata: array 2x3 x atoms X waves (sin,cos terms) |
---|
1371 | |
---|
1372 | Mast: array orthogonalization matrix for Uij |
---|
1373 | ''' |
---|
1374 | ngl = 36 #selected for integer steps for 1/6,1/4,1/3... |
---|
1375 | glTau,glWt = pwd.pygauleg(0.,1.,ngl) #get Gauss-Legendre intervals & weights |
---|
1376 | mglTau = np.arange(0.,1.,1./ngl) |
---|
1377 | Ax = np.array(XSSdata[:3]).T #atoms x waves x sin pos mods |
---|
1378 | Bx = np.array(XSSdata[3:]).T #...cos pos mods |
---|
1379 | Af = np.array(FSSdata[0]).T #sin frac mods x waves x atoms |
---|
1380 | Bf = np.array(FSSdata[1]).T #cos frac mods... |
---|
1381 | Au = Mast*np.array(G2lat.U6toUij(USSdata[:6])).T #atoms x waves x sin Uij mods as betaij |
---|
1382 | Bu = Mast*np.array(G2lat.U6toUij(USSdata[6:])).T #...cos Uij mods as betaij |
---|
1383 | Am = np.array(MSSdata[:3]).T #atoms x waves x sin pos mods |
---|
1384 | Bm = np.array(MSSdata[3:]).T #...cos pos mods |
---|
1385 | nWaves = [Af.shape[1],Ax.shape[1],Au.shape[1],Am.shape[1]] |
---|
1386 | if nWaves[0]: |
---|
1387 | tauF = np.arange(1.,nWaves[0]+1)[:,nxs]*glTau #Fwaves x ngl |
---|
1388 | FmodA = Af[:,:,nxs]*np.sin(twopi*tauF[nxs,:,:]) #atoms X Fwaves X ngl |
---|
1389 | FmodB = Bf[:,:,nxs]*np.cos(twopi*tauF[nxs,:,:]) |
---|
1390 | Fmod = np.sum(1.0+FmodA+FmodB,axis=1) #atoms X ngl; sum waves |
---|
1391 | else: |
---|
1392 | Fmod = 1.0 |
---|
1393 | XmodZ = np.zeros((Ax.shape[0],Ax.shape[1],3,ngl)) |
---|
1394 | XmodA = np.zeros((Ax.shape[0],Ax.shape[1],3,ngl)) |
---|
1395 | XmodB = np.zeros((Ax.shape[0],Ax.shape[1],3,ngl)) |
---|
1396 | for iatm in range(Ax.shape[0]): |
---|
1397 | nx = 0 |
---|
1398 | if 'ZigZag' in waveTypes[iatm]: |
---|
1399 | nx = 1 |
---|
1400 | Tmm = Ax[iatm][0][:2] |
---|
1401 | XYZmax = np.array([Ax[iatm][0][2],Bx[iatm][0][0],Bx[iatm][0][1]]) |
---|
1402 | XmodZ[iatm][0] += posZigZag(glTau,Tmm,XYZmax).T |
---|
1403 | elif 'Block' in waveTypes[iatm]: |
---|
1404 | nx = 1 |
---|
1405 | Tmm = Ax[iatm][0][:2] |
---|
1406 | XYZmax = np.array([Ax[iatm][0][2],Bx[iatm][0][0],Bx[iatm][0][1]]) |
---|
1407 | XmodZ[iatm][0] += posBlock(glTau,Tmm,XYZmax).T |
---|
1408 | tauX = np.arange(1.,nWaves[1]+1-nx)[:,nxs]*glTau #Xwaves x ngl |
---|
1409 | if nx: |
---|
1410 | XmodA[iatm][:-nx] = Ax[iatm,nx:,:,nxs]*np.sin(twopi*tauX[nxs,:,nxs,:]) #atoms X waves X 3 X ngl |
---|
1411 | XmodB[iatm][:-nx] = Bx[iatm,nx:,:,nxs]*np.cos(twopi*tauX[nxs,:,nxs,:]) #ditto |
---|
1412 | else: |
---|
1413 | XmodA[iatm] = Ax[iatm,:,:,nxs]*np.sin(twopi*tauX[nxs,:,nxs,:]) #atoms X waves X 3 X ngl |
---|
1414 | XmodB[iatm] = Bx[iatm,:,:,nxs]*np.cos(twopi*tauX[nxs,:,nxs,:]) #ditto |
---|
1415 | Xmod = np.sum(XmodA+XmodB+XmodZ,axis=1) #atoms X 3 X ngl; sum waves |
---|
1416 | Xmod = np.swapaxes(Xmod,1,2) |
---|
1417 | if nWaves[2]: |
---|
1418 | tauU = np.arange(1.,nWaves[2]+1)[:,nxs]*glTau #Uwaves x ngl |
---|
1419 | UmodA = Au[:,:,:,:,nxs]*np.sin(twopi*tauU[nxs,:,nxs,nxs,:]) #atoms x waves x 3x3 x ngl |
---|
1420 | UmodB = Bu[:,:,:,:,nxs]*np.cos(twopi*tauU[nxs,:,nxs,nxs,:]) #ditto |
---|
1421 | Umod = np.swapaxes(np.sum(UmodA+UmodB,axis=1),1,3) #atoms x 3x3 x ngl; sum waves |
---|
1422 | else: |
---|
1423 | Umod = 1.0 |
---|
1424 | if nWaves[3]: |
---|
1425 | tauM = np.arange(1.,nWaves[3]+1-nx)[:,nxs]*mglTau #Mwaves x ngl |
---|
1426 | MmodA = Am[:,:,:,nxs]*np.sin(twopi*tauM[nxs,:,nxs,:]) #atoms X waves X 3 X ngl |
---|
1427 | MmodB = Bm[:,:,:,nxs]*np.cos(twopi*tauM[nxs,:,nxs,:]) #ditto |
---|
1428 | Mmod = np.sum(MmodA+MmodB,axis=1) |
---|
1429 | Mmod = np.swapaxes(Mmod,1,2) #Mxyz,Ntau,Natm |
---|
1430 | else: |
---|
1431 | Mmod = 1.0 |
---|
1432 | return ngl,nWaves,Fmod,Xmod,Umod,Mmod,glTau,glWt |
---|
1433 | |
---|
1434 | def MagMod(glTau,XYZ,modQ,MSSdata,SGData,SSGData): |
---|
1435 | ''' |
---|
1436 | this needs to make magnetic moment modulations & magnitudes as |
---|
1437 | fxn of gTau points; NB: this allows only 1 mag. wave fxn. |
---|
1438 | ''' |
---|
1439 | Am = np.array(MSSdata[3:]).T #atoms x waves x cos pos mods |
---|
1440 | Bm = np.array(MSSdata[:3]).T #...sin pos mods |
---|
1441 | nWaves = Am.shape[1] |
---|
1442 | SGMT = np.array([ops[0] for ops in SGData['SGOps']]) #not .T!! |
---|
1443 | Sinv = np.array([nl.inv(ops[0]) for ops in SSGData['SSGOps']]) |
---|
1444 | SGT = np.array([ops[1] for ops in SSGData['SSGOps']]) |
---|
1445 | if SGData['SGInv']: |
---|
1446 | SGMT = np.vstack((SGMT,-SGMT)) |
---|
1447 | Sinv = np.vstack((Sinv,-Sinv)) |
---|
1448 | SGT = np.vstack((SGT,-SGT)) |
---|
1449 | SGMT = np.vstack([SGMT for cen in SGData['SGCen']]) |
---|
1450 | Sinv = np.vstack([Sinv for cen in SGData['SGCen']]) |
---|
1451 | SGT = np.vstack([SGT+cen for cen in SSGData['SSGCen']])%1. |
---|
1452 | if SGData['SGGray']: |
---|
1453 | SGMT = np.vstack((SGMT,SGMT)) |
---|
1454 | Sinv = np.vstack((Sinv,Sinv)) |
---|
1455 | SGT = np.vstack((SGT,SGT+.5))%1. |
---|
1456 | mst = Sinv[:,3,:3] |
---|
1457 | epsinv = Sinv[:,3,3] |
---|
1458 | phi = np.inner(XYZ,modQ).T |
---|
1459 | TA = np.sum(mst[nxs,:,:]*(XYZ-SGT[:,:3][nxs,:,:]),axis=-1).T |
---|
1460 | tauT = TA[nxs,:,:] + epsinv[nxs,:,nxs]*(glTau[:,nxs,nxs]-SGT[:,3][nxs,:,nxs]+phi[nxs,:,:]) |
---|
1461 | modind = np.arange(nWaves)+1. |
---|
1462 | phase = modind[:,nxs,nxs]*tauT #Nops,Natm,Nwave |
---|
1463 | psin = np.sin(twopi*phase) |
---|
1464 | pcos = np.cos(twopi*phase) |
---|
1465 | MmodA = np.sum(Am[nxs,nxs,:,:,:]*pcos[:,:,:,nxs,nxs],axis=3)/2. #cos term |
---|
1466 | MmodB = np.sum(Bm[nxs,nxs,:,:,:]*psin[:,:,:,nxs,nxs],axis=3)/2. #sin term |
---|
1467 | MmodA = np.sum(SGMT[nxs,:,nxs,:,:]*MmodA[:,:,:,nxs,:],axis=-1)*SGData['SpnFlp'][nxs,:,nxs,nxs] |
---|
1468 | MmodB = np.sum(SGMT[nxs,:,nxs,:,:]*MmodB[:,:,:,nxs,:],axis=-1)*SGData['SpnFlp'][nxs,:,nxs,nxs] |
---|
1469 | return MmodA,MmodB #Ntau,Nops,Natm,Mxyz; cos & sin parts; sum matches drawn atom moments |
---|
1470 | |
---|
1471 | def MagMod2(m,XYZ,modQ,MSSdata,SGData,SSGData): |
---|
1472 | ''' |
---|
1473 | this needs to make magnetic moment modulations & magnitudes as |
---|
1474 | fxn of gTau points; NB: this allows only 1 mag. wave fxn. |
---|
1475 | ''' |
---|
1476 | Am = np.array(MSSdata[3:]).T[:,0,:] #atoms x cos pos mods; only 1 wave |
---|
1477 | Bm = np.array(MSSdata[:3]).T[:,0,:] #...sin pos mods |
---|
1478 | SGMT = np.array([ops[0] for ops in SGData['SGOps']]) #not .T!! |
---|
1479 | SSGMT = np.array([ops[0] for ops in SSGData['SSGOps']]) #not .T!! |
---|
1480 | Sinv = np.array([nl.inv(ops[0]) for ops in SSGData['SSGOps']]) |
---|
1481 | SGT = np.array([ops[1] for ops in SSGData['SSGOps']]) |
---|
1482 | if SGData['SGInv']: |
---|
1483 | SGMT = np.vstack((SGMT,-SGMT)) |
---|
1484 | SSGMT = np.vstack((SSGMT,-SSGMT)) |
---|
1485 | Sinv = np.vstack((Sinv,-Sinv)) |
---|
1486 | SGT = np.vstack((SGT,-SGT)) |
---|
1487 | SGMT = np.vstack([SGMT for cen in SGData['SGCen']]) |
---|
1488 | SSGMT = np.vstack([SSGMT for cen in SGData['SGCen']]) |
---|
1489 | Sinv = np.vstack([Sinv for cen in SGData['SGCen']]) |
---|
1490 | SGT = np.vstack([SGT+cen for cen in SSGData['SSGCen']])%1. |
---|
1491 | if SGData['SGGray']: |
---|
1492 | SGMT = np.vstack((SGMT,SGMT)) |
---|
1493 | SSGMT = np.vstack((SSGMT,SSGMT)) |
---|
1494 | Sinv = np.vstack((Sinv,Sinv)) |
---|
1495 | SGT = np.vstack((SGT,SGT+.5))%1. |
---|
1496 | epsinv = Sinv[:,3,3] |
---|
1497 | phi = np.inner(XYZ,modQ).T |
---|
1498 | TA = phi+(epsinv*(np.inner(modQ,SGT[:,:3])-SGT[:,3]))[:,nxs] #Nops,Natm |
---|
1499 | phase = phi+(np.inner(modQ,SGT[:,:3])-SGT[:,3])[:,nxs] |
---|
1500 | |
---|
1501 | pcos = np.cos(-twopi*m[:,nxs,nxs]*phase[nxs,:,:]) #Nref,Nops,Natm |
---|
1502 | psin = np.sin(-twopi*m[:,nxs,nxs]*phase[nxs,:,:]) |
---|
1503 | MmodA = TA[nxs,:,:,nxs]*(Am[nxs,nxs,:,:]*pcos[:,:,:,nxs]-Bm[nxs,nxs,:,:]*psin[:,:,:,nxs])/2. #Nref,Nops,Natm,Mxyz |
---|
1504 | MmodB = TA[nxs,:,:,nxs]*(Am[nxs,nxs,:,:]*psin[:,:,:,nxs]+Bm[nxs,nxs,:,:]*pcos[:,:,:,nxs])/2. #Nref,Nops,Natm,Mxyz |
---|
1505 | MmodA = np.sum(SGMT[nxs,:,nxs,:,:]*MmodA[:,:,:,nxs,:],axis=-1)*SGData['SpnFlp'][nxs,:,nxs,nxs] |
---|
1506 | MmodB = np.sum(SGMT[nxs,:,nxs,:,:]*MmodB[:,:,:,nxs,:],axis=-1)*SGData['SpnFlp'][nxs,:,nxs,nxs] |
---|
1507 | return MmodA,MmodB #Nref,Nops,Natm,Mxyz; cos & sin parts |
---|
1508 | |
---|
1509 | def Modulation(H,HP,nWaves,Fmod,Xmod,Umod,glTau,glWt): |
---|
1510 | ''' |
---|
1511 | H: array nRefBlk x ops X hklt |
---|
1512 | HP: array nRefBlk x ops X hklt proj to hkl |
---|
1513 | nWaves: list number of waves for frac, pos, uij & mag |
---|
1514 | Fmod: array 2 x atoms x waves (sin,cos terms) |
---|
1515 | Xmod: array atoms X 3 X ngl |
---|
1516 | Umod: array atoms x 3x3 x ngl |
---|
1517 | glTau,glWt: arrays Gauss-Lorentzian pos & wts |
---|
1518 | ''' |
---|
1519 | |
---|
1520 | if nWaves[2]: #uij (adp) waves |
---|
1521 | if len(HP.shape) > 2: |
---|
1522 | HbH = np.exp(-np.sum(HP[:,:,nxs,nxs,:]*np.inner(HP,Umod),axis=-1)) # refBlk x ops x atoms x ngl add Overhauser corr.? |
---|
1523 | else: |
---|
1524 | HbH = np.exp(-np.sum(HP[:,nxs,nxs,:]*np.inner(HP,Umod),axis=-1)) # refBlk x ops x atoms x ngl add Overhauser corr.? |
---|
1525 | else: |
---|
1526 | HbH = 1.0 |
---|
1527 | HdotX = np.inner(HP,Xmod) #refBlk x ops x atoms X ngl |
---|
1528 | if len(H.shape) > 2: |
---|
1529 | D = H[:,:,3:]*glTau[nxs,nxs,:] #m*e*tau; refBlk x ops X ngl |
---|
1530 | HdotXD = twopi*(HdotX+D[:,:,nxs,:]) |
---|
1531 | else: |
---|
1532 | D = H[:,3:]*glTau[nxs,:] #m*e*tau; refBlk x ops X ngl |
---|
1533 | HdotXD = twopi*(HdotX+D[:,nxs,:]) |
---|
1534 | cosHA = np.sum(Fmod*HbH*np.cos(HdotXD)*glWt,axis=-1) #real part; refBlk X ops x atoms; sum for G-L integration |
---|
1535 | sinHA = np.sum(Fmod*HbH*np.sin(HdotXD)*glWt,axis=-1) #imag part; ditto |
---|
1536 | return np.array([cosHA,sinHA]) # 2 x refBlk x SGops x atoms |
---|
1537 | |
---|
1538 | #def MagModulation(H,HP,nWaves,Fmod,Xmod,Umod,Mmod,glTau,glWt): |
---|
1539 | # ''' |
---|
1540 | # H: array nRefBlk x ops X hklt |
---|
1541 | # HP: array nRefBlk x ops X hklt proj to hkl |
---|
1542 | # nWaves: list number of waves for frac, pos, uij & mag |
---|
1543 | # Fmod: array 2 x atoms x waves (sin,cos terms) |
---|
1544 | # Xmod: array atoms X 3 X ngl |
---|
1545 | # Umod: array atoms x 3x3 x ngl |
---|
1546 | # Mmod: array atoms x 3x3 x ngl |
---|
1547 | # glTau,glWt: arrays Gauss-Lorentzian pos & wts |
---|
1548 | # ''' |
---|
1549 | # |
---|
1550 | # if nWaves[2]: #uij (adp) waves |
---|
1551 | # if len(HP.shape) > 2: |
---|
1552 | # HbH = np.exp(-np.sum(HP[:,:,nxs,nxs,:]*np.inner(HP,Umod),axis=-1)) # refBlk x ops x atoms x ngl add Overhauser corr.? |
---|
1553 | # else: |
---|
1554 | # HbH = np.exp(-np.sum(HP[:,nxs,nxs,:]*np.inner(HP,Umod),axis=-1)) # refBlk x ops x atoms x ngl add Overhauser corr.? |
---|
1555 | # else: |
---|
1556 | # HbH = 1.0 |
---|
1557 | # HdotX = np.inner(HP,Xmod) #refBlk x ops x atoms X ngl |
---|
1558 | # if len(H.shape) > 2: |
---|
1559 | # D = H[:,:,3:]*glTau[nxs,nxs,:] #m*e*tau; refBlk x ops X ngl |
---|
1560 | # HdotXD = twopi*(HdotX+D[:,:,nxs,:]) |
---|
1561 | # else: |
---|
1562 | # D = H[:,3:]*glTau[nxs,:] #m*e*tau; refBlk x ops X ngl |
---|
1563 | # HdotXD = twopi*(HdotX+D[:,nxs,:]) |
---|
1564 | # M = np.swapaxes(Mmod,1,2) |
---|
1565 | # cosHA = np.sum(M[nxs,nxs,:,:,:]*(Fmod*HbH*np.cos(HdotXD)[:,:,:,nxs,:]*glWt),axis=-1) #real part; refBlk X ops x atoms; sum for G-L integration |
---|
1566 | # sinHA = np.sum(M[nxs,nxs,:,:,:]*(Fmod*HbH*np.sin(HdotXD)[:,:,:,nxs,:]*glWt),axis=-1) #imag part; ditto |
---|
1567 | # return np.array([cosHA,sinHA]) # 2 x refBlk x SGops x atoms |
---|
1568 | # |
---|
1569 | def ModulationTw(H,HP,nWaves,Fmod,Xmod,Umod,glTau,glWt): |
---|
1570 | ''' |
---|
1571 | H: array nRefBlk x tw x ops X hklt |
---|
1572 | HP: array nRefBlk x tw x ops X hklt proj to hkl |
---|
1573 | Fmod: array 2 x atoms x waves (sin,cos terms) |
---|
1574 | Xmod: array atoms X ngl X 3 |
---|
1575 | Umod: array atoms x ngl x 3x3 |
---|
1576 | glTau,glWt: arrays Gauss-Lorentzian pos & wts |
---|
1577 | ''' |
---|
1578 | |
---|
1579 | if nWaves[2]: |
---|
1580 | if len(HP.shape) > 3: #Blocks of reflections |
---|
1581 | HbH = np.exp(-np.sum(HP[:,:,nxs,nxs,:]*np.inner(HP,Umod),axis=-1)) # refBlk x ops x atoms x ngl add Overhauser corr.? |
---|
1582 | else: #single reflections |
---|
1583 | HbH = np.exp(-np.sum(HP[:,nxs,nxs,:]*np.inner(HP,Umod),axis=-1)) # refBlk x ops x atoms x ngl add Overhauser corr.? |
---|
1584 | else: |
---|
1585 | HbH = 1.0 |
---|
1586 | HdotX = np.inner(HP,Xmod) #refBlk x tw x ops x atoms X ngl |
---|
1587 | if len(H.shape) > 3: |
---|
1588 | D = glTau*H[:,:,:,3:,nxs] #m*e*tau; refBlk x tw x ops X ngl |
---|
1589 | HdotXD = twopi*(HdotX+D[:,:,:,nxs,:]) |
---|
1590 | else: |
---|
1591 | D = H*glTau[nxs,:] #m*e*tau; refBlk x ops X ngl |
---|
1592 | HdotXD = twopi*(HdotX+D[:,nxs,:]) |
---|
1593 | cosHA = np.sum(Fmod*HbH*np.cos(HdotXD)*glWt,axis=-1) #real part; refBlk X ops x atoms; sum for G-L integration |
---|
1594 | sinHA = np.sum(Fmod*HbH*np.sin(HdotXD)*glWt,axis=-1) #imag part; ditto |
---|
1595 | return np.array([cosHA,sinHA]) # 2 x refBlk x SGops x atoms |
---|
1596 | |
---|
1597 | def makeWavesDerv(ngl,waveTypes,FSSdata,XSSdata,USSdata,Mast): |
---|
1598 | ''' |
---|
1599 | Only for Fourier waves for fraction, position & adp (probably not used for magnetism) |
---|
1600 | FSSdata: array 2 x atoms x waves (sin,cos terms) |
---|
1601 | XSSdata: array 2x3 x atoms X waves (sin,cos terms) |
---|
1602 | USSdata: array 2x6 x atoms X waves (sin,cos terms) |
---|
1603 | Mast: array orthogonalization matrix for Uij |
---|
1604 | ''' |
---|
1605 | glTau,glWt = pwd.pygauleg(0.,1.,ngl) #get Gauss-Legendre intervals & weights |
---|
1606 | waveShapes = [FSSdata.T.shape,XSSdata.T.shape,USSdata.T.shape] |
---|
1607 | Af = np.array(FSSdata[0]).T #sin frac mods x waves x atoms |
---|
1608 | Bf = np.array(FSSdata[1]).T #cos frac mods... |
---|
1609 | Ax = np.array(XSSdata[:3]).T #...cos pos mods x waves x atoms |
---|
1610 | Bx = np.array(XSSdata[3:]).T #...cos pos mods |
---|
1611 | Au = Mast*np.array(G2lat.U6toUij(USSdata[:6])).T #atoms x waves x sin Uij mods |
---|
1612 | Bu = Mast*np.array(G2lat.U6toUij(USSdata[6:])).T #...cos Uij mods |
---|
1613 | nWaves = [Af.shape[1],Ax.shape[1],Au.shape[1]] |
---|
1614 | StauX = np.zeros((Ax.shape[0],Ax.shape[1],3,ngl)) #atoms x waves x 3 x ngl |
---|
1615 | CtauX = np.zeros((Ax.shape[0],Ax.shape[1],3,ngl)) |
---|
1616 | ZtauXt = np.zeros((Ax.shape[0],2,3,ngl)) #atoms x Tminmax x 3 x ngl |
---|
1617 | ZtauXx = np.zeros((Ax.shape[0],3,ngl)) #atoms x XYZmax x ngl |
---|
1618 | for iatm in range(Ax.shape[0]): |
---|
1619 | nx = 0 |
---|
1620 | if 'ZigZag' in waveTypes[iatm]: |
---|
1621 | nx = 1 |
---|
1622 | elif 'Block' in waveTypes[iatm]: |
---|
1623 | nx = 1 |
---|
1624 | tauX = np.arange(1.,nWaves[1]+1-nx)[:,nxs]*glTau #Xwaves x ngl |
---|
1625 | if nx: |
---|
1626 | StauX[iatm][nx:] = np.ones_like(Ax)[iatm,nx:,:,nxs]*np.sin(twopi*tauX)[nxs,:,nxs,:] #atoms X waves X 3(xyz) X ngl |
---|
1627 | CtauX[iatm][nx:] = np.ones_like(Bx)[iatm,nx:,:,nxs]*np.cos(twopi*tauX)[nxs,:,nxs,:] #ditto |
---|
1628 | else: |
---|
1629 | StauX[iatm] = np.ones_like(Ax)[iatm,:,:,nxs]*np.sin(twopi*tauX)[nxs,:,nxs,:] #atoms X waves X 3(xyz) X ngl |
---|
1630 | CtauX[iatm] = np.ones_like(Bx)[iatm,:,:,nxs]*np.cos(twopi*tauX)[nxs,:,nxs,:] #ditto |
---|
1631 | if nWaves[0]: |
---|
1632 | tauF = np.arange(1.,nWaves[0]+1)[:,nxs]*glTau #Fwaves x ngl |
---|
1633 | StauF = np.ones_like(Af)[:,:,nxs]*np.sin(twopi*tauF)[nxs,:,:] #also dFmod/dAf |
---|
1634 | CtauF = np.ones_like(Bf)[:,:,nxs]*np.cos(twopi*tauF)[nxs,:,:] #also dFmod/dBf |
---|
1635 | else: |
---|
1636 | StauF = 1.0 |
---|
1637 | CtauF = 1.0 |
---|
1638 | if nWaves[2]: |
---|
1639 | tauU = np.arange(1.,nWaves[2]+1)[:,nxs]*glTau #Uwaves x ngl |
---|
1640 | StauU = np.ones_like(Au)[:,:,:,:,nxs]*np.sin(twopi*tauU)[nxs,:,nxs,nxs,:] #also dUmodA/dAu |
---|
1641 | CtauU = np.ones_like(Bu)[:,:,:,:,nxs]*np.cos(twopi*tauU)[nxs,:,nxs,nxs,:] #also dUmodB/dBu |
---|
1642 | UmodA = Au[:,:,:,:,nxs]*StauU #atoms x waves x 3x3 x ngl |
---|
1643 | UmodB = Bu[:,:,:,:,nxs]*CtauU #ditto |
---|
1644 | #derivs need to be ops x atoms x waves x 6uij; ops x atoms x waves x ngl x 6uij before sum |
---|
1645 | StauU = np.rollaxis(np.rollaxis(np.swapaxes(StauU,2,4),-1),-1) |
---|
1646 | CtauU = np.rollaxis(np.rollaxis(np.swapaxes(CtauU,2,4),-1),-1) |
---|
1647 | else: |
---|
1648 | StauU = 1.0 |
---|
1649 | CtauU = 1.0 |
---|
1650 | UmodA = 0. |
---|
1651 | UmodB = 0. |
---|
1652 | return waveShapes,[StauF,CtauF],[StauX,CtauX,ZtauXt,ZtauXx],[StauU,CtauU],UmodA+UmodB |
---|
1653 | |
---|
1654 | def ModulationDerv(H,HP,Hij,nWaves,waveShapes,Fmod,Xmod,UmodAB,SCtauF,SCtauX,SCtauU,glTau,glWt): |
---|
1655 | ''' |
---|
1656 | Compute Fourier modulation derivatives |
---|
1657 | H: array ops X hklt proj to hkl |
---|
1658 | HP: array ops X hklt proj to hkl |
---|
1659 | Hij: array 2pi^2[a*^2h^2 b*^2k^2 c*^2l^2 a*b*hk a*c*hl b*c*kl] of projected hklm to hkl space |
---|
1660 | ''' |
---|
1661 | |
---|
1662 | Mf = [H.shape[0],]+list(waveShapes[0]) #=[ops,atoms,waves,2] (sin+cos frac mods) |
---|
1663 | dGdMfC = np.zeros(Mf) |
---|
1664 | dGdMfS = np.zeros(Mf) |
---|
1665 | Mx = [H.shape[0],]+list(waveShapes[1]) #=[ops,atoms,waves,6] (sin+cos pos mods) |
---|
1666 | dGdMxC = np.zeros(Mx) |
---|
1667 | dGdMxS = np.zeros(Mx) |
---|
1668 | Mu = [H.shape[0],]+list(waveShapes[2]) #=[ops,atoms,waves,12] (sin+cos Uij mods) |
---|
1669 | dGdMuC = np.zeros(Mu) |
---|
1670 | dGdMuS = np.zeros(Mu) |
---|
1671 | |
---|
1672 | D = twopi*H[:,3][:,nxs]*glTau[nxs,:] #m*e*tau; ops X ngl |
---|
1673 | HdotX = twopi*np.inner(HP,Xmod) #ops x atoms X ngl |
---|
1674 | HdotXD = HdotX+D[:,nxs,:] |
---|
1675 | if nWaves[2]: |
---|
1676 | Umod = np.swapaxes((UmodAB),2,4) #atoms x waves x ngl x 3x3 (symmetric so I can do this!) |
---|
1677 | HuH = np.sum(HP[:,nxs,nxs,nxs]*np.inner(HP,Umod),axis=-1) #ops x atoms x waves x ngl |
---|
1678 | HuH = np.sum(HP[:,nxs,nxs,nxs]*np.inner(HP,Umod),axis=-1) #ops x atoms x waves x ngl |
---|
