[762] | 1 | # -*- coding: utf-8 -*- |
---|
| 2 | #GSASIImath - major mathematics routines |
---|
| 3 | ########### SVN repository information ################### |
---|
| 4 | # $Date: 2015-10-06 19:53:02 +0000 (Tue, 06 Oct 2015) $ |
---|
| 5 | # $Author: vondreele $ |
---|
| 6 | # $Revision: 1988 $ |
---|
| 7 | # $URL: trunk/GSASIImath.py $ |
---|
| 8 | # $Id: GSASIImath.py 1988 2015-10-06 19:53:02Z vondreele $ |
---|
| 9 | ########### SVN repository information ################### |
---|
[939] | 10 | ''' |
---|
| 11 | *GSASIImath: computation module* |
---|
| 12 | ================================ |
---|
| 13 | |
---|
| 14 | Routines for least-squares minimization and other stuff |
---|
| 15 | |
---|
| 16 | ''' |
---|
[762] | 17 | import sys |
---|
| 18 | import os |
---|
| 19 | import os.path as ospath |
---|
| 20 | import random as rn |
---|
| 21 | import numpy as np |
---|
| 22 | import numpy.linalg as nl |
---|
| 23 | import numpy.ma as ma |
---|
| 24 | import cPickle |
---|
| 25 | import time |
---|
| 26 | import math |
---|
| 27 | import copy |
---|
| 28 | import GSASIIpath |
---|
| 29 | GSASIIpath.SetVersionNumber("$Revision: 1988 $") |
---|
| 30 | import GSASIIElem as G2el |
---|
| 31 | import GSASIIlattice as G2lat |
---|
| 32 | import GSASIIspc as G2spc |
---|
[1001] | 33 | import GSASIIpwd as G2pwd |
---|
[763] | 34 | import numpy.fft as fft |
---|
[1790] | 35 | import scipy.optimize as so |
---|
[1977] | 36 | import pypowder as pwd |
---|
[1978] | 37 | if GSASIIpath.GetConfigValue('debug'): |
---|
| 38 | import pylab as pl |
---|
[763] | 39 | |
---|
| 40 | sind = lambda x: np.sin(x*np.pi/180.) |
---|
| 41 | cosd = lambda x: np.cos(x*np.pi/180.) |
---|
| 42 | tand = lambda x: np.tan(x*np.pi/180.) |
---|
| 43 | asind = lambda x: 180.*np.arcsin(x)/np.pi |
---|
| 44 | acosd = lambda x: 180.*np.arccos(x)/np.pi |
---|
[823] | 45 | atand = lambda x: 180.*np.arctan(x)/np.pi |
---|
[763] | 46 | atan2d = lambda y,x: 180.*np.arctan2(y,x)/np.pi |
---|
[1630] | 47 | twopi = 2.0*np.pi |
---|
| 48 | twopisq = 2.0*np.pi**2 |
---|
[1625] | 49 | |
---|
| 50 | ################################################################################ |
---|
| 51 | ##### Hessian least-squares Levenberg-Marquardt routine |
---|
| 52 | ################################################################################ |
---|
[763] | 53 | |
---|
[975] | 54 | def HessianLSQ(func,x0,Hess,args=(),ftol=1.49012e-8,xtol=1.49012e-8, maxcyc=0,Print=False): |
---|
[763] | 55 | |
---|
| 56 | """ |
---|
[956] | 57 | Minimize the sum of squares of a function (:math:`f`) evaluated on a series of |
---|
| 58 | values (y): :math:`\sum_{y=0}^{N_{obs}} f(y,{args})` |
---|
| 59 | |
---|
[763] | 60 | :: |
---|
| 61 | |
---|
| 62 | Nobs |
---|
| 63 | x = arg min(sum(func(y)**2,axis=0)) |
---|
| 64 | y=0 |
---|
| 65 | |
---|
[939] | 66 | :param function func: callable method or function |
---|
[763] | 67 | should take at least one (possibly length N vector) argument and |
---|
| 68 | returns M floating point numbers. |
---|
[939] | 69 | :param np.ndarray x0: The starting estimate for the minimization of length N |
---|
| 70 | :param function Hess: callable method or function |
---|
[763] | 71 | A required function or method to compute the weighted vector and Hessian for func. |
---|
| 72 | It must be a symmetric NxN array |
---|
[939] | 73 | :param tuple args: Any extra arguments to func are placed in this tuple. |
---|
| 74 | :param float ftol: Relative error desired in the sum of squares. |
---|
| 75 | :param float xtol: Relative error desired in the approximate solution. |
---|
| 76 | :param int maxcyc: The maximum number of cycles of refinement to execute, if -1 refine |
---|
[763] | 77 | until other limits are met (ftol, xtol) |
---|
[975] | 78 | :param bool Print: True for printing results (residuals & times) by cycle |
---|
[763] | 79 | |
---|
[950] | 80 | :returns: (x,cov_x,infodict) where |
---|
[939] | 81 | |
---|
| 82 | * x : ndarray |
---|
[763] | 83 | The solution (or the result of the last iteration for an unsuccessful |
---|
| 84 | call). |
---|
[939] | 85 | * cov_x : ndarray |
---|
[763] | 86 | Uses the fjac and ipvt optional outputs to construct an |
---|
| 87 | estimate of the jacobian around the solution. ``None`` if a |
---|
| 88 | singular matrix encountered (indicates very flat curvature in |
---|
| 89 | some direction). This matrix must be multiplied by the |
---|
| 90 | residual standard deviation to get the covariance of the |
---|
| 91 | parameter estimates -- see curve_fit. |
---|
[939] | 92 | * infodict : dict |
---|
| 93 | a dictionary of optional outputs with the keys: |
---|
[763] | 94 | |
---|
[939] | 95 | * 'fvec' : the function evaluated at the output |
---|
| 96 | * 'num cyc': |
---|
| 97 | * 'nfev': |
---|
| 98 | * 'lamMax': |
---|
| 99 | * 'psing': |
---|
| 100 | |
---|
[763] | 101 | """ |
---|
| 102 | |
---|
[1282] | 103 | ifConverged = False |
---|
| 104 | deltaChi2 = -10. |
---|
[763] | 105 | x0 = np.array(x0, ndmin=1) #might be redundant? |
---|
| 106 | n = len(x0) |
---|
| 107 | if type(args) != type(()): |
---|
| 108 | args = (args,) |
---|
| 109 | |
---|
| 110 | icycle = 0 |
---|
| 111 | One = np.ones((n,n)) |
---|
| 112 | lam = 0.001 |
---|
| 113 | lamMax = lam |
---|
| 114 | nfev = 0 |
---|
[975] | 115 | if Print: |
---|
| 116 | print ' Hessian refinement on %d variables:'%(n) |
---|
[1106] | 117 | Lam = np.zeros((n,n)) |
---|
[763] | 118 | while icycle < maxcyc: |
---|
[975] | 119 | time0 = time.time() |
---|
[763] | 120 | M = func(x0,*args) |
---|
| 121 | nfev += 1 |
---|
| 122 | chisq0 = np.sum(M**2) |
---|
| 123 | Yvec,Amat = Hess(x0,*args) |
---|
| 124 | Adiag = np.sqrt(np.diag(Amat)) |
---|
| 125 | psing = np.where(np.abs(Adiag) < 1.e-14,True,False) |
---|
| 126 | if np.any(psing): #hard singularity in matrix |
---|
| 127 | return [x0,None,{'num cyc':icycle,'fvec':M,'nfev':nfev,'lamMax':lamMax,'psing':psing}] |
---|
| 128 | Anorm = np.outer(Adiag,Adiag) |
---|
| 129 | Yvec /= Adiag |
---|
[975] | 130 | Amat /= Anorm |
---|
[763] | 131 | while True: |
---|
| 132 | Lam = np.eye(Amat.shape[0])*lam |
---|
| 133 | Amatlam = Amat*(One+Lam) |
---|
| 134 | try: |
---|
| 135 | Xvec = nl.solve(Amatlam,Yvec) |
---|
| 136 | except nl.LinAlgError: |
---|
| 137 | print 'ouch #1' |
---|
| 138 | psing = list(np.where(np.diag(nl.qr(Amatlam)[1]) < 1.e-14)[0]) |
---|
| 139 | return [x0,None,{'num cyc':icycle,'fvec':M,'nfev':nfev,'lamMax':lamMax,'psing':psing}] |
---|
| 140 | Xvec /= Adiag |
---|
| 141 | M2 = func(x0+Xvec,*args) |
---|
| 142 | nfev += 1 |
---|
| 143 | chisq1 = np.sum(M2**2) |
---|
[1954] | 144 | if chisq1 > chisq0*(1.+ftol): |
---|
[763] | 145 | lam *= 10. |
---|
[1954] | 146 | print 'matrix modification needed; lambda now %.1e'%(lam) |
---|
[763] | 147 | else: |
---|
| 148 | x0 += Xvec |
---|
| 149 | lam /= 10. |
---|
| 150 | break |
---|
[954] | 151 | if lam > 10.e5: |
---|
| 152 | print 'ouch #3 chisq1 ',chisq1,' stuck > chisq0 ',chisq0 |
---|
| 153 | break |
---|
[975] | 154 | lamMax = max(lamMax,lam) |
---|
[1282] | 155 | deltaChi2 = (chisq0-chisq1)/chisq0 |
---|
[975] | 156 | if Print: |
---|
[1655] | 157 | print ' Cycle: %d, Time: %.2fs, Chi**2: %.5g, Lambda: %.3g, Delta: %.3g'%( |
---|
[1282] | 158 | icycle,time.time()-time0,chisq1,lam,deltaChi2) |
---|
| 159 | if deltaChi2 < ftol: |
---|
| 160 | ifConverged = True |
---|
| 161 | if Print: print "converged" |
---|
[763] | 162 | break |
---|
| 163 | icycle += 1 |
---|
[1453] | 164 | M = func(x0,*args) |
---|
| 165 | nfev += 1 |
---|
| 166 | Yvec,Amat = Hess(x0,*args) |
---|
| 167 | Adiag = np.sqrt(np.diag(Amat)) |
---|
| 168 | Anorm = np.outer(Adiag,Adiag) |
---|
| 169 | Lam = np.eye(Amat.shape[0])*lam |
---|
| 170 | Amatlam = Amat/Anorm #*(One+Lam) #don't scale Amat to Marquardt array |
---|
[763] | 171 | try: |
---|
[1453] | 172 | Bmat = nl.inv(Amatlam)/Anorm #*(One+Lam) #don't rescale Bmat to Marquardt array |
---|
[1282] | 173 | return [x0,Bmat,{'num cyc':icycle,'fvec':M,'nfev':nfev,'lamMax':lamMax,'psing':[], 'Converged': ifConverged, 'DelChi2':deltaChi2}] |
---|
[763] | 174 | except nl.LinAlgError: |
---|
[1453] | 175 | print 'ouch #2 linear algebra error in making v-cov matrix' |
---|
[763] | 176 | psing = [] |
---|
| 177 | if maxcyc: |
---|
| 178 | psing = list(np.where(np.diag(nl.qr(Amat)[1]) < 1.e-14)[0]) |
---|
| 179 | return [x0,None,{'num cyc':icycle,'fvec':M,'nfev':nfev,'lamMax':lamMax,'psing':psing}] |
---|
| 180 | |
---|
| 181 | def getVCov(varyNames,varyList,covMatrix): |
---|
[950] | 182 | '''obtain variance-covariance terms for a set of variables. NB: the varyList |
---|
[956] | 183 | and covMatrix were saved by the last least squares refinement so they must match. |
---|
[950] | 184 | |
---|
| 185 | :param list varyNames: variable names to find v-cov matric for |
---|
| 186 | :param list varyList: full list of all variables in v-cov matrix |
---|
| 187 | :param nparray covMatrix: full variance-covariance matrix from the last |
---|
| 188 | least squares refinement |
---|
| 189 | |
---|
| 190 | :returns: nparray vcov: variance-covariance matrix for the variables given |
---|
| 191 | in varyNames |
---|
| 192 | |
---|
| 193 | ''' |
---|
[763] | 194 | vcov = np.zeros((len(varyNames),len(varyNames))) |
---|
| 195 | for i1,name1 in enumerate(varyNames): |
---|
| 196 | for i2,name2 in enumerate(varyNames): |
---|
| 197 | try: |
---|
| 198 | vcov[i1][i2] = covMatrix[varyList.index(name1)][varyList.index(name2)] |
---|
| 199 | except ValueError: |
---|
[1531] | 200 | vcov[i1][i2] = 0.0 |
---|
| 201 | # if i1 == i2: |
---|
| 202 | # vcov[i1][i2] = 1e-20 |
---|
| 203 | # else: |
---|
| 204 | # vcov[i1][i2] = 0.0 |
---|
[763] | 205 | return vcov |
---|
[1625] | 206 | |
---|
| 207 | ################################################################################ |
---|
| 208 | ##### Atom manipulations |
---|
| 209 | ################################################################################ |
---|
[763] | 210 | |
---|
[1669] | 211 | def FindMolecule(ind,generalData,atomData): #uses numpy & masks - very fast even for proteins! |
---|
| 212 | |
---|
| 213 | def getNeighbors(atom,radius): |
---|
| 214 | neighList = [] |
---|
[1683] | 215 | Dx = UAtoms-np.array(atom[cx:cx+3]) |
---|
[1669] | 216 | dist = ma.masked_less(np.sqrt(np.sum(np.inner(Amat,Dx)**2,axis=0)),0.5) #gets rid of disorder "bonds" < 0.5A |
---|
[1683] | 217 | sumR = Radii+radius |
---|
[1669] | 218 | return set(ma.nonzero(ma.masked_greater(dist-factor*sumR,0.))[0]) #get indices of bonded atoms |
---|
| 219 | |
---|
| 220 | import numpy.ma as ma |
---|
| 221 | indices = (-1,0,1) |
---|
| 222 | Units = np.array([[h,k,l] for h in indices for k in indices for l in indices],dtype='f') |
---|
| 223 | cx,ct,cs,ci = generalData['AtomPtrs'] |
---|
| 224 | DisAglCtls = generalData['DisAglCtls'] |
---|
| 225 | SGData = generalData['SGData'] |
---|
| 226 | Amat,Bmat = G2lat.cell2AB(generalData['Cell'][1:7]) |
---|
| 227 | radii = DisAglCtls['BondRadii'] |
---|
| 228 | atomTypes = DisAglCtls['AtomTypes'] |
---|
| 229 | factor = DisAglCtls['Factors'][0] |
---|
| 230 | unit = np.zeros(3) |
---|
| 231 | try: |
---|
| 232 | indH = atomTypes.index('H') |
---|
| 233 | radii[indH] = 0.5 |
---|
| 234 | except: |
---|
| 235 | pass |
---|
| 236 | nAtom = len(atomData) |
---|
| 237 | Indx = range(nAtom) |
---|
| 238 | UAtoms = [] |
---|
| 239 | Radii = [] |
---|
| 240 | for atom in atomData: |
---|
| 241 | UAtoms.append(np.array(atom[cx:cx+3])) |
---|
| 242 | Radii.append(radii[atomTypes.index(atom[ct])]) |
---|
| 243 | UAtoms = np.array(UAtoms) |
---|
| 244 | Radii = np.array(Radii) |
---|
| 245 | for nOp,Op in enumerate(SGData['SGOps'][1:]): |
---|
| 246 | UAtoms = np.concatenate((UAtoms,(np.inner(Op[0],UAtoms[:nAtom]).T+Op[1]))) |
---|
| 247 | Radii = np.concatenate((Radii,Radii[:nAtom])) |
---|
| 248 | Indx += Indx[:nAtom] |
---|
| 249 | for icen,cen in enumerate(SGData['SGCen'][1:]): |
---|
| 250 | UAtoms = np.concatenate((UAtoms,(UAtoms+cen))) |
---|
| 251 | Radii = np.concatenate((Radii,Radii)) |
---|
| 252 | Indx += Indx[:nAtom] |
---|
| 253 | if SGData['SGInv']: |
---|
| 254 | UAtoms = np.concatenate((UAtoms,-UAtoms)) |
---|
| 255 | Radii = np.concatenate((Radii,Radii)) |
---|
| 256 | Indx += Indx |
---|
| 257 | UAtoms %= 1. |
---|
| 258 | mAtoms = len(UAtoms) |
---|
| 259 | for unit in Units: |
---|
| 260 | if np.any(unit): #skip origin cell |
---|
| 261 | UAtoms = np.concatenate((UAtoms,UAtoms[:mAtoms]+unit)) |
---|
| 262 | Radii = np.concatenate((Radii,Radii[:mAtoms])) |
---|
| 263 | Indx += Indx[:mAtoms] |
---|
| 264 | UAtoms = np.array(UAtoms) |
---|
| 265 | Radii = np.array(Radii) |
---|
| 266 | newAtoms = [atomData[ind],] |
---|
| 267 | atomData[ind] = None |
---|
| 268 | radius = Radii[ind] |
---|
| 269 | IndB = getNeighbors(newAtoms[-1],radius) |
---|
| 270 | while True: |
---|
| 271 | if not len(IndB): |
---|
| 272 | break |
---|
| 273 | indb = IndB.pop() |
---|
| 274 | if atomData[Indx[indb]] == None: |
---|
| 275 | continue |
---|
| 276 | while True: |
---|
| 277 | try: |
---|
| 278 | jndb = Indb.index(indb) |
---|
| 279 | Indb.remove(jndb) |
---|
| 280 | except: |
---|
| 281 | break |
---|
| 282 | newAtom = copy.copy(atomData[Indx[indb]]) |
---|
| 283 | newAtom[cx:cx+3] = UAtoms[indb] #NB: thermal Uij, etc. not transformed! |
---|
| 284 | newAtoms.append(newAtom) |
---|
| 285 | atomData[Indx[indb]] = None |
---|
| 286 | IndB = set(list(IndB)+list(getNeighbors(newAtoms[-1],radius))) |
---|
[1673] | 287 | if len(IndB) > nAtom: |
---|
[1674] | 288 | return 'Assemble molecule cannot be used on extended structures' |
---|
[1669] | 289 | for atom in atomData: |
---|
| 290 | if atom != None: |
---|
| 291 | newAtoms.append(atom) |
---|
| 292 | return newAtoms |
---|
| 293 | |
---|
[1951] | 294 | def FindAtomIndexByIDs(atomData,loc,IDs,Draw=True): |
---|
[950] | 295 | '''finds the set of atom array indices for a list of atom IDs. Will search |
---|
| 296 | either the Atom table or the drawAtom table. |