1679 | HbH = np.exp(-np.sum(HuH,axis=-2)) # ops x atoms x ngl; sum waves - OK vs Modulation version |
---|
1680 | # part1 = -np.exp(-HuH)*Fmod[nxs,:,nxs,:] #ops x atoms x waves x ngl |
---|
1681 | part1 = -np.exp(-HuH)*Fmod #ops x atoms x waves x ngl |
---|
1682 | dUdAu = Hij[:,nxs,nxs,nxs,:]*np.rollaxis(G2lat.UijtoU6(SCtauU[0]),0,4)[nxs,:,:,:,:] #ops x atoms x waves x ngl x 6sinUij |
---|
1683 | dUdBu = Hij[:,nxs,nxs,nxs,:]*np.rollaxis(G2lat.UijtoU6(SCtauU[1]),0,4)[nxs,:,:,:,:] #ops x atoms x waves x ngl x 6cosUij |
---|
1684 | dGdMuCa = np.sum(part1[:,:,:,:,nxs]*dUdAu*np.cos(HdotXD)[:,:,nxs,:,nxs]*glWt[nxs,nxs,nxs,:,nxs],axis=-2) #ops x atoms x waves x 6uij; G-L sum |
---|
1685 | dGdMuCb = np.sum(part1[:,:,:,:,nxs]*dUdBu*np.cos(HdotXD)[:,:,nxs,:,nxs]*glWt[nxs,nxs,nxs,:,nxs],axis=-2) |
---|
1686 | dGdMuC = np.concatenate((dGdMuCa,dGdMuCb),axis=-1) #ops x atoms x waves x 12uij |
---|
1687 | dGdMuSa = np.sum(part1[:,:,:,:,nxs]*dUdAu*np.sin(HdotXD)[:,:,nxs,:,nxs]*glWt[nxs,nxs,nxs,:,nxs],axis=-2) #ops x atoms x waves x 6uij; G-L sum |
---|
1688 | dGdMuSb = np.sum(part1[:,:,:,:,nxs]*dUdBu*np.sin(HdotXD)[:,:,nxs,:,nxs]*glWt[nxs,nxs,nxs,:,nxs],axis=-2) |
---|
1689 | dGdMuS = np.concatenate((dGdMuSa,dGdMuSb),axis=-1) #ops x atoms x waves x 12uij |
---|
1690 | else: |
---|
1691 | HbH = np.ones_like(HdotX) |
---|
1692 | dHdXA = twopi*HP[:,nxs,nxs,nxs,:]*np.swapaxes(SCtauX[0],-1,-2)[nxs,:,:,:,:] #ops x atoms x sine waves x ngl x xyz |
---|
1693 | dHdXB = twopi*HP[:,nxs,nxs,nxs,:]*np.swapaxes(SCtauX[1],-1,-2)[nxs,:,:,:,:] #ditto - cos waves |
---|
1694 | # ops x atoms x waves x 2xyz - real part - good |
---|
1695 | # dGdMxCa = -np.sum((Fmod[nxs,:,:]*HbH)[:,:,nxs,:,nxs]*(dHdXA*np.sin(HdotXD)[:,:,nxs,:,nxs])*glWt[nxs,nxs,nxs,:,nxs],axis=-2) |
---|
1696 | # dGdMxCb = -np.sum((Fmod[nxs,:,:]*HbH)[:,:,nxs,:,nxs]*(dHdXB*np.sin(HdotXD)[:,:,nxs,:,nxs])*glWt[nxs,nxs,nxs,:,nxs],axis=-2) |
---|
1697 | dGdMxCa = -np.sum((Fmod*HbH)[:,:,nxs,:,nxs]*(dHdXA*np.sin(HdotXD)[:,:,nxs,:,nxs])*glWt[nxs,nxs,nxs,:,nxs],axis=-2) |
---|
1698 | dGdMxCb = -np.sum((Fmod*HbH)[:,:,nxs,:,nxs]*(dHdXB*np.sin(HdotXD)[:,:,nxs,:,nxs])*glWt[nxs,nxs,nxs,:,nxs],axis=-2) |
---|
1699 | dGdMxC = np.concatenate((dGdMxCa,dGdMxCb),axis=-1) |
---|
1700 | # ops x atoms x waves x 2xyz - imag part - good |
---|
1701 | # dGdMxSa = np.sum((Fmod[nxs,:,:]*HbH)[:,:,nxs,:,nxs]*(dHdXA*np.cos(HdotXD)[:,:,nxs,:,nxs])*glWt[nxs,nxs,nxs,:,nxs],axis=-2) |
---|
1702 | # dGdMxSb = np.sum((Fmod[nxs,:,:]*HbH)[:,:,nxs,:,nxs]*(dHdXB*np.cos(HdotXD)[:,:,nxs,:,nxs])*glWt[nxs,nxs,nxs,:,nxs],axis=-2) |
---|
1703 | dGdMxSa = np.sum((Fmod*HbH)[:,:,nxs,:,nxs]*(dHdXA*np.cos(HdotXD)[:,:,nxs,:,nxs])*glWt[nxs,nxs,nxs,:,nxs],axis=-2) |
---|
1704 | dGdMxSb = np.sum((Fmod*HbH)[:,:,nxs,:,nxs]*(dHdXB*np.cos(HdotXD)[:,:,nxs,:,nxs])*glWt[nxs,nxs,nxs,:,nxs],axis=-2) |
---|
1705 | dGdMxS = np.concatenate((dGdMxSa,dGdMxSb),axis=-1) |
---|
1706 | return [dGdMfC,dGdMfS],[dGdMxC,dGdMxS],[dGdMuC,dGdMuS] |
---|
1707 | |
---|
1708 | def posFourier(tau,psin,pcos): |
---|
1709 | A = np.array([ps[:,nxs]*np.sin(2*np.pi*(i+1)*tau) for i,ps in enumerate(psin)]) |
---|
1710 | B = np.array([pc[:,nxs]*np.cos(2*np.pi*(i+1)*tau) for i,pc in enumerate(pcos)]) |
---|
1711 | return np.sum(A,axis=0)+np.sum(B,axis=0) |
---|
1712 | |
---|
1713 | def posZigZag(T,Tmm,Xmax): |
---|
1714 | DT = Tmm[1]-Tmm[0] |
---|
1715 | Su = 2.*Xmax/DT |
---|
1716 | Sd = 2.*Xmax/(1.-DT) |
---|
1717 | A = np.array([np.where( 0.< (t-Tmm[0])%1. <= DT, -Xmax+Su*((t-Tmm[0])%1.), Xmax-Sd*((t-Tmm[1])%1.)) for t in T]) |
---|
1718 | return A |
---|
1719 | |
---|
1720 | #def posZigZagDerv(T,Tmm,Xmax): |
---|
1721 | # DT = Tmm[1]-Tmm[0] |
---|
1722 | # Su = 2.*Xmax/DT |
---|
1723 | # Sd = 2.*Xmax/(1.-DT) |
---|
1724 | # dAdT = np.zeros((2,3,len(T))) |
---|
1725 | # dAdT[0] = np.array([np.where(Tmm[0] < t <= Tmm[1],Su*(t-Tmm[0]-1)/DT,-Sd*(t-Tmm[1])/(1.-DT)) for t in T]).T |
---|
1726 | # dAdT[1] = np.array([np.where(Tmm[0] < t <= Tmm[1],-Su*(t-Tmm[0])/DT,Sd*(t-Tmm[1])/(1.-DT)) for t in T]).T |
---|
1727 | # dAdX = np.ones(3)[:,nxs]*np.array([np.where(Tmm[0] < t%1. <= Tmm[1],-1.+2.*(t-Tmm[0])/DT,1.-2.*(t-Tmm[1])%1./DT) for t in T]) |
---|
1728 | # return dAdT,dAdX |
---|
1729 | |
---|
1730 | def posBlock(T,Tmm,Xmax): |
---|
1731 | A = np.array([np.where(Tmm[0] < t%1. <= Tmm[1],-Xmax,Xmax) for t in T]) |
---|
1732 | return A |
---|
1733 | |
---|
1734 | #def posBlockDerv(T,Tmm,Xmax): |
---|
1735 | # dAdT = np.zeros((2,3,len(T))) |
---|
1736 | # ind = np.searchsorted(T,Tmm) |
---|
1737 | # dAdT[0,:,ind[0]] = -Xmax/len(T) |
---|
1738 | # dAdT[1,:,ind[1]] = Xmax/len(T) |
---|
1739 | # dAdX = np.ones(3)[:,nxs]*np.array([np.where(Tmm[0] < t <= Tmm[1],-1.,1.) for t in T]) #OK |
---|
1740 | # return dAdT,dAdX |
---|
1741 | |
---|
1742 | def fracCrenel(tau,Toff,Twid): |
---|
1743 | Tau = (tau-Toff)%1. |
---|
1744 | A = np.where(Tau<Twid,1.,0.) |
---|
1745 | return A |
---|
1746 | |
---|
1747 | def fracFourier(tau,fsin,fcos): |
---|
1748 | if len(fsin) == 1: |
---|
1749 | A = np.array([fsin[0]*np.sin(2.*np.pi*tau)]) |
---|
1750 | B = np.array([fcos[0]*np.cos(2.*np.pi*tau)]) |
---|
1751 | else: |
---|
1752 | A = np.array([fs[:,nxs]*np.sin(2.*np.pi*(i+1)*tau) for i,fs in enumerate(fsin)]) |
---|
1753 | B = np.array([fc[:,nxs]*np.cos(2.*np.pi*(i+1)*tau) for i,fc in enumerate(fcos)]) |
---|
1754 | return np.sum(A,axis=0)+np.sum(B,axis=0) |
---|
1755 | |
---|
1756 | def ApplyModulation(data,tau): |
---|
1757 | '''Applies modulation to drawing atom positions & Uijs for given tau |
---|
1758 | ''' |
---|
1759 | generalData = data['General'] |
---|
1760 | cell = generalData['Cell'][1:7] |
---|
1761 | G,g = G2lat.cell2Gmat(cell) |
---|
1762 | SGData = generalData['SGData'] |
---|
1763 | SSGData = generalData['SSGData'] |
---|
1764 | cx,ct,cs,cia = generalData['AtomPtrs'] |
---|
1765 | drawingData = data['Drawing'] |
---|
1766 | modul = generalData['SuperVec'][0] |
---|
1767 | dcx,dct,dcs,dci = drawingData['atomPtrs'] |
---|
1768 | atoms = data['Atoms'] |
---|
1769 | drawAtoms = drawingData['Atoms'] |
---|
1770 | Fade = np.ones(len(drawAtoms)) |
---|
1771 | for atom in atoms: |
---|
1772 | atxyz = np.array(atom[cx:cx+3]) |
---|
1773 | atuij = np.array(atom[cia+2:cia+8]) |
---|
1774 | Sfrac = atom[-1]['SS1']['Sfrac'] |
---|
1775 | Spos = atom[-1]['SS1']['Spos'] |
---|
1776 | Sadp = atom[-1]['SS1']['Sadp'] |
---|
1777 | if generalData['Type'] == 'magnetic': |
---|
1778 | Smag = atom[-1]['SS1']['Smag'] |
---|
1779 | atmom = np.array(atom[cx+4:cx+7]) |
---|
1780 | indx = FindAtomIndexByIDs(drawAtoms,dci,[atom[cia+8],],True) |
---|
1781 | for ind in indx: |
---|
1782 | drawatom = drawAtoms[ind] |
---|
1783 | opr = drawatom[dcs-1] |
---|
1784 | sop,ssop,icent,cent,unit = G2spc.OpsfromStringOps(opr,SGData,SSGData) |
---|
1785 | drxyz = (np.inner(sop[0],atxyz)+sop[1]+cent)*icent+np.array(unit) |
---|
1786 | tauT = G2spc.getTauT(tau,sop,ssop,drxyz,modul)[-1] |
---|
1787 | tauT *= icent #invert wave on -1 |
---|
1788 | # print(tau,tauT,opr,G2spc.MT2text(sop).replace(' ',''),G2spc.SSMT2text(ssop).replace(' ','')) |
---|
1789 | wave = np.zeros(3) |
---|
1790 | uwave = np.zeros(6) |
---|
1791 | mom = np.zeros(3) |
---|
1792 | if len(Sfrac): |
---|
1793 | scof = [] |
---|
1794 | ccof = [] |
---|
1795 | waveType = Sfrac[0] |
---|
1796 | for i,sfrac in enumerate(Sfrac[1:]): |
---|
1797 | if not i and 'Crenel' in waveType: |
---|
1798 | Fade[ind] += fracCrenel(tauT,sfrac[0][0],sfrac[0][1]) |
---|
1799 | else: |
---|
1800 | scof.append(sfrac[0][0]) |
---|
1801 | ccof.append(sfrac[0][1]) |
---|
1802 | if len(scof): |
---|
1803 | Fade[ind] += np.sum(fracFourier(tauT,scof,ccof)) |
---|
1804 | if len(Spos): |
---|
1805 | scof = [] |
---|
1806 | ccof = [] |
---|
1807 | waveType = Spos[0] |
---|
1808 | for i,spos in enumerate(Spos[1:]): |
---|
1809 | if waveType in ['ZigZag','Block'] and not i: |
---|
1810 | Tminmax = spos[0][:2] |
---|
1811 | XYZmax = np.array(spos[0][2:5]) |
---|
1812 | if waveType == 'Block': |
---|
1813 | wave = np.array(posBlock([tauT,],Tminmax,XYZmax))[0] |
---|
1814 | elif waveType == 'ZigZag': |
---|
1815 | wave = np.array(posZigZag([tauT,],Tminmax,XYZmax))[0] |
---|
1816 | else: |
---|
1817 | scof.append(spos[0][:3]) |
---|
1818 | ccof.append(spos[0][3:]) |
---|
1819 | if len(scof): |
---|
1820 | wave += np.sum(posFourier(tauT,np.array(scof),np.array(ccof)),axis=1) |
---|
1821 | if generalData['Type'] == 'magnetic' and len(Smag): |
---|
1822 | scof = [] |
---|
1823 | ccof = [] |
---|
1824 | waveType = Smag[0] |
---|
1825 | for i,spos in enumerate(Smag[1:]): |
---|
1826 | scof.append(spos[0][:3]) |
---|
1827 | ccof.append(spos[0][3:]) |
---|
1828 | if len(scof): |
---|
1829 | mom += np.sum(posFourier(tauT,np.array(scof),np.array(ccof)),axis=1) |
---|
1830 | if len(Sadp): |
---|
1831 | scof = [] |
---|
1832 | ccof = [] |
---|
1833 | waveType = Sadp[0] |
---|
1834 | for i,sadp in enumerate(Sadp[1:]): |
---|
1835 | scof.append(sadp[0][:6]) |
---|
1836 | ccof.append(sadp[0][6:]) |
---|
1837 | ures = posFourier(tauT,np.array(scof),np.array(ccof)) |
---|
1838 | if np.any(ures): |
---|
1839 | uwave += np.sum(ures,axis=1) |
---|
1840 | if atom[cia] == 'A': |
---|
1841 | X,U = G2spc.ApplyStringOps(opr,SGData,atxyz+wave,atuij+uwave) |
---|
1842 | drawatom[dcx:dcx+3] = X |
---|
1843 | drawatom[dci-6:dci] = U |
---|
1844 | else: |
---|
1845 | X = G2spc.ApplyStringOps(opr,SGData,atxyz+wave) |
---|
1846 | drawatom[dcx:dcx+3] = X |
---|
1847 | if generalData['Type'] == 'magnetic': |
---|
1848 | M = G2spc.ApplyStringOpsMom(opr,SGData,SSGData,atmom+mom) |
---|
1849 | drawatom[dcx+3:dcx+6] = M |
---|
1850 | return drawAtoms,Fade |
---|
1851 | |
---|
1852 | # gauleg.py Gauss Legendre numerical quadrature, x and w computation |
---|
1853 | # integrate from a to b using n evaluations of the function f(x) |
---|
1854 | # usage: from gauleg import gaulegf |
---|
1855 | # x,w = gaulegf( a, b, n) |
---|
1856 | # area = 0.0 |
---|
1857 | # for i in range(1,n+1): # yes, 1..n |
---|
1858 | # area += w[i]*f(x[i]) |
---|
1859 | |
---|
1860 | def gaulegf(a, b, n): |
---|
1861 | x = range(n+1) # x[0] unused |
---|
1862 | w = range(n+1) # w[0] unused |
---|
1863 | eps = 3.0E-14 |
---|
1864 | m = (n+1)/2 |
---|
1865 | xm = 0.5*(b+a) |
---|
1866 | xl = 0.5*(b-a) |
---|
1867 | for i in range(1,m+1): |
---|
1868 | z = math.cos(3.141592654*(i-0.25)/(n+0.5)) |
---|
1869 | while True: |
---|
1870 | p1 = 1.0 |
---|
1871 | p2 = 0.0 |
---|
1872 | for j in range(1,n+1): |
---|
1873 | p3 = p2 |
---|
1874 | p2 = p1 |
---|
1875 | p1 = ((2.0*j-1.0)*z*p2-(j-1.0)*p3)/j |
---|
1876 | |
---|
1877 | pp = n*(z*p1-p2)/(z*z-1.0) |
---|
1878 | z1 = z |
---|
1879 | z = z1 - p1/pp |
---|
1880 | if abs(z-z1) <= eps: |
---|
1881 | break |
---|
1882 | |
---|
1883 | x[i] = xm - xl*z |
---|
1884 | x[n+1-i] = xm + xl*z |
---|
1885 | w[i] = 2.0*xl/((1.0-z*z)*pp*pp) |
---|
1886 | w[n+1-i] = w[i] |
---|
1887 | return np.array(x), np.array(w) |
---|
1888 | # end gaulegf |
---|
1889 | |
---|
1890 | |
---|
1891 | def BessJn(nmax,x): |
---|
1892 | ''' compute Bessel function J(n,x) from scipy routine & recurrance relation |
---|
1893 | returns sequence of J(n,x) for n in range [-nmax...0...nmax] |
---|
1894 | |
---|
1895 | :param integer nmax: maximul order for Jn(x) |
---|
1896 | :param float x: argument for Jn(x) |
---|
1897 | |
---|
1898 | :returns numpy array: [J(-nmax,x)...J(0,x)...J(nmax,x)] |
---|
1899 | |
---|
1900 | ''' |
---|
1901 | import scipy.special as sp |
---|
1902 | bessJn = np.zeros(2*nmax+1) |
---|
1903 | bessJn[nmax] = sp.j0(x) |
---|
1904 | bessJn[nmax+1] = sp.j1(x) |
---|
1905 | bessJn[nmax-1] = -bessJn[nmax+1] |
---|
1906 | for i in range(2,nmax+1): |
---|
1907 | bessJn[i+nmax] = 2*(i-1)*bessJn[nmax+i-1]/x-bessJn[nmax+i-2] |
---|
1908 | bessJn[nmax-i] = bessJn[i+nmax]*(-1)**i |
---|
1909 | return bessJn |
---|
1910 | |
---|
1911 | def BessIn(nmax,x): |
---|
1912 | ''' compute modified Bessel function I(n,x) from scipy routines & recurrance relation |
---|
1913 | returns sequence of I(n,x) for n in range [-nmax...0...nmax] |
---|
1914 | |
---|
1915 | :param integer nmax: maximul order for In(x) |
---|
1916 | :param float x: argument for In(x) |
---|
1917 | |
---|
1918 | :returns numpy array: [I(-nmax,x)...I(0,x)...I(nmax,x)] |
---|
1919 | |
---|
1920 | ''' |
---|
1921 | import scipy.special as sp |
---|
1922 | bessIn = np.zeros(2*nmax+1) |
---|
1923 | bessIn[nmax] = sp.i0(x) |
---|
1924 | bessIn[nmax+1] = sp.i1(x) |
---|
1925 | bessIn[nmax-1] = bessIn[nmax+1] |
---|
1926 | for i in range(2,nmax+1): |
---|
1927 | bessIn[i+nmax] = bessIn[nmax+i-2]-2*(i-1)*bessIn[nmax+i-1]/x |
---|
1928 | bessIn[nmax-i] = bessIn[i+nmax] |
---|
1929 | return bessIn |
---|
1930 | |
---|
1931 | |
---|
1932 | ################################################################################ |
---|
1933 | ##### distance, angle, planes, torsion stuff |
---|
1934 | ################################################################################ |
---|
1935 | |
---|
1936 | def CalcDist(distance_dict, distance_atoms, parmDict): |
---|
1937 | if not len(parmDict): |
---|
1938 | return 0. |
---|
1939 | pId = distance_dict['pId'] |
---|
1940 | A = [parmDict['%s::A%d'%(pId,i)] for i in range(6)] |
---|
1941 | Amat = G2lat.cell2AB(G2lat.A2cell(A))[0] |
---|
1942 | Oxyz = [parmDict['%s::A%s:%d'%(pId,x,distance_atoms[0])] for x in ['x','y','z']] |
---|
1943 | Txyz = [parmDict['%s::A%s:%d'%(pId,x,distance_atoms[1])] for x in ['x','y','z']] |
---|
1944 | inv = 1 |
---|
1945 | symNo = distance_dict['symNo'] |
---|
1946 | if symNo < 0: |
---|
1947 | inv = -1 |
---|
1948 | symNo *= -1 |
---|
1949 | cen = symNo//100 |
---|
1950 | op = symNo%100-1 |
---|
1951 | M,T = distance_dict['SGData']['SGOps'][op] |
---|
1952 | D = T*inv+distance_dict['SGData']['SGCen'][cen] |
---|
1953 | D += distance_dict['cellNo'] |
---|
1954 | Txyz = np.inner(M*inv,Txyz)+D |
---|
1955 | dist = np.sqrt(np.sum(np.inner(Amat,(Txyz-Oxyz))**2)) |
---|
1956 | # GSASIIpath.IPyBreak() |
---|
1957 | return dist |
---|
1958 | |
---|
1959 | def CalcDistDeriv(distance_dict, distance_atoms, parmDict): |
---|
1960 | if not len(parmDict): |
---|
1961 | return None |
---|
1962 | pId = distance_dict['pId'] |
---|
1963 | A = [parmDict['%s::A%d'%(pId,i)] for i in range(6)] |
---|
1964 | Amat = G2lat.cell2AB(G2lat.A2cell(A))[0] |
---|
1965 | Oxyz = [parmDict['%s::A%s:%d'%(pId,x,distance_atoms[0])] for x in ['x','y','z']] |
---|
1966 | Txyz = [parmDict['%s::A%s:%d'%(pId,x,distance_atoms[1])] for x in ['x','y','z']] |
---|
1967 | symNo = distance_dict['symNo'] |
---|
1968 | Tunit = distance_dict['cellNo'] |
---|
1969 | SGData = distance_dict['SGData'] |
---|
1970 | deriv = getDistDerv(Oxyz,Txyz,Amat,Tunit,symNo,SGData) |
---|
1971 | return deriv |
---|
1972 | |
---|
1973 | def CalcAngle(angle_dict, angle_atoms, parmDict): |
---|
1974 | if not len(parmDict): |
---|
1975 | return 0. |
---|
1976 | pId = angle_dict['pId'] |
---|
1977 | A = [parmDict['%s::A%d'%(pId,i)] for i in range(6)] |
---|
1978 | Amat = G2lat.cell2AB(G2lat.A2cell(A))[0] |
---|
1979 | Oxyz = [parmDict['%s::A%s:%d'%(pId,x,angle_atoms[0])] for x in ['x','y','z']] |
---|
1980 | Axyz = [parmDict['%s::A%s:%d'%(pId,x,angle_atoms[1][0])] for x in ['x','y','z']] |
---|
1981 | Bxyz = [parmDict['%s::A%s:%d'%(pId,x,angle_atoms[1][1])] for x in ['x','y','z']] |
---|
1982 | ABxyz = [Axyz,Bxyz] |
---|
1983 | symNo = angle_dict['symNo'] |
---|
1984 | vec = np.zeros((2,3)) |
---|
1985 | for i in range(2): |
---|
1986 | inv = 1 |
---|
1987 | if symNo[i] < 0: |
---|
1988 | inv = -1 |
---|
1989 | cen = inv*symNo[i]//100 |
---|
1990 | op = inv*symNo[i]%100-1 |
---|
1991 | M,T = angle_dict['SGData']['SGOps'][op] |
---|
1992 | D = T*inv+angle_dict['SGData']['SGCen'][cen] |
---|
1993 | D += angle_dict['cellNo'][i] |
---|
1994 | ABxyz[i] = np.inner(M*inv,ABxyz[i])+D |
---|
1995 | vec[i] = np.inner(Amat,(ABxyz[i]-Oxyz)) |
---|
1996 | dist = np.sqrt(np.sum(vec[i]**2)) |
---|
1997 | if not dist: |
---|
1998 | return 0. |
---|
1999 | vec[i] /= dist |
---|
2000 | angle = acosd(np.sum(vec[0]*vec[1])) |
---|
2001 | return angle |
---|
2002 | |
---|
2003 | def CalcAngleDeriv(angle_dict, angle_atoms, parmDict): |
---|
2004 | if not len(parmDict): |
---|
2005 | return None |
---|
2006 | pId = angle_dict['pId'] |
---|
2007 | A = [parmDict['%s::A%d'%(pId,i)] for i in range(6)] |
---|
2008 | Amat = G2lat.cell2AB(G2lat.A2cell(A))[0] |
---|
2009 | Oxyz = [parmDict['%s::A%s:%d'%(pId,x,angle_atoms[0])] for x in ['x','y','z']] |
---|
2010 | Axyz = [parmDict['%s::A%s:%d'%(pId,x,angle_atoms[1][0])] for x in ['x','y','z']] |
---|
2011 | Bxyz = [parmDict['%s::A%s:%d'%(pId,x,angle_atoms[1][1])] for x in ['x','y','z']] |
---|
2012 | symNo = angle_dict['symNo'] |
---|
2013 | Tunit = angle_dict['cellNo'] |
---|
2014 | SGData = angle_dict['SGData'] |
---|
2015 | deriv = getAngleDerv(Oxyz,Axyz,Bxyz,Amat,Tunit,symNo,SGData) |
---|
2016 | return deriv |
---|
2017 | |
---|
2018 | def getSyXYZ(XYZ,ops,SGData): |
---|
2019 | '''default doc |
---|
2020 | |
---|
2021 | :param type name: description |
---|
2022 | |
---|
2023 | :returns: type name: description |
---|
2024 | |
---|
2025 | ''' |
---|
2026 | XYZout = np.zeros_like(XYZ) |
---|
2027 | for i,[xyz,op] in enumerate(zip(XYZ,ops)): |
---|
2028 | if op == '1': |
---|
2029 | XYZout[i] = xyz |
---|
2030 | else: |
---|
2031 | oprs = op.split('+') |
---|
2032 | unit = [0,0,0] |
---|
2033 | if len(oprs)>1: |
---|
2034 | unit = np.array(list(eval(oprs[1]))) |
---|
2035 | syop =int(oprs[0]) |
---|
2036 | inv = syop//abs(syop) |
---|
2037 | syop *= inv |
---|
2038 | cent = syop//100 |
---|
2039 | syop %= 100 |
---|
2040 | syop -= 1 |
---|
2041 | M,T = SGData['SGOps'][syop] |
---|
2042 | XYZout[i] = (np.inner(M,xyz)+T)*inv+SGData['SGCen'][cent]+unit |
---|
2043 | return XYZout |
---|
2044 | |
---|
2045 | def getRestDist(XYZ,Amat): |
---|
2046 | '''default doc string |
---|
2047 | |
---|
2048 | :param type name: description |
---|
2049 | |
---|
2050 | :returns: type name: description |
---|
2051 | |
---|
2052 | ''' |
---|