---|
| 297 | |
---|
| 298 | :param list atomData: Atom or drawAtom table containting coordinates, etc. |
---|
[1951] | 299 | :param int loc: location of atom id in atomData record |
---|
[950] | 300 | :param list IDs: atom IDs to be found |
---|
| 301 | :param bool Draw: True if drawAtom table to be searched; False if Atom table |
---|
[957] | 302 | is searched |
---|
[950] | 303 | |
---|
| 304 | :returns: list indx: atom (or drawAtom) indices |
---|
| 305 | |
---|
| 306 | ''' |
---|
[808] | 307 | indx = [] |
---|
| 308 | for i,atom in enumerate(atomData): |
---|
[1951] | 309 | if Draw and atom[loc] in IDs: |
---|
[808] | 310 | indx.append(i) |
---|
[1951] | 311 | elif atom[loc] in IDs: |
---|
[808] | 312 | indx.append(i) |
---|
| 313 | return indx |
---|
| 314 | |
---|
[1604] | 315 | def FillAtomLookUp(atomData,indx): |
---|
[950] | 316 | '''create a dictionary of atom indexes with atom IDs as keys |
---|
| 317 | |
---|
| 318 | :param list atomData: Atom table to be used |
---|
| 319 | |
---|
| 320 | :returns: dict atomLookUp: dictionary of atom indexes with atom IDs as keys |
---|
| 321 | |
---|
| 322 | ''' |
---|
[808] | 323 | atomLookUp = {} |
---|
| 324 | for iatm,atom in enumerate(atomData): |
---|
[1604] | 325 | atomLookUp[atom[indx]] = iatm |
---|
[808] | 326 | return atomLookUp |
---|
| 327 | |
---|
| 328 | def GetAtomsById(atomData,atomLookUp,IdList): |
---|
[950] | 329 | '''gets a list of atoms from Atom table that match a set of atom IDs |
---|
| 330 | |
---|
| 331 | :param list atomData: Atom table to be used |
---|
| 332 | :param dict atomLookUp: dictionary of atom indexes with atom IDs as keys |
---|
| 333 | :param list IdList: atom IDs to be found |
---|
| 334 | |
---|
| 335 | :returns: list atoms: list of atoms found |
---|
| 336 | |
---|
| 337 | ''' |
---|
[808] | 338 | atoms = [] |
---|
| 339 | for id in IdList: |
---|
| 340 | atoms.append(atomData[atomLookUp[id]]) |
---|
| 341 | return atoms |
---|
| 342 | |
---|
| 343 | def GetAtomItemsById(atomData,atomLookUp,IdList,itemLoc,numItems=1): |
---|
[950] | 344 | '''gets atom parameters for atoms using atom IDs |
---|
| 345 | |
---|
| 346 | :param list atomData: Atom table to be used |
---|
| 347 | :param dict atomLookUp: dictionary of atom indexes with atom IDs as keys |
---|
| 348 | :param list IdList: atom IDs to be found |
---|
| 349 | :param int itemLoc: pointer to desired 1st item in an atom table entry |
---|
| 350 | :param int numItems: number of items to be retrieved |
---|
| 351 | |
---|
| 352 | :returns: type name: description |
---|
| 353 | |
---|
| 354 | ''' |
---|
[808] | 355 | Items = [] |
---|
[811] | 356 | if not isinstance(IdList,list): |
---|
| 357 | IdList = [IdList,] |
---|
[808] | 358 | for id in IdList: |
---|
| 359 | if numItems == 1: |
---|
| 360 | Items.append(atomData[atomLookUp[id]][itemLoc]) |
---|
| 361 | else: |
---|
| 362 | Items.append(atomData[atomLookUp[id]][itemLoc:itemLoc+numItems]) |
---|
| 363 | return Items |
---|
[820] | 364 | |
---|
| 365 | def GetAtomCoordsByID(pId,parmDict,AtLookup,indx): |
---|
[950] | 366 | '''default doc string |
---|
| 367 | |
---|
| 368 | :param type name: description |
---|
| 369 | |
---|
| 370 | :returns: type name: description |
---|
| 371 | |
---|
| 372 | ''' |
---|
[820] | 373 | pfx = [str(pId)+'::A'+i+':' for i in ['x','y','z']] |
---|
| 374 | dpfx = [str(pId)+'::dA'+i+':' for i in ['x','y','z']] |
---|
| 375 | XYZ = [] |
---|
| 376 | for ind in indx: |
---|
| 377 | names = [pfx[i]+str(AtLookup[ind]) for i in range(3)] |
---|
| 378 | dnames = [dpfx[i]+str(AtLookup[ind]) for i in range(3)] |
---|
| 379 | XYZ.append([parmDict[name]+parmDict[dname] for name,dname in zip(names,dnames)]) |
---|
| 380 | return XYZ |
---|
[826] | 381 | |
---|
[1927] | 382 | def FindNeighbors(phase,FrstName,AtNames,notName=''): |
---|
[1925] | 383 | General = phase['General'] |
---|
| 384 | cx,ct,cs,cia = General['AtomPtrs'] |
---|
| 385 | Atoms = phase['Atoms'] |
---|
| 386 | atNames = [atom[ct-1] for atom in Atoms] |
---|
| 387 | Cell = General['Cell'][1:7] |
---|
| 388 | Amat,Bmat = G2lat.cell2AB(Cell) |
---|
| 389 | atTypes = General['AtomTypes'] |
---|
| 390 | Radii = np.array(General['BondRadii']) |
---|
[1926] | 391 | DisAglCtls = General['DisAglCtls'] |
---|
| 392 | radiusFactor = DisAglCtls['Factors'][0] |
---|
[1925] | 393 | AtInfo = dict(zip(atTypes,Radii)) #or General['BondRadii'] |
---|
| 394 | Orig = atNames.index(FrstName) |
---|
[1926] | 395 | OId = Atoms[Orig][cia+8] |
---|
[1925] | 396 | OType = Atoms[Orig][ct] |
---|
| 397 | XYZ = getAtomXYZ(Atoms,cx) |
---|
| 398 | Neigh = [] |
---|
[1926] | 399 | Ids = [] |
---|
[1925] | 400 | Dx = np.inner(Amat,XYZ-XYZ[Orig]).T |
---|
| 401 | dist = np.sqrt(np.sum(Dx**2,axis=1)) |
---|
| 402 | sumR = np.array([AtInfo[OType]+AtInfo[atom[ct]] for atom in Atoms]) |
---|
[1926] | 403 | IndB = ma.nonzero(ma.masked_greater(dist-radiusFactor*sumR,0.)) |
---|
[1925] | 404 | for j in IndB[0]: |
---|
| 405 | if j != Orig: |
---|
[1927] | 406 | if AtNames[j] != notName: |
---|
[1930] | 407 | Neigh.append([AtNames[j],dist[j],True]) |
---|
[1927] | 408 | Ids.append(Atoms[j][cia+8]) |
---|
[1926] | 409 | return Neigh,[OId,Ids] |
---|
| 410 | |
---|
| 411 | def AddHydrogens(AtLookUp,General,Atoms,AddHydId): |
---|
[1927] | 412 | |
---|
[1930] | 413 | def getTransMat(RXYZ,OXYZ,TXYZ,Amat): |
---|
| 414 | Vec = np.inner(Amat,np.array([OXYZ-TXYZ[0],RXYZ-TXYZ[0]])).T |
---|
| 415 | Vec /= np.sqrt(np.sum(Vec**2,axis=1))[:,np.newaxis] |
---|
| 416 | Mat2 = np.cross(Vec[0],Vec[1]) #UxV |
---|
| 417 | Mat2 /= np.sqrt(np.sum(Mat2**2)) |
---|
| 418 | Mat3 = np.cross(Mat2,Vec[0]) #(UxV)xU |
---|
| 419 | return nl.inv(np.array([Vec[0],Mat2,Mat3])) |
---|
| 420 | |
---|
[1926] | 421 | cx,ct,cs,cia = General['AtomPtrs'] |
---|
| 422 | Cell = General['Cell'][1:7] |
---|
| 423 | Amat,Bmat = G2lat.cell2AB(Cell) |
---|
[1927] | 424 | nBonds = AddHydId[-1]+len(AddHydId[1]) |
---|
[1926] | 425 | Oatom = GetAtomsById(Atoms,AtLookUp,[AddHydId[0],])[0] |
---|
| 426 | OXYZ = np.array(Oatom[cx:cx+3]) |
---|
[1935] | 427 | if 'I' in Oatom[cia]: |
---|
| 428 | Uiso = Oatom[cia+1] |
---|
| 429 | else: |
---|
| 430 | Uiso = (Oatom[cia+2]+Oatom[cia+3]+Oatom[cia+4])/3.0 #simple average |
---|
| 431 | Uiso = max(Uiso,0.005) #set floor! |
---|
[1926] | 432 | Tatoms = GetAtomsById(Atoms,AtLookUp,AddHydId[1]) |
---|
| 433 | TXYZ = np.array([tatom[cx:cx+3] for tatom in Tatoms]) #3 x xyz |
---|
| 434 | DX = np.inner(Amat,TXYZ-OXYZ).T |
---|
| 435 | if nBonds == 4: |
---|
[1927] | 436 | if AddHydId[-1] == 1: |
---|
[1926] | 437 | Vec = TXYZ-OXYZ |
---|
| 438 | Len = np.sqrt(np.sum(np.inner(Amat,Vec).T**2,axis=0)) |
---|
| 439 | Vec = np.sum(Vec/Len,axis=0) |
---|
| 440 | Len = np.sqrt(np.sum(Vec**2)) |
---|
| 441 | Hpos = OXYZ-0.98*np.inner(Bmat,Vec).T/Len |
---|
[1935] | 442 | HU = 1.1*Uiso |
---|
| 443 | return [Hpos,],[HU,] |
---|
[1927] | 444 | elif AddHydId[-1] == 2: |
---|
| 445 | Vec = np.inner(Amat,TXYZ-OXYZ).T |
---|
| 446 | Vec[0] += Vec[1] #U - along bisector |
---|
| 447 | Vec /= np.sqrt(np.sum(Vec**2,axis=1))[:,np.newaxis] |
---|
| 448 | Mat2 = np.cross(Vec[0],Vec[1]) #UxV |
---|
| 449 | Mat2 /= np.sqrt(np.sum(Mat2**2)) |
---|
| 450 | Mat3 = np.cross(Mat2,Vec[0]) #(UxV)xU |
---|
| 451 | iMat = nl.inv(np.array([Vec[0],Mat2,Mat3])) |
---|
| 452 | Hpos = np.array([[-0.97*cosd(54.75),0.97*sind(54.75),0.], |
---|
| 453 | [-0.97*cosd(54.75),-0.97*sind(54.75),0.]]) |
---|
[1935] | 454 | HU = 1.2*Uiso*np.ones(2) |
---|
[1927] | 455 | Hpos = np.inner(Bmat,np.inner(iMat,Hpos).T).T+OXYZ |
---|
[1935] | 456 | return Hpos,HU |
---|
[1926] | 457 | else: |
---|
[1927] | 458 | Ratom = GetAtomsById(Atoms,AtLookUp,[AddHydId[2],])[0] |
---|
| 459 | RXYZ = np.array(Ratom[cx:cx+3]) |
---|
[1930] | 460 | iMat = getTransMat(RXYZ,OXYZ,TXYZ,Amat) |
---|
[1927] | 461 | a = 0.96*cosd(70.5) |
---|
| 462 | b = 0.96*sind(70.5) |
---|
| 463 | Hpos = np.array([[a,0.,-b],[a,-b*cosd(30.),0.5*b],[a,b*cosd(30.),0.5*b]]) |
---|
| 464 | Hpos = np.inner(Bmat,np.inner(iMat,Hpos).T).T+OXYZ |
---|
[1935] | 465 | HU = 1.5*Uiso*np.ones(3) |
---|
| 466 | return Hpos,HU |
---|
[1926] | 467 | elif nBonds == 3: |
---|
[1927] | 468 | if AddHydId[-1] == 1: |
---|
[1926] | 469 | Vec = np.sum(TXYZ-OXYZ,axis=0) |
---|
| 470 | Len = np.sqrt(np.sum(np.inner(Amat,Vec).T**2)) |
---|
| 471 | Vec = -0.93*Vec/Len |
---|
| 472 | Hpos = OXYZ+Vec |
---|
[1935] | 473 | HU = 1.1*Uiso |
---|
| 474 | return [Hpos,],[HU,] |
---|
[1927] | 475 | elif AddHydId[-1] == 2: |
---|
| 476 | Ratom = GetAtomsById(Atoms,AtLookUp,[AddHydId[2],])[0] |
---|
| 477 | RXYZ = np.array(Ratom[cx:cx+3]) |
---|
[1930] | 478 | iMat = getTransMat(RXYZ,OXYZ,TXYZ,Amat) |
---|
| 479 | a = 0.93*cosd(60.) |
---|
| 480 | b = 0.93*sind(60.) |
---|
| 481 | Hpos = [[a,b,0],[a,-b,0]] |
---|
| 482 | Hpos = np.inner(Bmat,np.inner(iMat,Hpos).T).T+OXYZ |
---|
[1935] | 483 | HU = 1.2*Uiso*np.ones(2) |
---|
| 484 | return Hpos,HU |
---|
[1926] | 485 | else: #2 bonds |
---|
| 486 | if 'C' in Oatom[ct]: |
---|
[1927] | 487 | Vec = TXYZ[0]-OXYZ |
---|
| 488 | Len = np.sqrt(np.sum(np.inner(Amat,Vec).T**2)) |
---|
| 489 | Vec = -0.93*Vec/Len |
---|
| 490 | Hpos = OXYZ+Vec |
---|
[1935] | 491 | HU = 1.1*Uiso |
---|
| 492 | return [Hpos,],[HU,] |
---|
[1926] | 493 | elif 'O' in Oatom[ct]: |
---|
[1927] | 494 | mapData = General['Map'] |
---|
| 495 | Ratom = GetAtomsById(Atoms,AtLookUp,[AddHydId[2],])[0] |
---|
| 496 | RXYZ = np.array(Ratom[cx:cx+3]) |
---|
[1930] | 497 | iMat = getTransMat(RXYZ,OXYZ,TXYZ,Amat) |
---|
[1927] | 498 | a = 0.82*cosd(70.5) |
---|
| 499 | b = 0.82*sind(70.5) |
---|
| 500 | azm = np.arange(0.,360.,5.) |
---|
| 501 | Hpos = np.array([[a,b*cosd(x),b*sind(x)] for x in azm]) |
---|
| 502 | Hpos = np.inner(Bmat,np.inner(iMat,Hpos).T).T+OXYZ |
---|
[1928] | 503 | Rhos = np.array([getRho(pos,mapData) for pos in Hpos]) |
---|
| 504 | imax = np.argmax(Rhos) |
---|
[1935] | 505 | HU = 1.5*Uiso |
---|
| 506 | return [Hpos[imax],],[HU,] |
---|
| 507 | return [],[] |
---|
[1925] | 508 | |
---|
[881] | 509 | def AtomUij2TLS(atomData,atPtrs,Amat,Bmat,rbObj): #unfinished & not used |
---|
[950] | 510 | '''default doc string |
---|
| 511 | |
---|
| 512 | :param type name: description |
---|
| 513 | |
---|
| 514 | :returns: type name: description |
---|
| 515 | |
---|
| 516 | ''' |
---|
[859] | 517 | for atom in atomData: |
---|
| 518 | XYZ = np.inner(Amat,atom[cx:cx+3]) |
---|
| 519 | if atom[cia] == 'A': |
---|
| 520 | UIJ = atom[cia+2:cia+8] |
---|
[902] | 521 | |
---|
[910] | 522 | def TLS2Uij(xyz,g,Amat,rbObj): #not used anywhere, but could be? |
---|
[950] | 523 | '''default doc string |
---|
| 524 | |
---|
| 525 | :param type name: description |
---|
| 526 | |
---|
| 527 | :returns: type name: description |
---|
| 528 | |
---|
| 529 | ''' |
---|
[902] | 530 | TLStype,TLS = rbObj['ThermalMotion'][:2] |
---|
| 531 | Tmat = np.zeros((3,3)) |
---|
| 532 | Lmat = np.zeros((3,3)) |
---|
| 533 | Smat = np.zeros((3,3)) |
---|
| 534 | gvec = np.sqrt(np.array([g[0][0]**2,g[1][1]**2,g[2][2]**2, |
---|
| 535 | g[0][0]*g[1][1],g[0][0]*g[2][2],g[1][1]*g[2][2]])) |
---|
| 536 | if 'T' in TLStype: |
---|
| 537 | Tmat = G2lat.U6toUij(TLS[:6]) |
---|
| 538 | if 'L' in TLStype: |
---|
| 539 | Lmat = G2lat.U6toUij(TLS[6:12]) |
---|
| 540 | if 'S' in TLStype: |
---|
| 541 | Smat = np.array([[TLS[18],TLS[12],TLS[13]],[TLS[14],TLS[19],TLS[15]],[TLS[16],TLS[17],0] ]) |
---|
| 542 | XYZ = np.inner(Amat,xyz) |
---|
| 543 | Axyz = np.array([[ 0,XYZ[2],-XYZ[1]], [-XYZ[2],0,XYZ[0]], [XYZ[1],-XYZ[0],0]] ) |
---|
| 544 | Umat = Tmat+np.inner(Axyz,Smat)+np.inner(Smat.T,Axyz.T)+np.inner(np.inner(Axyz,Lmat),Axyz.T) |
---|
| 545 | beta = np.inner(np.inner(g,Umat),g) |
---|
| 546 | return G2lat.UijtoU6(beta)*gvec |
---|
[859] | 547 | |
---|
[905] | 548 | def AtomTLS2UIJ(atomData,atPtrs,Amat,rbObj): #not used anywhere, but could be? |
---|
[950] | 549 | '''default doc string |
---|
| 550 | |
---|
| 551 | :param type name: description |
---|
| 552 | |
---|
| 553 | :returns: type name: description |
---|
| 554 | |
---|
| 555 | ''' |
---|
[859] | 556 | cx,ct,cs,cia = atPtrs |
---|
| 557 | TLStype,TLS = rbObj['ThermalMotion'][:2] |
---|
| 558 | Tmat = np.zeros((3,3)) |
---|
| 559 | Lmat = np.zeros((3,3)) |
---|
| 560 | Smat = np.zeros((3,3)) |
---|
| 561 | G,g = G2lat.A2Gmat(Amat) |
---|
| 562 | gvec = 1./np.sqrt(np.array([g[0][0],g[1][1],g[2][2],g[0][1],g[0][2],g[1][2]])) |
---|
| 563 | if 'T' in TLStype: |
---|
| 564 | Tmat = G2lat.U6toUij(TLS[:6]) |
---|
| 565 | if 'L' in TLStype: |
---|
| 566 | Lmat = G2lat.U6toUij(TLS[6:12]) |
---|
| 567 | if 'S' in TLStype: |
---|
[902] | 568 | Smat = np.array([ [TLS[18],TLS[12],TLS[13]], [TLS[14],TLS[19],TLS[15]], [TLS[16],TLS[17],0] ]) |
---|
[859] | 569 | for atom in atomData: |
---|
| 570 | XYZ = np.inner(Amat,atom[cx:cx+3]) |
---|
[902] | 571 | Axyz = np.array([ 0,XYZ[2],-XYZ[1], -XYZ[2],0,XYZ[0], XYZ[1],-XYZ[0],0],ndmin=2 ) |
---|
[859] | 572 | if 'U' in TSLtype: |
---|
| 573 | atom[cia+1] = TLS[0] |
---|
| 574 | atom[cia] = 'I' |
---|
| 575 | else: |
---|
| 576 | atom[cia] = 'A' |
---|
| 577 | Umat = Tmat+np.inner(Axyz,Smat)+np.inner(Smat.T,Axyz.T)+np.inner(np.inner(Axyz,Lmat),Axyz.T) |
---|
| 578 | beta = np.inner(np.inner(g,Umat),g) |
---|
[881] | 579 | atom[cia+2:cia+8] = G2spc.U2Uij(beta/gvec) |
---|
[859] | 580 | |
---|
[855] | 581 | def GetXYZDist(xyz,XYZ,Amat): |
---|
[950] | 582 | '''gets distance from position xyz to all XYZ, xyz & XYZ are np.array |
---|
[855] | 583 | and are in crystal coordinates; Amat is crystal to Cart matrix |
---|
[950] | 584 | |
---|
| 585 | :param type name: description |
---|
| 586 | |
---|
| 587 | :returns: type name: description |
---|
| 588 | |
---|
[855] | 589 | ''' |
---|
| 590 | return np.sqrt(np.sum(np.inner(Amat,XYZ-xyz)**2,axis=0)) |
---|
| 591 | |
---|
| 592 | def getAtomXYZ(atoms,cx): |
---|
[950] | 593 | '''default doc string |
---|
| 594 | |
---|
| 595 | :param type name: description |
---|
| 596 | |
---|
| 597 | :returns: type name: description |
---|
| 598 | |
---|
| 599 | ''' |
---|
[855] | 600 | XYZ = [] |
---|
| 601 | for atom in atoms: |
---|
| 602 | XYZ.append(atom[cx:cx+3]) |
---|
| 603 | return np.array(XYZ) |
---|
| 604 | |
---|
[954] | 605 | def RotateRBXYZ(Bmat,Cart,oriQ): |
---|
| 606 | '''rotate & transform cartesian coordinates to crystallographic ones |
---|
| 607 | no translation applied. To be used for numerical derivatives |
---|
| 608 | |
---|
| 609 | :param type name: description |
---|
| 610 | |
---|
| 611 | :returns: type name: description |
---|
| 612 | |
---|
| 613 | ''' |
---|
| 614 | ''' returns crystal coordinates for atoms described by RBObj |
---|
| 615 | ''' |
---|
| 616 | XYZ = np.zeros_like(Cart) |
---|
| 617 | for i,xyz in enumerate(Cart): |
---|
[1066] | 618 | XYZ[i] = np.inner(Bmat,prodQVQ(oriQ,xyz)) |
---|
[954] | 619 | return XYZ |
---|
| 620 | |
---|
[881] | 621 | def UpdateRBXYZ(Bmat,RBObj,RBData,RBType): |
---|
[950] | 622 | '''default doc string |
---|
| 623 | |
---|
| 624 | :param type name: description |
---|
| 625 | |
---|
| 626 | :returns: type name: description |
---|
| 627 | |
---|
[881] | 628 | ''' |
---|
[950] | 629 | ''' returns crystal coordinates for atoms described by RBObj |
---|
| 630 | ''' |
---|
[881] | 631 | RBRes = RBData[RBType][RBObj['RBId']] |
---|
[851] | 632 | if RBType == 'Vector': |
---|
| 633 | vecs = RBRes['rbVect'] |
---|
| 634 | mags = RBRes['VectMag'] |
---|
[881] | 635 | Cart = np.zeros_like(vecs[0]) |
---|
[851] | 636 | for vec,mag in zip(vecs,mags): |
---|
[881] | 637 | Cart += vec*mag |
---|
[851] | 638 | elif RBType == 'Residue': |
---|
[881] | 639 | Cart = np.array(RBRes['rbXYZ']) |
---|
[851] | 640 | for tor,seq in zip(RBObj['Torsions'],RBRes['rbSeq']): |
---|
[881] | 641 | QuatA = AVdeg2Q(tor[0],Cart[seq[0]]-Cart[seq[1]]) |
---|
[1061] | 642 | Cart[seq[3]] = prodQVQ(QuatA,(Cart[seq[3]]-Cart[seq[1]]))+Cart[seq[1]] |
---|
[881] | 643 | XYZ = np.zeros_like(Cart) |
---|
| 644 | for i,xyz in enumerate(Cart): |
---|
[1066] | 645 | XYZ[i] = np.inner(Bmat,prodQVQ(RBObj['Orient'][0],xyz))+RBObj['Orig'][0] |
---|
[881] | 646 | return XYZ,Cart |
---|
[934] | 647 | |
---|
[936] | 648 | def UpdateMCSAxyz(Bmat,MCSA): |
---|
[950] | 649 | '''default doc string |
---|
| 650 | |
---|
| 651 | :param type name: description |
---|
| 652 | |
---|
| 653 | :returns: type name: description |
---|
| 654 | |
---|
| 655 | ''' |
---|
[934] | 656 | xyz = [] |
---|
| 657 | atTypes = [] |
---|
| 658 | iatm = 0 |
---|
[936] | 659 | for model in MCSA['Models'][1:]: #skip the MD model |
---|
[934] | 660 | if model['Type'] == 'Atom': |
---|
| 661 | xyz.append(model['Pos'][0]) |
---|
| 662 | atTypes.append(model['atType']) |
---|
| 663 | iatm += 1 |
---|
| 664 | else: |
---|
[936] | 665 | RBRes = MCSA['rbData'][model['Type']][model['RBId']] |
---|
[934] | 666 | Pos = np.array(model['Pos'][0]) |
---|
[1055] | 667 | Ori = np.array(model['Ori'][0]) |
---|
| 668 | Qori = AVdeg2Q(Ori[0],Ori[1:]) |
---|
[934] | 669 | if model['Type'] == 'Vector': |
---|
| 670 | vecs = RBRes['rbVect'] |
---|
| 671 | mags = RBRes['VectMag'] |
---|
| 672 | Cart = np.zeros_like(vecs[0]) |
---|
| 673 | for vec,mag in zip(vecs,mags): |
---|
| 674 | Cart += vec*mag |
---|
| 675 | elif model['Type'] == 'Residue': |
---|
| 676 | Cart = np.array(RBRes['rbXYZ']) |
---|
| 677 | for itor,seq in enumerate(RBRes['rbSeq']): |
---|
| 678 | QuatA = AVdeg2Q(model['Tor'][0][itor],Cart[seq[0]]-Cart[seq[1]]) |
---|
[1061] | 679 | Cart[seq[3]] = prodQVQ(QuatA,(Cart[seq[3]]-Cart[seq[1]]))+Cart[seq[1]] |
---|
[936] | 680 | if model['MolCent'][1]: |
---|
| 681 | Cart -= model['MolCent'][0] |
---|
[934] | 682 | for i,x in enumerate(Cart): |
---|
| 683 | xyz.append(np.inner(Bmat,prodQVQ(Qori,x))+Pos) |
---|
| 684 | atType = RBRes['rbTypes'][i] |
---|
| 685 | atTypes.append(atType) |
---|
| 686 | iatm += 1 |
---|
| 687 | return np.array(xyz),atTypes |
---|
[851] | 688 | |
---|
[936] | 689 | def SetMolCent(model,RBData): |
---|
[950] | 690 | '''default doc string |
---|
| 691 | |
---|
| 692 | :param type name: description |
---|
| 693 | |
---|
| 694 | :returns: type name: description |
---|
| 695 | |
---|
| 696 | ''' |
---|
[936] | 697 | rideList = [] |
---|
| 698 | RBRes = RBData[model['Type']][model['RBId']] |
---|
| 699 | if model['Type'] == 'Vector': |
---|
| 700 | vecs = RBRes['rbVect'] |
---|
| 701 | mags = RBRes['VectMag'] |
---|
| 702 | Cart = np.zeros_like(vecs[0]) |
---|
| 703 | for vec,mag in zip(vecs,mags): |
---|
| 704 | Cart += vec*mag |
---|
| 705 | elif model['Type'] == 'Residue': |
---|
| 706 | Cart = np.array(RBRes['rbXYZ']) |
---|
| 707 | for seq in RBRes['rbSeq']: |
---|
| 708 | rideList += seq[3] |
---|
| 709 | centList = set(range(len(Cart)))-set(rideList) |
---|
| 710 | cent = np.zeros(3) |
---|
| 711 | for i in centList: |
---|
| 712 | cent += Cart[i] |
---|
| 713 | model['MolCent'][0] = cent/len(centList) |
---|
| 714 | |
---|
[881] | 715 | def UpdateRBUIJ(Bmat,Cart,RBObj): |
---|
[950] | 716 | '''default doc string |
---|
| 717 | |
---|
| 718 | :param type name: description |
---|
| 719 | |
---|
| 720 | :returns: type name: description |
---|
| 721 | |
---|
[881] | 722 | ''' |
---|
[950] | 723 | ''' returns atom I/A, Uiso or UIJ for atoms at XYZ as described by RBObj |
---|
| 724 | ''' |
---|
[881] | 725 | TLStype,TLS = RBObj['ThermalMotion'][:2] |
---|
[885] | 726 | T = np.zeros(6) |
---|
| 727 | L = np.zeros(6) |
---|
| 728 | S = np.zeros(8) |
---|
[881] | 729 | if 'T' in TLStype: |
---|
[882] | 730 | T = TLS[:6] |
---|
[881] | 731 | if 'L' in TLStype: |
---|
[882] | 732 | L = np.array(TLS[6:12])*(np.pi/180.)**2 |
---|
[881] | 733 | if 'S' in TLStype: |
---|
[882] | 734 | S = np.array(TLS[12:])*(np.pi/180.) |
---|
[915] | 735 | g = nl.inv(np.inner(Bmat,Bmat)) |
---|
| 736 | gvec = np.sqrt(np.array([g[0][0]**2,g[1][1]**2,g[2][2]**2, |
---|
[881] | 737 | g[0][0]*g[1][1],g[0][0]*g[2][2],g[1][1]*g[2][2]])) |
---|
| 738 | Uout = [] |
---|
[882] | 739 | Q = RBObj['Orient'][0] |
---|
[881] | 740 | for X in Cart: |
---|
[882] | 741 | X = prodQVQ(Q,X) |
---|
[881] | 742 | if 'U' in TLStype: |
---|
| 743 | Uout.append(['I',TLS[0],0,0,0,0,0,0]) |
---|
[882] | 744 | elif not 'N' in TLStype: |
---|
| 745 | U = [0,0,0,0,0,0] |
---|
| 746 | U[0] = T[0]+L[1]*X[2]**2+L[2]*X[1]**2-2.0*L[5]*X[1]*X[2]+2.0*(S[2]*X[2]-S[4]*X[1]) |
---|
| 747 | U[1] = T[1]+L[0]*X[2]**2+L[2]*X[0]**2-2.0*L[4]*X[0]*X[2]+2.0*(S[5]*X[0]-S[0]*X[2]) |
---|
| 748 | U[2] = T[2]+L[1]*X[0]**2+L[0]*X[1]**2-2.0*L[3]*X[1]*X[0]+2.0*(S[1]*X[1]-S[3]*X[0]) |
---|
| 749 | U[3] = T[3]+L[4]*X[1]*X[2]+L[5]*X[0]*X[2]-L[3]*X[2]**2-L[2]*X[0]*X[1]+ \ |
---|
| 750 | S[4]*X[0]-S[5]*X[1]-(S[6]+S[7])*X[2] |
---|
| 751 | U[4] = T[4]+L[3]*X[1]*X[2]+L[5]*X[0]*X[1]-L[4]*X[1]**2-L[1]*X[0]*X[2]+ \ |
---|
| 752 | S[3]*X[2]-S[2]*X[0]+S[6]*X[1] |
---|
| 753 | U[5] = T[5]+L[3]*X[0]*X[2]+L[4]*X[0]*X[1]-L[5]*X[0]**2-L[0]*X[2]*X[1]+ \ |
---|
| 754 | S[0]*X[1]-S[1]*X[2]+S[7]*X[0] |
---|
| 755 | Umat = G2lat.U6toUij(U) |
---|
[910] | 756 | beta = np.inner(np.inner(Bmat.T,Umat),Bmat) |
---|
[881] | 757 | Uout.append(['A',0.0,]+list(G2lat.UijtoU6(beta)*gvec)) |
---|
[885] | 758 | else: |
---|
| 759 | Uout.append(['N',]) |
---|
[881] | 760 | return Uout |
---|
| 761 | |
---|
[826] | 762 | def GetSHCoeff(pId,parmDict,SHkeys): |
---|
[950] | 763 | '''default doc string |
---|
| 764 | |
---|
| 765 | :param type name: description |
---|
| 766 | |
---|
| 767 | :returns: type name: description |
---|
| 768 | |
---|
| 769 | ''' |
---|
[826] | 770 | SHCoeff = {} |
---|
| 771 | for shkey in SHkeys: |
---|
| 772 | shname = str(pId)+'::'+shkey |
---|
| 773 | SHCoeff[shkey] = parmDict[shname] |
---|
| 774 | return SHCoeff |
---|
[808] | 775 | |
---|
[763] | 776 | def getMass(generalData): |
---|
[1208] | 777 | '''Computes mass of unit cell contents |
---|
[950] | 778 | |
---|
[1208] | 779 | :param dict generalData: The General dictionary in Phase |
---|
[950] | 780 | |
---|
[1208] | 781 | :returns: float mass: Crystal unit cell mass in AMU. |
---|
[950] | 782 | |
---|
| 783 | ''' |
---|
[763] | 784 | mass = 0. |
---|
| 785 | for i,elem in enumerate(generalData['AtomTypes']): |
---|
| 786 | mass += generalData['NoAtoms'][elem]*generalData['AtomMass'][i] |
---|
| 787 | return mass |
---|
| 788 | |
---|
| 789 | def getDensity(generalData): |
---|
[1208] | 790 | '''calculate crystal structure density |
---|
[950] | 791 | |
---|
[1208] | 792 | :param dict generalData: The General dictionary in Phase |
---|
[950] | 793 | |
---|
[1208] | 794 | :returns: float density: crystal density in gm/cm^3 |
---|
[950] | 795 | |
---|
| 796 | ''' |
---|
[763] | 797 | mass = getMass(generalData) |
---|
| 798 | Volume = generalData['Cell'][7] |
---|
| 799 | density = mass/(0.6022137*Volume) |
---|
| 800 | return density,Volume/mass |
---|
| 801 | |
---|
[940] | 802 | def getWave(Parms): |
---|
[1208] | 803 | '''returns wavelength from Instrument parameters dictionary |
---|
[950] | 804 | |
---|
[1208] | 805 | :param dict Parms: Instrument parameters; |
---|
| 806 | must contain: |
---|
| 807 | Lam: single wavelength |
---|
| 808 | or |
---|
| 809 | Lam1: Ka1 radiation wavelength |
---|
[950] | 810 | |
---|
[1208] | 811 | :returns: float wave: wavelength |
---|
[950] | 812 | |
---|
| 813 | ''' |
---|
[940] | 814 | try: |
---|
| 815 | return Parms['Lam'][1] |
---|
| 816 | except KeyError: |
---|
| 817 | return Parms['Lam1'][1] |
---|
[1208] | 818 | |
---|
| 819 | def El2Mass(Elements): |
---|
| 820 | '''compute molecular weight from Elements |
---|
[940] | 821 | |
---|
[1208] | 822 | :param dict Elements: elements in molecular formula; |
---|
| 823 | each must contain |
---|
| 824 | Num: number of atoms in formula |
---|
| 825 | Mass: at. wt. |
---|
| 826 | |
---|
| 827 | :returns: float mass: molecular weight. |
---|
| 828 | |
---|
| 829 | ''' |
---|
| 830 | mass = 0 |
---|
| 831 | for El in Elements: |
---|
| 832 | mass += Elements[El]['Num']*Elements[El]['Mass'] |
---|
| 833 | return mass |
---|
| 834 | |
---|
| 835 | def Den2Vol(Elements,density): |
---|
| 836 | '''converts density to molecular volume |
---|
| 837 | |
---|
| 838 | :param dict Elements: elements in molecular formula; |
---|
| 839 | each must contain |
---|
| 840 | Num: number of atoms in formula |
---|
| 841 | Mass: at. wt. |
---|
| 842 | :param float density: material density in gm/cm^3 |
---|
| 843 | |
---|
| 844 | :returns: float volume: molecular volume in A^3 |
---|
| 845 | |
---|
| 846 | ''' |
---|
| 847 | return El2Mass(Elements)/(density*0.6022137) |
---|
| 848 | |
---|
| 849 | def Vol2Den(Elements,volume): |
---|
| 850 | '''converts volume to density |
---|
| 851 | |
---|
| 852 | :param dict Elements: elements in molecular formula; |
---|
| 853 | each must contain |
---|
| 854 | Num: number of atoms in formula |
---|
| 855 | Mass: at. wt. |
---|
| 856 | :param float volume: molecular volume in A^3 |
---|
| 857 | |
---|
| 858 | :returns: float density: material density in gm/cm^3 |
---|
| 859 | |
---|
| 860 | ''' |
---|
| 861 | return El2Mass(Elements)/(volume*0.6022137) |
---|
| 862 | |
---|
| 863 | def El2EstVol(Elements): |
---|
| 864 | '''Estimate volume from molecular formula; assumes atom volume = 10A^3 |
---|
| 865 | |
---|
| 866 | :param dict Elements: elements in molecular formula; |
---|
| 867 | each must contain |
---|
| 868 | Num: number of atoms in formula |
---|
| 869 | |
---|
| 870 | :returns: float volume: estimate of molecular volume in A^3 |
---|
| 871 | |
---|
| 872 | ''' |
---|
| 873 | vol = 0 |
---|
| 874 | for El in Elements: |
---|
| 875 | vol += 10.*Elements[El]['Num'] |
---|
| 876 | return vol |
---|
| 877 | |
---|
| 878 | def XScattDen(Elements,vol,wave=0.): |
---|
| 879 | '''Estimate X-ray scattering density from molecular formula & volume; |
---|
| 880 | ignores valence, but includes anomalous effects |
---|
| 881 | |
---|
| 882 | :param dict Elements: elements in molecular formula; |
---|
| 883 | each element must contain |
---|
| 884 | Num: number of atoms in formula |
---|
| 885 | Z: atomic number |
---|
| 886 | :param float vol: molecular volume in A^3 |
---|
| 887 | :param float wave: optional wavelength in A |
---|
| 888 | |
---|
| 889 | :returns: float rho: scattering density in 10^10cm^-2; |
---|
| 890 | if wave > 0 the includes f' contribution |
---|
[1210] | 891 | :returns: float mu: if wave>0 absorption coeff in cm^-1 ; otherwise 0 |
---|
[1208] | 892 | |
---|
| 893 | ''' |
---|
| 894 | rho = 0 |
---|
[1210] | 895 | mu = 0 |
---|
[1208] | 896 | if wave: |
---|
| 897 | Xanom = XAnomAbs(Elements,wave) |
---|
| 898 | for El in Elements: |
---|
| 899 | f0 = Elements[El]['Z'] |
---|
| 900 | if wave: |
---|
| 901 | f0 += Xanom[El][0] |
---|
[1210] | 902 | mu += Xanom[El][2]*Elements[El]['Num'] |
---|
[1208] | 903 | rho += Elements[El]['Num']*f0 |
---|
[1210] | 904 | return 28.179*rho/vol,0.1*mu/vol |
---|
[1208] | 905 | |
---|
| 906 | def wavekE(wavekE): |
---|
| 907 | '''Convert wavelength to energy & vise versa |
---|
| 908 | |
---|
| 909 | :param float waveKe:wavelength in A or energy in kE |
---|
| 910 | |
---|
| 911 | :returns float waveKe:the other one |
---|
| 912 | |
---|
| 913 | ''' |
---|
| 914 | return 12.397639/wavekE |
---|
| 915 | |
---|
| 916 | def XAnomAbs(Elements,wave): |
---|
| 917 | kE = wavekE(wave) |
---|
| 918 | Xanom = {} |
---|
| 919 | for El in Elements: |
---|
| 920 | Orbs = G2el.GetXsectionCoeff(El) |
---|
| 921 | Xanom[El] = G2el.FPcalc(Orbs, kE) |
---|
| 922 | return Xanom |
---|
| 923 | |
---|
[1951] | 924 | ################################################################################ |
---|
| 925 | #### Modulation math |
---|
| 926 | ################################################################################ |
---|
| 927 | |
---|
[1988] | 928 | def Modulation(waveTypes,H,FSSdata,XSSdata,USSdata,Mast): |
---|
| 929 | ''' |
---|
| 930 | H: array ops X hklt |
---|
| 931 | Ax: array atoms X waves X xyz |
---|
| 932 | Bx: array atoms X waves X xyz |
---|
| 933 | ''' |
---|
[1966] | 934 | |
---|
[1970] | 935 | nxs = np.newaxis |