2053 | return np.sqrt(np.sum(np.inner(Amat,(XYZ[1]-XYZ[0]))**2)) |
---|
2054 | |
---|
2055 | def getRestDeriv(Func,XYZ,Amat,ops,SGData): |
---|
2056 | '''default doc string |
---|
2057 | |
---|
2058 | :param type name: description |
---|
2059 | |
---|
2060 | :returns: type name: description |
---|
2061 | |
---|
2062 | ''' |
---|
2063 | deriv = np.zeros((len(XYZ),3)) |
---|
2064 | dx = 0.00001 |
---|
2065 | for j,xyz in enumerate(XYZ): |
---|
2066 | for i,x in enumerate(np.array([[dx,0,0],[0,dx,0],[0,0,dx]])): |
---|
2067 | XYZ[j] -= x |
---|
2068 | d1 = Func(getSyXYZ(XYZ,ops,SGData),Amat) |
---|
2069 | XYZ[j] += 2*x |
---|
2070 | d2 = Func(getSyXYZ(XYZ,ops,SGData),Amat) |
---|
2071 | XYZ[j] -= x |
---|
2072 | deriv[j][i] = (d1-d2)/(2*dx) |
---|
2073 | return deriv.flatten() |
---|
2074 | |
---|
2075 | def getRestAngle(XYZ,Amat): |
---|
2076 | '''default doc string |
---|
2077 | |
---|
2078 | :param type name: description |
---|
2079 | |
---|
2080 | :returns: type name: description |
---|
2081 | |
---|
2082 | ''' |
---|
2083 | |
---|
2084 | def calcVec(Ox,Tx,Amat): |
---|
2085 | return np.inner(Amat,(Tx-Ox)) |
---|
2086 | |
---|
2087 | VecA = calcVec(XYZ[1],XYZ[0],Amat) |
---|
2088 | VecA /= np.sqrt(np.sum(VecA**2)) |
---|
2089 | VecB = calcVec(XYZ[1],XYZ[2],Amat) |
---|
2090 | VecB /= np.sqrt(np.sum(VecB**2)) |
---|
2091 | edge = VecB-VecA |
---|
2092 | edge = np.sum(edge**2) |
---|
2093 | angle = (2.-edge)/2. |
---|
2094 | angle = max(angle,-1.) |
---|
2095 | return acosd(angle) |
---|
2096 | |
---|
2097 | def getRestPlane(XYZ,Amat): |
---|
2098 | '''default doc string |
---|
2099 | |
---|
2100 | :param type name: description |
---|
2101 | |
---|
2102 | :returns: type name: description |
---|
2103 | |
---|
2104 | ''' |
---|
2105 | sumXYZ = np.zeros(3) |
---|
2106 | for xyz in XYZ: |
---|
2107 | sumXYZ += xyz |
---|
2108 | sumXYZ /= len(XYZ) |
---|
2109 | XYZ = np.array(XYZ)-sumXYZ |
---|
2110 | XYZ = np.inner(Amat,XYZ).T |
---|
2111 | Zmat = np.zeros((3,3)) |
---|
2112 | for i,xyz in enumerate(XYZ): |
---|
2113 | Zmat += np.outer(xyz.T,xyz) |
---|
2114 | Evec,Emat = nl.eig(Zmat) |
---|
2115 | Evec = np.sqrt(Evec)/(len(XYZ)-3) |
---|
2116 | Order = np.argsort(Evec) |
---|
2117 | return Evec[Order[0]] |
---|
2118 | |
---|
2119 | def getRestChiral(XYZ,Amat): |
---|
2120 | '''default doc string |
---|
2121 | |
---|
2122 | :param type name: description |
---|
2123 | |
---|
2124 | :returns: type name: description |
---|
2125 | |
---|
2126 | ''' |
---|
2127 | VecA = np.empty((3,3)) |
---|
2128 | VecA[0] = np.inner(XYZ[1]-XYZ[0],Amat) |
---|
2129 | VecA[1] = np.inner(XYZ[2]-XYZ[0],Amat) |
---|
2130 | VecA[2] = np.inner(XYZ[3]-XYZ[0],Amat) |
---|
2131 | return nl.det(VecA) |
---|
2132 | |
---|
2133 | def getRestTorsion(XYZ,Amat): |
---|
2134 | '''default doc string |
---|
2135 | |
---|
2136 | :param type name: description |
---|
2137 | |
---|
2138 | :returns: type name: description |
---|
2139 | |
---|
2140 | ''' |
---|
2141 | VecA = np.empty((3,3)) |
---|
2142 | VecA[0] = np.inner(XYZ[1]-XYZ[0],Amat) |
---|
2143 | VecA[1] = np.inner(XYZ[2]-XYZ[1],Amat) |
---|
2144 | VecA[2] = np.inner(XYZ[3]-XYZ[2],Amat) |
---|
2145 | D = nl.det(VecA) |
---|
2146 | Mag = np.sqrt(np.sum(VecA*VecA,axis=1)) |
---|
2147 | P12 = np.sum(VecA[0]*VecA[1])/(Mag[0]*Mag[1]) |
---|
2148 | P13 = np.sum(VecA[0]*VecA[2])/(Mag[0]*Mag[2]) |
---|
2149 | P23 = np.sum(VecA[1]*VecA[2])/(Mag[1]*Mag[2]) |
---|
2150 | Ang = 1.0 |
---|
2151 | if abs(P12) < 1.0 and abs(P23) < 1.0: |
---|
2152 | Ang = (P12*P23-P13)/(np.sqrt(1.-P12**2)*np.sqrt(1.-P23**2)) |
---|
2153 | TOR = (acosd(Ang)*D/abs(D)+720.)%360. |
---|
2154 | return TOR |
---|
2155 | |
---|
2156 | def calcTorsionEnergy(TOR,Coeff=[]): |
---|
2157 | '''default doc string |
---|
2158 | |
---|
2159 | :param type name: description |
---|
2160 | |
---|
2161 | :returns: type name: description |
---|
2162 | |
---|
2163 | ''' |
---|
2164 | sum = 0. |
---|
2165 | if len(Coeff): |
---|
2166 | cof = np.reshape(Coeff,(3,3)).T |
---|
2167 | delt = TOR-cof[1] |
---|
2168 | delt = np.where(delt<-180.,delt+360.,delt) |
---|
2169 | delt = np.where(delt>180.,delt-360.,delt) |
---|
2170 | term = -cof[2]*delt**2 |
---|
2171 | val = cof[0]*np.exp(term/1000.0) |
---|
2172 | pMax = cof[0][np.argmin(val)] |
---|
2173 | Eval = np.sum(val) |
---|
2174 | sum = Eval-pMax |
---|
2175 | return sum,Eval |
---|
2176 | |
---|
2177 | def getTorsionDeriv(XYZ,Amat,Coeff): |
---|
2178 | '''default doc string |
---|
2179 | |
---|
2180 | :param type name: description |
---|
2181 | |
---|
2182 | :returns: type name: description |
---|
2183 | |
---|
2184 | ''' |
---|
2185 | deriv = np.zeros((len(XYZ),3)) |
---|
2186 | dx = 0.00001 |
---|
2187 | for j,xyz in enumerate(XYZ): |
---|
2188 | for i,x in enumerate(np.array([[dx,0,0],[0,dx,0],[0,0,dx]])): |
---|
2189 | XYZ[j] -= x |
---|
2190 | tor = getRestTorsion(XYZ,Amat) |
---|
2191 | p1,d1 = calcTorsionEnergy(tor,Coeff) |
---|
2192 | XYZ[j] += 2*x |
---|
2193 | tor = getRestTorsion(XYZ,Amat) |
---|
2194 | p2,d2 = calcTorsionEnergy(tor,Coeff) |
---|
2195 | XYZ[j] -= x |
---|
2196 | deriv[j][i] = (p2-p1)/(2*dx) |
---|
2197 | return deriv.flatten() |
---|
2198 | |
---|
2199 | def getRestRama(XYZ,Amat): |
---|
2200 | '''Computes a pair of torsion angles in a 5 atom string |
---|
2201 | |
---|
2202 | :param nparray XYZ: crystallographic coordinates of 5 atoms |
---|
2203 | :param nparray Amat: crystal to cartesian transformation matrix |
---|
2204 | |
---|
2205 | :returns: list (phi,psi) two torsion angles in degrees |
---|
2206 | |
---|
2207 | ''' |
---|
2208 | phi = getRestTorsion(XYZ[:5],Amat) |
---|
2209 | psi = getRestTorsion(XYZ[1:],Amat) |
---|
2210 | return phi,psi |
---|
2211 | |
---|
2212 | def calcRamaEnergy(phi,psi,Coeff=[]): |
---|
2213 | '''Computes pseudo potential energy from a pair of torsion angles and a |
---|
2214 | numerical description of the potential energy surface. Used to create |
---|
2215 | penalty function in LS refinement: |
---|
2216 | :math:`Eval(\\phi,\\psi) = C[0]*exp(-V/1000)` |
---|
2217 | |
---|
2218 | where :math:`V = -C[3] * (\\phi-C[1])^2 - C[4]*(\\psi-C[2])^2 - 2*(\\phi-C[1])*(\\psi-C[2])` |
---|
2219 | |
---|
2220 | :param float phi: first torsion angle (:math:`\\phi`) |
---|
2221 | :param float psi: second torsion angle (:math:`\\psi`) |
---|
2222 | :param list Coeff: pseudo potential coefficients |
---|
2223 | |
---|
2224 | :returns: list (sum,Eval): pseudo-potential difference from minimum & value; |
---|
2225 | sum is used for penalty function. |
---|
2226 | |
---|
2227 | ''' |
---|
2228 | sum = 0. |
---|
2229 | Eval = 0. |
---|
2230 | if len(Coeff): |
---|
2231 | cof = Coeff.T |
---|
2232 | dPhi = phi-cof[1] |
---|
2233 | dPhi = np.where(dPhi<-180.,dPhi+360.,dPhi) |
---|
2234 | dPhi = np.where(dPhi>180.,dPhi-360.,dPhi) |
---|
2235 | dPsi = psi-cof[2] |
---|
2236 | dPsi = np.where(dPsi<-180.,dPsi+360.,dPsi) |
---|
2237 | dPsi = np.where(dPsi>180.,dPsi-360.,dPsi) |
---|
2238 | val = -cof[3]*dPhi**2-cof[4]*dPsi**2-2.0*cof[5]*dPhi*dPsi |
---|
2239 | val = cof[0]*np.exp(val/1000.) |
---|
2240 | pMax = cof[0][np.argmin(val)] |
---|
2241 | Eval = np.sum(val) |
---|
2242 | sum = Eval-pMax |
---|
2243 | return sum,Eval |
---|
2244 | |
---|
2245 | def getRamaDeriv(XYZ,Amat,Coeff): |
---|
2246 | '''Computes numerical derivatives of torsion angle pair pseudo potential |
---|
2247 | with respect of crystallographic atom coordinates of the 5 atom sequence |
---|
2248 | |
---|
2249 | :param nparray XYZ: crystallographic coordinates of 5 atoms |
---|
2250 | :param nparray Amat: crystal to cartesian transformation matrix |
---|
2251 | :param list Coeff: pseudo potential coefficients |
---|
2252 | |
---|
2253 | :returns: list (deriv) derivatives of pseudopotential with respect to 5 atom |
---|
2254 | crystallographic xyz coordinates. |
---|
2255 | |
---|
2256 | ''' |
---|
2257 | deriv = np.zeros((len(XYZ),3)) |
---|
2258 | dx = 0.00001 |
---|
2259 | for j,xyz in enumerate(XYZ): |
---|
2260 | for i,x in enumerate(np.array([[dx,0,0],[0,dx,0],[0,0,dx]])): |
---|
2261 | XYZ[j] -= x |
---|
2262 | phi,psi = getRestRama(XYZ,Amat) |
---|
2263 | p1,d1 = calcRamaEnergy(phi,psi,Coeff) |
---|
2264 | XYZ[j] += 2*x |
---|
2265 | phi,psi = getRestRama(XYZ,Amat) |
---|
2266 | p2,d2 = calcRamaEnergy(phi,psi,Coeff) |
---|
2267 | XYZ[j] -= x |
---|
2268 | deriv[j][i] = (p2-p1)/(2*dx) |
---|
2269 | return deriv.flatten() |
---|
2270 | |
---|
2271 | def getRestPolefig(ODFln,SamSym,Grid): |
---|
2272 | '''default doc string |
---|
2273 | |
---|
2274 | :param type name: description |
---|
2275 | |
---|
2276 | :returns: type name: description |
---|
2277 | |
---|
2278 | ''' |
---|
2279 | X,Y = np.meshgrid(np.linspace(1.,-1.,Grid),np.linspace(-1.,1.,Grid)) |
---|
2280 | R,P = np.sqrt(X**2+Y**2).flatten(),atan2d(Y,X).flatten() |
---|
2281 | R = np.where(R <= 1.,2.*atand(R),0.0) |
---|
2282 | Z = np.zeros_like(R) |
---|
2283 | Z = G2lat.polfcal(ODFln,SamSym,R,P) |
---|
2284 | Z = np.reshape(Z,(Grid,Grid)) |
---|
2285 | return np.reshape(R,(Grid,Grid)),np.reshape(P,(Grid,Grid)),Z |
---|
2286 | |
---|
2287 | def getRestPolefigDerv(HKL,Grid,SHCoeff): |
---|
2288 | '''default doc string |
---|
2289 | |
---|
2290 | :param type name: description |
---|
2291 | |
---|
2292 | :returns: type name: description |
---|
2293 | |
---|
2294 | ''' |
---|
2295 | pass |
---|
2296 | |
---|
2297 | def getDistDerv(Oxyz,Txyz,Amat,Tunit,Top,SGData): |
---|
2298 | '''default doc string |
---|
2299 | |
---|
2300 | :param type name: description |
---|
2301 | |
---|
2302 | :returns: type name: description |
---|
2303 | |
---|
2304 | ''' |
---|
2305 | def calcDist(Ox,Tx,U,inv,C,M,T,Amat): |
---|
2306 | TxT = inv*(np.inner(M,Tx)+T)+C+U |
---|
2307 | return np.sqrt(np.sum(np.inner(Amat,(TxT-Ox))**2)) |
---|
2308 | |
---|
2309 | inv = Top/abs(Top) |
---|
2310 | cent = abs(Top)//100 |
---|
2311 | op = abs(Top)%100-1 |
---|
2312 | M,T = SGData['SGOps'][op] |
---|
2313 | C = SGData['SGCen'][cent] |
---|
2314 | dx = .00001 |
---|
2315 | deriv = np.zeros(6) |
---|
2316 | for i in [0,1,2]: |
---|
2317 | Oxyz[i] -= dx |
---|
2318 | d0 = calcDist(Oxyz,Txyz,Tunit,inv,C,M,T,Amat) |
---|
2319 | Oxyz[i] += 2*dx |
---|
2320 | deriv[i] = (calcDist(Oxyz,Txyz,Tunit,inv,C,M,T,Amat)-d0)/(2.*dx) |
---|
2321 | Oxyz[i] -= dx |
---|
2322 | Txyz[i] -= dx |
---|
2323 | d0 = calcDist(Oxyz,Txyz,Tunit,inv,C,M,T,Amat) |
---|
2324 | Txyz[i] += 2*dx |
---|
2325 | deriv[i+3] = (calcDist(Oxyz,Txyz,Tunit,inv,C,M,T,Amat)-d0)/(2.*dx) |
---|
2326 | Txyz[i] -= dx |
---|
2327 | return deriv |
---|
2328 | |
---|
2329 | def getAngleDerv(Oxyz,Axyz,Bxyz,Amat,Tunit,symNo,SGData): |
---|
2330 | |
---|
2331 | def calcAngle(Oxyz,ABxyz,Amat,Tunit,symNo,SGData): |
---|
2332 | vec = np.zeros((2,3)) |
---|
2333 | for i in range(2): |
---|
2334 | inv = 1 |
---|
2335 | if symNo[i] < 0: |
---|
2336 | inv = -1 |
---|
2337 | cen = inv*symNo[i]//100 |
---|
2338 | op = inv*symNo[i]%100-1 |
---|
2339 | M,T = SGData['SGOps'][op] |
---|
2340 | D = T*inv+SGData['SGCen'][cen] |
---|
2341 | D += Tunit[i] |
---|
2342 | ABxyz[i] = np.inner(M*inv,ABxyz[i])+D |
---|
2343 | vec[i] = np.inner(Amat,(ABxyz[i]-Oxyz)) |
---|
2344 | dist = np.sqrt(np.sum(vec[i]**2)) |
---|
2345 | if not dist: |
---|
2346 | return 0. |
---|
2347 | vec[i] /= dist |
---|
2348 | angle = acosd(np.sum(vec[0]*vec[1])) |
---|
2349 | # GSASIIpath.IPyBreak() |
---|
2350 | return angle |
---|
2351 | |
---|
2352 | dx = .00001 |
---|
2353 | deriv = np.zeros(9) |
---|
2354 | for i in [0,1,2]: |
---|
2355 | Oxyz[i] -= dx |
---|
2356 | a0 = calcAngle(Oxyz,[Axyz,Bxyz],Amat,Tunit,symNo,SGData) |
---|
2357 | Oxyz[i] += 2*dx |
---|
2358 | deriv[i] = (calcAngle(Oxyz,[Axyz,Bxyz],Amat,Tunit,symNo,SGData)-a0)/(2.*dx) |
---|
2359 | Oxyz[i] -= dx |
---|
2360 | Axyz[i] -= dx |
---|
2361 | a0 = calcAngle(Oxyz,[Axyz,Bxyz],Amat,Tunit,symNo,SGData) |
---|
2362 | Axyz[i] += 2*dx |
---|
2363 | deriv[i+3] = (calcAngle(Oxyz,[Axyz,Bxyz],Amat,Tunit,symNo,SGData)-a0)/(2.*dx) |
---|
2364 | Axyz[i] -= dx |
---|
2365 | Bxyz[i] -= dx |
---|
2366 | a0 = calcAngle(Oxyz,[Axyz,Bxyz],Amat,Tunit,symNo,SGData) |
---|
2367 | Bxyz[i] += 2*dx |
---|
2368 | deriv[i+6] = (calcAngle(Oxyz,[Axyz,Bxyz],Amat,Tunit,symNo,SGData)-a0)/(2.*dx) |
---|
2369 | Bxyz[i] -= dx |
---|
2370 | return deriv |
---|
2371 | |
---|
2372 | def getAngSig(VA,VB,Amat,SGData,covData={}): |
---|
2373 | '''default doc string |
---|
2374 | |
---|
2375 | :param type name: description |
---|
2376 | |
---|
2377 | :returns: type name: description |
---|
2378 | |
---|
2379 | ''' |
---|
2380 | def calcVec(Ox,Tx,U,inv,C,M,T,Amat): |
---|
2381 | TxT = inv*(np.inner(M,Tx)+T)+C+U |
---|
2382 | return np.inner(Amat,(TxT-Ox)) |
---|
2383 | |
---|
2384 | def calcAngle(Ox,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat): |
---|
2385 | VecA = calcVec(Ox,TxA,unitA,invA,CA,MA,TA,Amat) |
---|
2386 | VecA /= np.sqrt(np.sum(VecA**2)) |
---|
2387 | VecB = calcVec(Ox,TxB,unitB,invB,CB,MB,TB,Amat) |
---|
2388 | VecB /= np.sqrt(np.sum(VecB**2)) |
---|
2389 | edge = VecB-VecA |
---|
2390 | edge = np.sum(edge**2) |
---|
2391 | angle = (2.-edge)/2. |
---|
2392 | angle = max(angle,-1.) |
---|
2393 | return acosd(angle) |
---|
2394 | |
---|
2395 | OxAN,OxA,TxAN,TxA,unitA,TopA = VA |
---|
2396 | OxBN,OxB,TxBN,TxB,unitB,TopB = VB |
---|
2397 | invA = invB = 1 |
---|
2398 | invA = TopA//abs(TopA) |
---|
2399 | invB = TopB//abs(TopB) |
---|
2400 | centA = abs(TopA)//100 |
---|
2401 | centB = abs(TopB)//100 |
---|
2402 | opA = abs(TopA)%100-1 |
---|
2403 | opB = abs(TopB)%100-1 |
---|
2404 | MA,TA = SGData['SGOps'][opA] |
---|
2405 | MB,TB = SGData['SGOps'][opB] |
---|
2406 | CA = SGData['SGCen'][centA] |
---|
2407 | CB = SGData['SGCen'][centB] |
---|
2408 | if 'covMatrix' in covData: |
---|
2409 | covMatrix = covData['covMatrix'] |
---|
2410 | varyList = covData['varyList'] |
---|
2411 | AngVcov = getVCov(OxAN+TxAN+TxBN,varyList,covMatrix) |
---|
2412 | dx = .00001 |
---|
2413 | dadx = np.zeros(9) |
---|
2414 | Ang = calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat) |
---|
2415 | for i in [0,1,2]: |
---|
2416 | OxA[i] -= dx |
---|
2417 | a0 = calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat) |
---|
2418 | OxA[i] += 2*dx |
---|
2419 | dadx[i] = (calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat)-a0)/(2*dx) |
---|
2420 | OxA[i] -= dx |
---|
2421 | |
---|
2422 | TxA[i] -= dx |
---|
2423 | a0 = calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat) |
---|
2424 | TxA[i] += 2*dx |
---|
2425 | dadx[i+3] = (calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat)-a0)/(2*dx) |
---|
2426 | TxA[i] -= dx |
---|
2427 | |
---|
2428 | TxB[i] -= dx |
---|
2429 | a0 = calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat) |
---|
2430 | TxB[i] += 2*dx |
---|
2431 | dadx[i+6] = (calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat)-a0)/(2*dx) |
---|
2432 | TxB[i] -= dx |
---|
2433 | |
---|
2434 | sigAng = np.sqrt(np.inner(dadx,np.inner(AngVcov,dadx))) |
---|
2435 | if sigAng < 0.01: |
---|
2436 | sigAng = 0.0 |
---|
2437 | return Ang,sigAng |
---|
2438 | else: |
---|
2439 | return calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat),0.0 |
---|
2440 | |
---|
2441 | def GetDistSig(Oatoms,Atoms,Amat,SGData,covData={}): |
---|
2442 | '''default doc string |
---|
2443 | |
---|
2444 | :param type name: description |
---|
2445 | |
---|
2446 | :returns: type name: description |
---|
2447 | |
---|
2448 | ''' |
---|
2449 | def calcDist(Atoms,SyOps,Amat): |
---|
2450 | XYZ = [] |
---|
2451 | for i,atom in enumerate(Atoms): |
---|
2452 | Inv,M,T,C,U = SyOps[i] |
---|
2453 | XYZ.append(np.array(atom[1:4])) |
---|
2454 | XYZ[-1] = Inv*(np.inner(M,np.array(XYZ[-1]))+T)+C+U |
---|
2455 | XYZ[-1] = np.inner(Amat,XYZ[-1]).T |
---|
2456 | V1 = XYZ[1]-XYZ[0] |
---|
2457 | return np.sqrt(np.sum(V1**2)) |
---|
2458 | |
---|
2459 | SyOps = [] |
---|
2460 | names = [] |
---|
2461 | for i,atom in enumerate(Oatoms): |
---|
2462 | names += atom[-1] |
---|
2463 | Op,unit = Atoms[i][-1] |
---|
2464 | inv = Op//abs(Op) |
---|
2465 | m,t = SGData['SGOps'][abs(Op)%100-1] |
---|
2466 | c = SGData['SGCen'][abs(Op)//100] |
---|
2467 | SyOps.append([inv,m,t,c,unit]) |
---|
2468 | Dist = calcDist(Oatoms,SyOps,Amat) |
---|
2469 | |
---|
2470 | sig = -0.001 |
---|
2471 | if 'covMatrix' in covData: |
---|
2472 | dx = .00001 |
---|
2473 | dadx = np.zeros(6) |
---|
2474 | for i in range(6): |
---|
2475 | ia = i//3 |
---|
2476 | ix = i%3 |
---|
2477 | Oatoms[ia][ix+1] += dx |
---|
2478 | a0 = calcDist(Oatoms,SyOps,Amat) |
---|
2479 | Oatoms[ia][ix+1] -= 2*dx |
---|
2480 | dadx[i] = (calcDist(Oatoms,SyOps,Amat)-a0)/(2.*dx) |
---|
2481 | covMatrix = covData['covMatrix'] |
---|
2482 | varyList = covData['varyList'] |
---|
2483 | DistVcov = getVCov(names,varyList,covMatrix) |
---|
2484 | sig = np.sqrt(np.inner(dadx,np.inner(DistVcov,dadx))) |
---|
2485 | if sig < 0.001: |
---|
2486 | sig = -0.001 |
---|
2487 | |
---|
2488 | return Dist,sig |
---|
2489 | |
---|
2490 | def GetAngleSig(Oatoms,Atoms,Amat,SGData,covData={}): |
---|
2491 | '''default doc string |
---|
2492 | |
---|
2493 | :param type name: description |
---|
2494 | |
---|
2495 | :returns: type name: description |
---|
2496 | |
---|
2497 | ''' |
---|
2498 | |
---|
2499 | def calcAngle(Atoms,SyOps,Amat): |
---|
2500 | XYZ = [] |
---|
2501 | for i,atom in enumerate(Atoms): |
---|
2502 | Inv,M,T,C,U = SyOps[i] |
---|
2503 | XYZ.append(np.array(atom[1:4])) |
---|
2504 | XYZ[-1] = Inv*(np.inner(M,np.array(XYZ[-1]))+T)+C+U |
---|
2505 | XYZ[-1] = np.inner(Amat,XYZ[-1]).T |
---|
2506 | V1 = XYZ[1]-XYZ[0] |
---|
2507 | V1 /= np.sqrt(np.sum(V1**2)) |
---|
2508 | V2 = XYZ[1]-XYZ[2] |
---|
2509 | V2 /= np.sqrt(np.sum(V2**2)) |
---|
2510 | V3 = V2-V1 |
---|
2511 | cang = min(1.,max((2.-np.sum(V3**2))/2.,-1.)) |
---|
2512 | return acosd(cang) |
---|
2513 | |
---|
2514 | SyOps = [] |
---|
2515 | names = [] |
---|
2516 | for i,atom in enumerate(Oatoms): |
---|
2517 | names += atom[-1] |
---|
2518 | Op,unit = Atoms[i][-1] |
---|
2519 | inv = Op//abs(Op) |
---|
2520 | m,t = SGData['SGOps'][abs(Op)%100-1] |
---|
2521 | c = SGData['SGCen'][abs(Op)//100] |
---|
2522 | SyOps.append([inv,m,t,c,unit]) |
---|
2523 | Angle = calcAngle(Oatoms,SyOps,Amat) |
---|
2524 | |
---|
2525 | sig = -0.01 |
---|
2526 | if 'covMatrix' in covData: |
---|
2527 | dx = .00001 |
---|
2528 | dadx = np.zeros(9) |
---|
2529 | for i in range(9): |
---|
2530 | ia = i//3 |
---|
2531 | ix = i%3 |
---|
2532 | Oatoms[ia][ix+1] += dx |
---|
2533 | a0 = calcAngle(Oatoms,SyOps,Amat) |
---|
2534 | Oatoms[ia][ix+1] -= 2*dx |
---|
2535 | dadx[i] = (calcAngle(Oatoms,SyOps,Amat)-a0)/(2.*dx) |
---|
2536 | covMatrix = covData['covMatrix'] |
---|
2537 | varyList = covData['varyList'] |
---|
2538 | AngVcov = getVCov(names,varyList,covMatrix) |
---|
2539 | sig = np.sqrt(np.inner(dadx,np.inner(AngVcov,dadx))) |
---|
2540 | if sig < 0.01: |
---|
2541 | sig = -0.01 |
---|
2542 | |
---|
2543 | return Angle,sig |
---|
2544 | |
---|
2545 | def GetTorsionSig(Oatoms,Atoms,Amat,SGData,covData={}): |
---|
2546 | '''default doc string |
---|
2547 | |
---|
2548 | :param type name: description |
---|
2549 | |
---|
2550 | :returns: type name: description |
---|
2551 | |
---|
2552 | ''' |
---|
2553 | |
---|
2554 | def calcTorsion(Atoms,SyOps,Amat): |
---|
2555 | |
---|
2556 | XYZ = [] |
---|
2557 | for i,atom in enumerate(Atoms): |
---|
2558 | Inv,M,T,C,U = SyOps[i] |
---|
2559 | XYZ.append(np.array(atom[1:4])) |
---|
2560 | XYZ[-1] = Inv*(np.inner(M,np.array(XYZ[-1]))+T)+C+U |
---|
2561 | XYZ[-1] = np.inner(Amat,XYZ[-1]).T |
---|
2562 | V1 = XYZ[1]-XYZ[0] |
---|
2563 | V2 = XYZ[2]-XYZ[1] |
---|
2564 | V3 = XYZ[3]-XYZ[2] |
---|
2565 | V1 /= np.sqrt(np.sum(V1**2)) |
---|
2566 | V2 /= np.sqrt(np.sum(V2**2)) |
---|
2567 | V3 /= np.sqrt(np.sum(V3**2)) |
---|
2568 | M = np.array([V1,V2,V3]) |
---|
2569 | D = nl.det(M) |
---|
2570 | P12 = np.dot(V1,V2) |
---|
2571 | P13 = np.dot(V1,V3) |
---|
2572 | P23 = np.dot(V2,V3) |
---|
2573 | Tors = acosd((P12*P23-P13)/(np.sqrt(1.-P12**2)*np.sqrt(1.-P23**2)))*D/abs(D) |
---|
2574 | return Tors |
---|
2575 | |
---|
2576 | SyOps = [] |
---|
2577 | names = [] |
---|
2578 | for i,atom in enumerate(Oatoms): |
---|
2579 | names += atom[-1] |
---|
2580 | Op,unit = Atoms[i][-1] |
---|
2581 | inv = Op//abs(Op) |
---|
2582 | m,t = SGData['SGOps'][abs(Op)%100-1] |
---|
2583 | c = SGData['SGCen'][abs(Op)//100] |
---|
2584 | SyOps.append([inv,m,t,c,unit]) |
---|
2585 | Tors = calcTorsion(Oatoms,SyOps,Amat) |
---|
2586 | |
---|
2587 | sig = -0.01 |
---|
2588 | if 'covMatrix' in covData: |
---|
2589 | dx = .00001 |
---|
2590 | dadx = np.zeros(12) |
---|
2591 | for i in range(12): |
---|
2592 | ia = i//3 |
---|
2593 | ix = i%3 |
---|
2594 | Oatoms[ia][ix+1] -= dx |
---|
2595 | a0 = calcTorsion(Oatoms,SyOps,Amat) |
---|
2596 | Oatoms[ia][ix+1] += 2*dx |
---|
2597 | dadx[i] = (calcTorsion(Oatoms,SyOps,Amat)-a0)/(2.*dx) |
---|
2598 | Oatoms[ia][ix+1] -= dx |
---|
2599 | covMatrix = covData['covMatrix'] |
---|
2600 | varyList = covData['varyList'] |
---|
2601 | TorVcov = getVCov(names,varyList,covMatrix) |
---|
2602 | sig = np.sqrt(np.inner(dadx,np.inner(TorVcov,dadx))) |
---|
2603 | if sig < 0.01: |
---|
2604 | sig = -0.01 |
---|
2605 | |
---|
2606 | return Tors,sig |
---|
2607 | |
---|
2608 | def GetDATSig(Oatoms,Atoms,Amat,SGData,covData={}): |
---|
2609 | '''default doc string |
---|
2610 | |
---|
2611 | :param type name: description |
---|
2612 | |
---|
2613 | :returns: type name: description |
---|
2614 | |
---|
2615 | ''' |
---|
2616 | |
---|
2617 | def calcDist(Atoms,SyOps,Amat): |
---|
2618 | XYZ = [] |
---|
2619 | for i,atom in enumerate(Atoms): |
---|
2620 | Inv,M,T,C,U = SyOps[i] |
---|
2621 | XYZ.append(np.array(atom[1:4])) |
---|
2622 | XYZ[-1] = Inv*(np.inner(M,np.array(XYZ[-1]))+T)+C+U |
---|
2623 | XYZ[-1] = np.inner(Amat,XYZ[-1]).T |
---|
2624 | V1 = XYZ[1]-XYZ[0] |
---|
2625 | return np.sqrt(np.sum(V1**2)) |
---|
2626 | |
---|
2627 | def calcAngle(Atoms,SyOps,Amat): |
---|
2628 | XYZ = [] |
---|
2629 | for i,atom in enumerate(Atoms): |
---|
2630 | Inv,M,T,C,U = SyOps[i] |
---|
2631 | XYZ.append(np.array(atom[1:4])) |
---|
2632 | XYZ[-1] = Inv*(np.inner(M,np.array(XYZ[-1]))+T)+C+U |
---|
2633 | XYZ[-1] = np.inner(Amat,XYZ[-1]).T |
---|
2634 | V1 = XYZ[1]-XYZ[0] |
---|
2635 | V1 /= np.sqrt(np.sum(V1**2)) |
---|
2636 | V2 = XYZ[1]-XYZ[2] |
---|
2637 | V2 /= np.sqrt(np.sum(V2**2)) |
---|
2638 | V3 = V2-V1 |
---|
2639 | cang = min(1.,max((2.-np.sum(V3**2))/2.,-1.)) |
---|
2640 | return acosd(cang) |
---|
2641 | |
---|
2642 | def calcTorsion(Atoms,SyOps,Amat): |
---|
2643 | |
---|
2644 | XYZ = [] |
---|
2645 | for i,atom in enumerate(Atoms): |
---|
2646 | Inv,M,T,C,U = SyOps[i] |
---|
2647 | XYZ.append(np.array(atom[1:4])) |
---|
2648 | XYZ[-1] = Inv*(np.inner(M,np.array(XYZ[-1]))+T)+C+U |
---|
2649 | XYZ[-1] = np.inner(Amat,XYZ[-1]).T |
---|
2650 | V1 = XYZ[1]-XYZ[0] |
---|
2651 | V2 = XYZ[2]-XYZ[1] |
---|
2652 | V3 = XYZ[3]-XYZ[2] |
---|
2653 | V1 /= np.sqrt(np.sum(V1**2)) |
---|
2654 | V2 /= np.sqrt(np.sum(V2**2)) |
---|
2655 | V3 /= np.sqrt(np.sum(V3**2)) |
---|
2656 | M = np.array([V1,V2,V3]) |
---|
2657 | D = nl.det(M) |
---|
2658 | P12 = np.dot(V1,V2) |
---|
2659 | P13 = np.dot(V1,V3) |
---|
2660 | P23 = np.dot(V2,V3) |
---|
2661 | Tors = acosd((P12*P23-P13)/(np.sqrt(1.-P12**2)*np.sqrt(1.-P23**2)))*D/abs(D) |
---|
2662 | return Tors |
---|
2663 | |
---|
2664 | SyOps = [] |
---|
2665 | names = [] |
---|
2666 | for i,atom in enumerate(Oatoms): |
---|
2667 | names += atom[-1] |
---|
2668 | Op,unit = Atoms[i][-1] |
---|
2669 | inv = Op//abs(Op) |
---|
2670 | m,t = SGData['SGOps'][abs(Op)%100-1] |
---|
2671 | c = SGData['SGCen'][abs(Op)//100] |
---|
2672 | SyOps.append([inv,m,t,c,unit]) |
---|
2673 | M = len(Oatoms) |
---|
2674 | if M == 2: |
---|
2675 | Val = calcDist(Oatoms,SyOps,Amat) |
---|
2676 | elif M == 3: |
---|
2677 | Val = calcAngle(Oatoms,SyOps,Amat) |
---|
2678 | else: |
---|
2679 | Val = calcTorsion(Oatoms,SyOps,Amat) |
---|
2680 | |
---|
2681 | sigVals = [-0.001,-0.01,-0.01] |
---|
2682 | sig = sigVals[M-3] |
---|
2683 | if 'covMatrix' in covData: |
---|
2684 | dx = .00001 |
---|
2685 | N = M*3 |
---|
2686 | dadx = np.zeros(N) |
---|
2687 | for i in range(N): |
---|
2688 | ia = i//3 |
---|
2689 | ix = i%3 |
---|
2690 | Oatoms[ia][ix+1] += dx |
---|
2691 | if M == 2: |
---|
2692 | a0 = calcDist(Oatoms,SyOps,Amat) |
---|
2693 | elif M == 3: |
---|
2694 | a0 = calcAngle(Oatoms,SyOps,Amat) |
---|
2695 | else: |
---|
2696 | a0 = calcTorsion(Oatoms,SyOps,Amat) |
---|
2697 | Oatoms[ia][ix+1] -= 2*dx |
---|
2698 | if M == 2: |
---|
2699 | dadx[i] = (calcDist(Oatoms,SyOps,Amat)-a0)/(2.*dx) |
---|
2700 | elif M == 3: |
---|
2701 | dadx[i] = (calcAngle(Oatoms,SyOps,Amat)-a0)/(2.*dx) |
---|
2702 | else: |
---|
2703 | dadx[i] = (calcTorsion(Oatoms,SyOps,Amat)-a0)/(2.*dx) |
---|
2704 | covMatrix = covData['covMatrix'] |
---|
2705 | varyList = covData['varyList'] |
---|
2706 | Vcov = getVCov(names,varyList,covMatrix) |
---|
2707 | sig = np.sqrt(np.inner(dadx,np.inner(Vcov,dadx))) |
---|
2708 | if sig < sigVals[M-3]: |
---|
2709 | sig = sigVals[M-3] |
---|
2710 | |
---|
2711 | return Val,sig |
---|
2712 | |
---|
2713 | def ValEsd(value,esd=0,nTZ=False): |
---|
2714 | '''Format a floating point number with a given level of precision or |
---|
2715 | with in crystallographic format with a "esd", as value(esd). If esd is |
---|
2716 | negative the number is formatted with the level of significant figures |
---|
2717 | appropriate if abs(esd) were the esd, but the esd is not included. |
---|
2718 | if the esd is zero, approximately 6 significant figures are printed. |
---|
2719 | nTZ=True causes "extra" zeros to be removed after the decimal place. |
---|
2720 | for example: |
---|
2721 | |
---|
2722 | * "1.235(3)" for value=1.2346 & esd=0.003 |
---|
2723 | * "1.235(3)e4" for value=12346. & esd=30 |
---|
2724 | * "1.235(3)e6" for value=0.12346e7 & esd=3000 |
---|
2725 | * "1.235" for value=1.2346 & esd=-0.003 |
---|
2726 | * "1.240" for value=1.2395 & esd=-0.003 |
---|
2727 | * "1.24" for value=1.2395 & esd=-0.003 with nTZ=True |
---|
2728 | * "1.23460" for value=1.2346 & esd=0.0 |
---|
2729 | |
---|
2730 | :param float value: number to be formatted |
---|
2731 | :param float esd: uncertainty or if esd < 0, specifies level of |
---|
2732 | precision to be shown e.g. esd=-0.01 gives 2 places beyond decimal |
---|
2733 | :param bool nTZ: True to remove trailing zeros (default is False) |
---|
2734 | :returns: value(esd) or value as a string |
---|
2735 | |
---|
2736 | ''' |
---|
2737 | # Note: this routine is Python 3 compatible -- I think |
---|
2738 | cutoff = 3.16228 #=(sqrt(10); same as old GSAS was 1.95 |
---|
2739 | if math.isnan(value): # invalid value, bail out |
---|
2740 | return '?' |
---|
2741 | if math.isnan(esd): # invalid esd, treat as zero |
---|
2742 | esd = 0 |
---|
2743 | esdoff = 5 |
---|
2744 | # if esd < 1.e-5: |
---|
2745 | # esd = 0 |
---|
2746 | # esdoff = 5 |
---|
2747 | elif esd != 0: |
---|
2748 | # transform the esd to a one or two digit integer |
---|
2749 | l = math.log10(abs(esd)) % 1. |
---|
2750 | if l < math.log10(cutoff): l+= 1. |
---|
2751 | intesd = int(round(10**l)) # esd as integer |
---|
2752 | # determine the number of digits offset for the esd |
---|
2753 | esdoff = int(round(math.log10(intesd*1./abs(esd)))) |
---|
2754 | else: |
---|
2755 | esdoff = 5 |
---|
2756 | valoff = 0 |
---|
2757 | if abs(value) < abs(esdoff): # value is effectively zero |
---|
2758 | pass |
---|
2759 | elif esdoff < 0 or abs(value) > 1.0e6 or abs(value) < 1.0e-4: # use scientific notation |
---|
2760 | # where the digit offset is to the left of the decimal place or where too many |
---|
2761 | # digits are needed |
---|
2762 | if abs(value) > 1: |
---|
2763 | valoff = int(math.log10(abs(value))) |
---|
2764 | elif abs(value) > 0: |
---|
2765 | valoff = int(math.log10(abs(value))-0.9999999) |
---|
2766 | else: |
---|
2767 | valoff = 0 |
---|
2768 | if esd != 0: |
---|
2769 | if valoff+esdoff < 0: |
---|
2770 | valoff = esdoff = 0 |
---|
2771 | out = ("{:."+str(valoff+esdoff)+"f}").format(value/10**valoff) # format the value |
---|
2772 | elif valoff != 0: # esd = 0; exponential notation ==> esdoff decimal places |
---|
2773 | out = ("{:."+str(esdoff)+"f}").format(value/10**valoff) # format the value |
---|
2774 | else: # esd = 0; non-exponential notation ==> esdoff+1 significant digits |
---|
2775 | if abs(value) > 0: |
---|
2776 | extra = -math.log10(abs(value)) |
---|
2777 | else: |
---|
2778 | extra = 0 |
---|
2779 | if extra > 0: extra += 1 |
---|
2780 | out = ("{:."+str(max(0,esdoff+int(extra)))+"f}").format(value) # format the value |
---|
2781 | if esd > 0: |
---|
2782 | out += ("({:d})").format(intesd) # add the esd |
---|
2783 | elif nTZ and '.' in out: |
---|
2784 | out = out.rstrip('0') # strip zeros to right of decimal |
---|
2785 | out = out.rstrip('.') # and decimal place when not needed |
---|
2786 | if valoff != 0: |
---|
2787 | out += ("e{:d}").format(valoff) # add an exponent, when needed |
---|
2788 | return out |
---|
2789 | |
---|
2790 | ############################################################################### |
---|
2791 | ##### Protein validation - "ERRATV2" analysis |
---|
2792 | ############################################################################### |
---|
2793 | |
---|
2794 | def validProtein(Phase,old): |
---|
2795 | |
---|
2796 | def sumintact(intact): |
---|
2797 | return {'CC':intact['CC'],'NN':intact['NN'],'OO':intact['OO'], |
---|
2798 | 'CN':(intact['CN']+intact['NC']),'CO':(intact['CO']+intact['OC']), |
---|
2799 | 'NO':(intact['NO']+intact['ON'])} |
---|
2800 | |
---|
2801 | resNames = ['ALA','ARG','ASN','ASP','CYS','GLN','GLU','GLY','HIS','ILE', |
---|
2802 | 'LEU','LYS','MET','PHE','PRO','SER','THR','TRP','TYR','VAL','MSE'] |
---|
2803 | # data from errat.f |
---|
2804 | b1_old = np.array([ |
---|
2805 | [1154.343, 600.213, 1051.018, 1132.885, 960.738], |
---|
2806 | [600.213, 1286.818, 1282.042, 957.156, 612.789], |
---|
2807 | [1051.018, 1282.042, 3519.471, 991.974, 1226.491], |
---|
2808 | [1132.885, 957.156, 991.974, 1798.672, 820.355], |
---|
2809 | [960.738, 612.789, 1226.491, 820.355, 2428.966] |
---|
2810 | ]) |
---|
2811 | avg_old = np.array([ 0.225, 0.281, 0.071, 0.237, 0.044]) #Table 1 3.5A Obsd. Fr. p 1513 |
---|
2812 | # data taken from erratv2.ccp |
---|
2813 | b1 = np.array([ |
---|
2814 | [5040.279078850848200, 3408.805141583649400, 4152.904423767300600, 4236.200004171890200, 5054.781210204625500], |
---|
2815 | [3408.805141583648900, 8491.906094010220800, 5958.881777877950300, 1521.387352718486200, 4304.078200827221700], |
---|
2816 | [4152.904423767301500, 5958.881777877952100, 7637.167089335050100, 6620.715738223072500, 5287.691183798410700], |
---|
2817 | [4236.200004171890200, 1521.387352718486200, 6620.715738223072500, 18368.343774298410000, 4050.797811118806700], |
---|
2818 | [5054.781210204625500, 4304.078200827220800, 5287.691183798409800, 4050.797811118806700, 6666.856740479164700]]) |
---|
2819 | avg = np.array([0.192765509919262, 0.195575208778518, 0.275322406824210, 0.059102357035642, 0.233154192767480]) |
---|
2820 | General = Phase['General'] |
---|
2821 | Amat,Bmat = G2lat.cell2AB(General['Cell'][1:7]) |
---|
2822 | cx,ct,cs,cia = General['AtomPtrs'] |
---|
2823 | Atoms = Phase['Atoms'] |
---|
2824 | cartAtoms = [] |
---|
2825 | xyzmin = 999.*np.ones(3) |
---|
2826 | xyzmax = -999.*np.ones(3) |
---|
2827 | #select residue atoms,S,Se --> O make cartesian |
---|
2828 | for atom in Atoms: |
---|
2829 | if atom[1] in resNames: |
---|
2830 | cartAtoms.append(atom[:cx+3]) |
---|
2831 | if atom[4].strip() in ['S','Se']: |
---|
2832 | if not old: |
---|
2833 | continue #S,Se skipped for erratv2? |
---|
2834 | cartAtoms[-1][3] = 'Os' |
---|
2835 | cartAtoms[-1][4] = 'O' |
---|
2836 | cartAtoms[-1][cx:cx+3] = np.inner(Amat,cartAtoms[-1][cx:cx+3]) |
---|
2837 | cartAtoms[-1].append(atom[cia+8]) |
---|
2838 | XYZ = np.array([atom[cx:cx+3] for atom in cartAtoms]) |
---|
2839 | xyzmin = np.array([np.min(XYZ.T[i]) for i in [0,1,2]]) |
---|
2840 | xyzmax = np.array([np.max(XYZ.T[i]) for i in [0,1,2]]) |
---|
2841 | nbox = list(np.array(np.ceil((xyzmax-xyzmin)/4.),dtype=int))+[15,] |
---|
2842 | Boxes = np.zeros(nbox,dtype=int) |
---|
2843 | iBox = np.array([np.trunc((XYZ.T[i]-xyzmin[i])/4.) for i in [0,1,2]],dtype=int).T |
---|
2844 | for ib,box in enumerate(iBox): #put in a try for too many atoms in box (IndexError)? |
---|
2845 | try: |
---|
2846 | Boxes[box[0],box[1],box[2],0] += 1 |
---|
2847 | Boxes[box[0],box[1],box[2],Boxes[box[0],box[1],box[2],0]] = ib |
---|
2848 | except IndexError: |
---|
2849 | G2fil.G2Print('Error: too many atoms in box' ) |
---|
2850 | continue |
---|
2851 | #Box content checks with errat.f $ erratv2.cpp ibox1 arrays |
---|
2852 | indices = (-1,0,1) |
---|
2853 | Units = np.array([[h,k,l] for h in indices for k in indices for l in indices]) |
---|
2854 | dsmax = 3.75**2 |
---|
2855 | if old: |
---|
2856 | dsmax = 3.5**2 |
---|
2857 | chains = [] |
---|
2858 | resIntAct = [] |
---|
2859 | chainIntAct = [] |
---|
2860 | res = [] |
---|
2861 | resNames = [] |
---|
2862 | resIDs = {} |
---|
2863 | resname = [] |
---|
2864 | resID = {} |
---|
2865 | newChain = True |
---|
2866 | intact = {'CC':0,'CN':0,'CO':0,'NN':0,'NO':0,'OO':0,'NC':0,'OC':0,'ON':0} |
---|
2867 | for ia,atom in enumerate(cartAtoms): |
---|
2868 | jntact = {'CC':0,'CN':0,'CO':0,'NN':0,'NO':0,'OO':0,'NC':0,'OC':0,'ON':0} |
---|
2869 | if atom[2] not in chains: #get chain id & save residue sequence from last chain |
---|
2870 | chains.append(atom[2]) |
---|
2871 | if len(resIntAct): |
---|
2872 | resIntAct.append(sumintact(intact)) |
---|
2873 | chainIntAct.append(resIntAct) |
---|
2874 | resNames += resname |
---|
2875 | resIDs.update(resID) |
---|
2876 | res = [] |
---|
2877 | resname = [] |
---|
2878 | resID = {} |
---|
2879 | resIntAct = [] |
---|
2880 | intact = {'CC':0,'CN':0,'CO':0,'NN':0,'NO':0,'OO':0,'NC':0,'OC':0,'ON':0} |
---|
2881 | newChain = True |
---|
2882 | if atom[0] not in res: #new residue, get residue no. |
---|
2883 | if res and int(res[-1]) != int(atom[0])-1: #a gap in chain - not new chain |
---|
2884 | intact = {'CC':0,'CN':0,'CO':0,'NN':0,'NO':0,'OO':0,'NC':0,'OC':0,'ON':0} |
---|
2885 | ires = int(res[-1]) |
---|
2886 | for i in range(int(atom[0])-ires-1): |
---|
2887 | res.append(str(ires+i+1)) |
---|
2888 | resname.append('') |
---|
2889 | resIntAct.append(sumintact(intact)) |
---|
2890 | res.append(atom[0]) |
---|
2891 | name = '%s-%s%s'%(atom[2],atom[0],atom[1]) |
---|
2892 | resname.append(name) |
---|
2893 | resID[name] = atom[-1] |
---|
2894 | if not newChain: |
---|
2895 | resIntAct.append(sumintact(intact)) |
---|
2896 | intact = {'CC':0,'CN':0,'CO':0,'NN':0,'NO':0,'OO':0,'NC':0,'OC':0,'ON':0} |
---|
2897 | newChain = False |
---|
2898 | ibox = iBox[ia] #box location of atom |
---|
2899 | tgts = [] |
---|
2900 | for unit in Units: #assemble list of all possible target atoms |
---|
2901 | jbox = ibox+unit |
---|
2902 | if np.all(jbox>=0) and np.all((jbox-nbox[:3])<0): |
---|
2903 | tgts += list(Boxes[jbox[0],jbox[1],jbox[2]]) |
---|
2904 | tgts = list(set(tgts)) |
---|
2905 | tgts = [tgt for tgt in tgts if atom[:3] != cartAtoms[tgt][:3]] #exclude same residue |
---|
2906 | tgts = [tgt for tgt in tgts if np.sum((XYZ[ia]-XYZ[tgt])**2) < dsmax] |
---|
2907 | ires = int(atom[0]) |
---|
2908 | if old: |
---|
2909 | if atom[3].strip() == 'C': |
---|
2910 | tgts = [tgt for tgt in tgts if not (cartAtoms[tgt][3].strip() == 'N' and int(cartAtoms[tgt][0]) in [ires-1,ires+1])] |
---|
2911 | elif atom[3].strip() == 'N': |
---|
2912 | tgts = [tgt for tgt in tgts if not (cartAtoms[tgt][3].strip() in ['C','CA'] and int(cartAtoms[tgt][0]) in [ires-1,ires+1])] |
---|
2913 | elif atom[3].strip() == 'CA': |
---|
2914 | tgts = [tgt for tgt in tgts if not (cartAtoms[tgt][3].strip() == 'N' and int(cartAtoms[tgt][0]) in [ires-1,ires+1])] |
---|
2915 | else: |
---|
2916 | tgts = [tgt for tgt in tgts if not int(cartAtoms[tgt][0]) in [ires+1,ires+2,ires+3,ires+4,ires+5,ires+6,ires+7,ires+8]] |