---|
[1973] | 936 | glTau,glWt = pwd.pygauleg(0.,1.,32) #get Gauss-Legendre intervals & weights |
---|
[1966] | 937 | Ax = np.array(XSSdata[:3]).T #atoms x waves x sin pos mods |
---|
| 938 | Bx = np.array(XSSdata[3:]).T #...cos pos mods |
---|
| 939 | Af = np.array(FSSdata[0]).T #sin frac mods x waves x atoms |
---|
| 940 | Bf = np.array(FSSdata[1]).T #cos frac mods... |
---|
[1973] | 941 | Au = Mast*np.array(G2lat.U6toUij(USSdata[:6])).T #atoms x waves x sin Uij mods |
---|
| 942 | Bu = Mast*np.array(G2lat.U6toUij(USSdata[6:])).T #...cos Uij mods |
---|
[1630] | 943 | |
---|
[1988] | 944 | if 'Fourier' in waveTypes: |
---|
| 945 | nf = 0 |
---|
| 946 | nx = 0 |
---|
| 947 | XmodZ = np.zeros((Ax.shape[0],Ax.shape[1],3,32)) |
---|
| 948 | FmodZ = np.zeros((Af.shape[0],Af.shape[1],32)) |
---|
| 949 | if 'Crenel' in waveTypes: |
---|
| 950 | nC = np.where('Crenel' in waveTypes) |
---|
| 951 | nf = 1 |
---|
| 952 | #FmodZ = 0 replace |
---|
| 953 | else: |
---|
| 954 | nx = 1 |
---|
| 955 | if 'Sawtooth' in waveTypes: |
---|
| 956 | nS = np.where('Sawtooth' in waveTypes) |
---|
| 957 | #XmodZ = 0 replace |
---|
| 958 | if Af.shape[1]: |
---|
| 959 | tauF = np.arange(1.,Af.shape[1]+1-nf)[:,nxs]*glTau #Fwaves x 32 |
---|
| 960 | FmodA = Af[:,nf:,nxs]*np.sin(twopi*tauF[nxs,:,:]) #atoms X Fwaves X 32 |
---|
| 961 | FmodB = Bf[:,nf:,nxs]*np.cos(twopi*tauF[nxs,:,:]) |
---|
| 962 | Fmod = np.sum(FmodA+FmodB+FmodC,axis=1) #atoms X 32; sum waves |
---|
| 963 | else: |
---|
| 964 | Fmod = 1.0 |
---|
| 965 | if Ax.shape[1]: |
---|
| 966 | tauX = np.arange(1.,Ax.shape[1]+1-nx)[:,nxs]*glTau #Xwaves x 32 |
---|
| 967 | XmodA = Ax[:,nx:,:,nxs]*np.sin(twopi*tauX[nxs,:,nxs,:]) #atoms X waves X pos X 32 |
---|
| 968 | XmodB = Bx[:,nx:,:,nxs]*np.cos(twopi*tauX[nxs,:,nxs,:]) #ditto |
---|
| 969 | Xmod = np.sum(XmodA+XmodB+XmodZ,axis=1) #atoms X pos X 32; sum waves |
---|
| 970 | if Au.shape[1]: |
---|
| 971 | tauU = np.arange(1.,Au.shape[1]+1)[:,nxs]*glTau #Uwaves x 32 |
---|
| 972 | UmodA = Au[:,:,:,:,nxs]*np.sin(twopi*tauU[nxs,:,nxs,nxs,:]) #atoms x waves x 3x3 x 32 |
---|
| 973 | UmodB = Bu[:,:,:,:,nxs]*np.cos(twopi*tauU[nxs,:,nxs,nxs,:]) #ditto |
---|
| 974 | Umod = np.swapaxes(np.sum(UmodA+UmodB,axis=1),1,3) #atoms x 3x3 x 32; sum waves |
---|
| 975 | HbH = np.exp(-np.sum(H[:,:,nxs,nxs,:3]*np.inner(H[:,:,:3],Umod),axis=-1)) # refBlk x ops x atoms x 32 add Overhauser corr.? |
---|
| 976 | else: |
---|
| 977 | HbH = 1.0 |
---|
| 978 | D = H[:,:,3][:,:,nxs]*glTau[nxs,nxs,:] #m*tau;refBlk x ops X 32 |
---|
| 979 | HdotX = np.inner(H[:,:,:3],np.swapaxes(Xmod,1,2))+D[:,:,nxs,:] #refBlk X ops x atoms X 32 |
---|
| 980 | sinHA = np.sum(Fmod*HbH*np.sin(twopi*HdotX)*glWt,axis=-1) #refBlk X ops x atoms; sum for G-L integration |
---|
| 981 | cosHA = np.sum(Fmod*HbH*np.cos(twopi*HdotX)*glWt,axis=-1) #ditto |
---|
| 982 | # GSASIIpath.IPyBreak() |
---|
| 983 | |
---|
| 984 | return np.array([cosHA,sinHA]) # 2 x refBlk x SGops x atoms |
---|
[1635] | 985 | |
---|
[1988] | 986 | def ModulationDerv(waveTypes,H,FSSdata,XSSdata,USSdata,Mast): |
---|
| 987 | ''' |
---|
| 988 | H: array ops X hklt |
---|
| 989 | Ax: array atoms X waves X xyz |
---|
| 990 | Bx: array atoms X waves X xyz |
---|
| 991 | ''' |
---|
| 992 | |
---|
[1977] | 993 | nxs = np.newaxis |
---|
| 994 | glTau,glWt = pwd.pygauleg(0.,1.,32) #get Gauss-Legendre intervals & weights |
---|
| 995 | Ax = np.array(XSSdata[:3]).T #atoms x waves x sin pos mods |
---|
[1987] | 996 | dGdAx = np.zeros_like(Ax) |
---|
[1977] | 997 | Bx = np.array(XSSdata[3:]).T #...cos pos mods |
---|
[1987] | 998 | dGdBx = np.zeros_like(Bx) |
---|
[1977] | 999 | Af = np.array(FSSdata[0]).T #sin frac mods x waves x atoms |
---|
[1987] | 1000 | dGdAf = np.zeros_like(Af) |
---|
[1977] | 1001 | Bf = np.array(FSSdata[1]).T #cos frac mods... |
---|
[1987] | 1002 | dGdBf = np.zeros_like(Bf) |
---|
[1977] | 1003 | Au = Mast*np.array(G2lat.U6toUij(USSdata[:6])).T #atoms x waves x sin Uij mods |
---|
[1987] | 1004 | dGdAu = np.zeros_like(Au) |
---|
[1977] | 1005 | Bu = Mast*np.array(G2lat.U6toUij(USSdata[6:])).T #...cos Uij mods |
---|
[1987] | 1006 | dGdBu = np.zeros_like(Bu) |
---|
[1977] | 1007 | |
---|
[1988] | 1008 | if 'Fourier' in waveTypes: |
---|
| 1009 | nf = 0 |
---|
| 1010 | nx = 0 |
---|
| 1011 | XmodZ = np.zeros((Ax.shape[0],Ax.shape[1],3,32)) |
---|
| 1012 | FmodZ = np.zeros((Af.shape[0],Af.shape[1],32)) |
---|
| 1013 | if 'Crenel' in waveTypes: |
---|
| 1014 | nC = np.where('Crenel' in waveTypes) |
---|
| 1015 | nf = 1 |
---|
| 1016 | #FmodZ = 0 replace |
---|
| 1017 | else: |
---|
| 1018 | nx = 1 |
---|
| 1019 | if 'Sawtooth' in waveTypes: |
---|
| 1020 | nS = np.where('Sawtooth' in waveTypes) |
---|
| 1021 | #XmodZ = 0 replace |
---|
| 1022 | if Af.shape[1]: |
---|
| 1023 | tauF = np.arange(1.,Af.shape[1]+1-nf)[:,nxs]*glTau #Fwaves x 32 |
---|
| 1024 | StauF = np.ones_like(Af)[:,nf:,nxs]*np.sin(twopi*tauF)[nxs,:,:] #also dFmodA/dAf |
---|
| 1025 | CtauF = np.ones_like(Bf)[:,nf:,nxs]*np.cos(twopi*tauF)[nxs,:,:] #also dFmodB/dBf |
---|
| 1026 | FmodA = Af[:,nf:,nxs]*StauF #atoms X Fwaves X 32 |
---|
| 1027 | FmodB = Bf[:,nf:,nxs]*CtauF |
---|
| 1028 | Fmod = np.sum(FmodA+FmodB+FmodC,axis=1) #atoms X 32; sum waves |
---|
| 1029 | else: |
---|
| 1030 | Fmod = 1.0 |
---|
| 1031 | if Ax.shape[1]: |
---|
| 1032 | tauX = np.arange(1.,Ax.shape[1]+1-nx)[:,nxs]*glTau #Xwaves x 32 |
---|
| 1033 | StauX = np.ones_like(Ax)[:,nx:,:,nxs]*np.sin(twopi*tauX)[nxs,:,nxs,:] #also dXmodA/dAx |
---|
| 1034 | CtauX = np.ones_like(Bx)[:,nx:,:,nxs]*np.cos(twopi*tauX)[nxs,:,nxs,:] #also dXmodB/dBx |
---|
| 1035 | XmodA = Ax[:,nx:,:,nxs]*StauX #atoms X waves X pos X 32 |
---|
| 1036 | XmodB = Bx[:,nx:,:,nxs]*CtauX #ditto |
---|
| 1037 | Xmod = np.sum(XmodA+XmodB+XmodZ,axis=1) #atoms X pos X 32; sum waves |
---|
| 1038 | if Au.shape[1]: |
---|
| 1039 | tauU = np.arange(1.,Au.shape[1]+1)[:,nxs]*glTau #Uwaves x 32 |
---|
| 1040 | StauU = np.ones_like(Au)[:,:,:,:,nxs]*np.sin(twopi*tauU)[nxs,:,nxs,nxs,:] #also dUmodA/dAu |
---|
| 1041 | CtauU = np.ones_like(Bu)[:,:,:,:,nxs]*np.cos(twopi*tauU)[nxs,:,nxs,nxs,:] #also dUmodB/dBu |
---|
| 1042 | UmodA = Au[:,:,:,:,nxs]*StauU #atoms x waves x 3x3 x 32 |
---|
| 1043 | UmodB = Bu[:,:,:,:,nxs]*CtauU #ditto |
---|
| 1044 | Umod = np.swapaxes(np.sum(UmodA+UmodB,axis=1),1,3) #atoms x 3x3 x 32; sum waves |
---|
| 1045 | HbH = np.exp(-np.sum(H[:,nxs,nxs,:3]*np.inner(H[:,:3],Umod),axis=-1)) # ops x atoms x 32 add Overhauser corr.? |
---|
| 1046 | else: |
---|
| 1047 | HbH = 1.0 |
---|
| 1048 | D = H[:,3][:,nxs]*glTau[nxs,:] #m*tau; ops X 32 |
---|
| 1049 | HdotX = np.inner(H[:,:3],np.swapaxes(Xmod,1,2))+D[:,nxs,:] #ops x atoms X 32 |
---|
| 1050 | sinHA = np.sum(Fmod*HbH*np.sin(twopi*HdotX)*glWt,axis=-1) #ops x atoms; sum for G-L integration |
---|
| 1051 | cosHA = np.sum(Fmod*HbH*np.cos(twopi*HdotX)*glWt,axis=-1) #ditto |
---|
| 1052 | # GSASIIpath.IPyBreak() |
---|
| 1053 | return np.array([cosHA,sinHA]),dGdAf,dGdBf,dGdAx,dGdBx,dGdAu,dGdBu #ops X atoms |
---|
| 1054 | |
---|
[1957] | 1055 | def posFourier(tau,psin,pcos,smul): |
---|
| 1056 | A = np.array([ps[:,np.newaxis]*np.sin(2*np.pi*(i+1)*tau) for i,ps in enumerate(psin)])*smul |
---|
[1625] | 1057 | B = np.array([pc[:,np.newaxis]*np.cos(2*np.pi*(i+1)*tau) for i,pc in enumerate(pcos)]) |
---|
| 1058 | return np.sum(A,axis=0)+np.sum(B,axis=0) |
---|
[1208] | 1059 | |
---|
[1625] | 1060 | def posSawtooth(tau,Toff,slopes): |
---|
| 1061 | Tau = (tau-Toff)%1. |
---|
| 1062 | A = slopes[:,np.newaxis]*Tau |
---|
| 1063 | return A |
---|
| 1064 | |
---|
| 1065 | def posZigZag(tau,Toff,slopes): |
---|
| 1066 | Tau = (tau-Toff)%1. |
---|
| 1067 | A = np.where(Tau <= 0.5,slopes[:,np.newaxis]*Tau,slopes[:,np.newaxis]*(1.-Tau)) |
---|
| 1068 | return A |
---|
| 1069 | |
---|
| 1070 | def fracCrenel(tau,Toff,Twid): |
---|
| 1071 | Tau = (tau-Toff)%1. |
---|
| 1072 | A = np.where(Tau<Twid,1.,0.) |
---|
| 1073 | return A |
---|
| 1074 | |
---|
| 1075 | def fracFourier(tau,fsin,fcos): |
---|
| 1076 | A = np.array([fs[:,np.newaxis]*np.sin(2.*np.pi*(i+1)*tau) for i,fs in enumerate(fsin)]) |
---|
| 1077 | B = np.array([fc[:,np.newaxis]*np.cos(2.*np.pi*(i+1)*tau) for i,fc in enumerate(fcos)]) |
---|
| 1078 | return np.sum(A,axis=0)+np.sum(B,axis=0) |
---|
| 1079 | |
---|
[1951] | 1080 | def ApplyModulation(data,tau): |
---|
| 1081 | '''Applies modulation to drawing atom positions & Uijs for given tau |
---|
| 1082 | ''' |
---|
| 1083 | generalData = data['General'] |
---|
| 1084 | SGData = generalData['SGData'] |
---|
[1957] | 1085 | SSGData = generalData['SSGData'] |
---|
[1951] | 1086 | cx,ct,cs,cia = generalData['AtomPtrs'] |
---|
| 1087 | drawingData = data['Drawing'] |
---|
| 1088 | dcx,dct,dcs,dci = drawingData['atomPtrs'] |
---|
| 1089 | atoms = data['Atoms'] |
---|
| 1090 | drawAtoms = drawingData['Atoms'] |
---|
[1958] | 1091 | Fade = np.zeros(len(drawAtoms)) |
---|
[1951] | 1092 | for atom in atoms: |
---|
[1956] | 1093 | atxyz = G2spc.MoveToUnitCell(np.array(atom[cx:cx+3]))[0] |
---|
[1952] | 1094 | atuij = np.array(atom[cia+2:cia+8]) |
---|
[1951] | 1095 | waveType = atom[-1]['SS1']['waveType'] |
---|
[1958] | 1096 | Sfrac = atom[-1]['SS1']['Sfrac'] |
---|
[1951] | 1097 | Spos = atom[-1]['SS1']['Spos'] |
---|
[1952] | 1098 | Sadp = atom[-1]['SS1']['Sadp'] |
---|
[1951] | 1099 | indx = FindAtomIndexByIDs(drawAtoms,dci,[atom[cia+8],],True) |
---|
| 1100 | for ind in indx: |
---|
| 1101 | drawatom = drawAtoms[ind] |
---|
| 1102 | opr = drawatom[dcs-1] |
---|
[1957] | 1103 | sop,ssop,icent = G2spc.OpsfromStringOps(opr,SGData,SSGData) |
---|
| 1104 | sdet,ssdet,dtau,dT,tauT = G2spc.getTauT(tau,sop,ssop,atxyz) |
---|
[1958] | 1105 | smul = sdet # n-fold vs m operator on wave |
---|
| 1106 | tauT *= icent #invert wave on -1 |
---|
[1957] | 1107 | wave = np.zeros(3) |
---|
| 1108 | uwave = np.zeros(6) |
---|
[1958] | 1109 | #how do I handle Sfrac? - fade the atoms? |
---|
| 1110 | if len(Sfrac): |
---|
| 1111 | scof = [] |
---|
| 1112 | ccof = [] |
---|
| 1113 | for i,sfrac in enumerate(Sfrac): |
---|
| 1114 | if not i and 'Crenel' in waveType: |
---|
| 1115 | Fade[ind] += fracCrenel(tauT,sfrac[0][0],sfrac[0][1]) |
---|
| 1116 | else: |
---|
| 1117 | scof.append(sfrac[0][0]) |
---|
| 1118 | ccof.append(sfrac[0][1]) |
---|
| 1119 | if len(scof): |
---|
| 1120 | Fade[ind] += np.sum(fracFourier(tauT,scof,ccof)) |
---|
[1957] | 1121 | if len(Spos): |
---|
| 1122 | scof = [] |
---|
| 1123 | ccof = [] |
---|
| 1124 | for i,spos in enumerate(Spos): |
---|
| 1125 | if waveType in ['Sawtooth','ZigZag'] and not i: |
---|
| 1126 | Toff = spos[0][0] |
---|
| 1127 | slopes = np.array(spos[0][1:]) |
---|
| 1128 | if waveType == 'Sawtooth': |
---|
| 1129 | wave = posSawtooth(tauT,Toff,slopes) |
---|
| 1130 | elif waveType == 'ZigZag': |
---|
| 1131 | wave = posZigZag(tauT,Toff,slopes) |
---|
| 1132 | else: |
---|
| 1133 | scof.append(spos[0][:3]) |
---|
| 1134 | ccof.append(spos[0][3:]) |
---|
| 1135 | wave += np.sum(posFourier(tauT,np.array(scof),np.array(ccof),smul),axis=1) |
---|
| 1136 | if len(Sadp): |
---|
| 1137 | scof = [] |
---|
| 1138 | ccof = [] |
---|
| 1139 | for i,sadp in enumerate(Sadp): |
---|
| 1140 | scof.append(sadp[0][:6]) |
---|
| 1141 | ccof.append(sadp[0][6:]) |
---|
| 1142 | uwave += np.sum(posFourier(tauT,np.array(scof),np.array(ccof),smul),axis=1) |
---|
[1951] | 1143 | if atom[cia] == 'A': |
---|
[1952] | 1144 | X,U = G2spc.ApplyStringOps(opr,SGData,atxyz+wave,atuij+uwave) |
---|
[1951] | 1145 | drawatom[dcx:dcx+3] = X |
---|
[1952] | 1146 | drawatom[dci-6:dci] = U |
---|
[1951] | 1147 | else: |
---|
| 1148 | X = G2spc.ApplyStringOps(opr,SGData,atxyz+wave) |
---|
| 1149 | drawatom[dcx:dcx+3] = X |
---|
[1958] | 1150 | return drawAtoms,Fade |
---|
[1951] | 1151 | |
---|
[1970] | 1152 | # gauleg.py Gauss Legendre numerical quadrature, x and w computation |
---|
| 1153 | # integrate from a to b using n evaluations of the function f(x) |
---|
| 1154 | # usage: from gauleg import gaulegf |
---|
| 1155 | # x,w = gaulegf( a, b, n) |
---|
| 1156 | # area = 0.0 |
---|
| 1157 | # for i in range(1,n+1): # yes, 1..n |
---|
| 1158 | # area += w[i]*f(x[i]) |
---|
| 1159 | |
---|
| 1160 | import math |
---|
| 1161 | def gaulegf(a, b, n): |
---|
| 1162 | x = range(n+1) # x[0] unused |
---|
| 1163 | w = range(n+1) # w[0] unused |
---|
| 1164 | eps = 3.0E-14 |
---|
| 1165 | m = (n+1)/2 |
---|
| 1166 | xm = 0.5*(b+a) |
---|
| 1167 | xl = 0.5*(b-a) |
---|
| 1168 | for i in range(1,m+1): |
---|
| 1169 | z = math.cos(3.141592654*(i-0.25)/(n+0.5)) |
---|
| 1170 | while True: |
---|
| 1171 | p1 = 1.0 |
---|
| 1172 | p2 = 0.0 |
---|
| 1173 | for j in range(1,n+1): |
---|
| 1174 | p3 = p2 |
---|
| 1175 | p2 = p1 |
---|
| 1176 | p1 = ((2.0*j-1.0)*z*p2-(j-1.0)*p3)/j |
---|
| 1177 | |
---|
| 1178 | pp = n*(z*p1-p2)/(z*z-1.0) |
---|
| 1179 | z1 = z |
---|
| 1180 | z = z1 - p1/pp |
---|
| 1181 | if abs(z-z1) <= eps: |
---|
| 1182 | break |
---|
| 1183 | |
---|
| 1184 | x[i] = xm - xl*z |
---|
| 1185 | x[n+1-i] = xm + xl*z |
---|
| 1186 | w[i] = 2.0*xl/((1.0-z*z)*pp*pp) |
---|
| 1187 | w[n+1-i] = w[i] |
---|
| 1188 | return np.array(x), np.array(w) |
---|
| 1189 | # end gaulegf |
---|
| 1190 | |
---|
| 1191 | |
---|
[1966] | 1192 | def BessJn(nmax,x): |
---|
| 1193 | ''' compute Bessel function J(n,x) from scipy routine & recurrance relation |
---|
| 1194 | returns sequence of J(n,x) for n in range [-nmax...0...nmax] |
---|
[1951] | 1195 | |
---|
[1966] | 1196 | :param integer nmax: maximul order for Jn(x) |
---|
| 1197 | :param float x: argument for Jn(x) |
---|
| 1198 | |
---|
| 1199 | :returns numpy array: [J(-nmax,x)...J(0,x)...J(nmax,x)] |
---|
| 1200 | |
---|
| 1201 | ''' |
---|
| 1202 | import scipy.special as sp |
---|
| 1203 | bessJn = np.zeros(2*nmax+1) |
---|
| 1204 | bessJn[nmax] = sp.j0(x) |
---|
| 1205 | bessJn[nmax+1] = sp.j1(x) |
---|
| 1206 | bessJn[nmax-1] = -bessJn[nmax+1] |
---|
| 1207 | for i in range(2,nmax+1): |
---|
| 1208 | bessJn[i+nmax] = 2*(i-1)*bessJn[nmax+i-1]/x-bessJn[nmax+i-2] |
---|
| 1209 | bessJn[nmax-i] = bessJn[i+nmax]*(-1)**i |
---|
| 1210 | return bessJn |
---|
| 1211 | |
---|
| 1212 | def BessIn(nmax,x): |
---|
| 1213 | ''' compute modified Bessel function I(n,x) from scipy routines & recurrance relation |
---|
| 1214 | returns sequence of I(n,x) for n in range [-nmax...0...nmax] |
---|
| 1215 | |
---|
| 1216 | :param integer nmax: maximul order for In(x) |
---|
| 1217 | :param float x: argument for In(x) |
---|
| 1218 | |
---|
| 1219 | :returns numpy array: [I(-nmax,x)...I(0,x)...I(nmax,x)] |
---|
| 1220 | |
---|
| 1221 | ''' |
---|
| 1222 | import scipy.special as sp |
---|
| 1223 | bessIn = np.zeros(2*nmax+1) |
---|
| 1224 | bessIn[nmax] = sp.i0(x) |
---|
| 1225 | bessIn[nmax+1] = sp.i1(x) |
---|
| 1226 | bessIn[nmax-1] = bessIn[nmax+1] |
---|
| 1227 | for i in range(2,nmax+1): |
---|
| 1228 | bessIn[i+nmax] = bessIn[nmax+i-2]-2*(i-1)*bessIn[nmax+i-1]/x |
---|
| 1229 | bessIn[nmax-i] = bessIn[i+nmax] |
---|
| 1230 | return bessIn |
---|
| 1231 | |
---|
| 1232 | |
---|
[940] | 1233 | ################################################################################ |
---|
[1625] | 1234 | ##### distance, angle, planes, torsion stuff |
---|
[940] | 1235 | ################################################################################ |
---|
| 1236 | |
---|
[815] | 1237 | def getSyXYZ(XYZ,ops,SGData): |
---|
[950] | 1238 | '''default doc string |
---|
| 1239 | |
---|
| 1240 | :param type name: description |
---|
| 1241 | |
---|
| 1242 | :returns: type name: description |
---|
| 1243 | |
---|
| 1244 | ''' |
---|
[815] | 1245 | XYZout = np.zeros_like(XYZ) |
---|
| 1246 | for i,[xyz,op] in enumerate(zip(XYZ,ops)): |
---|
| 1247 | if op == '1': |
---|
| 1248 | XYZout[i] = xyz |
---|
| 1249 | else: |
---|
| 1250 | oprs = op.split('+') |
---|
| 1251 | unit = [0,0,0] |
---|
[1363] | 1252 | if len(oprs)>1: |
---|
[815] | 1253 | unit = np.array(list(eval(oprs[1]))) |
---|
| 1254 | syop =int(oprs[0]) |
---|
| 1255 | inv = syop/abs(syop) |
---|
| 1256 | syop *= inv |
---|
| 1257 | cent = syop/100 |
---|
| 1258 | syop %= 100 |
---|
| 1259 | syop -= 1 |
---|
| 1260 | M,T = SGData['SGOps'][syop] |
---|
| 1261 | XYZout[i] = (np.inner(M,xyz)+T)*inv+SGData['SGCen'][cent]+unit |
---|
| 1262 | return XYZout |
---|
| 1263 | |
---|
[763] | 1264 | def getRestDist(XYZ,Amat): |
---|
[950] | 1265 | '''default doc string |
---|
| 1266 | |
---|
| 1267 | :param type name: description |
---|
| 1268 | |
---|
| 1269 | :returns: type name: description |
---|
| 1270 | |
---|
| 1271 | ''' |
---|
[763] | 1272 | return np.sqrt(np.sum(np.inner(Amat,(XYZ[1]-XYZ[0]))**2)) |
---|
[815] | 1273 | |
---|
[820] | 1274 | def getRestDeriv(Func,XYZ,Amat,ops,SGData): |
---|
[950] | 1275 | '''default doc string |
---|
| 1276 | |
---|
| 1277 | :param type name: description |
---|
| 1278 | |
---|
| 1279 | :returns: type name: description |
---|
| 1280 | |
---|
| 1281 | ''' |
---|
[820] | 1282 | deriv = np.zeros((len(XYZ),3)) |
---|
[815] | 1283 | dx = 0.00001 |
---|
| 1284 | for j,xyz in enumerate(XYZ): |
---|
[820] | 1285 | for i,x in enumerate(np.array([[dx,0,0],[0,dx,0],[0,0,dx]])): |
---|
[902] | 1286 | XYZ[j] -= x |
---|
[820] | 1287 | d1 = Func(getSyXYZ(XYZ,ops,SGData),Amat) |
---|
[902] | 1288 | XYZ[j] += 2*x |
---|
[820] | 1289 | d2 = Func(getSyXYZ(XYZ,ops,SGData),Amat) |
---|
[902] | 1290 | XYZ[j] -= x |
---|
[820] | 1291 | deriv[j][i] = (d1-d2)/(2*dx) |
---|
| 1292 | return deriv.flatten() |
---|
[763] | 1293 | |
---|
| 1294 | def getRestAngle(XYZ,Amat): |
---|
[950] | 1295 | '''default doc string |
---|
[763] | 1296 | |
---|
[950] | 1297 | :param type name: description |
---|
| 1298 | |
---|
| 1299 | :returns: type name: description |
---|
| 1300 | |
---|
| 1301 | ''' |
---|
| 1302 | |
---|
[763] | 1303 | def calcVec(Ox,Tx,Amat): |
---|
| 1304 | return np.inner(Amat,(Tx-Ox)) |
---|
| 1305 | |
---|
| 1306 | VecA = calcVec(XYZ[1],XYZ[0],Amat) |
---|
| 1307 | VecA /= np.sqrt(np.sum(VecA**2)) |
---|
| 1308 | VecB = calcVec(XYZ[1],XYZ[2],Amat) |
---|
| 1309 | VecB /= np.sqrt(np.sum(VecB**2)) |
---|
| 1310 | edge = VecB-VecA |
---|
| 1311 | edge = np.sum(edge**2) |
---|
| 1312 | angle = (2.-edge)/2. |
---|
| 1313 | angle = max(angle,-1.) |
---|
| 1314 | return acosd(angle) |
---|
| 1315 | |
---|
| 1316 | def getRestPlane(XYZ,Amat): |
---|
[950] | 1317 | '''default doc string |
---|
| 1318 | |
---|
| 1319 | :param type name: description |
---|
| 1320 | |
---|
| 1321 | :returns: type name: description |
---|
| 1322 | |
---|
| 1323 | ''' |
---|
[763] | 1324 | sumXYZ = np.zeros(3) |
---|
| 1325 | for xyz in XYZ: |
---|
| 1326 | sumXYZ += xyz |
---|
| 1327 | sumXYZ /= len(XYZ) |
---|
| 1328 | XYZ = np.array(XYZ)-sumXYZ |
---|
| 1329 | XYZ = np.inner(Amat,XYZ).T |
---|
| 1330 | Zmat = np.zeros((3,3)) |
---|
| 1331 | for i,xyz in enumerate(XYZ): |
---|
| 1332 | Zmat += np.outer(xyz.T,xyz) |
---|
| 1333 | Evec,Emat = nl.eig(Zmat) |
---|
| 1334 | Evec = np.sqrt(Evec)/(len(XYZ)-3) |
---|
| 1335 | Order = np.argsort(Evec) |
---|
| 1336 | return Evec[Order[0]] |
---|
| 1337 | |
---|
[815] | 1338 | def getRestChiral(XYZ,Amat): |
---|
[950] | 1339 | '''default doc string |
---|
| 1340 | |
---|
| 1341 | :param type name: description |
---|
| 1342 | |
---|
| 1343 | :returns: type name: description |
---|
| 1344 | |
---|
| 1345 | ''' |
---|
[763] | 1346 | VecA = np.empty((3,3)) |
---|
| 1347 | VecA[0] = np.inner(XYZ[1]-XYZ[0],Amat) |
---|
| 1348 | VecA[1] = np.inner(XYZ[2]-XYZ[0],Amat) |
---|
| 1349 | VecA[2] = np.inner(XYZ[3]-XYZ[0],Amat) |
---|
| 1350 | return nl.det(VecA) |
---|
[815] | 1351 | |
---|
[818] | 1352 | def getRestTorsion(XYZ,Amat): |
---|
[950] | 1353 | '''default doc string |
---|
| 1354 | |
---|
| 1355 | :param type name: description |
---|
| 1356 | |
---|
| 1357 | :returns: type name: description |
---|
| 1358 | |
---|
| 1359 | ''' |
---|
[815] | 1360 | VecA = np.empty((3,3)) |
---|
| 1361 | VecA[0] = np.inner(XYZ[1]-XYZ[0],Amat) |
---|
| 1362 | VecA[1] = np.inner(XYZ[2]-XYZ[1],Amat) |
---|
| 1363 | VecA[2] = np.inner(XYZ[3]-XYZ[2],Amat) |
---|
| 1364 | D = nl.det(VecA) |
---|
| 1365 | Mag = np.sqrt(np.sum(VecA*VecA,axis=1)) |
---|
| 1366 | P12 = np.sum(VecA[0]*VecA[1])/(Mag[0]*Mag[1]) |
---|
| 1367 | P13 = np.sum(VecA[0]*VecA[2])/(Mag[0]*Mag[2]) |
---|
| 1368 | P23 = np.sum(VecA[1]*VecA[2])/(Mag[1]*Mag[2]) |
---|
| 1369 | Ang = 1.0 |
---|
| 1370 | if abs(P12) < 1.0 and abs(P23) < 1.0: |
---|
| 1371 | Ang = (P12*P23-P13)/(np.sqrt(1.-P12**2)*np.sqrt(1.-P23**2)) |
---|
| 1372 | TOR = (acosd(Ang)*D/abs(D)+720.)%360. |
---|
[818] | 1373 | return TOR |
---|
| 1374 | |
---|
| 1375 | def calcTorsionEnergy(TOR,Coeff=[]): |
---|
[950] | 1376 | '''default doc string |
---|
| 1377 | |
---|
| 1378 | :param type name: description |
---|
| 1379 | |
---|
| 1380 | :returns: type name: description |
---|
| 1381 | |
---|
| 1382 | ''' |
---|
[815] | 1383 | sum = 0. |
---|
| 1384 | if len(Coeff): |
---|
| 1385 | cof = np.reshape(Coeff,(3,3)).T |
---|
| 1386 | delt = TOR-cof[1] |
---|
| 1387 | delt = np.where(delt<-180.,delt+360.,delt) |
---|
| 1388 | delt = np.where(delt>180.,delt-360.,delt) |
---|
| 1389 | term = -cof[2]*delt**2 |
---|
[817] | 1390 | val = cof[0]*np.exp(term/1000.0) |
---|
| 1391 | pMax = cof[0][np.argmin(val)] |
---|
[818] | 1392 | Eval = np.sum(val) |
---|
| 1393 | sum = Eval-pMax |
---|
| 1394 | return sum,Eval |
---|
[817] | 1395 | |
---|
[822] | 1396 | def getTorsionDeriv(XYZ,Amat,Coeff): |
---|
[950] | 1397 | '''default doc string |
---|
| 1398 | |
---|
| 1399 | :param type name: description |
---|
| 1400 | |
---|
| 1401 | :returns: type name: description |
---|
| 1402 | |
---|
| 1403 | ''' |
---|
[822] | 1404 | deriv = np.zeros((len(XYZ),3)) |
---|
| 1405 | dx = 0.00001 |
---|
| 1406 | for j,xyz in enumerate(XYZ): |
---|
| 1407 | for i,x in enumerate(np.array([[dx,0,0],[0,dx,0],[0,0,dx]])): |
---|
[902] | 1408 | XYZ[j] -= x |
---|
[822] | 1409 | tor = getRestTorsion(XYZ,Amat) |
---|
[1097] | 1410 | p1,d1 = calcTorsionEnergy(tor,Coeff) |
---|
[902] | 1411 | XYZ[j] += 2*x |
---|
[822] | 1412 | tor = getRestTorsion(XYZ,Amat) |
---|
[1097] | 1413 | p2,d2 = calcTorsionEnergy(tor,Coeff) |
---|
[902] | 1414 | XYZ[j] -= x |
---|
[1097] | 1415 | deriv[j][i] = (p2-p1)/(2*dx) |
---|
[822] | 1416 | return deriv.flatten() |
---|
| 1417 | |
---|
| 1418 | def getRestRama(XYZ,Amat): |
---|
[950] | 1419 | '''Computes a pair of torsion angles in a 5 atom string |
---|
| 1420 | |
---|
| 1421 | :param nparray XYZ: crystallographic coordinates of 5 atoms |
---|
| 1422 | :param nparray Amat: crystal to cartesian transformation matrix |
---|
| 1423 | |
---|
| 1424 | :returns: list (phi,psi) two torsion angles in degrees |
---|
| 1425 | |
---|
| 1426 | ''' |
---|
[818] | 1427 | phi = getRestTorsion(XYZ[:5],Amat) |
---|
| 1428 | psi = getRestTorsion(XYZ[1:],Amat) |
---|
| 1429 | return phi,psi |
---|
| 1430 | |
---|
| 1431 | def calcRamaEnergy(phi,psi,Coeff=[]): |
---|
[950] | 1432 | '''Computes pseudo potential energy from a pair of torsion angles and a |
---|
[957] | 1433 | numerical description of the potential energy surface. Used to create |
---|
| 1434 | penalty function in LS refinement: |
---|
| 1435 | :math:`Eval(\\phi,\\psi) = C[0]*exp(-V/1000)` |
---|
| 1436 | |
---|
| 1437 | where :math:`V = -C[3] * (\\phi-C[1])^2 - C[4]*(\\psi-C[2])^2 - 2*(\\phi-C[1])*(\\psi-C[2])` |
---|
[950] | 1438 | |
---|
[957] | 1439 | :param float phi: first torsion angle (:math:`\\phi`) |
---|
| 1440 | :param float psi: second torsion angle (:math:`\\psi`) |
---|
[950] | 1441 | :param list Coeff: pseudo potential coefficients |
---|
| 1442 | |
---|
[957] | 1443 | :returns: list (sum,Eval): pseudo-potential difference from minimum & value; |
---|
| 1444 | sum is used for penalty function. |
---|
[950] | 1445 | |
---|
| 1446 | ''' |
---|
[818] | 1447 | sum = 0. |
---|
[950] | 1448 | Eval = 0. |
---|
[817] | 1449 | if len(Coeff): |
---|
| 1450 | cof = Coeff.T |
---|
| 1451 | dPhi = phi-cof[1] |
---|
| 1452 | dPhi = np.where(dPhi<-180.,dPhi+360.,dPhi) |
---|
| 1453 | dPhi = np.where(dPhi>180.,dPhi-360.,dPhi) |
---|
| 1454 | dPsi = psi-cof[2] |
---|
| 1455 | dPsi = np.where(dPsi<-180.,dPsi+360.,dPsi) |
---|
| 1456 | dPsi = np.where(dPsi>180.,dPsi-360.,dPsi) |
---|
| 1457 | val = -cof[3]*dPhi**2-cof[4]*dPsi**2-2.0*cof[5]*dPhi*dPsi |
---|
| 1458 | val = cof[0]*np.exp(val/1000.) |
---|
| 1459 | pMax = cof[0][np.argmin(val)] |
---|
[818] | 1460 | Eval = np.sum(val) |
---|
| 1461 | sum = Eval-pMax |
---|
| 1462 | return sum,Eval |
---|
[822] | 1463 | |
---|
| 1464 | def getRamaDeriv(XYZ,Amat,Coeff): |
---|
[950] | 1465 | '''Computes numerical derivatives of torsion angle pair pseudo potential |
---|
| 1466 | with respect of crystallographic atom coordinates of the 5 atom sequence |
---|
| 1467 | |
---|
| 1468 | :param nparray XYZ: crystallographic coordinates of 5 atoms |
---|
| 1469 | :param nparray Amat: crystal to cartesian transformation matrix |
---|
| 1470 | :param list Coeff: pseudo potential coefficients |
---|
| 1471 | |
---|
| 1472 | :returns: list (deriv) derivatives of pseudopotential with respect to 5 atom |
---|
| 1473 | crystallographic xyz coordinates. |
---|
| 1474 | |
---|
| 1475 | ''' |
---|
[822] | 1476 | deriv = np.zeros((len(XYZ),3)) |
---|
| 1477 | dx = 0.00001 |
---|
| 1478 | for j,xyz in enumerate(XYZ): |
---|
| 1479 | for i,x in enumerate(np.array([[dx,0,0],[0,dx,0],[0,0,dx]])): |
---|
[902] | 1480 | XYZ[j] -= x |
---|
[822] | 1481 | phi,psi = getRestRama(XYZ,Amat) |
---|
[1097] | 1482 | p1,d1 = calcRamaEnergy(phi,psi,Coeff) |
---|
[902] | 1483 | XYZ[j] += 2*x |
---|
[822] | 1484 | phi,psi = getRestRama(XYZ,Amat) |
---|
[1097] | 1485 | p2,d2 = calcRamaEnergy(phi,psi,Coeff) |
---|
[902] | 1486 | XYZ[j] -= x |
---|
[1097] | 1487 | deriv[j][i] = (p2-p1)/(2*dx) |
---|
[822] | 1488 | return deriv.flatten() |
---|
[823] | 1489 | |
---|
| 1490 | def getRestPolefig(ODFln,SamSym,Grid): |
---|
[950] | 1491 | '''default doc string |
---|
| 1492 | |
---|
| 1493 | :param type name: description |
---|
| 1494 | |
---|
| 1495 | :returns: type name: description |
---|
| 1496 | |
---|
| 1497 | ''' |
---|
[823] | 1498 | X,Y = np.meshgrid(np.linspace(1.,-1.,Grid),np.linspace(-1.,1.,Grid)) |
---|
[824] | 1499 | R,P = np.sqrt(X**2+Y**2).flatten(),atan2d(Y,X).flatten() |
---|
[823] | 1500 | R = np.where(R <= 1.,2.*atand(R),0.0) |
---|
| 1501 | Z = np.zeros_like(R) |
---|
| 1502 | Z = G2lat.polfcal(ODFln,SamSym,R,P) |
---|
| 1503 | Z = np.reshape(Z,(Grid,Grid)) |
---|
| 1504 | return np.reshape(R,(Grid,Grid)),np.reshape(P,(Grid,Grid)),Z |
---|
| 1505 | |
---|
| 1506 | def getRestPolefigDerv(HKL,Grid,SHCoeff): |
---|
[950] | 1507 | '''default doc string |
---|
| 1508 | |
---|
| 1509 | :param type name: description |
---|
| 1510 | |
---|
| 1511 | :returns: type name: description |
---|
| 1512 | |
---|
| 1513 | ''' |
---|
[823] | 1514 | pass |
---|
[818] | 1515 | |
---|
[763] | 1516 | def getDistDerv(Oxyz,Txyz,Amat,Tunit,Top,SGData): |
---|
[950] | 1517 | '''default doc string |
---|
| 1518 | |
---|
| 1519 | :param type name: description |
---|
| 1520 | |
---|
| 1521 | :returns: type name: description |
---|
| 1522 | |
---|
| 1523 | ''' |
---|
[763] | 1524 | def calcDist(Ox,Tx,U,inv,C,M,T,Amat): |
---|
| 1525 | TxT = inv*(np.inner(M,Tx)+T)+C+U |
---|
| 1526 | return np.sqrt(np.sum(np.inner(Amat,(TxT-Ox))**2)) |
---|
| 1527 | |
---|
| 1528 | inv = Top/abs(Top) |
---|
| 1529 | cent = abs(Top)/100 |
---|
| 1530 | op = abs(Top)%100-1 |
---|
| 1531 | M,T = SGData['SGOps'][op] |
---|
| 1532 | C = SGData['SGCen'][cent] |
---|
| 1533 | dx = .00001 |
---|
| 1534 | deriv = np.zeros(6) |
---|
| 1535 | for i in [0,1,2]: |
---|
[902] | 1536 | Oxyz[i] -= dx |
---|
[763] | 1537 | d0 = calcDist(Oxyz,Txyz,Tunit,inv,C,M,T,Amat) |
---|
[902] | 1538 | Oxyz[i] += 2*dx |
---|
[763] | 1539 | deriv[i] = (calcDist(Oxyz,Txyz,Tunit,inv,C,M,T,Amat)-d0)/(2.*dx) |
---|
[902] | 1540 | Oxyz[i] -= dx |
---|
| 1541 | Txyz[i] -= dx |
---|
[763] | 1542 | d0 = calcDist(Oxyz,Txyz,Tunit,inv,C,M,T,Amat) |