---|
2917 | if atom[3].strip() == 'C': |
---|
2918 | tgts = [tgt for tgt in tgts if not (cartAtoms[tgt][3].strip() == 'N' and int(cartAtoms[tgt][0]) == ires+1)] |
---|
2919 | elif atom[3].strip() == 'N': |
---|
2920 | tgts = [tgt for tgt in tgts if not (cartAtoms[tgt][3].strip() == 'C' and int(cartAtoms[tgt][0]) == ires-1)] |
---|
2921 | for tgt in tgts: |
---|
2922 | dsqt = np.sqrt(np.sum((XYZ[ia]-XYZ[tgt])**2)) |
---|
2923 | mult = 1.0 |
---|
2924 | if dsqt > 3.25 and not old: |
---|
2925 | mult = 2.*(3.75-dsqt) |
---|
2926 | intype = atom[4].strip()+cartAtoms[tgt][4].strip() |
---|
2927 | if 'S' not in intype: |
---|
2928 | intact[intype] += mult |
---|
2929 | jntact[intype] += mult |
---|
2930 | # print ia,atom[0]+atom[1]+atom[3],tgts,jntact['CC'],jntact['CN']+jntact['NC'],jntact['CO']+jntact['OC'],jntact['NN'],jntact['NO']+jntact['ON'] |
---|
2931 | resNames += resname |
---|
2932 | resIDs.update(resID) |
---|
2933 | resIntAct.append(sumintact(intact)) |
---|
2934 | chainIntAct.append(resIntAct) |
---|
2935 | chainProb = [] |
---|
2936 | for ich,chn in enumerate(chains): |
---|
2937 | IntAct = chainIntAct[ich] |
---|
2938 | nRes = len(IntAct) |
---|
2939 | Probs = [0.,0.,0.,0.] #skip 1st 4 residues in chain |
---|
2940 | for i in range(4,nRes-4): |
---|
2941 | if resNames[i]: |
---|
2942 | mtrx = np.zeros(5) |
---|
2943 | summ = 0. |
---|
2944 | for j in range(i-4,i+5): |
---|
2945 | summ += np.sum(np.array(list(IntAct[j].values()))) |
---|
2946 | if old: |
---|
2947 | mtrx[0] += IntAct[j]['CC'] |
---|
2948 | mtrx[1] += IntAct[j]['CO'] |
---|
2949 | mtrx[2] += IntAct[j]['NN'] |
---|
2950 | mtrx[3] += IntAct[j]['NO'] |
---|
2951 | mtrx[4] += IntAct[j]['OO'] |
---|
2952 | else: |
---|
2953 | mtrx[0] += IntAct[j]['CC'] |
---|
2954 | mtrx[1] += IntAct[j]['CN'] |
---|
2955 | mtrx[2] += IntAct[j]['CO'] |
---|
2956 | mtrx[3] += IntAct[j]['NN'] |
---|
2957 | mtrx[4] += IntAct[j]['NO'] |
---|
2958 | mtrx /= summ |
---|
2959 | # print i+1,mtrx*summ |
---|
2960 | if old: |
---|
2961 | mtrx -= avg_old |
---|
2962 | prob = np.inner(np.inner(mtrx,b1_old),mtrx) |
---|
2963 | else: |
---|
2964 | mtrx -= avg |
---|
2965 | prob = np.inner(np.inner(mtrx,b1),mtrx) |
---|
2966 | else: #skip the gaps |
---|
2967 | prob = 0.0 |
---|
2968 | Probs.append(prob) |
---|
2969 | Probs += 4*[0.,] #skip last 4 residues in chain |
---|
2970 | chainProb += Probs |
---|
2971 | return resNames,chainProb,resIDs |
---|
2972 | |
---|
2973 | ################################################################################ |
---|
2974 | ##### Texture fitting stuff |
---|
2975 | ################################################################################ |
---|
2976 | |
---|
2977 | def FitTexture(General,Gangls,refData,keyList,pgbar): |
---|
2978 | import pytexture as ptx |
---|
2979 | ptx.pyqlmninit() #initialize fortran arrays for spherical harmonics |
---|
2980 | |
---|
2981 | def printSpHarm(textureData,SHtextureSig): |
---|
2982 | Tindx = 1.0 |
---|
2983 | Tvar = 0.0 |
---|
2984 | print ('\n Spherical harmonics texture: Order:' + str(textureData['Order'])) |
---|
2985 | names = ['omega','chi','phi'] |
---|
2986 | namstr = ' names :' |
---|
2987 | ptstr = ' values:' |
---|
2988 | sigstr = ' esds :' |
---|
2989 | for name in names: |
---|
2990 | namstr += '%12s'%('Sample '+name) |
---|
2991 | ptstr += '%12.3f'%(textureData['Sample '+name][1]) |
---|
2992 | if 'Sample '+name in SHtextureSig: |
---|
2993 | sigstr += '%12.3f'%(SHtextureSig['Sample '+name]) |
---|
2994 | else: |
---|
2995 | sigstr += 12*' ' |
---|
2996 | print (namstr) |
---|
2997 | print (ptstr) |
---|
2998 | print (sigstr) |
---|
2999 | print ('\n Texture coefficients:') |
---|
3000 | SHcoeff = textureData['SH Coeff'][1] |
---|
3001 | SHkeys = list(SHcoeff.keys()) |
---|
3002 | nCoeff = len(SHcoeff) |
---|
3003 | nBlock = nCoeff//10+1 |
---|
3004 | iBeg = 0 |
---|
3005 | iFin = min(iBeg+10,nCoeff) |
---|
3006 | for block in range(nBlock): |
---|
3007 | namstr = ' names :' |
---|
3008 | ptstr = ' values:' |
---|
3009 | sigstr = ' esds :' |
---|
3010 | for name in SHkeys[iBeg:iFin]: |
---|
3011 | if 'C' in name: |
---|
3012 | l = 2.0*eval(name.strip('C'))[0]+1 |
---|
3013 | Tindx += SHcoeff[name]**2/l |
---|
3014 | namstr += '%12s'%(name) |
---|
3015 | ptstr += '%12.3f'%(SHcoeff[name]) |
---|
3016 | if name in SHtextureSig: |
---|
3017 | Tvar += (2.*SHcoeff[name]*SHtextureSig[name]/l)**2 |
---|
3018 | sigstr += '%12.3f'%(SHtextureSig[name]) |
---|
3019 | else: |
---|
3020 | sigstr += 12*' ' |
---|
3021 | print (namstr) |
---|
3022 | print (ptstr) |
---|
3023 | print (sigstr) |
---|
3024 | iBeg += 10 |
---|
3025 | iFin = min(iBeg+10,nCoeff) |
---|
3026 | print(' Texture index J = %.3f(%d)'%(Tindx,int(1000*np.sqrt(Tvar)))) |
---|
3027 | |
---|
3028 | def Dict2Values(parmdict, varylist): |
---|
3029 | '''Use before call to leastsq to setup list of values for the parameters |
---|
3030 | in parmdict, as selected by key in varylist''' |
---|
3031 | return [parmdict[key] for key in varylist] |
---|
3032 | |
---|
3033 | def Values2Dict(parmdict, varylist, values): |
---|
3034 | ''' Use after call to leastsq to update the parameter dictionary with |
---|
3035 | values corresponding to keys in varylist''' |
---|
3036 | parmdict.update(list(zip(varylist,values))) |
---|
3037 | |
---|
3038 | def errSpHarm(values,SGData,cell,Gangls,shModel,refData,parmDict,varyList,pgbar): |
---|
3039 | parmDict.update(list(zip(varyList,values))) |
---|
3040 | Mat = np.empty(0) |
---|
3041 | sumObs = 0 |
---|
3042 | Sangls = [parmDict['Sample '+'omega'],parmDict['Sample '+'chi'],parmDict['Sample '+'phi']] |
---|
3043 | for hist in Gangls.keys(): |
---|
3044 | Refs = refData[hist] |
---|
3045 | Refs[:,5] = np.where(Refs[:,5]>0.,Refs[:,5],0.) |
---|
3046 | wt = 1./np.sqrt(np.fmax(Refs[:,4],.25)) |
---|
3047 | # wt = 1./np.max(Refs[:,4],.25) |
---|
3048 | sumObs += np.sum(wt*Refs[:,5]) |
---|
3049 | Refs[:,6] = 1. |
---|
3050 | H = Refs[:,:3] |
---|
3051 | phi,beta = G2lat.CrsAng(H,cell,SGData) |
---|
3052 | psi,gam,x,x = G2lat.SamAng(Refs[:,3]/2.,Gangls[hist],Sangls,False) #assume not Bragg-Brentano! |
---|
3053 | for item in parmDict: |
---|
3054 | if 'C' in item: |
---|
3055 | L,M,N = eval(item.strip('C')) |
---|
3056 | Kcl = G2lat.GetKcl(L,N,SGData['SGLaue'],phi,beta) |
---|
3057 | Ksl,x,x = G2lat.GetKsl(L,M,shModel,psi,gam) |
---|
3058 | Lnorm = G2lat.Lnorm(L) |
---|
3059 | Refs[:,6] += parmDict[item]*Lnorm*Kcl*Ksl |
---|
3060 | mat = wt*(Refs[:,5]-Refs[:,6]) |
---|
3061 | Mat = np.concatenate((Mat,mat)) |
---|
3062 | sumD = np.sum(np.abs(Mat)) |
---|
3063 | R = min(100.,100.*sumD/sumObs) |
---|
3064 | pgbar.Raise() |
---|
3065 | pgbar.Update(R,newmsg='Residual = %5.2f'%(R)) |
---|
3066 | print (' Residual: %.3f%%'%(R)) |
---|
3067 | return Mat |
---|
3068 | |
---|
3069 | def dervSpHarm(values,SGData,cell,Gangls,shModel,refData,parmDict,varyList,pgbar): |
---|
3070 | Mat = np.empty(0) |
---|
3071 | Sangls = [parmDict['Sample omega'],parmDict['Sample chi'],parmDict['Sample phi']] |
---|
3072 | for hist in Gangls.keys(): |
---|
3073 | mat = np.zeros((len(varyList),len(refData[hist]))) |
---|
3074 | Refs = refData[hist] |
---|
3075 | H = Refs[:,:3] |
---|
3076 | wt = 1./np.sqrt(np.fmax(Refs[:,4],.25)) |
---|
3077 | # wt = 1./np.max(Refs[:,4],.25) |
---|
3078 | phi,beta = G2lat.CrsAng(H,cell,SGData) |
---|
3079 | psi,gam,dPdA,dGdA = G2lat.SamAng(Refs[:,3]/2.,Gangls[hist],Sangls,False) #assume not Bragg-Brentano! |
---|
3080 | for j,item in enumerate(varyList): |
---|
3081 | if 'C' in item: |
---|
3082 | L,M,N = eval(item.strip('C')) |
---|
3083 | Kcl = G2lat.GetKcl(L,N,SGData['SGLaue'],phi,beta) |
---|
3084 | Ksl,dKdp,dKdg = G2lat.GetKsl(L,M,shModel,psi,gam) |
---|
3085 | Lnorm = G2lat.Lnorm(L) |
---|
3086 | mat[j] = -wt*Lnorm*Kcl*Ksl |
---|
3087 | for k,itema in enumerate(['Sample omega','Sample chi','Sample phi']): |
---|
3088 | try: |
---|
3089 | l = varyList.index(itema) |
---|
3090 | mat[l] -= parmDict[item]*wt*Lnorm*Kcl*(dKdp*dPdA[k]+dKdg*dGdA[k]) |
---|
3091 | except ValueError: |
---|
3092 | pass |
---|
3093 | if len(Mat): |
---|
3094 | Mat = np.concatenate((Mat,mat.T)) |
---|
3095 | else: |
---|
3096 | Mat = mat.T |
---|
3097 | print ('deriv') |
---|
3098 | return Mat |
---|
3099 | |
---|
3100 | print (' Fit texture for '+General['Name']) |
---|
3101 | SGData = General['SGData'] |
---|
3102 | cell = General['Cell'][1:7] |
---|
3103 | Texture = General['SH Texture'] |
---|
3104 | if not Texture['Order']: |
---|
3105 | return 'No spherical harmonics coefficients' |
---|
3106 | varyList = [] |
---|
3107 | parmDict = copy.copy(Texture['SH Coeff'][1]) |
---|
3108 | for item in ['Sample omega','Sample chi','Sample phi']: |
---|
3109 | parmDict[item] = Texture[item][1] |
---|
3110 | if Texture[item][0]: |
---|
3111 | varyList.append(item) |
---|
3112 | if Texture['SH Coeff'][0]: |
---|
3113 | varyList += list(Texture['SH Coeff'][1].keys()) |
---|
3114 | while True: |
---|
3115 | begin = time.time() |
---|
3116 | values = np.array(Dict2Values(parmDict, varyList)) |
---|
3117 | result = so.leastsq(errSpHarm,values,Dfun=dervSpHarm,full_output=True,ftol=1.e-6, |
---|
3118 | args=(SGData,cell,Gangls,Texture['Model'],refData,parmDict,varyList,pgbar)) |
---|
3119 | ncyc = int(result[2]['nfev']//2) |
---|
3120 | if ncyc: |
---|
3121 | runtime = time.time()-begin |
---|
3122 | chisq = np.sum(result[2]['fvec']**2) |
---|
3123 | Values2Dict(parmDict, varyList, result[0]) |
---|
3124 | GOF = chisq/(len(result[2]['fvec'])-len(varyList)) #reduced chi^2 |
---|
3125 | G2fil.G2Print ('Number of function calls: %d Number of observations: %d Number of parameters: %d'%(result[2]['nfev'],len(result[2]['fvec']),len(varyList))) |
---|
3126 | G2fil.G2Print ('refinement time = %8.3fs, %8.3fs/cycle'%(runtime,runtime/ncyc)) |
---|
3127 | try: |
---|
3128 | sig = np.sqrt(np.diag(result[1])*GOF) |
---|
3129 | if np.any(np.isnan(sig)): |
---|
3130 | G2fil.G2Print ('*** Least squares aborted - some invalid esds possible ***', mode='error') |
---|
3131 | break #refinement succeeded - finish up! |
---|
3132 | except ValueError: #result[1] is None on singular matrix |
---|
3133 | G2fil.G2Print ('**** Refinement failed - singular matrix ****', mode='error') |
---|
3134 | return None |
---|
3135 | else: |
---|
3136 | break |
---|
3137 | |
---|
3138 | if ncyc: |
---|
3139 | for parm in parmDict: |
---|
3140 | if 'C' in parm: |
---|
3141 | Texture['SH Coeff'][1][parm] = parmDict[parm] |
---|
3142 | else: |
---|
3143 | Texture[parm][1] = parmDict[parm] |
---|
3144 | sigDict = dict(zip(varyList,sig)) |
---|
3145 | printSpHarm(Texture,sigDict) |
---|
3146 | |
---|
3147 | return None |
---|
3148 | |
---|
3149 | ################################################################################ |
---|
3150 | ##### Fourier & charge flip stuff |
---|
3151 | ################################################################################ |
---|
3152 | |
---|
3153 | def adjHKLmax(SGData,Hmax): |
---|
3154 | '''default doc string |
---|
3155 | |
---|
3156 | :param type name: description |
---|
3157 | |
---|
3158 | :returns: type name: description |
---|
3159 | |
---|
3160 | ''' |
---|
3161 | if SGData['SGLaue'] in ['3','3m1','31m','6/m','6/mmm']: |
---|
3162 | Hmax[0] = int(math.ceil(Hmax[0]/6.))*6 |
---|
3163 | Hmax[1] = int(math.ceil(Hmax[1]/6.))*6 |
---|
3164 | Hmax[2] = int(math.ceil(Hmax[2]/4.))*4 |
---|
3165 | else: |
---|
3166 | Hmax[0] = int(math.ceil(Hmax[0]/4.))*4 |
---|
3167 | Hmax[1] = int(math.ceil(Hmax[1]/4.))*4 |
---|
3168 | Hmax[2] = int(math.ceil(Hmax[2]/4.))*4 |
---|
3169 | |
---|
3170 | def OmitMap(data,reflDict,pgbar=None): |
---|
3171 | '''default doc string |
---|
3172 | |
---|
3173 | :param type name: description |
---|
3174 | |
---|
3175 | :returns: type name: description |
---|
3176 | |
---|
3177 | ''' |
---|
3178 | generalData = data['General'] |
---|
3179 | if not generalData['Map']['MapType']: |
---|
3180 | G2fil.G2Print ('**** ERROR - Fourier map not defined') |
---|
3181 | return |
---|
3182 | mapData = generalData['Map'] |
---|
3183 | dmin = mapData['GridStep']*2. |
---|
3184 | SGData = generalData['SGData'] |
---|
3185 | SGMT = np.array([ops[0].T for ops in SGData['SGOps']]) |
---|
3186 | SGT = np.array([ops[1] for ops in SGData['SGOps']]) |
---|
3187 | cell = generalData['Cell'][1:8] |
---|
3188 | A = G2lat.cell2A(cell[:6]) |
---|
3189 | Hmax = np.asarray(G2lat.getHKLmax(dmin,SGData,A),dtype='i')+1 |
---|
3190 | adjHKLmax(SGData,Hmax) |
---|
3191 | Fhkl = np.zeros(shape=2*Hmax,dtype='c16') |
---|
3192 | time0 = time.time() |
---|
3193 | for iref,ref in enumerate(reflDict['RefList']): |
---|
3194 | if ref[4] >= dmin: |
---|
3195 | Fosq,Fcsq,ph = ref[8:11] |
---|
3196 | Uniq = np.inner(ref[:3],SGMT) |
---|
3197 | Phi = np.inner(ref[:3],SGT) |
---|
3198 | for i,hkl in enumerate(Uniq): #uses uniq |
---|
3199 | hkl = np.asarray(hkl,dtype='i') |
---|
3200 | dp = 360.*Phi[i] #and phi |
---|
3201 | a = cosd(ph+dp) |
---|
3202 | b = sind(ph+dp) |
---|
3203 | phasep = complex(a,b) |
---|
3204 | phasem = complex(a,-b) |
---|
3205 | if '2Fo-Fc' in mapData['MapType']: |
---|
3206 | F = 2.*np.sqrt(Fosq)-np.sqrt(Fcsq) |
---|
3207 | else: |
---|
3208 | F = np.sqrt(Fosq) |
---|
3209 | h,k,l = hkl+Hmax |
---|
3210 | Fhkl[h,k,l] = F*phasep |
---|
3211 | h,k,l = -hkl+Hmax |
---|
3212 | Fhkl[h,k,l] = F*phasem |
---|
3213 | rho0 = fft.fftn(fft.fftshift(Fhkl))/cell[6] |
---|
3214 | M = np.mgrid[0:4,0:4,0:4] |
---|
3215 | blkIds = np.array(list(zip(M[0].flatten(),M[1].flatten(),M[2].flatten()))) |
---|
3216 | iBeg = blkIds*rho0.shape//4 |
---|
3217 | iFin = (blkIds+1)*rho0.shape//4 |
---|
3218 | rho_omit = np.zeros_like(rho0) |
---|
3219 | nBlk = 0 |
---|
3220 | for iB,iF in zip(iBeg,iFin): |
---|
3221 | rho1 = np.copy(rho0) |
---|
3222 | rho1[iB[0]:iF[0],iB[1]:iF[1],iB[2]:iF[2]] = 0. |
---|
3223 | Fnew = fft.ifftshift(fft.ifftn(rho1)) |
---|
3224 | Fnew = np.where(Fnew,Fnew,1.0) #avoid divide by zero |
---|
3225 | phase = Fnew/np.absolute(Fnew) |
---|
3226 | OFhkl = np.absolute(Fhkl)*phase |
---|
3227 | rho1 = np.real(fft.fftn(fft.fftshift(OFhkl)))*(1.+0j) |
---|
3228 | rho_omit[iB[0]:iF[0],iB[1]:iF[1],iB[2]:iF[2]] = np.copy(rho1[iB[0]:iF[0],iB[1]:iF[1],iB[2]:iF[2]]) |
---|
3229 | nBlk += 1 |
---|
3230 | pgbar.Raise() |
---|
3231 | pgbar.Update(nBlk) |
---|
3232 | mapData['rho'] = np.real(rho_omit)/cell[6] |
---|
3233 | mapData['rhoMax'] = max(np.max(mapData['rho']),-np.min(mapData['rho'])) |
---|
3234 | mapData['minmax'] = [np.max(mapData['rho']),np.min(mapData['rho'])] |
---|
3235 | G2fil.G2Print ('Omit map time: %.4f no. elements: %d dimensions: %s'%(time.time()-time0,Fhkl.size,str(Fhkl.shape))) |
---|
3236 | return mapData |
---|
3237 | |
---|
3238 | def FourierMap(data,reflDict): |
---|
3239 | '''default doc string |
---|
3240 | |
---|
3241 | :param type name: description |
---|
3242 | |
---|
3243 | :returns: type name: description |
---|
3244 | |
---|
3245 | ''' |
---|
3246 | generalData = data['General'] |
---|
3247 | mapData = generalData['Map'] |
---|
3248 | dmin = mapData['GridStep']*2. |
---|
3249 | SGData = generalData['SGData'] |
---|
3250 | SGMT = np.array([ops[0].T for ops in SGData['SGOps']]) |
---|
3251 | SGT = np.array([ops[1] for ops in SGData['SGOps']]) |
---|
3252 | cell = generalData['Cell'][1:8] |
---|
3253 | A = G2lat.cell2A(cell[:6]) |
---|
3254 | Hmax = np.asarray(G2lat.getHKLmax(dmin,SGData,A),dtype='i')+1 |
---|
3255 | adjHKLmax(SGData,Hmax) |
---|
3256 | Fhkl = np.zeros(shape=2*Hmax,dtype='c16') |
---|
3257 | # Fhkl[0,0,0] = generalData['F000X'] |
---|
3258 | time0 = time.time() |
---|
3259 | for iref,ref in enumerate(reflDict['RefList']): |
---|
3260 | if ref[4] > dmin: |
---|
3261 | Fosq,Fcsq,ph = ref[8:11] |
---|
3262 | Uniq = np.inner(ref[:3],SGMT) |
---|
3263 | Phi = np.inner(ref[:3],SGT) |
---|
3264 | for i,hkl in enumerate(Uniq): #uses uniq |
---|
3265 | hkl = np.asarray(hkl,dtype='i') |
---|
3266 | dp = 360.*Phi[i] #and phi |
---|
3267 | a = cosd(ph+dp) |
---|
3268 | b = sind(ph+dp) |
---|
3269 | phasep = complex(a,b) |
---|
3270 | phasem = complex(a,-b) |
---|
3271 | if 'Fobs' in mapData['MapType']: |
---|
3272 | F = np.where(Fosq>0.,np.sqrt(Fosq),0.) |
---|
3273 | h,k,l = hkl+Hmax |
---|
3274 | Fhkl[h,k,l] = F*phasep |
---|
3275 | h,k,l = -hkl+Hmax |
---|
3276 | Fhkl[h,k,l] = F*phasem |
---|
3277 | elif 'Fcalc' in mapData['MapType']: |
---|
3278 | F = np.sqrt(Fcsq) |
---|
3279 | h,k,l = hkl+Hmax |
---|
3280 | Fhkl[h,k,l] = F*phasep |
---|
3281 | h,k,l = -hkl+Hmax |
---|
3282 | Fhkl[h,k,l] = F*phasem |
---|
3283 | elif 'delt-F' in mapData['MapType']: |
---|
3284 | dF = np.where(Fosq>0.,np.sqrt(Fosq),0.)-np.sqrt(Fcsq) |
---|
3285 | h,k,l = hkl+Hmax |
---|
3286 | Fhkl[h,k,l] = dF*phasep |
---|
3287 | h,k,l = -hkl+Hmax |
---|
3288 | Fhkl[h,k,l] = dF*phasem |
---|
3289 | elif '2*Fo-Fc' in mapData['MapType']: |
---|
3290 | F = 2.*np.where(Fosq>0.,np.sqrt(Fosq),0.)-np.sqrt(Fcsq) |
---|
3291 | h,k,l = hkl+Hmax |
---|
3292 | Fhkl[h,k,l] = F*phasep |
---|
3293 | h,k,l = -hkl+Hmax |
---|
3294 | Fhkl[h,k,l] = F*phasem |
---|
3295 | elif 'Patterson' in mapData['MapType']: |
---|
3296 | h,k,l = hkl+Hmax |
---|
3297 | Fhkl[h,k,l] = complex(Fosq,0.) |
---|
3298 | h,k,l = -hkl+Hmax |
---|
3299 | Fhkl[h,k,l] = complex(Fosq,0.) |
---|
3300 | rho = fft.fftn(fft.fftshift(Fhkl))/cell[6] |
---|
3301 | G2fil.G2Print ('Fourier map time: %.4f no. elements: %d dimensions: %s'%(time.time()-time0,Fhkl.size,str(Fhkl.shape))) |
---|
3302 | mapData['Type'] = reflDict['Type'] |
---|
3303 | mapData['rho'] = np.real(rho) |
---|
3304 | mapData['rhoMax'] = max(np.max(mapData['rho']),-np.min(mapData['rho'])) |
---|
3305 | mapData['minmax'] = [np.max(mapData['rho']),np.min(mapData['rho'])] |
---|
3306 | |
---|
3307 | def Fourier4DMap(data,reflDict): |
---|
3308 | '''default doc string |
---|
3309 | |
---|
3310 | :param type name: description |
---|
3311 | |
---|
3312 | :returns: type name: description |
---|
3313 | |
---|
3314 | ''' |
---|
3315 | generalData = data['General'] |