---|
[902] | 1543 | Txyz[i] += 2*dx |
---|
[763] | 1544 | deriv[i+3] = (calcDist(Oxyz,Txyz,Tunit,inv,C,M,T,Amat)-d0)/(2.*dx) |
---|
[902] | 1545 | Txyz[i] -= dx |
---|
[763] | 1546 | return deriv |
---|
| 1547 | |
---|
| 1548 | def getAngSig(VA,VB,Amat,SGData,covData={}): |
---|
[950] | 1549 | '''default doc string |
---|
| 1550 | |
---|
| 1551 | :param type name: description |
---|
| 1552 | |
---|
| 1553 | :returns: type name: description |
---|
| 1554 | |
---|
| 1555 | ''' |
---|
[763] | 1556 | def calcVec(Ox,Tx,U,inv,C,M,T,Amat): |
---|
[1643] | 1557 | TxT = inv*(np.inner(M,Tx)+T)+C+U |
---|
[763] | 1558 | return np.inner(Amat,(TxT-Ox)) |
---|
| 1559 | |
---|
| 1560 | def calcAngle(Ox,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat): |
---|
| 1561 | VecA = calcVec(Ox,TxA,unitA,invA,CA,MA,TA,Amat) |
---|
| 1562 | VecA /= np.sqrt(np.sum(VecA**2)) |
---|
| 1563 | VecB = calcVec(Ox,TxB,unitB,invB,CB,MB,TB,Amat) |
---|
| 1564 | VecB /= np.sqrt(np.sum(VecB**2)) |
---|
| 1565 | edge = VecB-VecA |
---|
| 1566 | edge = np.sum(edge**2) |
---|
| 1567 | angle = (2.-edge)/2. |
---|
| 1568 | angle = max(angle,-1.) |
---|
| 1569 | return acosd(angle) |
---|
| 1570 | |
---|
| 1571 | OxAN,OxA,TxAN,TxA,unitA,TopA = VA |
---|
| 1572 | OxBN,OxB,TxBN,TxB,unitB,TopB = VB |
---|
| 1573 | invA = invB = 1 |
---|
| 1574 | invA = TopA/abs(TopA) |
---|
| 1575 | invB = TopB/abs(TopB) |
---|
| 1576 | centA = abs(TopA)/100 |
---|
| 1577 | centB = abs(TopB)/100 |
---|
| 1578 | opA = abs(TopA)%100-1 |
---|
| 1579 | opB = abs(TopB)%100-1 |
---|
| 1580 | MA,TA = SGData['SGOps'][opA] |
---|
| 1581 | MB,TB = SGData['SGOps'][opB] |
---|
| 1582 | CA = SGData['SGCen'][centA] |
---|
| 1583 | CB = SGData['SGCen'][centB] |
---|
| 1584 | if 'covMatrix' in covData: |
---|
| 1585 | covMatrix = covData['covMatrix'] |
---|
| 1586 | varyList = covData['varyList'] |
---|
| 1587 | AngVcov = getVCov(OxAN+TxAN+TxBN,varyList,covMatrix) |
---|
| 1588 | dx = .00001 |
---|
| 1589 | dadx = np.zeros(9) |
---|
| 1590 | Ang = calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat) |
---|
| 1591 | for i in [0,1,2]: |
---|
[902] | 1592 | OxA[i] -= dx |
---|
[763] | 1593 | a0 = calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat) |
---|
[902] | 1594 | OxA[i] += 2*dx |
---|
| 1595 | dadx[i] = (calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat)-a0)/(2*dx) |
---|
| 1596 | OxA[i] -= dx |
---|
[763] | 1597 | |
---|
[902] | 1598 | TxA[i] -= dx |
---|
[763] | 1599 | a0 = calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat) |
---|
[902] | 1600 | TxA[i] += 2*dx |
---|
| 1601 | dadx[i+3] = (calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat)-a0)/(2*dx) |
---|
| 1602 | TxA[i] -= dx |
---|
[763] | 1603 | |
---|
[902] | 1604 | TxB[i] -= dx |
---|
[763] | 1605 | a0 = calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat) |
---|
[902] | 1606 | TxB[i] += 2*dx |
---|
| 1607 | dadx[i+6] = (calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat)-a0)/(2*dx) |
---|
| 1608 | TxB[i] -= dx |
---|
[763] | 1609 | |
---|
| 1610 | sigAng = np.sqrt(np.inner(dadx,np.inner(AngVcov,dadx))) |
---|
| 1611 | if sigAng < 0.01: |
---|
| 1612 | sigAng = 0.0 |
---|
| 1613 | return Ang,sigAng |
---|
| 1614 | else: |
---|
| 1615 | return calcAngle(OxA,TxA,TxB,unitA,unitB,invA,CA,MA,TA,invB,CB,MB,TB,Amat),0.0 |
---|
| 1616 | |
---|
| 1617 | def GetDistSig(Oatoms,Atoms,Amat,SGData,covData={}): |
---|
[950] | 1618 | '''default doc string |
---|
| 1619 | |
---|
| 1620 | :param type name: description |
---|
| 1621 | |
---|
| 1622 | :returns: type name: description |
---|
| 1623 | |
---|
| 1624 | ''' |
---|
[763] | 1625 | def calcDist(Atoms,SyOps,Amat): |
---|
| 1626 | XYZ = [] |
---|
| 1627 | for i,atom in enumerate(Atoms): |
---|
| 1628 | Inv,M,T,C,U = SyOps[i] |
---|
| 1629 | XYZ.append(np.array(atom[1:4])) |
---|
| 1630 | XYZ[-1] = Inv*(np.inner(M,np.array(XYZ[-1]))+T)+C+U |
---|
| 1631 | XYZ[-1] = np.inner(Amat,XYZ[-1]).T |
---|
| 1632 | V1 = XYZ[1]-XYZ[0] |
---|
| 1633 | return np.sqrt(np.sum(V1**2)) |
---|
| 1634 | |
---|
| 1635 | Inv = [] |
---|
| 1636 | SyOps = [] |
---|
| 1637 | names = [] |
---|
| 1638 | for i,atom in enumerate(Oatoms): |
---|
| 1639 | names += atom[-1] |
---|
| 1640 | Op,unit = Atoms[i][-1] |
---|
| 1641 | inv = Op/abs(Op) |
---|
| 1642 | m,t = SGData['SGOps'][abs(Op)%100-1] |
---|
| 1643 | c = SGData['SGCen'][abs(Op)/100] |
---|
| 1644 | SyOps.append([inv,m,t,c,unit]) |
---|
| 1645 | Dist = calcDist(Oatoms,SyOps,Amat) |
---|
| 1646 | |
---|
| 1647 | sig = -0.001 |
---|
| 1648 | if 'covMatrix' in covData: |
---|
| 1649 | parmNames = [] |
---|
| 1650 | dx = .00001 |
---|
| 1651 | dadx = np.zeros(6) |
---|
| 1652 | for i in range(6): |
---|
| 1653 | ia = i/3 |
---|
| 1654 | ix = i%3 |
---|
| 1655 | Oatoms[ia][ix+1] += dx |
---|
| 1656 | a0 = calcDist(Oatoms,SyOps,Amat) |
---|
| 1657 | Oatoms[ia][ix+1] -= 2*dx |
---|
| 1658 | dadx[i] = (calcDist(Oatoms,SyOps,Amat)-a0)/(2.*dx) |
---|
| 1659 | covMatrix = covData['covMatrix'] |
---|
| 1660 | varyList = covData['varyList'] |
---|
| 1661 | DistVcov = getVCov(names,varyList,covMatrix) |
---|
| 1662 | sig = np.sqrt(np.inner(dadx,np.inner(DistVcov,dadx))) |
---|
| 1663 | if sig < 0.001: |
---|
| 1664 | sig = -0.001 |
---|
| 1665 | |
---|
| 1666 | return Dist,sig |
---|
| 1667 | |
---|
| 1668 | def GetAngleSig(Oatoms,Atoms,Amat,SGData,covData={}): |
---|
[950] | 1669 | '''default doc string |
---|
| 1670 | |
---|
| 1671 | :param type name: description |
---|
| 1672 | |
---|
| 1673 | :returns: type name: description |
---|
| 1674 | |
---|
| 1675 | ''' |
---|
| 1676 | |
---|
[763] | 1677 | def calcAngle(Atoms,SyOps,Amat): |
---|
| 1678 | XYZ = [] |
---|
| 1679 | for i,atom in enumerate(Atoms): |
---|
| 1680 | Inv,M,T,C,U = SyOps[i] |
---|
| 1681 | XYZ.append(np.array(atom[1:4])) |
---|
| 1682 | XYZ[-1] = Inv*(np.inner(M,np.array(XYZ[-1]))+T)+C+U |
---|
| 1683 | XYZ[-1] = np.inner(Amat,XYZ[-1]).T |
---|
| 1684 | V1 = XYZ[1]-XYZ[0] |
---|
| 1685 | V1 /= np.sqrt(np.sum(V1**2)) |
---|
| 1686 | V2 = XYZ[1]-XYZ[2] |
---|
| 1687 | V2 /= np.sqrt(np.sum(V2**2)) |
---|
| 1688 | V3 = V2-V1 |
---|
| 1689 | cang = min(1.,max((2.-np.sum(V3**2))/2.,-1.)) |
---|
| 1690 | return acosd(cang) |
---|
| 1691 | |
---|
| 1692 | Inv = [] |
---|
| 1693 | SyOps = [] |
---|
| 1694 | names = [] |
---|
| 1695 | for i,atom in enumerate(Oatoms): |
---|
| 1696 | names += atom[-1] |
---|
| 1697 | Op,unit = Atoms[i][-1] |
---|
| 1698 | inv = Op/abs(Op) |
---|
| 1699 | m,t = SGData['SGOps'][abs(Op)%100-1] |
---|
| 1700 | c = SGData['SGCen'][abs(Op)/100] |
---|
| 1701 | SyOps.append([inv,m,t,c,unit]) |
---|
| 1702 | Angle = calcAngle(Oatoms,SyOps,Amat) |
---|
| 1703 | |
---|
| 1704 | sig = -0.01 |
---|
| 1705 | if 'covMatrix' in covData: |
---|
| 1706 | parmNames = [] |
---|
| 1707 | dx = .00001 |
---|
| 1708 | dadx = np.zeros(9) |
---|
| 1709 | for i in range(9): |
---|
| 1710 | ia = i/3 |
---|
| 1711 | ix = i%3 |
---|
| 1712 | Oatoms[ia][ix+1] += dx |
---|
| 1713 | a0 = calcAngle(Oatoms,SyOps,Amat) |
---|
| 1714 | Oatoms[ia][ix+1] -= 2*dx |
---|
| 1715 | dadx[i] = (calcAngle(Oatoms,SyOps,Amat)-a0)/(2.*dx) |
---|
| 1716 | covMatrix = covData['covMatrix'] |
---|
| 1717 | varyList = covData['varyList'] |
---|
| 1718 | AngVcov = getVCov(names,varyList,covMatrix) |
---|
| 1719 | sig = np.sqrt(np.inner(dadx,np.inner(AngVcov,dadx))) |
---|
| 1720 | if sig < 0.01: |
---|
| 1721 | sig = -0.01 |
---|
| 1722 | |
---|
| 1723 | return Angle,sig |
---|
| 1724 | |
---|
| 1725 | def GetTorsionSig(Oatoms,Atoms,Amat,SGData,covData={}): |
---|
[950] | 1726 | '''default doc string |
---|
| 1727 | |
---|
| 1728 | :param type name: description |
---|
| 1729 | |
---|
| 1730 | :returns: type name: description |
---|
| 1731 | |
---|
| 1732 | ''' |
---|
| 1733 | |
---|
[763] | 1734 | def calcTorsion(Atoms,SyOps,Amat): |
---|
| 1735 | |
---|
| 1736 | XYZ = [] |
---|
| 1737 | for i,atom in enumerate(Atoms): |
---|
| 1738 | Inv,M,T,C,U = SyOps[i] |
---|
| 1739 | XYZ.append(np.array(atom[1:4])) |
---|
| 1740 | XYZ[-1] = Inv*(np.inner(M,np.array(XYZ[-1]))+T)+C+U |
---|
| 1741 | XYZ[-1] = np.inner(Amat,XYZ[-1]).T |
---|
| 1742 | V1 = XYZ[1]-XYZ[0] |
---|
| 1743 | V2 = XYZ[2]-XYZ[1] |
---|
| 1744 | V3 = XYZ[3]-XYZ[2] |
---|
| 1745 | V1 /= np.sqrt(np.sum(V1**2)) |
---|
| 1746 | V2 /= np.sqrt(np.sum(V2**2)) |
---|
| 1747 | V3 /= np.sqrt(np.sum(V3**2)) |
---|
| 1748 | M = np.array([V1,V2,V3]) |
---|
| 1749 | D = nl.det(M) |
---|
| 1750 | Ang = 1.0 |
---|
| 1751 | P12 = np.dot(V1,V2) |
---|
| 1752 | P13 = np.dot(V1,V3) |
---|
| 1753 | P23 = np.dot(V2,V3) |
---|
| 1754 | Tors = acosd((P12*P23-P13)/(np.sqrt(1.-P12**2)*np.sqrt(1.-P23**2)))*D/abs(D) |
---|
| 1755 | return Tors |
---|
| 1756 | |
---|
| 1757 | Inv = [] |
---|
| 1758 | SyOps = [] |
---|
| 1759 | names = [] |
---|
| 1760 | for i,atom in enumerate(Oatoms): |
---|
| 1761 | names += atom[-1] |
---|
| 1762 | Op,unit = Atoms[i][-1] |
---|
| 1763 | inv = Op/abs(Op) |
---|
| 1764 | m,t = SGData['SGOps'][abs(Op)%100-1] |
---|
| 1765 | c = SGData['SGCen'][abs(Op)/100] |
---|
| 1766 | SyOps.append([inv,m,t,c,unit]) |
---|
| 1767 | Tors = calcTorsion(Oatoms,SyOps,Amat) |
---|
| 1768 | |
---|
| 1769 | sig = -0.01 |
---|
| 1770 | if 'covMatrix' in covData: |
---|
| 1771 | parmNames = [] |
---|
| 1772 | dx = .00001 |
---|
| 1773 | dadx = np.zeros(12) |
---|
| 1774 | for i in range(12): |
---|
| 1775 | ia = i/3 |
---|
| 1776 | ix = i%3 |
---|
[902] | 1777 | Oatoms[ia][ix+1] -= dx |
---|
[763] | 1778 | a0 = calcTorsion(Oatoms,SyOps,Amat) |
---|
[902] | 1779 | Oatoms[ia][ix+1] += 2*dx |
---|
[763] | 1780 | dadx[i] = (calcTorsion(Oatoms,SyOps,Amat)-a0)/(2.*dx) |
---|
[902] | 1781 | Oatoms[ia][ix+1] -= dx |
---|
[763] | 1782 | covMatrix = covData['covMatrix'] |
---|
| 1783 | varyList = covData['varyList'] |
---|
| 1784 | TorVcov = getVCov(names,varyList,covMatrix) |
---|
| 1785 | sig = np.sqrt(np.inner(dadx,np.inner(TorVcov,dadx))) |
---|
| 1786 | if sig < 0.01: |
---|
| 1787 | sig = -0.01 |
---|
| 1788 | |
---|
| 1789 | return Tors,sig |
---|
| 1790 | |
---|
| 1791 | def GetDATSig(Oatoms,Atoms,Amat,SGData,covData={}): |
---|
[950] | 1792 | '''default doc string |
---|
| 1793 | |
---|
| 1794 | :param type name: description |
---|
| 1795 | |
---|
| 1796 | :returns: type name: description |
---|
| 1797 | |
---|
| 1798 | ''' |
---|
| 1799 | |
---|
[763] | 1800 | def calcDist(Atoms,SyOps,Amat): |
---|
| 1801 | XYZ = [] |
---|
| 1802 | for i,atom in enumerate(Atoms): |
---|
| 1803 | Inv,M,T,C,U = SyOps[i] |
---|
| 1804 | XYZ.append(np.array(atom[1:4])) |
---|
| 1805 | XYZ[-1] = Inv*(np.inner(M,np.array(XYZ[-1]))+T)+C+U |
---|
| 1806 | XYZ[-1] = np.inner(Amat,XYZ[-1]).T |
---|
| 1807 | V1 = XYZ[1]-XYZ[0] |
---|
| 1808 | return np.sqrt(np.sum(V1**2)) |
---|
| 1809 | |
---|
| 1810 | def calcAngle(Atoms,SyOps,Amat): |
---|
| 1811 | XYZ = [] |
---|
| 1812 | for i,atom in enumerate(Atoms): |
---|
| 1813 | Inv,M,T,C,U = SyOps[i] |
---|
| 1814 | XYZ.append(np.array(atom[1:4])) |
---|
| 1815 | XYZ[-1] = Inv*(np.inner(M,np.array(XYZ[-1]))+T)+C+U |
---|
| 1816 | XYZ[-1] = np.inner(Amat,XYZ[-1]).T |
---|
| 1817 | V1 = XYZ[1]-XYZ[0] |
---|
| 1818 | V1 /= np.sqrt(np.sum(V1**2)) |
---|
| 1819 | V2 = XYZ[1]-XYZ[2] |
---|
| 1820 | V2 /= np.sqrt(np.sum(V2**2)) |
---|
| 1821 | V3 = V2-V1 |
---|
| 1822 | cang = min(1.,max((2.-np.sum(V3**2))/2.,-1.)) |
---|
| 1823 | return acosd(cang) |
---|
| 1824 | |
---|
| 1825 | def calcTorsion(Atoms,SyOps,Amat): |
---|
| 1826 | |
---|
| 1827 | XYZ = [] |
---|
| 1828 | for i,atom in enumerate(Atoms): |
---|
| 1829 | Inv,M,T,C,U = SyOps[i] |
---|
| 1830 | XYZ.append(np.array(atom[1:4])) |
---|
| 1831 | XYZ[-1] = Inv*(np.inner(M,np.array(XYZ[-1]))+T)+C+U |
---|
| 1832 | XYZ[-1] = np.inner(Amat,XYZ[-1]).T |
---|
| 1833 | V1 = XYZ[1]-XYZ[0] |
---|
| 1834 | V2 = XYZ[2]-XYZ[1] |
---|
| 1835 | V3 = XYZ[3]-XYZ[2] |
---|
| 1836 | V1 /= np.sqrt(np.sum(V1**2)) |
---|
| 1837 | V2 /= np.sqrt(np.sum(V2**2)) |
---|
| 1838 | V3 /= np.sqrt(np.sum(V3**2)) |
---|
| 1839 | M = np.array([V1,V2,V3]) |
---|
| 1840 | D = nl.det(M) |
---|
| 1841 | Ang = 1.0 |
---|
| 1842 | P12 = np.dot(V1,V2) |
---|
| 1843 | P13 = np.dot(V1,V3) |
---|
| 1844 | P23 = np.dot(V2,V3) |
---|
| 1845 | Tors = acosd((P12*P23-P13)/(np.sqrt(1.-P12**2)*np.sqrt(1.-P23**2)))*D/abs(D) |
---|
| 1846 | return Tors |
---|
| 1847 | |
---|
| 1848 | Inv = [] |
---|
| 1849 | SyOps = [] |
---|
| 1850 | names = [] |
---|
| 1851 | for i,atom in enumerate(Oatoms): |
---|
| 1852 | names += atom[-1] |
---|
| 1853 | Op,unit = Atoms[i][-1] |
---|
| 1854 | inv = Op/abs(Op) |
---|
| 1855 | m,t = SGData['SGOps'][abs(Op)%100-1] |
---|
| 1856 | c = SGData['SGCen'][abs(Op)/100] |
---|
| 1857 | SyOps.append([inv,m,t,c,unit]) |
---|
| 1858 | M = len(Oatoms) |
---|
| 1859 | if M == 2: |
---|
| 1860 | Val = calcDist(Oatoms,SyOps,Amat) |
---|
| 1861 | elif M == 3: |
---|
| 1862 | Val = calcAngle(Oatoms,SyOps,Amat) |
---|
| 1863 | else: |
---|
| 1864 | Val = calcTorsion(Oatoms,SyOps,Amat) |
---|
| 1865 | |
---|
| 1866 | sigVals = [-0.001,-0.01,-0.01] |
---|
| 1867 | sig = sigVals[M-3] |
---|
| 1868 | if 'covMatrix' in covData: |
---|
| 1869 | parmNames = [] |
---|
| 1870 | dx = .00001 |
---|
| 1871 | N = M*3 |
---|
| 1872 | dadx = np.zeros(N) |
---|
| 1873 | for i in range(N): |
---|
| 1874 | ia = i/3 |
---|
| 1875 | ix = i%3 |
---|
| 1876 | Oatoms[ia][ix+1] += dx |
---|
| 1877 | if M == 2: |
---|
| 1878 | a0 = calcDist(Oatoms,SyOps,Amat) |
---|
| 1879 | elif M == 3: |
---|
| 1880 | a0 = calcAngle(Oatoms,SyOps,Amat) |
---|
| 1881 | else: |
---|
| 1882 | a0 = calcTorsion(Oatoms,SyOps,Amat) |
---|
| 1883 | Oatoms[ia][ix+1] -= 2*dx |
---|
| 1884 | if M == 2: |
---|
| 1885 | dadx[i] = (calcDist(Oatoms,SyOps,Amat)-a0)/(2.*dx) |
---|
| 1886 | elif M == 3: |
---|
| 1887 | dadx[i] = (calcAngle(Oatoms,SyOps,Amat)-a0)/(2.*dx) |
---|
| 1888 | else: |
---|
| 1889 | dadx[i] = (calcTorsion(Oatoms,SyOps,Amat)-a0)/(2.*dx) |
---|
| 1890 | covMatrix = covData['covMatrix'] |
---|
| 1891 | varyList = covData['varyList'] |
---|
| 1892 | Vcov = getVCov(names,varyList,covMatrix) |
---|
| 1893 | sig = np.sqrt(np.inner(dadx,np.inner(Vcov,dadx))) |
---|
| 1894 | if sig < sigVals[M-3]: |
---|
| 1895 | sig = sigVals[M-3] |
---|
| 1896 | |
---|
| 1897 | return Val,sig |
---|
| 1898 | |
---|
[939] | 1899 | def ValEsd(value,esd=0,nTZ=False): |
---|
| 1900 | '''Format a floating point number with a given level of precision or |
---|
| 1901 | with in crystallographic format with a "esd", as value(esd). If esd is |
---|
| 1902 | negative the number is formatted with the level of significant figures |
---|
| 1903 | appropriate if abs(esd) were the esd, but the esd is not included. |
---|
| 1904 | if the esd is zero, approximately 6 significant figures are printed. |
---|
| 1905 | nTZ=True causes "extra" zeros to be removed after the decimal place. |
---|
| 1906 | for example: |
---|
| 1907 | |
---|
| 1908 | * "1.235(3)" for value=1.2346 & esd=0.003 |
---|
| 1909 | * "1.235(3)e4" for value=12346. & esd=30 |
---|
| 1910 | * "1.235(3)e6" for value=0.12346e7 & esd=3000 |
---|
| 1911 | * "1.235" for value=1.2346 & esd=-0.003 |
---|
| 1912 | * "1.240" for value=1.2395 & esd=-0.003 |
---|
| 1913 | * "1.24" for value=1.2395 & esd=-0.003 with nTZ=True |
---|
| 1914 | * "1.23460" for value=1.2346 & esd=0.0 |
---|
| 1915 | |
---|
| 1916 | :param float value: number to be formatted |
---|
| 1917 | :param float esd: uncertainty or if esd < 0, specifies level of |
---|
| 1918 | precision to be shown e.g. esd=-0.01 gives 2 places beyond decimal |
---|
| 1919 | :param bool nTZ: True to remove trailing zeros (default is False) |
---|
| 1920 | :returns: value(esd) or value as a string |
---|
| 1921 | |
---|
| 1922 | ''' |
---|
| 1923 | # Note: this routine is Python 3 compatible -- I think |
---|
[1595] | 1924 | cutoff = 3.16228 #=(sqrt(10); same as old GSAS was 1.95 |
---|
[989] | 1925 | if math.isnan(value): # invalid value, bail out |
---|
| 1926 | return '?' |
---|
| 1927 | if math.isnan(esd): # invalid esd, treat as zero |
---|
| 1928 | esd = 0 |
---|
| 1929 | esdoff = 5 |
---|
| 1930 | elif esd != 0: |
---|
[939] | 1931 | # transform the esd to a one or two digit integer |
---|
[1595] | 1932 | l = math.log10(abs(esd)) % 1. |
---|
| 1933 | if l < math.log10(cutoff): l+= 1. |
---|
[939] | 1934 | intesd = int(round(10**l)) # esd as integer |
---|
| 1935 | # determine the number of digits offset for the esd |
---|
| 1936 | esdoff = int(round(math.log10(intesd*1./abs(esd)))) |
---|
[763] | 1937 | else: |
---|
[939] | 1938 | esdoff = 5 |
---|
| 1939 | valoff = 0 |
---|
[981] | 1940 | if abs(value) < abs(esdoff): # value is effectively zero |
---|
| 1941 | pass |
---|
| 1942 | elif esdoff < 0 or abs(value) > 1.0e6 or abs(value) < 1.0e-4: # use scientific notation |
---|
[939] | 1943 | # where the digit offset is to the left of the decimal place or where too many |
---|
| 1944 | # digits are needed |
---|
| 1945 | if abs(value) > 1: |
---|
| 1946 | valoff = int(math.log10(abs(value))) |
---|
[956] | 1947 | elif abs(value) > 0: |
---|
| 1948 | valoff = int(math.log10(abs(value))-0.9999999) |
---|
[763] | 1949 | else: |
---|
[956] | 1950 | valoff = 0 |
---|
[939] | 1951 | if esd != 0: |
---|
[1010] | 1952 | if valoff+esdoff < 0: |
---|
| 1953 | valoff = esdoff = 0 |
---|
[939] | 1954 | out = ("{:."+str(valoff+esdoff)+"f}").format(value/10**valoff) # format the value |
---|
| 1955 | elif valoff != 0: # esd = 0; exponential notation ==> esdoff decimal places |
---|
| 1956 | out = ("{:."+str(esdoff)+"f}").format(value/10**valoff) # format the value |
---|
| 1957 | else: # esd = 0; non-exponential notation ==> esdoff+1 significant digits |
---|
[1010] | 1958 | if abs(value) > 0: |
---|
| 1959 | extra = -math.log10(abs(value)) |
---|
| 1960 | else: |
---|
| 1961 | extra = 0 |
---|
[939] | 1962 | if extra > 0: extra += 1 |
---|
| 1963 | out = ("{:."+str(max(0,esdoff+int(extra)))+"f}").format(value) # format the value |
---|
| 1964 | if esd > 0: |
---|
| 1965 | out += ("({:d})").format(intesd) # add the esd |
---|
| 1966 | elif nTZ and '.' in out: |
---|
[960] | 1967 | out = out.rstrip('0') # strip zeros to right of decimal |
---|
| 1968 | out = out.rstrip('.') # and decimal place when not needed |
---|
[939] | 1969 | if valoff != 0: |
---|
| 1970 | out += ("e{:d}").format(valoff) # add an exponent, when needed |
---|
| 1971 | return out |
---|
[1792] | 1972 | |
---|
[1780] | 1973 | ################################################################################ |
---|
| 1974 | ##### Texture fitting stuff |
---|
| 1975 | ################################################################################ |
---|
[939] | 1976 | |
---|
[1800] | 1977 | def FitTexture(General,Gangls,refData,keyList,pgbar): |
---|
[1792] | 1978 | import pytexture as ptx |
---|
| 1979 | ptx.pyqlmninit() #initialize fortran arrays for spherical harmonics |
---|
[1790] | 1980 | |
---|
| 1981 | def printSpHarm(textureData,SHtextureSig): |
---|
| 1982 | print '\n Spherical harmonics texture: Order:' + str(textureData['Order']) |
---|
| 1983 | names = ['omega','chi','phi'] |
---|
| 1984 | namstr = ' names :' |
---|
| 1985 | ptstr = ' values:' |
---|
| 1986 | sigstr = ' esds :' |
---|
| 1987 | for name in names: |
---|
| 1988 | namstr += '%12s'%('Sample '+name) |
---|
| 1989 | ptstr += '%12.3f'%(textureData['Sample '+name][1]) |
---|
| 1990 | if 'Sample '+name in SHtextureSig: |
---|
| 1991 | sigstr += '%12.3f'%(SHtextureSig['Sample '+name]) |
---|
| 1992 | else: |
---|
| 1993 | sigstr += 12*' ' |
---|
| 1994 | print namstr |
---|
| 1995 | print ptstr |
---|
| 1996 | print sigstr |
---|
| 1997 | print '\n Texture coefficients:' |
---|
| 1998 | SHcoeff = textureData['SH Coeff'][1] |
---|
| 1999 | SHkeys = SHcoeff.keys() |
---|
| 2000 | nCoeff = len(SHcoeff) |
---|
| 2001 | nBlock = nCoeff/10+1 |
---|
| 2002 | iBeg = 0 |
---|
| 2003 | iFin = min(iBeg+10,nCoeff) |
---|
| 2004 | for block in range(nBlock): |
---|
| 2005 | namstr = ' names :' |
---|
| 2006 | ptstr = ' values:' |
---|
| 2007 | sigstr = ' esds :' |
---|
| 2008 | for name in SHkeys[iBeg:iFin]: |
---|
| 2009 | if 'C' in name: |
---|
| 2010 | namstr += '%12s'%(name) |
---|
| 2011 | ptstr += '%12.3f'%(SHcoeff[name]) |
---|
| 2012 | if name in SHtextureSig: |
---|
| 2013 | sigstr += '%12.3f'%(SHtextureSig[name]) |
---|
| 2014 | else: |
---|
| 2015 | sigstr += 12*' ' |
---|
| 2016 | print namstr |
---|
| 2017 | print ptstr |
---|
| 2018 | print sigstr |
---|
| 2019 | iBeg += 10 |
---|
| 2020 | iFin = min(iBeg+10,nCoeff) |
---|
| 2021 | |
---|
| 2022 | def Dict2Values(parmdict, varylist): |
---|
| 2023 | '''Use before call to leastsq to setup list of values for the parameters |
---|
| 2024 | in parmdict, as selected by key in varylist''' |
---|
| 2025 | return [parmdict[key] for key in varylist] |
---|
| 2026 | |
---|
| 2027 | def Values2Dict(parmdict, varylist, values): |
---|
| 2028 | ''' Use after call to leastsq to update the parameter dictionary with |
---|
| 2029 | values corresponding to keys in varylist''' |
---|
| 2030 | parmdict.update(zip(varylist,values)) |
---|
| 2031 | |
---|
[1800] | 2032 | def errSpHarm(values,SGData,cell,Gangls,shModel,refData,parmDict,varyList,pgbar): |
---|
[1790] | 2033 | parmDict.update(zip(varyList,values)) |
---|
| 2034 | Mat = np.empty(0) |
---|
[1800] | 2035 | sumObs = 0 |
---|
[1790] | 2036 | Sangls = [parmDict['Sample '+'omega'],parmDict['Sample '+'chi'],parmDict['Sample '+'phi']] |
---|
| 2037 | for hist in Gangls.keys(): |
---|
[1792] | 2038 | Refs = refData[hist] |
---|
[1839] | 2039 | Refs[:,5] = np.where(Refs[:,5]>0.,Refs[:,5],0.) |
---|
[1845] | 2040 | wt = 1./np.sqrt(np.max(Refs[:,4],.25)) |
---|
| 2041 | # wt = 1./np.max(Refs[:,4],.25) |
---|
| 2042 | sumObs += np.sum(wt*Refs[:,5]) |
---|
[1792] | 2043 | Refs[:,6] = 1. |
---|
| 2044 | H = Refs[:,:3] |
---|
| 2045 | phi,beta = G2lat.CrsAng(H,cell,SGData) |
---|
| 2046 | psi,gam,x,x = G2lat.SamAng(Refs[:,3]/2.,Gangls[hist],Sangls,False) #assume not Bragg-Brentano! |
---|
| 2047 | for item in parmDict: |
---|
| 2048 | if 'C' in item: |
---|
| 2049 | L,M,N = eval(item.strip('C')) |
---|
| 2050 | Kcl = G2lat.GetKcl(L,N,SGData['SGLaue'],phi,beta) |
---|
| 2051 | Ksl,x,x = G2lat.GetKsl(L,M,shModel,psi,gam) |
---|
| 2052 | Lnorm = G2lat.Lnorm(L) |
---|
| 2053 | Refs[:,6] += parmDict[item]*Lnorm*Kcl*Ksl |
---|
[1806] | 2054 | mat = wt*(Refs[:,5]-Refs[:,6]) |
---|
[1792] | 2055 | Mat = np.concatenate((Mat,mat)) |
---|
[1800] | 2056 | sumD = np.sum(np.abs(Mat)) |
---|
| 2057 | R = min(100.,100.*sumD/sumObs) |
---|
| 2058 | pgbar.Update(R,newmsg='Residual = %5.2f'%(R)) |
---|
| 2059 | print ' Residual: %.3f%%'%(R) |
---|
[1792] | 2060 | return Mat |
---|
| 2061 | |
---|
[1800] | 2062 | def dervSpHarm(values,SGData,cell,Gangls,shModel,refData,parmDict,varyList,pgbar): |
---|
[1790] | 2063 | Mat = np.empty(0) |
---|
| 2064 | Sangls = [parmDict['Sample omega'],parmDict['Sample chi'],parmDict['Sample phi']] |
---|
| 2065 | for hist in Gangls.keys(): |
---|
[1799] | 2066 | mat = np.zeros((len(varyList),len(refData[hist]))) |
---|
| 2067 | Refs = refData[hist] |
---|
| 2068 | H = Refs[:,:3] |
---|
[1845] | 2069 | wt = 1./np.sqrt(np.max(Refs[:,4],.25)) |
---|
| 2070 | # wt = 1./np.max(Refs[:,4],.25) |
---|
[1799] | 2071 | phi,beta = G2lat.CrsAng(H,cell,SGData) |
---|
| 2072 | psi,gam,dPdA,dGdA = G2lat.SamAng(Refs[:,3]/2.,Gangls[hist],Sangls,False) #assume not Bragg-Brentano! |
---|
| 2073 | for j,item in enumerate(varyList): |
---|
| 2074 | if 'C' in item: |
---|
| 2075 | L,M,N = eval(item.strip('C')) |
---|
| 2076 | Kcl = G2lat.GetKcl(L,N,SGData['SGLaue'],phi,beta) |
---|
| 2077 | Ksl,dKdp,dKdg = G2lat.GetKsl(L,M,shModel,psi,gam) |
---|
| 2078 | Lnorm = G2lat.Lnorm(L) |
---|
[1806] | 2079 | mat[j] = -wt*Lnorm*Kcl*Ksl |
---|
[1799] | 2080 | for k,itema in enumerate(['Sample omega','Sample chi','Sample phi']): |
---|
| 2081 | try: |
---|
| 2082 | l = varyList.index(itema) |
---|
[1806] | 2083 | mat[l] -= parmDict[item]*wt*Lnorm*Kcl*(dKdp*dPdA[k]+dKdg*dGdA[k]) |
---|
[1799] | 2084 | except ValueError: |
---|
| 2085 | pass |
---|
[1790] | 2086 | if len(Mat): |
---|
[1799] | 2087 | Mat = np.concatenate((Mat,mat.T)) |
---|
[1790] | 2088 | else: |
---|
[1799] | 2089 | Mat = mat.T |
---|
| 2090 | print 'deriv' |
---|
[1790] | 2091 | return Mat |
---|
| 2092 | |
---|
| 2093 | print ' Fit texture for '+General['Name'] |
---|
[1780] | 2094 | SGData = General['SGData'] |
---|
[1790] | 2095 | cell = General['Cell'][1:7] |
---|
[1780] | 2096 | Texture = General['SH Texture'] |
---|
| 2097 | if not Texture['Order']: |
---|
| 2098 | return 'No spherical harmonics coefficients' |
---|
[1790] | 2099 | varyList = [] |
---|
| 2100 | parmDict = copy.copy(Texture['SH Coeff'][1]) |
---|
| 2101 | for item in ['Sample omega','Sample chi','Sample phi']: |
---|
| 2102 | parmDict[item] = Texture[item][1] |
---|
| 2103 | if Texture[item][0]: |
---|
| 2104 | varyList.append(item) |
---|
| 2105 | if Texture['SH Coeff'][0]: |
---|
| 2106 | varyList += Texture['SH Coeff'][1].keys() |
---|
| 2107 | while True: |
---|
| 2108 | begin = time.time() |
---|
| 2109 | values = np.array(Dict2Values(parmDict, varyList)) |
---|
[1830] | 2110 | result = so.leastsq(errSpHarm,values,Dfun=dervSpHarm,full_output=True,ftol=1.e-6, |
---|
[1800] | 2111 | args=(SGData,cell,Gangls,Texture['Model'],refData,parmDict,varyList,pgbar)) |
---|
[1790] | 2112 | ncyc = int(result[2]['nfev']/2) |
---|
| 2113 | if ncyc: |
---|
| 2114 | runtime = time.time()-begin |
---|
| 2115 | chisq = np.sum(result[2]['fvec']**2) |
---|
| 2116 | Values2Dict(parmDict, varyList, result[0]) |
---|
| 2117 | GOF = chisq/(len(result[2]['fvec'])-len(varyList)) #reduced chi^2 |
---|
| 2118 | print 'Number of function calls:',result[2]['nfev'],' Number of observations: ',len(result[2]['fvec']),' Number of parameters: ',len(varyList) |
---|
| 2119 | print 'refinement time = %8.3fs, %8.3fs/cycle'%(runtime,runtime/ncyc) |
---|
| 2120 | try: |
---|
| 2121 | sig = np.sqrt(np.diag(result[1])*GOF) |
---|
| 2122 | if np.any(np.isnan(sig)): |
---|
| 2123 | print '*** Least squares aborted - some invalid esds possible ***' |
---|
| 2124 | break #refinement succeeded - finish up! |
---|
| 2125 | except ValueError: #result[1] is None on singular matrix |
---|
| 2126 | print '**** Refinement failed - singular matrix ****' |
---|
| 2127 | return None |
---|
| 2128 | else: |
---|
| 2129 | break |
---|
| 2130 | |
---|
| 2131 | if ncyc: |
---|
| 2132 | for parm in parmDict: |
---|
| 2133 | if 'C' in parm: |
---|
| 2134 | Texture['SH Coeff'][1][parm] = parmDict[parm] |
---|
| 2135 | else: |
---|
| 2136 | Texture[parm][1] = parmDict[parm] |
---|
| 2137 | sigDict = dict(zip(varyList,sig)) |
---|
| 2138 | printSpHarm(Texture,sigDict) |
---|
[1780] | 2139 | |
---|
| 2140 | return None |
---|
| 2141 | |
---|
[940] | 2142 | ################################################################################ |
---|
| 2143 | ##### Fourier & charge flip stuff |
---|
| 2144 | ################################################################################ |
---|
| 2145 | |
---|
[763] | 2146 | def adjHKLmax(SGData,Hmax): |
---|
[950] | 2147 | '''default doc string |
---|
| 2148 | |
---|
| 2149 | :param type name: description |
---|
| 2150 | |
---|
| 2151 | :returns: type name: description |
---|
| 2152 | |
---|
| 2153 | ''' |
---|
[763] | 2154 | if SGData['SGLaue'] in ['3','3m1','31m','6/m','6/mmm']: |
---|
[1622] | 2155 | Hmax[0] = int(math.ceil(Hmax[0]/6.))*6 |
---|
| 2156 | Hmax[1] = int(math.ceil(Hmax[1]/6.))*6 |
---|
| 2157 | Hmax[2] = int(math.ceil(Hmax[2]/4.))*4 |
---|
[763] | 2158 | else: |
---|
[1622] | 2159 | Hmax[0] = int(math.ceil(Hmax[0]/4.))*4 |
---|
| 2160 | Hmax[1] = int(math.ceil(Hmax[1]/4.))*4 |
---|
| 2161 | Hmax[2] = int(math.ceil(Hmax[2]/4.))*4 |
---|
[763] | 2162 | |
---|
[1116] | 2163 | def OmitMap(data,reflDict,pgbar=None): |
---|
[950] | 2164 | '''default doc string |
---|
| 2165 | |
---|
| 2166 | :param type name: description |
---|
| 2167 | |
---|
| 2168 | :returns: type name: description |