---|
3316 | map4DData = generalData['4DmapData'] |
---|
3317 | mapData = generalData['Map'] |
---|
3318 | dmin = mapData['GridStep']*2. |
---|
3319 | SGData = generalData['SGData'] |
---|
3320 | SSGData = generalData['SSGData'] |
---|
3321 | SSGMT = np.array([ops[0].T for ops in SSGData['SSGOps']]) |
---|
3322 | SSGT = np.array([ops[1] for ops in SSGData['SSGOps']]) |
---|
3323 | cell = generalData['Cell'][1:8] |
---|
3324 | A = G2lat.cell2A(cell[:6]) |
---|
3325 | maxM = 4 |
---|
3326 | Hmax = G2lat.getHKLmax(dmin,SGData,A)+[maxM,] |
---|
3327 | adjHKLmax(SGData,Hmax) |
---|
3328 | Hmax = np.asarray(Hmax,dtype='i')+1 |
---|
3329 | Fhkl = np.zeros(shape=2*Hmax,dtype='c16') |
---|
3330 | time0 = time.time() |
---|
3331 | for iref,ref in enumerate(reflDict['RefList']): |
---|
3332 | if ref[5] > dmin: |
---|
3333 | Fosq,Fcsq,ph = ref[9:12] |
---|
3334 | Fosq = np.where(Fosq>0.,Fosq,0.) #can't use Fo^2 < 0 |
---|
3335 | Uniq = np.inner(ref[:4],SSGMT) |
---|
3336 | Phi = np.inner(ref[:4],SSGT) |
---|
3337 | for i,hkl in enumerate(Uniq): #uses uniq |
---|
3338 | hkl = np.asarray(hkl,dtype='i') |
---|
3339 | dp = 360.*Phi[i] #and phi |
---|
3340 | a = cosd(ph+dp) |
---|
3341 | b = sind(ph+dp) |
---|
3342 | phasep = complex(a,b) |
---|
3343 | phasem = complex(a,-b) |
---|
3344 | if 'Fobs' in mapData['MapType']: |
---|
3345 | F = np.sqrt(Fosq) |
---|
3346 | h,k,l,m = hkl+Hmax |
---|
3347 | Fhkl[h,k,l,m] = F*phasep |
---|
3348 | h,k,l,m = -hkl+Hmax |
---|
3349 | Fhkl[h,k,l,m] = F*phasem |
---|
3350 | elif 'Fcalc' in mapData['MapType']: |
---|
3351 | F = np.sqrt(Fcsq) |
---|
3352 | h,k,l,m = hkl+Hmax |
---|
3353 | Fhkl[h,k,l,m] = F*phasep |
---|
3354 | h,k,l,m = -hkl+Hmax |
---|
3355 | Fhkl[h,k,l,m] = F*phasem |
---|
3356 | elif 'delt-F' in mapData['MapType']: |
---|
3357 | dF = np.sqrt(Fosq)-np.sqrt(Fcsq) |
---|
3358 | h,k,l,m = hkl+Hmax |
---|
3359 | Fhkl[h,k,l,m] = dF*phasep |
---|
3360 | h,k,l,m = -hkl+Hmax |
---|
3361 | Fhkl[h,k,l,m] = dF*phasem |
---|
3362 | SSrho = fft.fftn(fft.fftshift(Fhkl))/cell[6] #4D map |
---|
3363 | rho = fft.fftn(fft.fftshift(Fhkl[:,:,:,maxM+1]))/cell[6] #3D map |
---|
3364 | map4DData['rho'] = np.real(SSrho) |
---|
3365 | map4DData['rhoMax'] = max(np.max(map4DData['rho']),-np.min(map4DData['rho'])) |
---|
3366 | map4DData['minmax'] = [np.max(map4DData['rho']),np.min(map4DData['rho'])] |
---|
3367 | map4DData['Type'] = reflDict['Type'] |
---|
3368 | mapData['Type'] = reflDict['Type'] |
---|
3369 | mapData['rho'] = np.real(rho) |
---|
3370 | mapData['rhoMax'] = max(np.max(mapData['rho']),-np.min(mapData['rho'])) |
---|
3371 | mapData['minmax'] = [np.max(mapData['rho']),np.min(mapData['rho'])] |
---|
3372 | G2fil.G2Print ('Fourier map time: %.4f no. elements: %d dimensions: %s'%(time.time()-time0,Fhkl.size,str(Fhkl.shape))) |
---|
3373 | |
---|
3374 | # map printing for testing purposes |
---|
3375 | def printRho(SGLaue,rho,rhoMax): |
---|
3376 | '''default doc string |
---|
3377 | |
---|
3378 | :param type name: description |
---|
3379 | |
---|
3380 | :returns: type name: description |
---|
3381 | |
---|
3382 | ''' |
---|
3383 | dim = len(rho.shape) |
---|
3384 | if dim == 2: |
---|
3385 | ix,jy = rho.shape |
---|
3386 | for j in range(jy): |
---|
3387 | line = '' |
---|
3388 | if SGLaue in ['3','3m1','31m','6/m','6/mmm']: |
---|
3389 | line += (jy-j)*' ' |
---|
3390 | for i in range(ix): |
---|
3391 | r = int(100*rho[i,j]/rhoMax) |
---|
3392 | line += '%4d'%(r) |
---|
3393 | print (line+'\n') |
---|
3394 | else: |
---|
3395 | ix,jy,kz = rho.shape |
---|
3396 | for k in range(kz): |
---|
3397 | print ('k = %d'%k) |
---|
3398 | for j in range(jy): |
---|
3399 | line = '' |
---|
3400 | if SGLaue in ['3','3m1','31m','6/m','6/mmm']: |
---|
3401 | line += (jy-j)*' ' |
---|
3402 | for i in range(ix): |
---|
3403 | r = int(100*rho[i,j,k]/rhoMax) |
---|
3404 | line += '%4d'%(r) |
---|
3405 | print (line+'\n') |
---|
3406 | ## keep this |
---|
3407 | |
---|
3408 | def findOffset(SGData,A,Fhkl): |
---|
3409 | '''default doc string |
---|
3410 | |
---|
3411 | :param type name: description |
---|
3412 | |
---|
3413 | :returns: type name: description |
---|
3414 | |
---|
3415 | ''' |
---|
3416 | if SGData['SpGrp'] == 'P 1': |
---|
3417 | return [0,0,0] |
---|
3418 | hklShape = Fhkl.shape |
---|
3419 | hklHalf = np.array(hklShape)/2 |
---|
3420 | sortHKL = np.argsort(Fhkl.flatten()) |
---|
3421 | Fdict = {} |
---|
3422 | for hkl in sortHKL: |
---|
3423 | HKL = np.unravel_index(hkl,hklShape) |
---|
3424 | F = Fhkl[HKL[0]][HKL[1]][HKL[2]] |
---|
3425 | if F == 0.: |
---|
3426 | break |
---|
3427 | Fdict['%.6f'%(np.absolute(F))] = hkl |
---|
3428 | Flist = np.flipud(np.sort(list(Fdict.keys()))) |
---|
3429 | F = str(1.e6) |
---|
3430 | i = 0 |
---|
3431 | DH = [] |
---|
3432 | Dphi = [] |
---|
3433 | Hmax = 2*np.asarray(G2lat.getHKLmax(3.5,SGData,A),dtype='i') |
---|
3434 | for F in Flist: |
---|
3435 | hkl = np.unravel_index(Fdict[F],hklShape) |
---|
3436 | if np.any(np.abs(hkl-hklHalf)-Hmax > 0): |
---|
3437 | continue |
---|
3438 | iabsnt,mulp,Uniq,Phi = G2spc.GenHKLf(list(hkl-hklHalf),SGData) |
---|
3439 | Uniq = np.array(Uniq,dtype='i') |
---|
3440 | Phi = np.array(Phi) |
---|
3441 | Uniq = np.concatenate((Uniq,-Uniq))+hklHalf # put in Friedel pairs & make as index to Farray |
---|
3442 | Phi = np.concatenate((Phi,-Phi)) # and their phase shifts |
---|
3443 | Fh0 = Fhkl[hkl[0],hkl[1],hkl[2]] |
---|
3444 | ang0 = np.angle(Fh0,deg=True)/360. |
---|
3445 | for H,phi in list(zip(Uniq,Phi))[1:]: |
---|
3446 | ang = (np.angle(Fhkl[int(H[0]),int(H[1]),int(H[2])],deg=True)/360.-phi) |
---|
3447 | dH = H-hkl |
---|
3448 | dang = ang-ang0 |
---|
3449 | DH.append(dH) |
---|
3450 | Dphi.append((dang+.5) % 1.0) |
---|
3451 | if i > 20 or len(DH) > 30: |
---|
3452 | break |
---|
3453 | i += 1 |
---|
3454 | DH = np.array(DH) |
---|
3455 | G2fil.G2Print (' map offset no.of terms: %d from %d reflections'%(len(DH),len(Flist))) |
---|
3456 | Dphi = np.array(Dphi) |
---|
3457 | steps = np.array(hklShape) |
---|
3458 | X,Y,Z = np.mgrid[0:1:1./steps[0],0:1:1./steps[1],0:1:1./steps[2]] |
---|
3459 | XYZ = np.array(list(zip(X.flatten(),Y.flatten(),Z.flatten()))) |
---|
3460 | Dang = (np.dot(XYZ,DH.T)+.5)%1.-Dphi |
---|
3461 | Mmap = np.reshape(np.sum((Dang)**2,axis=1),newshape=steps)/len(DH) |
---|
3462 | hist,bins = np.histogram(Mmap,bins=1000) |
---|
3463 | # for i,item in enumerate(hist[:10]): |
---|
3464 | # print item,bins[i] |
---|
3465 | chisq = np.min(Mmap) |
---|
3466 | DX = -np.array(np.unravel_index(np.argmin(Mmap),Mmap.shape)) |
---|
3467 | G2fil.G2Print (' map offset chi**2: %.3f, map offset: %d %d %d'%(chisq,DX[0],DX[1],DX[2])) |
---|
3468 | # print (np.dot(DX,DH.T)+.5)%1.-Dphi |
---|
3469 | return DX |
---|
3470 | |
---|
3471 | def ChargeFlip(data,reflDict,pgbar): |
---|
3472 | '''default doc string |
---|
3473 | |
---|
3474 | :param type name: description |
---|
3475 | |
---|
3476 | :returns: type name: description |
---|
3477 | |
---|
3478 | ''' |
---|
3479 | generalData = data['General'] |
---|
3480 | mapData = generalData['Map'] |
---|
3481 | flipData = generalData['Flip'] |
---|
3482 | FFtable = {} |
---|
3483 | if 'None' not in flipData['Norm element']: |
---|
3484 | normElem = flipData['Norm element'].upper() |
---|
3485 | FFs = G2el.GetFormFactorCoeff(normElem.split('+')[0].split('-')[0]) |
---|
3486 | for ff in FFs: |
---|
3487 | if ff['Symbol'] == normElem: |
---|
3488 | FFtable.update(ff) |
---|
3489 | dmin = flipData['GridStep']*2. |
---|
3490 | SGData = generalData['SGData'] |
---|
3491 | SGMT = np.array([ops[0].T for ops in SGData['SGOps']]) |
---|
3492 | SGT = np.array([ops[1] for ops in SGData['SGOps']]) |
---|
3493 | cell = generalData['Cell'][1:8] |
---|
3494 | A = G2lat.cell2A(cell[:6]) |
---|
3495 | Vol = cell[6] |
---|
3496 | im = 0 |
---|
3497 | if generalData['Modulated'] == True: |
---|
3498 | im = 1 |
---|
3499 | Hmax = np.asarray(G2lat.getHKLmax(dmin,SGData,A),dtype='i')+1 |
---|
3500 | adjHKLmax(SGData,Hmax) |
---|
3501 | Ehkl = np.zeros(shape=2*Hmax,dtype='c16') #2X64bits per complex no. |
---|
3502 | time0 = time.time() |
---|
3503 | for iref,ref in enumerate(reflDict['RefList']): |
---|
3504 | dsp = ref[4+im] |
---|
3505 | if im and ref[3]: #skip super lattice reflections - result is 3D projection |
---|
3506 | continue |
---|
3507 | if dsp > dmin: |
---|
3508 | ff = 0.1*Vol #est. no. atoms for ~10A**3/atom |
---|
3509 | if FFtable: |
---|
3510 | SQ = 0.25/dsp**2 |
---|
3511 | ff *= G2el.ScatFac(FFtable,SQ)[0] |
---|
3512 | if ref[8+im] > 0.: #use only +ve Fobs**2 |
---|
3513 | E = np.sqrt(ref[8+im])/ff |
---|
3514 | else: |
---|
3515 | E = 0. |
---|
3516 | ph = ref[10] |
---|
3517 | ph = rn.uniform(0.,360.) |
---|
3518 | Uniq = np.inner(ref[:3],SGMT) |
---|
3519 | Phi = np.inner(ref[:3],SGT) |
---|
3520 | for i,hkl in enumerate(Uniq): #uses uniq |
---|
3521 | hkl = np.asarray(hkl,dtype='i') |
---|
3522 | dp = 360.*Phi[i] #and phi |
---|
3523 | a = cosd(ph+dp) |
---|
3524 | b = sind(ph+dp) |
---|
3525 | phasep = complex(a,b) |
---|
3526 | phasem = complex(a,-b) |
---|
3527 | h,k,l = hkl+Hmax |
---|
3528 | Ehkl[h,k,l] = E*phasep |
---|
3529 | h,k,l = -hkl+Hmax |
---|
3530 | Ehkl[h,k,l] = E*phasem |
---|
3531 | # Ehkl[Hmax] = 0.00001 #this to preserve F[0,0,0] |
---|
3532 | testHKL = np.array(flipData['testHKL'])+Hmax |
---|
3533 | CEhkl = copy.copy(Ehkl) |
---|
3534 | MEhkl = ma.array(Ehkl,mask=(Ehkl==0.0)) |
---|
3535 | Emask = ma.getmask(MEhkl) |
---|
3536 | sumE = np.sum(ma.array(np.absolute(CEhkl),mask=Emask)) |
---|
3537 | Ncyc = 0 |
---|
3538 | old = np.seterr(all='raise') |
---|
3539 | twophases = [] |
---|
3540 | while True: |
---|
3541 | CErho = np.real(fft.fftn(fft.fftshift(CEhkl)))*(1.+0j) |
---|
3542 | CEsig = np.std(CErho) |
---|
3543 | CFrho = np.where(np.real(CErho) >= flipData['k-factor']*CEsig,CErho,-CErho) |
---|
3544 | CFrho = np.where(np.real(CErho) <= flipData['k-Max']*CEsig,CFrho,-CFrho) #solves U atom problem! |
---|
3545 | CFhkl = fft.ifftshift(fft.ifftn(CFrho)) |
---|
3546 | CFhkl = np.where(CFhkl,CFhkl,1.0) #avoid divide by zero |
---|
3547 | phase = CFhkl/np.absolute(CFhkl) |
---|
3548 | twophases.append([np.angle(phase[h,k,l]) for h,k,l in testHKL]) |
---|
3549 | CEhkl = np.absolute(Ehkl)*phase |
---|
3550 | Ncyc += 1 |
---|
3551 | sumCF = np.sum(ma.array(np.absolute(CFhkl),mask=Emask)) |
---|
3552 | DEhkl = np.absolute(np.absolute(Ehkl)/sumE-np.absolute(CFhkl)/sumCF) |
---|
3553 | Rcf = min(100.,np.sum(ma.array(DEhkl,mask=Emask)*100.)) |
---|
3554 | if Rcf < 5.: |
---|
3555 | break |
---|
3556 | GoOn = pgbar.Update(Rcf,newmsg='%s%8.3f%s\n%s %d'%('Residual Rcf =',Rcf,'%','No.cycles = ',Ncyc))[0] |
---|
3557 | if not GoOn or Ncyc > 10000: |
---|
3558 | break |
---|
3559 | np.seterr(**old) |
---|
3560 | G2fil.G2Print (' Charge flip time: %.4f'%(time.time()-time0),'no. elements: %d'%(Ehkl.size)) |
---|
3561 | CErho = np.real(fft.fftn(fft.fftshift(CEhkl)))/10. #? to get on same scale as e-map |
---|
3562 | G2fil.G2Print (' No.cycles = %d Residual Rcf =%8.3f%s Map size: %s'%(Ncyc,Rcf,'%',str(CErho.shape))) |
---|
3563 | roll = findOffset(SGData,A,CEhkl) #CEhkl needs to be just the observed set, not the full set! |
---|
3564 | |
---|
3565 | mapData['Rcf'] = Rcf |
---|
3566 | mapData['rho'] = np.roll(np.roll(np.roll(CErho,roll[0],axis=0),roll[1],axis=1),roll[2],axis=2) |
---|
3567 | mapData['rhoMax'] = max(np.max(mapData['rho']),-np.min(mapData['rho'])) |
---|
3568 | mapData['minmax'] = [np.max(mapData['rho']),np.min(mapData['rho'])] |
---|
3569 | mapData['Type'] = reflDict['Type'] |
---|
3570 | return mapData,twophases |
---|
3571 | |
---|
3572 | def findSSOffset(SGData,SSGData,A,Fhklm): |
---|
3573 | '''default doc string |
---|
3574 | |
---|
3575 | :param type name: description |
---|
3576 | |
---|
3577 | :returns: type name: description |
---|
3578 | |
---|
3579 | ''' |
---|
3580 | if SGData['SpGrp'] == 'P 1': |
---|
3581 | return [0,0,0,0] |
---|
3582 | hklmShape = Fhklm.shape |
---|
3583 | hklmHalf = np.array(hklmShape)/2 |
---|
3584 | sortHKLM = np.argsort(Fhklm.flatten()) |
---|
3585 | Fdict = {} |
---|
3586 | for hklm in sortHKLM: |
---|
3587 | HKLM = np.unravel_index(hklm,hklmShape) |
---|
3588 | F = Fhklm[HKLM[0]][HKLM[1]][HKLM[2]][HKLM[3]] |
---|
3589 | if F == 0.: |
---|
3590 | break |
---|
3591 | Fdict['%.6f'%(np.absolute(F))] = hklm |
---|
3592 | Flist = np.flipud(np.sort(list(Fdict.keys()))) |
---|
3593 | F = str(1.e6) |
---|
3594 | i = 0 |
---|
3595 | DH = [] |
---|
3596 | Dphi = [] |
---|
3597 | SSGMT = np.array([ops[0].T for ops in SSGData['SSGOps']]) |
---|
3598 | SSGT = np.array([ops[1] for ops in SSGData['SSGOps']]) |
---|
3599 | Hmax = 2*np.asarray(G2lat.getHKLmax(3.5,SGData,A),dtype='i') |
---|
3600 | for F in Flist: |
---|
3601 | hklm = np.unravel_index(Fdict[F],hklmShape) |
---|
3602 | if np.any(np.abs(hklm-hklmHalf)[:3]-Hmax > 0): |
---|
3603 | continue |
---|
3604 | Uniq = np.inner(hklm-hklmHalf,SSGMT) |
---|
3605 | Phi = np.inner(hklm-hklmHalf,SSGT) |
---|
3606 | Uniq = np.concatenate((Uniq,-Uniq))+hklmHalf # put in Friedel pairs & make as index to Farray |
---|
3607 | Phi = np.concatenate((Phi,-Phi)) # and their phase shifts |
---|
3608 | Fh0 = Fhklm[hklm[0],hklm[1],hklm[2],hklm[3]] |
---|
3609 | ang0 = np.angle(Fh0,deg=True)/360. |
---|
3610 | for H,phi in list(zip(Uniq,Phi))[1:]: |
---|
3611 | H = np.array(H,dtype=int) |
---|
3612 | ang = (np.angle(Fhklm[H[0],H[1],H[2],H[3]],deg=True)/360.-phi) |
---|
3613 | dH = H-hklm |
---|
3614 | dang = ang-ang0 |
---|
3615 | DH.append(dH) |
---|
3616 | Dphi.append((dang+.5) % 1.0) |
---|
3617 | if i > 20 or len(DH) > 30: |
---|
3618 | break |
---|
3619 | i += 1 |
---|
3620 | DH = np.array(DH) |
---|
3621 | G2fil.G2Print (' map offset no.of terms: %d from %d reflections'%(len(DH),len(Flist))) |
---|
3622 | Dphi = np.array(Dphi) |
---|
3623 | steps = np.array(hklmShape) |
---|
3624 | X,Y,Z,T = np.mgrid[0:1:1./steps[0],0:1:1./steps[1],0:1:1./steps[2],0:1:1./steps[3]] |
---|
3625 | XYZT = np.array(list(zip(X.flatten(),Y.flatten(),Z.flatten(),T.flatten()))) |
---|
3626 | Dang = (np.dot(XYZT,DH.T)+.5)%1.-Dphi |
---|
3627 | Mmap = np.reshape(np.sum((Dang)**2,axis=1),newshape=steps)/len(DH) |
---|
3628 | hist,bins = np.histogram(Mmap,bins=1000) |
---|
3629 | # for i,item in enumerate(hist[:10]): |
---|
3630 | # print item,bins[i] |
---|
3631 | chisq = np.min(Mmap) |
---|
3632 | DX = -np.array(np.unravel_index(np.argmin(Mmap),Mmap.shape)) |
---|
3633 | G2fil.G2Print (' map offset chi**2: %.3f, map offset: %d %d %d %d'%(chisq,DX[0],DX[1],DX[2],DX[3])) |
---|
3634 | # print (np.dot(DX,DH.T)+.5)%1.-Dphi |
---|
3635 | return DX |
---|
3636 | |
---|
3637 | def SSChargeFlip(data,reflDict,pgbar): |
---|
3638 | '''default doc string |
---|
3639 | |
---|
3640 | :param type name: description |
---|
3641 | |
---|
3642 | :returns: type name: description |
---|
3643 | |
---|
3644 | ''' |
---|
3645 | generalData = data['General'] |
---|
3646 | mapData = generalData['Map'] |
---|
3647 | map4DData = {} |
---|
3648 | flipData = generalData['Flip'] |
---|
3649 | FFtable = {} |
---|
3650 | if 'None' not in flipData['Norm element']: |
---|
3651 | normElem = flipData['Norm element'].upper() |
---|
3652 | FFs = G2el.GetFormFactorCoeff(normElem.split('+')[0].split('-')[0]) |
---|
3653 | for ff in FFs: |
---|
3654 | if ff['Symbol'] == normElem: |
---|
3655 | FFtable.update(ff) |
---|
3656 | dmin = flipData['GridStep']*2. |
---|
3657 | SGData = generalData['SGData'] |
---|
3658 | SSGData = generalData['SSGData'] |
---|
3659 | SSGMT = np.array([ops[0].T for ops in SSGData['SSGOps']]) |
---|
3660 | SSGT = np.array([ops[1] for ops in SSGData['SSGOps']]) |
---|
3661 | cell = generalData['Cell'][1:8] |
---|
3662 | A = G2lat.cell2A(cell[:6]) |
---|
3663 | Vol = cell[6] |
---|
3664 | maxM = 4 |
---|
3665 | Hmax = np.asarray(G2lat.getHKLmax(dmin,SGData,A)+[maxM,],dtype='i')+1 |
---|
3666 | adjHKLmax(SGData,Hmax) |
---|
3667 | Ehkl = np.zeros(shape=2*Hmax,dtype='c16') #2X64bits per complex no. |
---|
3668 | time0 = time.time() |
---|
3669 | for iref,ref in enumerate(reflDict['RefList']): |
---|
3670 | dsp = ref[5] |
---|
3671 | if dsp > dmin: |
---|
3672 | ff = 0.1*Vol #est. no. atoms for ~10A**3/atom |
---|
3673 | if FFtable: |
---|
3674 | SQ = 0.25/dsp**2 |
---|
3675 | ff *= G2el.ScatFac(FFtable,SQ)[0] |
---|
3676 | if ref[9] > 0.: #use only +ve Fobs**2 |
---|
3677 | E = np.sqrt(ref[9])/ff |
---|
3678 | else: |
---|
3679 | E = 0. |
---|
3680 | ph = ref[11] |
---|
3681 | ph = rn.uniform(0.,360.) |
---|
3682 | Uniq = np.inner(ref[:4],SSGMT) |
---|
3683 | Phi = np.inner(ref[:4],SSGT) |
---|
3684 | for i,hklm in enumerate(Uniq): #uses uniq |
---|
3685 | hklm = np.asarray(hklm,dtype='i') |
---|
3686 | dp = 360.*Phi[i] #and phi |
---|
3687 | a = cosd(ph+dp) |
---|
3688 | b = sind(ph+dp) |
---|
3689 | phasep = complex(a,b) |
---|
3690 | phasem = complex(a,-b) |
---|
3691 | h,k,l,m = hklm+Hmax |
---|
3692 | Ehkl[h,k,l,m] = E*phasep |
---|
3693 | h,k,l,m = -hklm+Hmax #Friedel pair refl. |
---|
3694 | Ehkl[h,k,l,m] = E*phasem |
---|
3695 | # Ehkl[Hmax] = 0.00001 #this to preserve F[0,0,0] |
---|
3696 | CEhkl = copy.copy(Ehkl) |
---|
3697 | MEhkl = ma.array(Ehkl,mask=(Ehkl==0.0)) |
---|
3698 | Emask = ma.getmask(MEhkl) |
---|
3699 | sumE = np.sum(ma.array(np.absolute(CEhkl),mask=Emask)) |
---|
3700 | Ncyc = 0 |
---|
3701 | old = np.seterr(all='raise') |
---|
3702 | while True: |
---|
3703 | CErho = np.real(fft.fftn(fft.fftshift(CEhkl)))*(1.+0j) |
---|
3704 | CEsig = np.std(CErho) |
---|
3705 | CFrho = np.where(np.real(CErho) >= flipData['k-factor']*CEsig,CErho,-CErho) |
---|
3706 | CFrho = np.where(np.real(CErho) <= flipData['k-Max']*CEsig,CFrho,-CFrho) #solves U atom problem! |
---|
3707 | CFhkl = fft.ifftshift(fft.ifftn(CFrho)) |
---|
3708 | CFhkl = np.where(CFhkl,CFhkl,1.0) #avoid divide by zero |
---|
3709 | phase = CFhkl/np.absolute(CFhkl) |
---|
3710 | CEhkl = np.absolute(Ehkl)*phase |
---|
3711 | Ncyc += 1 |
---|
3712 | sumCF = np.sum(ma.array(np.absolute(CFhkl),mask=Emask)) |
---|
3713 | DEhkl = np.absolute(np.absolute(Ehkl)/sumE-np.absolute(CFhkl)/sumCF) |
---|
3714 | Rcf = min(100.,np.sum(ma.array(DEhkl,mask=Emask)*100.)) |
---|
3715 | if Rcf < 5.: |
---|
3716 | break |
---|
3717 | GoOn = pgbar.Update(Rcf,newmsg='%s%8.3f%s\n%s %d'%('Residual Rcf =',Rcf,'%','No.cycles = ',Ncyc))[0] |
---|
3718 | if not GoOn or Ncyc > 10000: |
---|
3719 | break |
---|
3720 | np.seterr(**old) |
---|
3721 | G2fil.G2Print (' Charge flip time: %.4f no. elements: %d'%(time.time()-time0,Ehkl.size)) |
---|
3722 | CErho = np.real(fft.fftn(fft.fftshift(CEhkl[:,:,:,maxM+1])))/10. #? to get on same scale as e-map |
---|
3723 | SSrho = np.real(fft.fftn(fft.fftshift(CEhkl)))/10. #? ditto |
---|
3724 | G2fil.G2Print (' No.cycles = %d Residual Rcf =%8.3f%s Map size: %s'%(Ncyc,Rcf,'%',str(CErho.shape))) |
---|
3725 | roll = findSSOffset(SGData,SSGData,A,CEhkl) #CEhkl needs to be just the observed set, not the full set! |
---|
3726 | |
---|
3727 | mapData['Rcf'] = Rcf |
---|
3728 | mapData['rho'] = np.roll(np.roll(np.roll(CErho,roll[0],axis=0),roll[1],axis=1),roll[2],axis=2) |
---|
3729 | mapData['rhoMax'] = max(np.max(mapData['rho']),-np.min(mapData['rho'])) |
---|
3730 | mapData['minmax'] = [np.max(mapData['rho']),np.min(mapData['rho'])] |
---|
3731 | mapData['Type'] = reflDict['Type'] |
---|
3732 | |
---|
3733 | map4DData['Rcf'] = Rcf |
---|
3734 | map4DData['rho'] = np.real(np.roll(np.roll(np.roll(np.roll(SSrho,roll[0],axis=0),roll[1],axis=1),roll[2],axis=2),roll[3],axis=3)) |
---|
3735 | map4DData['rhoMax'] = max(np.max(map4DData['rho']),-np.min(map4DData['rho'])) |
---|
3736 | map4DData['minmax'] = [np.max(map4DData['rho']),np.min(map4DData['rho'])] |
---|
3737 | map4DData['Type'] = reflDict['Type'] |
---|
3738 | return mapData,map4DData |
---|
3739 | |
---|
3740 | def getRho(xyz,mapData): |
---|
3741 | ''' get scattering density at a point by 8-point interpolation |
---|
3742 | param xyz: coordinate to be probed |
---|
3743 | param: mapData: dict of map data |
---|
3744 | |
---|
3745 | :returns: density at xyz |
---|
3746 | ''' |
---|
3747 | rollMap = lambda rho,roll: np.roll(np.roll(np.roll(rho,roll[0],axis=0),roll[1],axis=1),roll[2],axis=2) |
---|
3748 | if not len(mapData): |
---|
3749 | return 0.0 |
---|
3750 | rho = copy.copy(mapData['rho']) #don't mess up original |
---|
3751 | if not len(rho): |
---|
3752 | return 0.0 |
---|
3753 | mapShape = np.array(rho.shape) |
---|
3754 | mapStep = 1./mapShape |
---|
3755 | X = np.array(xyz)%1. #get into unit cell |
---|
3756 | I = np.array(X*mapShape,dtype='int') |
---|
3757 | D = X-I*mapStep #position inside map cell |
---|
3758 | D12 = D[0]*D[1] |
---|
3759 | D13 = D[0]*D[2] |
---|
3760 | D23 = D[1]*D[2] |
---|
3761 | D123 = np.prod(D) |
---|
3762 | Rho = rollMap(rho,-I) #shifts map so point is in corner |
---|
3763 | R = Rho[0,0,0]*(1.-np.sum(D))+Rho[1,0,0]*D[0]+Rho[0,1,0]*D[1]+Rho[0,0,1]*D[2]+ \ |
---|
3764 | Rho[1,1,1]*D123+Rho[0,1,1]*(D23-D123)+Rho[1,0,1]*(D13-D123)+Rho[1,1,0]*(D12-D123)+ \ |
---|
3765 | Rho[0,0,0]*(D12+D13+D23-D123)-Rho[0,0,1]*(D13+D23-D123)- \ |
---|
3766 | Rho[0,1,0]*(D23+D12-D123)-Rho[1,0,0]*(D13+D12-D123) |
---|
3767 | return R |
---|
3768 | |
---|
3769 | def getRhos(XYZ,rho): |
---|
3770 | ''' get scattering density at an array of point by 8-point interpolation |
---|
3771 | this is faster than gerRho which is only used for single points. However, getRhos is |
---|
3772 | replaced by scipy.ndimage.interpolation.map_coordinates which does a better job & is just as fast. |
---|
3773 | Thus, getRhos is unused in GSAS-II at this time. |
---|
3774 | param xyz: array coordinates to be probed Nx3 |
---|
3775 | param: rho: array copy of map (NB: don't use original!) |
---|
3776 | |
---|
3777 | :returns: density at xyz |
---|
3778 | ''' |
---|
3779 | def getBoxes(rho,I): |
---|
3780 | Rhos = np.zeros((2,2,2)) |
---|
3781 | Mx,My,Mz = rho.shape |
---|
3782 | Ix,Iy,Iz = I |
---|
3783 | Rhos = np.array([[[rho[Ix%Mx,Iy%My,Iz%Mz],rho[Ix%Mx,Iy%My,(Iz+1)%Mz]], |
---|
3784 | [rho[Ix%Mx,(Iy+1)%My,Iz%Mz],rho[Ix%Mx,(Iy+1)%My,(Iz+1)%Mz]]], |
---|
3785 | [[rho[(Ix+1)%Mx,Iy%My,Iz%Mz],rho[(Ix+1)%Mx,Iy%My,(Iz+1)%Mz]], |
---|
3786 | [rho[(Ix+1)%Mx,(Iy+1)%My,Iz%Mz],rho[(Ix+1)%Mx,(Iy+1)%My,(Iz+1)%Mz]]]]) |
---|
3787 | return Rhos |
---|
3788 | |
---|
3789 | Blk = 400 #400 doesn't seem to matter |
---|
3790 | nBlk = len(XYZ)//Blk #select Blk so this is an exact divide |
---|
3791 | mapShape = np.array(rho.shape) |
---|
3792 | mapStep = 1./mapShape |
---|
3793 | X = XYZ%1. #get into unit cell |
---|
3794 | iBeg = 0 |
---|
3795 | R = np.zeros(len(XYZ)) |
---|
3796 | #actually a lot faster! |
---|
3797 | for iblk in range(nBlk): |
---|
3798 | iFin = iBeg+Blk |
---|
3799 | Xs = X[iBeg:iFin] |
---|
3800 | I = np.array(np.rint(Xs*mapShape),dtype='int') |
---|
3801 | Rhos = np.array([getBoxes(rho,i) for i in I]) |
---|
3802 | Ds = Xs-I*mapStep |
---|
3803 | RIJs = Rhos[:,0,:2,:2]*(1.-Ds[:,0][:,nxs,nxs]) |
---|
3804 | RIs = RIJs[:,0]*(1.-Ds[:,1][:,nxs])+RIJs[:,1]*Ds[:,1][:,nxs] |
---|
3805 | R[iBeg:iFin] = RIs[:,0]*(1.-Ds[:,2])+RIs[:,1]*Ds[:,2] |
---|
3806 | iBeg += Blk |
---|
3807 | return R |
---|
3808 | |
---|
3809 | def SearchMap(generalData,drawingData,Neg=False): |
---|
3810 | '''Does a search of a density map for peaks meeting the criterion of peak |
---|
3811 | height is greater than mapData['cutOff']/100 of mapData['rhoMax'] where |
---|
3812 | mapData is data['General']['mapData']; the map is also in mapData. |
---|
3813 | |
---|
3814 | :param generalData: the phase data structure; includes the map |
---|
3815 | :param drawingData: the drawing data structure |
---|
3816 | :param Neg: if True then search for negative peaks (i.e. H-atoms & neutron data) |
---|
3817 | |
---|
3818 | :returns: (peaks,mags,dzeros) where |
---|
3819 | |
---|
3820 | * peaks : ndarray |
---|
3821 | x,y,z positions of the peaks found in the map |
---|
3822 | * mags : ndarray |
---|
3823 | the magnitudes of the peaks |
---|
3824 | * dzeros : ndarray |
---|
3825 | the distance of the peaks from the unit cell origin |
---|
3826 | * dcent : ndarray |
---|
3827 | the distance of the peaks from the unit cell center |
---|
3828 | |
---|
3829 | ''' |
---|
3830 | rollMap = lambda rho,roll: np.roll(np.roll(np.roll(rho,roll[0],axis=0),roll[1],axis=1),roll[2],axis=2) |
---|
3831 | |
---|
3832 | norm = 1./(np.sqrt(3.)*np.sqrt(2.*np.pi)**3) |
---|
3833 | |
---|
3834 | def fixSpecialPos(xyz,SGData,Amat): |
---|
3835 | equivs = G2spc.GenAtom(xyz,SGData,Move=True) |
---|
3836 | X = [] |
---|
3837 | xyzs = [equiv[0] for equiv in equivs] |
---|
3838 | for x in xyzs: |
---|
3839 | if np.sqrt(np.sum(np.inner(Amat,xyz-x)**2,axis=0))<0.5: |
---|
3840 | X.append(x) |
---|
3841 | if len(X) > 1: |
---|
3842 | return np.average(X,axis=0) |
---|
3843 | else: |
---|
3844 | return xyz |
---|
3845 | |
---|
3846 | def rhoCalc(parms,rX,rY,rZ,res,SGLaue): |
---|
3847 | Mag,x0,y0,z0,sig = parms |
---|
3848 | z = -((x0-rX)**2+(y0-rY)**2+(z0-rZ)**2)/(2.*sig**2) |
---|
3849 | # return norm*Mag*np.exp(z)/(sig*res**3) #not slower but some faults in LS |
---|
3850 | return norm*Mag*(1.+z+z**2/2.)/(sig*res**3) |
---|
3851 | |
---|
3852 | def peakFunc(parms,rX,rY,rZ,rho,res,SGLaue): |
---|
3853 | Mag,x0,y0,z0,sig = parms |
---|
3854 | M = rho-rhoCalc(parms,rX,rY,rZ,res,SGLaue) |
---|
3855 | return M |
---|
3856 | |
---|
3857 | def peakHess(parms,rX,rY,rZ,rho,res,SGLaue): |
---|
3858 | Mag,x0,y0,z0,sig = parms |
---|
3859 | dMdv = np.zeros(([5,]+list(rX.shape))) |
---|
3860 | delt = .01 |
---|
3861 | for i in range(5): |
---|
3862 | parms[i] -= delt |
---|
3863 | rhoCm = rhoCalc(parms,rX,rY,rZ,res,SGLaue) |
---|
3864 | parms[i] += 2.*delt |
---|
3865 | rhoCp = rhoCalc(parms,rX,rY,rZ,res,SGLaue) |
---|
3866 | parms[i] -= delt |
---|
3867 | dMdv[i] = (rhoCp-rhoCm)/(2.*delt) |
---|
3868 | rhoC = rhoCalc(parms,rX,rY,rZ,res,SGLaue) |
---|
3869 | Vec = np.sum(np.sum(np.sum(dMdv*(rho-rhoC),axis=3),axis=2),axis=1) |
---|
3870 | dMdv = np.reshape(dMdv,(5,rX.size)) |
---|
3871 | Hess = np.inner(dMdv,dMdv) |
---|
3872 | |
---|
3873 | return Vec,Hess |
---|
3874 | |
---|
3875 | SGData = generalData['SGData'] |
---|
3876 | Amat,Bmat = G2lat.cell2AB(generalData['Cell'][1:7]) |
---|
3877 | peaks = [] |
---|
3878 | mags = [] |
---|
3879 | dzeros = [] |
---|
3880 | dcent = [] |
---|
3881 | try: |
---|
3882 | mapData = generalData['Map'] |
---|
3883 | contLevel = mapData['cutOff']*mapData['rhoMax']/100. |
---|
3884 | if Neg: |
---|
3885 | rho = -copy.copy(mapData['rho']) #flip +/- |
---|
3886 | else: |
---|
3887 | rho = copy.copy(mapData['rho']) #don't mess up original |
---|
3888 | mapHalf = np.array(rho.shape)/2 |
---|
3889 | res = mapData['GridStep']*2. |
---|
3890 | incre = np.array(rho.shape,dtype=np.float) |
---|
3891 | step = max(1.0,1./res)+1 |
---|
3892 | steps = np.array((3*[step,]),dtype='int32') |
---|
3893 | except KeyError: |
---|
3894 | G2fil.G2Print ('**** ERROR - Fourier map not defined') |
---|
3895 | return peaks,mags |
---|
3896 | rhoMask = ma.array(rho,mask=(rho<contLevel)) |
---|
3897 | indices = (-1,0,1) |
---|
3898 | rolls = np.array([[h,k,l] for h in indices for k in indices for l in indices]) |
---|
3899 | for roll in rolls: |
---|
3900 | if np.any(roll): |
---|
3901 | rhoMask = ma.array(rhoMask,mask=(rhoMask-rollMap(rho,roll)<=0.)) |
---|
3902 | indx = np.transpose(rhoMask.nonzero()) |
---|
3903 | peaks = indx/incre |
---|
3904 | mags = rhoMask[rhoMask.nonzero()] |
---|
3905 | for i,[ind,peak,mag] in enumerate(zip(indx,peaks,mags)): |
---|
3906 | rho = rollMap(rho,ind) |
---|
3907 | rMM = mapHalf-steps |
---|
3908 | rMP = mapHalf+steps+1 |
---|
3909 | rhoPeak = rho[int(rMM[0]):int(rMP[0]),int(rMM[1]):int(rMP[1]),int(rMM[2]):int(rMP[2])] |
---|
3910 | peakInt = np.sum(rhoPeak)*res**3 |
---|
3911 | rX,rY,rZ = np.mgrid[int(rMM[0]):int(rMP[0]),int(rMM[1]):int(rMP[1]),int(rMM[2]):int(rMP[2])] |
---|
3912 | x0 = [peakInt,mapHalf[0],mapHalf[1],mapHalf[2],2.0] #magnitude, position & width(sig) |
---|
3913 | result = HessianLSQ(peakFunc,x0,Hess=peakHess, |
---|
3914 | args=(rX,rY,rZ,rhoPeak,res,SGData['SGLaue']),ftol=.01,maxcyc=10) |
---|
3915 | x1 = result[0] |
---|
3916 | if not np.any(x1 < 0): |
---|
3917 | peak = (np.array(x1[1:4])-ind)/incre |
---|
3918 | peak = fixSpecialPos(peak,SGData,Amat) |
---|
3919 | rho = rollMap(rho,-ind) |
---|
3920 | cent = np.ones(3)*.5 |
---|
3921 | dzeros = np.sqrt(np.sum(np.inner(Amat,peaks)**2,axis=0)) |
---|
3922 | dcent = np.sqrt(np.sum(np.inner(Amat,peaks-cent)**2,axis=0)) |
---|
3923 | if Neg: #want negative magnitudes for negative peaks |
---|
3924 | return np.array(peaks),-np.array([mags,]).T,np.array([dzeros,]).T,np.array([dcent,]).T |
---|
3925 | else: |
---|
3926 | return np.array(peaks),np.array([mags,]).T,np.array([dzeros,]).T,np.array([dcent,]).T |
---|
3927 | |
---|
3928 | def sortArray(data,pos,reverse=False): |
---|
3929 | '''data is a list of items |
---|
3930 | sort by pos in list; reverse if True |
---|
3931 | ''' |
---|
3932 | T = [] |
---|
3933 | for i,M in enumerate(data): |
---|
3934 | try: |
---|
3935 | T.append((M[pos],i)) |
---|
3936 | except IndexError: |
---|
3937 | return data |
---|
3938 | D = dict(zip(T,data)) |
---|
3939 | T.sort() |
---|
3940 | if reverse: |
---|
3941 | T.reverse() |
---|
3942 | X = [] |
---|
3943 | for key in T: |
---|
3944 | X.append(D[key]) |
---|
3945 | return X |
---|
3946 | |
---|
3947 | def PeaksEquiv(data,Ind): |
---|
3948 | '''Find the equivalent map peaks for those selected. Works on the |
---|
3949 | contents of data['Map Peaks']. |
---|
3950 | |
---|
3951 | :param data: the phase data structure |
---|
3952 | :param list Ind: list of selected peak indices |
---|
3953 | :returns: augmented list of peaks including those related by symmetry to the |
---|
3954 | ones in Ind |
---|
3955 | |
---|
3956 | ''' |
---|
3957 | def Duplicate(xyz,peaks,Amat): |
---|
3958 | if True in [np.allclose(np.inner(Amat,xyz),np.inner(Amat,peak),atol=0.5) for peak in peaks]: |
---|
3959 | return True |
---|
3960 | return False |
---|
3961 | |
---|
3962 | generalData = data['General'] |
---|
3963 | Amat,Bmat = G2lat.cell2AB(generalData['Cell'][1:7]) |
---|
3964 | SGData = generalData['SGData'] |
---|
3965 | mapPeaks = data['Map Peaks'] |
---|
3966 | XYZ = np.array([xyz[1:4] for xyz in mapPeaks]) |
---|
3967 | Indx = {} |
---|
3968 | for ind in Ind: |
---|
3969 | xyz = np.array(mapPeaks[ind][1:4]) |
---|
3970 | xyzs = np.array([equiv[0] for equiv in G2spc.GenAtom(xyz,SGData,Move=True)]) |
---|
3971 | for jnd,xyz in enumerate(XYZ): |
---|
3972 | Indx[jnd] = Duplicate(xyz,xyzs,Amat) |
---|
3973 | Ind = [] |
---|
3974 | for ind in Indx: |
---|
3975 | if Indx[ind]: |
---|
3976 | Ind.append(ind) |
---|
3977 | return Ind |
---|
3978 | |
---|
3979 | def PeaksUnique(data,Ind): |
---|
3980 | '''Finds the symmetry unique set of peaks from those selected. Selects |
---|
3981 | the one closest to the center of the unit cell. |
---|
3982 | Works on the contents of data['Map Peaks']. Called from OnPeaksUnique in |
---|
3983 | GSASIIphsGUI.py, |
---|
3984 | |
---|
3985 | :param data: the phase data structure |
---|
3986 | :param list Ind: list of selected peak indices |
---|
3987 | |
---|
3988 | :returns: the list of symmetry unique peaks from among those given in Ind |
---|
3989 | ''' |
---|
3990 | # XYZE = np.array([[equiv[0] for equiv in G2spc.GenAtom(xyz[1:4],SGData,Move=True)] for xyz in mapPeaks]) #keep this!! |
---|
3991 | |
---|
3992 | def noDuplicate(xyz,peaks,Amat): |
---|
3993 | if True in [np.allclose(np.inner(Amat,xyz),np.inner(Amat,peak),atol=0.5) for peak in peaks]: |
---|
3994 | return False |
---|
3995 | return True |
---|
3996 | |
---|
3997 | generalData = data['General'] |
---|
3998 | Amat,Bmat = G2lat.cell2AB(generalData['Cell'][1:7]) |
---|
3999 | SGData = generalData['SGData'] |
---|
4000 | mapPeaks = data['Map Peaks'] |
---|
4001 | XYZ = {ind:np.array(mapPeaks[ind][1:4]) for ind in Ind} |
---|
4002 | Indx = [True for ind in Ind] |
---|
4003 | Unique = [] |
---|
4004 | # scan through peaks, finding all peaks equivalent to peak ind |
---|
4005 | for ind in Ind: |
---|
4006 | if Indx[ind]: |
---|
4007 | xyz = XYZ[ind] |
---|
4008 | dups = [] |
---|
4009 | for jnd in Ind: |
---|
4010 | # only consider peaks we have not looked at before |
---|
4011 | # and were not already found to be equivalent |
---|
4012 | if jnd > ind and Indx[jnd]: |
---|
4013 | Equiv = G2spc.GenAtom(XYZ[jnd],SGData,Move=True) |
---|
4014 | xyzs = np.array([equiv[0] for equiv in Equiv]) |
---|
4015 | if not noDuplicate(xyz,xyzs,Amat): |
---|
4016 | Indx[jnd] = False |
---|
4017 | dups.append(jnd) |
---|
4018 | # select the unique peak closest to cell center |
---|
4019 | cntr = mapPeaks[ind][-1] |
---|
4020 | icntr = ind |
---|
4021 | for jnd in dups: |
---|
4022 | if mapPeaks[jnd][-1] < cntr: |
---|
4023 | cntr = mapPeaks[jnd][-1] |
---|
4024 | icntr = jnd |
---|
4025 | Unique.append(icntr) |
---|
4026 | return Unique |
---|
4027 | |
---|
4028 | ################################################################################ |
---|
4029 | ##### Dysnomia setup & return stuff |
---|
4030 | ################################################################################ |
---|
4031 | |
---|
4032 | |
---|
4033 | |
---|
4034 | ################################################################################ |
---|
4035 | ##### single peak fitting profile fxn stuff |
---|
4036 | ################################################################################ |
---|
4037 | |
---|
4038 | def getCWsig(ins,pos): |
---|
4039 | '''get CW peak profile sigma^2 |
---|
4040 | |
---|
4041 | :param dict ins: instrument parameters with at least 'U', 'V', & 'W' |
---|
4042 | as values only |
---|
4043 | :param float pos: 2-theta of peak |
---|
4044 | :returns: float getCWsig: peak sigma^2 |
---|
4045 | |
---|
4046 | ''' |
---|
4047 | tp = tand(pos/2.0) |
---|
4048 | return ins['U']*tp**2+ins['V']*tp+ins['W'] |
---|
4049 | |
---|
4050 | def getCWsigDeriv(pos): |
---|
4051 | '''get derivatives of CW peak profile sigma^2 wrt U,V, & W |
---|
4052 | |
---|
4053 | :param float pos: 2-theta of peak |
---|
4054 | |
---|
4055 | :returns: list getCWsigDeriv: d(sig^2)/dU, d(sig)/dV & d(sig)/dW |
---|
4056 | |
---|
4057 | ''' |
---|
4058 | tp = tand(pos/2.0) |
---|
4059 | return tp**2,tp,1.0 |
---|
4060 | |
---|
4061 | def getCWgam(ins,pos): |
---|
4062 | '''get CW peak profile gamma |
---|
4063 | |
---|
4064 | :param dict ins: instrument parameters with at least 'X', 'Y' & 'Z' |
---|
4065 | as values only |
---|
4066 | :param float pos: 2-theta of peak |
---|
4067 | :returns: float getCWgam: peak gamma |
---|
4068 | |
---|
4069 | ''' |
---|
4070 | return ins['X']/cosd(pos/2.0)+ins['Y']*tand(pos/2.0)+ins.get('Z',0.0) |
---|
4071 | |
---|
4072 | def getCWgamDeriv(pos): |
---|
4073 | '''get derivatives of CW peak profile gamma wrt X, Y & Z |
---|
4074 | |
---|
4075 | :param float pos: 2-theta of peak |
---|
4076 | |
---|
4077 | :returns: list getCWgamDeriv: d(gam)/dX & d(gam)/dY |
---|
4078 | |
---|
4079 | ''' |
---|
4080 | return 1./cosd(pos/2.0),tand(pos/2.0),1.0 |
---|
4081 | |
---|
4082 | def getTOFsig(ins,dsp): |
---|
4083 | '''get TOF peak profile sigma^2 |
---|
4084 | |
---|
4085 | :param dict ins: instrument parameters with at least 'sig-0', 'sig-1' & 'sig-q' |
---|
4086 | as values only |
---|
4087 | :param float dsp: d-spacing of peak |
---|
4088 | |
---|
4089 | :returns: float getTOFsig: peak sigma^2 |
---|
4090 | |
---|
4091 | ''' |
---|
4092 | return ins['sig-0']+ins['sig-1']*dsp**2+ins['sig-2']*dsp**4+ins['sig-q']*dsp |
---|
4093 | |
---|
4094 | def getTOFsigDeriv(dsp): |
---|
4095 | '''get derivatives of TOF peak profile sigma^2 wrt sig-0, sig-1, & sig-q |
---|
4096 | |
---|
4097 | :param float dsp: d-spacing of peak |
---|
4098 | |
---|
4099 | :returns: list getTOFsigDeriv: d(sig0/d(sig-0), d(sig)/d(sig-1) & d(sig)/d(sig-q) |
---|
4100 | |
---|
4101 | ''' |
---|
4102 | return 1.0,dsp**2,dsp**4,dsp |
---|
4103 | |
---|
4104 | def getTOFgamma(ins,dsp): |
---|
4105 | '''get TOF peak profile gamma |
---|
4106 | |
---|
4107 | :param dict ins: instrument parameters with at least 'X', 'Y' & 'Z' |
---|
4108 | as values only |
---|
4109 | :param float dsp: d-spacing of peak |
---|
4110 | |
---|
4111 | :returns: float getTOFgamma: peak gamma |
---|
4112 | |
---|
4113 | ''' |
---|
4114 | return ins['Z']+ins['X']*dsp+ins['Y']*dsp**2 |
---|
4115 | |
---|
4116 | def getTOFgammaDeriv(dsp): |
---|
4117 | '''get derivatives of TOF peak profile gamma wrt X, Y & Z |
---|
4118 | |
---|
4119 | :param float dsp: d-spacing of peak |
---|
4120 | |
---|
4121 | :returns: list getTOFgammaDeriv: d(gam)/dX & d(gam)/dY |
---|
4122 | |
---|
4123 | ''' |
---|
4124 | return dsp,dsp**2,1.0 |
---|
4125 | |
---|
4126 | def getTOFbeta(ins,dsp): |
---|
4127 | '''get TOF peak profile beta |
---|
4128 | |
---|
4129 | :param dict ins: instrument parameters with at least 'beat-0', 'beta-1' & 'beta-q' |
---|
4130 | as values only |
---|
4131 | :param float dsp: d-spacing of peak |
---|
4132 | |
---|
4133 | :returns: float getTOFbeta: peak beat |
---|
4134 | |
---|
4135 | ''' |
---|
4136 | return ins['beta-0']+ins['beta-1']/dsp**4+ins['beta-q']/dsp**2 |
---|
4137 | |
---|
4138 | def getTOFbetaDeriv(dsp): |
---|
4139 | '''get derivatives of TOF peak profile beta wrt beta-0, beta-1, & beat-q |
---|
4140 | |
---|
4141 | :param float dsp: d-spacing of peak |
---|
4142 | |
---|
4143 | :returns: list getTOFbetaDeriv: d(beta)/d(beat-0), d(beta)/d(beta-1) & d(beta)/d(beta-q) |
---|
4144 | |
---|
4145 | ''' |
---|
4146 | return 1.0,1./dsp**4,1./dsp**2 |
---|
4147 | |
---|
4148 | def getTOFalpha(ins,dsp): |
---|
4149 | '''get TOF peak profile alpha |
---|
4150 | |
---|
4151 | :param dict ins: instrument parameters with at least 'alpha' |
---|
4152 | as values only |
---|
4153 | :param float dsp: d-spacing of peak |
---|
4154 | |
---|
4155 | :returns: flaot getTOFalpha: peak alpha |
---|
4156 | |
---|
4157 | ''' |
---|
4158 | return ins['alpha']/dsp |
---|
4159 | |
---|
4160 | def getTOFalphaDeriv(dsp): |
---|
4161 | '''get derivatives of TOF peak profile beta wrt alpha |
---|
4162 | |
---|
4163 | :param float dsp: d-spacing of peak |
---|
4164 | |
---|
4165 | :returns: float getTOFalphaDeriv: d(alp)/d(alpha) |
---|
4166 | |
---|
4167 | ''' |
---|
4168 | return 1./dsp |
---|
4169 | |
---|
4170 | def getPinkalpha(ins,tth): |
---|
4171 | '''get TOF peak profile alpha |
---|
4172 | |
---|
4173 | :param dict ins: instrument parameters with at least 'alpha' |
---|
4174 | as values only |
---|
4175 | :param float tth: 2-theta of peak |
---|
4176 | |
---|
4177 | :returns: flaot getPinkalpha: peak alpha |
---|
4178 | |
---|
4179 | ''' |
---|
4180 | return ins['alpha-0']+ ins['alpha-1']*tand(tth/2.) |
---|
4181 | |
---|
4182 | def getPinkalphaDeriv(tth): |
---|
4183 | '''get derivatives of TOF peak profile beta wrt alpha |
---|
4184 | |
---|
4185 | :param float dsp: d-spacing of peak |
---|
4186 | |
---|
4187 | :returns: float getTOFalphaDeriv: d(alp)/d(alpha-0), d(alp)/d(alpha-1) |
---|
4188 | |
---|
4189 | ''' |
---|
4190 | return 1.0,tand(tth/2.) |
---|
4191 | |
---|
4192 | def getPinkbeta(ins,tth): |
---|
4193 | '''get TOF peak profile beta |
---|
4194 | |
---|
4195 | :param dict ins: instrument parameters with at least 'beat-0' & 'beta-1' |
---|
4196 | as values only |
---|
4197 | :param float tth: 2-theta of peak |
---|
4198 | |
---|
4199 | :returns: float getaPinkbeta: peak beta |
---|
4200 | |
---|
4201 | ''' |
---|
4202 | return ins['beta-0']+ins['beta-1']*tand(tth/2.) |
---|
4203 | |
---|
4204 | def getPinkbetaDeriv(tth): |
---|
4205 | '''get derivatives of TOF peak profile beta wrt beta-0 & beta-1 |
---|
4206 | |
---|
4207 | :param float dsp: d-spacing of peak |
---|
4208 | |
---|
4209 | :returns: list getTOFbetaDeriv: d(beta)/d(beta-0) & d(beta)/d(beta-1) |
---|
4210 | |
---|
4211 | ''' |
---|
4212 | return 1.0,tand(tth/2.) |
---|
4213 | |
---|
4214 | def setPeakparms(Parms,Parms2,pos,mag,ifQ=False,useFit=False): |
---|
4215 | '''set starting peak parameters for single peak fits from plot selection or auto selection |
---|
4216 | |
---|
4217 | :param dict Parms: instrument parameters dictionary |
---|
4218 | :param dict Parms2: table lookup for TOF profile coefficients |
---|
4219 | :param float pos: peak position in 2-theta, TOF or Q (ifQ=True) |
---|
4220 | :param float mag: peak top magnitude from pick |
---|
4221 | :param bool ifQ: True if pos in Q |
---|
4222 | :param bool useFit: True if use fitted CW Parms values (not defaults) |
---|
4223 | |
---|
4224 | :returns: list XY: peak list entry: |
---|
4225 | for CW: [pos,0,mag,1,sig,0,gam,0] |
---|
4226 | for TOF: [pos,0,mag,1,alp,0,bet,0,sig,0,gam,0] |
---|
4227 | for Pink: [pos,0,mag,1,alp,0,bet,0,sig,0,gam,0] |
---|
4228 | NB: mag refinement set by default, all others off |
---|
4229 | |
---|
4230 | ''' |
---|
4231 | ind = 0 |
---|
4232 | if useFit: |
---|
4233 | ind = 1 |
---|
4234 | ins = {} |
---|
4235 | if 'T' in Parms['Type'][0]: |
---|
4236 | if ifQ: |
---|
4237 | dsp = 2.*np.pi/pos |
---|
4238 | pos = Parms['difC']*dsp |
---|
4239 | else: |
---|
4240 | dsp = pos/Parms['difC'][1] |
---|
4241 | if 'Pdabc' in Parms2: |
---|
4242 | for x in ['sig-0','sig-1','sig-2','sig-q','X','Y','Z']: |
---|
4243 | ins[x] = Parms.get(x,[0.0,0.0])[ind] |
---|
4244 | Pdabc = Parms2['Pdabc'].T |
---|
4245 | alp = np.interp(dsp,Pdabc[0],Pdabc[1]) |
---|
4246 | bet = np.interp(dsp,Pdabc[0],Pdabc[2]) |
---|
4247 | else: |
---|
4248 | for x in ['alpha','beta-0','beta-1','beta-q','sig-0','sig-1','sig-2','sig-q','X','Y','Z']: |
---|
4249 | ins[x] = Parms.get(x,[0.0,0.0])[ind] |
---|
4250 | alp = getTOFalpha(ins,dsp) |
---|
4251 | bet = getTOFbeta(ins,dsp) |
---|
4252 | sig = getTOFsig(ins,dsp) |
---|
4253 | gam = getTOFgamma(ins,dsp) |
---|
4254 | XY = [pos,0,mag,1,alp,0,bet,0,sig,0,gam,0] |
---|
4255 | elif 'C' in Parms['Type'][0]: #CW data - TOF later in an else |
---|
4256 | for x in ['U','V','W','X','Y','Z']: |
---|
4257 | ins[x] = Parms.get(x,[0.0,0.0])[ind] |
---|
4258 | if ifQ: #qplot - convert back to 2-theta |
---|
4259 | pos = 2.0*asind(pos*getWave(Parms)/(4*math.pi)) |
---|
4260 | sig = getCWsig(ins,pos) |
---|
4261 | gam = getCWgam(ins,pos) |
---|
4262 | XY = [pos,0, mag,1, sig,0, gam,0] #default refine intensity 1st |
---|
4263 | elif 'B' in Parms['Type'][0]: |
---|
4264 | for x in ['U','V','W','X','Y','Z','alpha-0','alpha-1','beta-0','beta-1']: |
---|
4265 | ins[x] = Parms.get(x,[0.0,0.0])[ind] |
---|
4266 | if ifQ: #qplot - convert back to 2-theta |
---|
4267 | pos = 2.0*asind(pos*getWave(Parms)/(4*math.pi)) |
---|
4268 | alp = getPinkalpha(ins,pos) |
---|
4269 | bet = getPinkbeta(ins,pos) |
---|
4270 | sig = getCWsig(ins,pos) |
---|
4271 | gam = getCWgam(ins,pos) |
---|
4272 | XY = [pos,0,mag,1,alp,0,bet,0,sig,0,gam,0] #default refine intensity 1st |
---|
4273 | return XY |
---|
4274 | |
---|
4275 | ################################################################################ |
---|
4276 | ##### MC/SA stuff |
---|
4277 | ################################################################################ |
---|
4278 | |
---|
4279 | #scipy/optimize/anneal.py code modified by R. Von Dreele 2013 |
---|
4280 | # Original Author: Travis Oliphant 2002 |
---|
4281 | # Bug-fixes in 2006 by Tim Leslie |
---|
4282 | |
---|
4283 | |
---|
4284 | import numpy |
---|
4285 | from numpy import asarray, exp, squeeze, sign, \ |
---|
4286 | all, shape, array, where |
---|
4287 | from numpy import random |
---|
4288 | |
---|
4289 | #__all__ = ['anneal'] |
---|
4290 | |
---|
4291 | class base_schedule(object): |
---|
4292 | def __init__(self): |
---|
4293 | self.dwell = 20 |
---|
4294 | self.lower = 0. |
---|
4295 | self.upper = 1. |
---|
4296 | self.Ninit = 50 |
---|
4297 | self.accepted = 0 |
---|
4298 | self.tests = 0 |
---|
4299 | self.feval = 0 |
---|
4300 | self.k = 0 |
---|
4301 | self.T = None |
---|
4302 | |
---|
4303 | def init(self, **options): |
---|
4304 | self.__dict__.update(options) |
---|
4305 | self.lower = asarray(self.lower) |
---|
4306 | self.lower = where(self.lower == numpy.NINF, -_double_max, self.lower) |
---|
4307 | self.upper = asarray(self.upper) |
---|
4308 | self.upper = where(self.upper == numpy.PINF, _double_max, self.upper) |
---|
4309 | self.k = 0 |
---|
4310 | self.accepted = 0 |
---|
4311 | self.feval = 0 |
---|
4312 | self.tests = 0 |
---|
4313 | |
---|
4314 | def getstart_temp(self, best_state): |
---|
4315 | """ Find a matching starting temperature and starting parameters vector |
---|
4316 | i.e. find x0 such that func(x0) = T0. |
---|
4317 | |
---|
4318 | :param best_state: _state |
---|
4319 | A _state object to store the function value and x0 found. |
---|
4320 | |
---|
4321 | :returns: x0 : array |
---|
4322 | The starting parameters vector. |
---|
4323 | """ |
---|
4324 | |
---|
4325 | assert(not self.dims is None) |
---|
4326 | lrange = self.lower |
---|
4327 | urange = self.upper |
---|
4328 | fmax = _double_min |
---|
4329 | fmin = _double_max |
---|
4330 | for _ in range(self.Ninit): |
---|
4331 | x0 = random.uniform(size=self.dims)*(urange-lrange) + lrange |
---|
4332 | fval = self.func(x0, *self.args) |
---|
4333 | self.feval += 1 |
---|
4334 | if fval > fmax: |
---|
4335 | fmax = fval |
---|
4336 | if fval < fmin: |
---|
4337 | fmin = fval |
---|
4338 | best_state.cost = fval |
---|
4339 | best_state.x = array(x0) |
---|
4340 | |
---|
4341 | self.T0 = (fmax-fmin)*1.5 |
---|
4342 | return best_state.x |
---|
4343 | |
---|
4344 | def set_range(self,x0,frac): |
---|
4345 | delrange = frac*(self.upper-self.lower) |
---|
4346 | self.upper = x0+delrange |
---|
4347 | self.lower = x0-delrange |
---|
4348 | |
---|
4349 | def accept_test(self, dE): |
---|
4350 | T = self.T |
---|
4351 | self.tests += 1 |
---|
4352 | if dE < 0: |
---|
4353 | self.accepted += 1 |
---|
4354 | return 1 |
---|
4355 | p = exp(-dE*1.0/T) |
---|
4356 | if (p > random.uniform(0.0, 1.0)): |
---|
4357 | self.accepted += 1 |
---|
4358 | return 1 |
---|
4359 | return 0 |
---|
4360 | |
---|
4361 | def update_guess(self, x0): |
---|
4362 | return np.squeeze(np.random.uniform(0.,1.,size=self.dims))*(self.upper-self.lower)+self.lower |
---|
4363 | |
---|
4364 | def update_temp(self, x0): |
---|
4365 | pass |
---|
4366 | |
---|
4367 | class fast_sa(base_schedule): |
---|
4368 | def init(self, **options): |
---|
4369 | self.__dict__.update(options) |
---|
4370 | |
---|
4371 | def update_guess(self, x0): |
---|
4372 | x0 = asarray(x0) |
---|
4373 | u = squeeze(random.uniform(0.0, 1.0, size=self.dims)) |
---|
4374 | T = self.T |
---|
4375 | xc = (sign(u-0.5)*T*((1+1.0/T)**abs(2*u-1)-1.0)+1.0)/2.0 |
---|
4376 | xnew = xc*(self.upper - self.lower)+self.lower |
---|
4377 | return xnew |
---|
4378 | |
---|
4379 | def update_temp(self): |
---|
4380 | self.T = self.T0*exp(-self.c * self.k**(self.quench)) |
---|
4381 | self.k += 1 |
---|
4382 | return |
---|
4383 | |
---|
4384 | class log_sa(base_schedule): #OK |
---|
4385 | |
---|
4386 | def init(self,**options): |
---|
4387 | self.__dict__.update(options) |
---|
4388 | |
---|
4389 | def update_guess(self,x0): #same as default #TODO - is this a reasonable update procedure? |
---|
4390 | u = squeeze(random.uniform(0.0, 1.0, size=self.dims)) |
---|
4391 | T = self.T |
---|
4392 | xc = (sign(u-0.5)*T*((1+1.0/T)**abs(2*u-1)-1.0)+1.0)/2.0 |
---|
4393 | xnew = xc*(self.upper - self.lower)+self.lower |
---|
4394 | return xnew |
---|
4395 | |
---|
4396 | def update_temp(self): |
---|
4397 | self.k += 1 |
---|
4398 | self.T = self.T0*self.slope**self.k |
---|
4399 | |
---|
4400 | class _state(object): |
---|
4401 | def __init__(self): |
---|
4402 | self.x = None |
---|
4403 | self.cost = None |
---|
4404 | |
---|
4405 | def makeTsched(data): |
---|
4406 | if data['Algorithm'] == 'fast': |
---|
4407 | sched = fast_sa() |
---|
4408 | sched.quench = data['fast parms'][0] |
---|
4409 | sched.c = data['fast parms'][1] |
---|
4410 | elif data['Algorithm'] == 'log': |
---|
4411 | sched = log_sa() |
---|
4412 | sched.slope = data['log slope'] |
---|
4413 | sched.T0 = data['Annealing'][0] |
---|
4414 | if not sched.T0: |
---|
4415 | sched.T0 = 50. |
---|
4416 | Tf = data['Annealing'][1] |
---|
4417 | if not Tf: |
---|
4418 | Tf = 0.001 |
---|
4419 | Tsched = [sched.T0,] |
---|
4420 | while Tsched[-1] > Tf: |
---|
4421 | sched.update_temp() |
---|
4422 | Tsched.append(sched.T) |
---|
4423 | return Tsched[1:] |
---|
4424 | |
---|
4425 | def anneal(func, x0, args=(), schedule='fast', |
---|
4426 | T0=None, Tf=1e-12, maxeval=None, maxaccept=None, maxiter=400, |
---|
4427 | feps=1e-6, quench=1.0, c=1.0, |
---|
4428 | lower=-100, upper=100, dwell=50, slope=0.9,ranStart=False, |
---|
4429 | ranRange=0.10,autoRan=False,dlg=None): |
---|
4430 | """Minimize a function using simulated annealing. |
---|
4431 | |
---|
4432 | Schedule is a schedule class implementing the annealing schedule. |
---|
4433 | Available ones are 'fast', 'cauchy', 'boltzmann' |
---|
4434 | |
---|
4435 | :param callable func: f(x, \*args) |
---|
4436 | Function to be optimized. |
---|
4437 | :param ndarray x0: |
---|
4438 | Initial guess. |
---|
4439 | :param tuple args: |
---|
4440 | Extra parameters to `func`. |
---|
4441 | :param base_schedule schedule: |
---|
4442 | Annealing schedule to use (a class). |
---|
4443 | :param float T0: |
---|
4444 | Initial Temperature (estimated as 1.2 times the largest |
---|
4445 | cost-function deviation over random points in the range). |
---|
4446 | :param float Tf: |
---|
4447 | Final goal temperature. |
---|
4448 | :param int maxeval: |
---|
4449 | Maximum function evaluations. |
---|
4450 | :param int maxaccept: |
---|
4451 | Maximum changes to accept. |
---|
4452 | :param int maxiter: |
---|
4453 | Maximum cooling iterations. |
---|
4454 | :param float feps: |
---|
4455 | Stopping relative error tolerance for the function value in |
---|
4456 | last four coolings. |
---|
4457 | :param float quench,c: |
---|
4458 | Parameters to alter fast_sa schedule. |
---|
4459 | :param float/ndarray lower,upper: |
---|
4460 | Lower and upper bounds on `x`. |
---|
4461 | :param int dwell: |
---|
4462 | The number of times to search the space at each temperature. |
---|
4463 | :param float slope: |
---|
4464 | Parameter for log schedule |
---|
4465 | :param bool ranStart=False: |
---|
4466 | True for set 10% of ranges about x |
---|
4467 | |
---|
4468 | :returns: (xmin, Jmin, T, feval, iters, accept, retval) where |
---|
4469 | |
---|
4470 | * xmin (ndarray): Point giving smallest value found. |
---|
4471 | * Jmin (float): Minimum value of function found. |
---|
4472 | * T (float): Final temperature. |
---|
4473 | * feval (int): Number of function evaluations. |
---|
4474 | * iters (int): Number of cooling iterations. |
---|
4475 | * accept (int): Number of tests accepted. |
---|
4476 | * retval (int): Flag indicating stopping condition: |
---|
4477 | |
---|
4478 | * 0: Points no longer changing |
---|
4479 | * 1: Cooled to final temperature |
---|
4480 | * 2: Maximum function evaluations |
---|
4481 | * 3: Maximum cooling iterations reached |
---|
4482 | * 4: Maximum accepted query locations reached |
---|
4483 | * 5: Final point not the minimum amongst encountered points |
---|
4484 | |
---|
4485 | *Notes*: |
---|
4486 | Simulated annealing is a random algorithm which uses no derivative |
---|
4487 | information from the function being optimized. In practice it has |
---|
4488 | been more useful in discrete optimization than continuous |
---|
4489 | optimization, as there are usually better algorithms for continuous |
---|
4490 | optimization problems. |
---|
4491 | |
---|
4492 | Some experimentation by trying the difference temperature |
---|
4493 | schedules and altering their parameters is likely required to |
---|
4494 | obtain good performance. |
---|
4495 | |
---|
4496 | The randomness in the algorithm comes from random sampling in numpy. |
---|
4497 | To obtain the same results you can call numpy.random.seed with the |
---|
4498 | same seed immediately before calling scipy.optimize.anneal. |
---|
4499 | |
---|
4500 | We give a brief description of how the three temperature schedules |
---|
4501 | generate new points and vary their temperature. Temperatures are |
---|
4502 | only updated with iterations in the outer loop. The inner loop is |
---|
4503 | over range(dwell), and new points are generated for |
---|
4504 | every iteration in the inner loop. (Though whether the proposed |
---|
4505 | new points are accepted is probabilistic.) |
---|
4506 | |
---|
4507 | For readability, let d denote the dimension of the inputs to func. |
---|
4508 | Also, let x_old denote the previous state, and k denote the |
---|
4509 | iteration number of the outer loop. All other variables not |
---|
4510 | defined below are input variables to scipy.optimize.anneal itself. |
---|
4511 | |
---|
4512 | In the 'fast' schedule the updates are :: |
---|
4513 | |
---|
4514 | u ~ Uniform(0, 1, size=d) |
---|
4515 | y = sgn(u - 0.5) * T * ((1+ 1/T)**abs(2u-1) -1.0) |
---|
4516 | xc = y * (upper - lower) |
---|
4517 | x_new = x_old + xc |
---|
4518 | |
---|
4519 | T_new = T0 * exp(-c * k**quench) |
---|
4520 | |
---|
4521 | """ |
---|
4522 | |
---|
4523 | ''' Scipy license: |
---|
4524 | Copyright (c) 2001, 2002 Enthought, Inc. |
---|
4525 | All rights reserved. |
---|
4526 | |
---|
4527 | Copyright (c) 2003-2016 SciPy Developers. |
---|
4528 | All rights reserved. |
---|
4529 | |
---|
4530 | Redistribution and use in source and binary forms, with or without |
---|
4531 | modification, are permitted provided that the following conditions are met: |
---|
4532 | |
---|
4533 | a. Redistributions of source code must retain the above copyright notice, |
---|
4534 | this list of conditions and the following disclaimer. |
---|
4535 | b. Redistributions in binary form must reproduce the above copyright |
---|
4536 | notice, this list of conditions and the following disclaimer in the |
---|
4537 | documentation and/or other materials provided with the distribution. |
---|
4538 | c. Neither the name of Enthou |
---|