---|
| 2169 | |
---|
| 2170 | ''' |
---|
[881] | 2171 | generalData = data['General'] |
---|
| 2172 | if not generalData['Map']['MapType']: |
---|
| 2173 | print '**** ERROR - Fourier map not defined' |
---|
| 2174 | return |
---|
| 2175 | mapData = generalData['Map'] |
---|
| 2176 | dmin = mapData['Resolution'] |
---|
| 2177 | SGData = generalData['SGData'] |
---|
[1110] | 2178 | SGMT = np.array([ops[0].T for ops in SGData['SGOps']]) |
---|
| 2179 | SGT = np.array([ops[1] for ops in SGData['SGOps']]) |
---|
[881] | 2180 | cell = generalData['Cell'][1:8] |
---|
| 2181 | A = G2lat.cell2A(cell[:6]) |
---|
| 2182 | Hmax = np.asarray(G2lat.getHKLmax(dmin,SGData,A),dtype='i')+1 |
---|
| 2183 | adjHKLmax(SGData,Hmax) |
---|
| 2184 | Fhkl = np.zeros(shape=2*Hmax,dtype='c16') |
---|
| 2185 | time0 = time.time() |
---|
[1106] | 2186 | for iref,ref in enumerate(reflDict['RefList']): |
---|
[881] | 2187 | if ref[4] >= dmin: |
---|
| 2188 | Fosq,Fcsq,ph = ref[8:11] |
---|
[1110] | 2189 | Uniq = np.inner(ref[:3],SGMT) |
---|
| 2190 | Phi = np.inner(ref[:3],SGT) |
---|
| 2191 | for i,hkl in enumerate(Uniq): #uses uniq |
---|
[881] | 2192 | hkl = np.asarray(hkl,dtype='i') |
---|
[1110] | 2193 | dp = 360.*Phi[i] #and phi |
---|
[881] | 2194 | a = cosd(ph+dp) |
---|
| 2195 | b = sind(ph+dp) |
---|
| 2196 | phasep = complex(a,b) |
---|
| 2197 | phasem = complex(a,-b) |
---|
[1142] | 2198 | Fo = np.sqrt(Fosq) |
---|
| 2199 | if '2Fo-Fc' in mapData['MapType']: |
---|
| 2200 | F = 2.*np.sqrt(Fosq)-np.sqrt(Fcsq) |
---|
| 2201 | else: |
---|
| 2202 | F = np.sqrt(Fosq) |
---|
[881] | 2203 | h,k,l = hkl+Hmax |
---|
| 2204 | Fhkl[h,k,l] = F*phasep |
---|
| 2205 | h,k,l = -hkl+Hmax |
---|
| 2206 | Fhkl[h,k,l] = F*phasem |
---|
[1116] | 2207 | rho0 = fft.fftn(fft.fftshift(Fhkl))/cell[6] |
---|
| 2208 | M = np.mgrid[0:4,0:4,0:4] |
---|
| 2209 | blkIds = np.array(zip(M[0].flatten(),M[1].flatten(),M[2].flatten())) |
---|
| 2210 | iBeg = blkIds*rho0.shape/4 |
---|
| 2211 | iFin = (blkIds+1)*rho0.shape/4 |
---|
| 2212 | rho_omit = np.zeros_like(rho0) |
---|
| 2213 | nBlk = 0 |
---|
| 2214 | for iB,iF in zip(iBeg,iFin): |
---|
| 2215 | rho1 = np.copy(rho0) |
---|
| 2216 | rho1[iB[0]:iF[0],iB[1]:iF[1],iB[2]:iF[2]] = 0. |
---|
| 2217 | Fnew = fft.ifftshift(fft.ifftn(rho1)) |
---|
| 2218 | Fnew = np.where(Fnew,Fnew,1.0) #avoid divide by zero |
---|
| 2219 | phase = Fnew/np.absolute(Fnew) |
---|
| 2220 | OFhkl = np.absolute(Fhkl)*phase |
---|
| 2221 | rho1 = np.real(fft.fftn(fft.fftshift(OFhkl)))*(1.+0j) |
---|
| 2222 | rho_omit[iB[0]:iF[0],iB[1]:iF[1],iB[2]:iF[2]] = np.copy(rho1[iB[0]:iF[0],iB[1]:iF[1],iB[2]:iF[2]]) |
---|
| 2223 | nBlk += 1 |
---|
| 2224 | pgbar.Update(nBlk) |
---|
| 2225 | mapData['rho'] = np.real(rho_omit)/cell[6] |
---|
| 2226 | mapData['rhoMax'] = max(np.max(mapData['rho']),-np.min(mapData['rho'])) |
---|
[1659] | 2227 | mapData['minmax'] = [np.max(mapData['rho']),np.min(mapData['rho'])] |
---|
[881] | 2228 | print 'Omit map time: %.4f'%(time.time()-time0),'no. elements: %d'%(Fhkl.size) |
---|
| 2229 | return mapData |
---|
[1601] | 2230 | |
---|
| 2231 | def Fourier4DMap(data,reflDict): |
---|
| 2232 | '''default doc string |
---|
| 2233 | |
---|
| 2234 | :param type name: description |
---|
| 2235 | |
---|
| 2236 | :returns: type name: description |
---|
| 2237 | |
---|
| 2238 | ''' |
---|
| 2239 | generalData = data['General'] |
---|
[1981] | 2240 | map4DData = generalData['4DmapData'] |
---|
| 2241 | mapData = generalData['Map'] |
---|
[1601] | 2242 | dmin = mapData['Resolution'] |
---|
| 2243 | SGData = generalData['SGData'] |
---|
| 2244 | SSGData = generalData['SSGData'] |
---|
| 2245 | SSGMT = np.array([ops[0].T for ops in SSGData['SSGOps']]) |
---|
| 2246 | SSGT = np.array([ops[1] for ops in SSGData['SSGOps']]) |
---|
| 2247 | cell = generalData['Cell'][1:8] |
---|
| 2248 | A = G2lat.cell2A(cell[:6]) |
---|
| 2249 | maxM = generalData['SuperVec'][2] |
---|
| 2250 | Hmax = G2lat.getHKLmax(dmin,SGData,A)+[maxM,] |
---|
| 2251 | adjHKLmax(SGData,Hmax) |
---|
| 2252 | Hmax = np.asarray(Hmax,dtype='i')+1 |
---|
| 2253 | Fhkl = np.zeros(shape=2*Hmax,dtype='c16') |
---|
| 2254 | time0 = time.time() |
---|
| 2255 | for iref,ref in enumerate(reflDict['RefList']): |
---|
[1622] | 2256 | if ref[5] > dmin: |
---|
[1601] | 2257 | Fosq,Fcsq,ph = ref[9:12] |
---|
[1981] | 2258 | Fosq = np.where(Fosq>0.,Fosq,0.) #can't use Fo^2 < 0 |
---|
[1601] | 2259 | Uniq = np.inner(ref[:4],SSGMT) |
---|
| 2260 | Phi = np.inner(ref[:4],SSGT) |
---|
| 2261 | for i,hkl in enumerate(Uniq): #uses uniq |
---|
| 2262 | hkl = np.asarray(hkl,dtype='i') |
---|
| 2263 | dp = 360.*Phi[i] #and phi |
---|
| 2264 | a = cosd(ph+dp) |
---|
| 2265 | b = sind(ph+dp) |
---|
| 2266 | phasep = complex(a,b) |
---|
| 2267 | phasem = complex(a,-b) |
---|
| 2268 | if 'Fobs' in mapData['MapType']: |
---|
[1981] | 2269 | F = np.sqrt(Fosq) |
---|
[1601] | 2270 | h,k,l,m = hkl+Hmax |
---|
| 2271 | Fhkl[h,k,l,m] = F*phasep |
---|
| 2272 | h,k,l,m = -hkl+Hmax |
---|
| 2273 | Fhkl[h,k,l,m] = F*phasem |
---|
[1957] | 2274 | elif 'Fcalc' in mapData['MapType']: |
---|
[1981] | 2275 | F = np.sqrt(Fcsq) |
---|
[1957] | 2276 | h,k,l,m = hkl+Hmax |
---|
| 2277 | Fhkl[h,k,l,m] = F*phasep |
---|
| 2278 | h,k,l,m = -hkl+Hmax |
---|
| 2279 | Fhkl[h,k,l,m] = F*phasem |
---|
[1601] | 2280 | elif 'delt-F' in mapData['MapType']: |
---|
[1981] | 2281 | dF = np.sqrt(Fosq)-np.sqrt(Fcsq) |
---|
[1601] | 2282 | h,k,l,m = hkl+Hmax |
---|
| 2283 | Fhkl[h,k,l,m] = dF*phasep |
---|
| 2284 | h,k,l,m = -hkl+Hmax |
---|
| 2285 | Fhkl[h,k,l,m] = dF*phasem |
---|
[1981] | 2286 | SSrho = fft.fftn(fft.fftshift(Fhkl))/cell[6] #4D map |
---|
| 2287 | rho = fft.fftn(fft.fftshift(Fhkl[:,:,:,maxM+1]))/cell[6] #3D map |
---|
| 2288 | map4DData['rho'] = np.real(SSrho) |
---|
| 2289 | map4DData['rhoMax'] = max(np.max(map4DData['rho']),-np.min(map4DData['rho'])) |
---|
| 2290 | map4DData['minmax'] = [np.max(map4DData['rho']),np.min(map4DData['rho'])] |
---|
| 2291 | map4DData['Type'] = reflDict['Type'] |
---|
[1645] | 2292 | mapData['Type'] = reflDict['Type'] |
---|
[1601] | 2293 | mapData['rho'] = np.real(rho) |
---|
| 2294 | mapData['rhoMax'] = max(np.max(mapData['rho']),-np.min(mapData['rho'])) |
---|
[1659] | 2295 | mapData['minmax'] = [np.max(mapData['rho']),np.min(mapData['rho'])] |
---|
[1981] | 2296 | print 'Fourier map time: %.4f'%(time.time()-time0),'no. elements: %d'%(Fhkl.size) |
---|
[881] | 2297 | |
---|
[1106] | 2298 | def FourierMap(data,reflDict): |
---|
[950] | 2299 | '''default doc string |
---|
| 2300 | |
---|
| 2301 | :param type name: description |
---|
| 2302 | |
---|
| 2303 | :returns: type name: description |
---|
| 2304 | |
---|
| 2305 | ''' |
---|
[763] | 2306 | generalData = data['General'] |
---|
| 2307 | mapData = generalData['Map'] |
---|
| 2308 | dmin = mapData['Resolution'] |
---|
| 2309 | SGData = generalData['SGData'] |
---|
[1110] | 2310 | SGMT = np.array([ops[0].T for ops in SGData['SGOps']]) |
---|
| 2311 | SGT = np.array([ops[1] for ops in SGData['SGOps']]) |
---|
[763] | 2312 | cell = generalData['Cell'][1:8] |
---|
| 2313 | A = G2lat.cell2A(cell[:6]) |
---|
| 2314 | Hmax = np.asarray(G2lat.getHKLmax(dmin,SGData,A),dtype='i')+1 |
---|
| 2315 | adjHKLmax(SGData,Hmax) |
---|
| 2316 | Fhkl = np.zeros(shape=2*Hmax,dtype='c16') |
---|
| 2317 | # Fhkl[0,0,0] = generalData['F000X'] |
---|
| 2318 | time0 = time.time() |
---|
[1106] | 2319 | for iref,ref in enumerate(reflDict['RefList']): |
---|
[1622] | 2320 | if ref[4] > dmin: |
---|
[763] | 2321 | Fosq,Fcsq,ph = ref[8:11] |
---|
[1110] | 2322 | Uniq = np.inner(ref[:3],SGMT) |
---|
| 2323 | Phi = np.inner(ref[:3],SGT) |
---|
| 2324 | for i,hkl in enumerate(Uniq): #uses uniq |
---|
[763] | 2325 | hkl = np.asarray(hkl,dtype='i') |
---|
[1110] | 2326 | dp = 360.*Phi[i] #and phi |
---|
[1928] | 2327 | a = cosd(ph+dp) |
---|
| 2328 | b = sind(ph+dp) |
---|
| 2329 | phasep = complex(a,b) |
---|
| 2330 | phasem = complex(a,-b) |
---|
[763] | 2331 | if 'Fobs' in mapData['MapType']: |
---|
[1045] | 2332 | F = np.where(Fosq>0.,np.sqrt(Fosq),0.) |
---|
[763] | 2333 | h,k,l = hkl+Hmax |
---|
| 2334 | Fhkl[h,k,l] = F*phasep |
---|
| 2335 | h,k,l = -hkl+Hmax |
---|
| 2336 | Fhkl[h,k,l] = F*phasem |
---|
| 2337 | elif 'Fcalc' in mapData['MapType']: |
---|
| 2338 | F = np.sqrt(Fcsq) |
---|
| 2339 | h,k,l = hkl+Hmax |
---|
| 2340 | Fhkl[h,k,l] = F*phasep |
---|
| 2341 | h,k,l = -hkl+Hmax |
---|
| 2342 | Fhkl[h,k,l] = F*phasem |
---|
| 2343 | elif 'delt-F' in mapData['MapType']: |
---|
[1045] | 2344 | dF = np.where(Fosq>0.,np.sqrt(Fosq),0.)-np.sqrt(Fcsq) |
---|
[763] | 2345 | h,k,l = hkl+Hmax |
---|
| 2346 | Fhkl[h,k,l] = dF*phasep |
---|
| 2347 | h,k,l = -hkl+Hmax |
---|
| 2348 | Fhkl[h,k,l] = dF*phasem |
---|
| 2349 | elif '2*Fo-Fc' in mapData['MapType']: |
---|
[1045] | 2350 | F = 2.*np.where(Fosq>0.,np.sqrt(Fosq),0.)-np.sqrt(Fcsq) |
---|
[763] | 2351 | h,k,l = hkl+Hmax |
---|
| 2352 | Fhkl[h,k,l] = F*phasep |
---|
| 2353 | h,k,l = -hkl+Hmax |
---|
| 2354 | Fhkl[h,k,l] = F*phasem |
---|
| 2355 | elif 'Patterson' in mapData['MapType']: |
---|
| 2356 | h,k,l = hkl+Hmax |
---|
| 2357 | Fhkl[h,k,l] = complex(Fosq,0.) |
---|
| 2358 | h,k,l = -hkl+Hmax |
---|
| 2359 | Fhkl[h,k,l] = complex(Fosq,0.) |
---|
| 2360 | rho = fft.fftn(fft.fftshift(Fhkl))/cell[6] |
---|
| 2361 | print 'Fourier map time: %.4f'%(time.time()-time0),'no. elements: %d'%(Fhkl.size) |
---|
[1645] | 2362 | mapData['Type'] = reflDict['Type'] |
---|
[763] | 2363 | mapData['rho'] = np.real(rho) |
---|
| 2364 | mapData['rhoMax'] = max(np.max(mapData['rho']),-np.min(mapData['rho'])) |
---|
[1659] | 2365 | mapData['minmax'] = [np.max(mapData['rho']),np.min(mapData['rho'])] |
---|
[763] | 2366 | |
---|
| 2367 | # map printing for testing purposes |
---|
| 2368 | def printRho(SGLaue,rho,rhoMax): |
---|
[950] | 2369 | '''default doc string |
---|
| 2370 | |
---|
| 2371 | :param type name: description |
---|
| 2372 | |
---|
| 2373 | :returns: type name: description |
---|
| 2374 | |
---|
| 2375 | ''' |
---|
[763] | 2376 | dim = len(rho.shape) |
---|
| 2377 | if dim == 2: |
---|
| 2378 | ix,jy = rho.shape |
---|
| 2379 | for j in range(jy): |
---|
| 2380 | line = '' |
---|
| 2381 | if SGLaue in ['3','3m1','31m','6/m','6/mmm']: |
---|
| 2382 | line += (jy-j)*' ' |
---|
| 2383 | for i in range(ix): |
---|
| 2384 | r = int(100*rho[i,j]/rhoMax) |
---|
| 2385 | line += '%4d'%(r) |
---|
| 2386 | print line+'\n' |
---|
| 2387 | else: |
---|
| 2388 | ix,jy,kz = rho.shape |
---|
| 2389 | for k in range(kz): |
---|
| 2390 | print 'k = ',k |
---|
| 2391 | for j in range(jy): |
---|
| 2392 | line = '' |
---|
| 2393 | if SGLaue in ['3','3m1','31m','6/m','6/mmm']: |
---|
| 2394 | line += (jy-j)*' ' |
---|
| 2395 | for i in range(ix): |
---|
| 2396 | r = int(100*rho[i,j,k]/rhoMax) |
---|
| 2397 | line += '%4d'%(r) |
---|
| 2398 | print line+'\n' |
---|
| 2399 | ## keep this |
---|
| 2400 | |
---|
| 2401 | def findOffset(SGData,A,Fhkl): |
---|
[950] | 2402 | '''default doc string |
---|
| 2403 | |
---|
| 2404 | :param type name: description |
---|
| 2405 | |
---|
| 2406 | :returns: type name: description |
---|
| 2407 | |
---|
| 2408 | ''' |
---|
[763] | 2409 | if SGData['SpGrp'] == 'P 1': |
---|
| 2410 | return [0,0,0] |
---|
| 2411 | hklShape = Fhkl.shape |
---|
| 2412 | hklHalf = np.array(hklShape)/2 |
---|
| 2413 | sortHKL = np.argsort(Fhkl.flatten()) |
---|
| 2414 | Fdict = {} |
---|
| 2415 | for hkl in sortHKL: |
---|
| 2416 | HKL = np.unravel_index(hkl,hklShape) |
---|
| 2417 | F = Fhkl[HKL[0]][HKL[1]][HKL[2]] |
---|
| 2418 | if F == 0.: |
---|
| 2419 | break |
---|
| 2420 | Fdict['%.6f'%(np.absolute(F))] = hkl |
---|
| 2421 | Flist = np.flipud(np.sort(Fdict.keys())) |
---|
| 2422 | F = str(1.e6) |
---|
| 2423 | i = 0 |
---|
| 2424 | DH = [] |
---|
| 2425 | Dphi = [] |
---|
[1626] | 2426 | SGMT = np.array([ops[0].T for ops in SGData['SGOps']]) |
---|
| 2427 | SGT = np.array([ops[1] for ops in SGData['SGOps']]) |
---|
[805] | 2428 | Hmax = 2*np.asarray(G2lat.getHKLmax(3.5,SGData,A),dtype='i') |
---|
| 2429 | for F in Flist: |
---|
[763] | 2430 | hkl = np.unravel_index(Fdict[F],hklShape) |
---|
[1626] | 2431 | if np.any(np.abs(hkl-hklHalf)-Hmax > 0): |
---|
| 2432 | continue |
---|
[763] | 2433 | iabsnt,mulp,Uniq,Phi = G2spc.GenHKLf(list(hkl-hklHalf),SGData) |
---|
| 2434 | Uniq = np.array(Uniq,dtype='i') |
---|
| 2435 | Phi = np.array(Phi) |
---|
| 2436 | Uniq = np.concatenate((Uniq,-Uniq))+hklHalf # put in Friedel pairs & make as index to Farray |
---|
| 2437 | Phi = np.concatenate((Phi,-Phi)) # and their phase shifts |
---|
| 2438 | Fh0 = Fhkl[hkl[0],hkl[1],hkl[2]] |
---|
| 2439 | ang0 = np.angle(Fh0,deg=True)/360. |
---|
[803] | 2440 | for H,phi in zip(Uniq,Phi)[1:]: |
---|
| 2441 | ang = (np.angle(Fhkl[H[0],H[1],H[2]],deg=True)/360.-phi) |
---|
[763] | 2442 | dH = H-hkl |
---|
| 2443 | dang = ang-ang0 |
---|
| 2444 | DH.append(dH) |
---|
[803] | 2445 | Dphi.append((dang+.5) % 1.0) |
---|
[805] | 2446 | if i > 20 or len(DH) > 30: |
---|
| 2447 | break |
---|
[763] | 2448 | i += 1 |
---|
| 2449 | DH = np.array(DH) |
---|
[805] | 2450 | print ' map offset no.of terms: %d from %d reflections'%(len(DH),len(Flist)) |
---|
[763] | 2451 | Dphi = np.array(Dphi) |
---|
[805] | 2452 | steps = np.array(hklShape) |
---|
[763] | 2453 | X,Y,Z = np.mgrid[0:1:1./steps[0],0:1:1./steps[1],0:1:1./steps[2]] |
---|
| 2454 | XYZ = np.array(zip(X.flatten(),Y.flatten(),Z.flatten())) |
---|
[805] | 2455 | Dang = (np.dot(XYZ,DH.T)+.5)%1.-Dphi |
---|
| 2456 | Mmap = np.reshape(np.sum((Dang)**2,axis=1),newshape=steps)/len(DH) |
---|
| 2457 | hist,bins = np.histogram(Mmap,bins=1000) |
---|
[803] | 2458 | # for i,item in enumerate(hist[:10]): |
---|
| 2459 | # print item,bins[i] |
---|
[763] | 2460 | chisq = np.min(Mmap) |
---|
| 2461 | DX = -np.array(np.unravel_index(np.argmin(Mmap),Mmap.shape)) |
---|
| 2462 | print ' map offset chi**2: %.3f, map offset: %d %d %d'%(chisq,DX[0],DX[1],DX[2]) |
---|
[805] | 2463 | # print (np.dot(DX,DH.T)+.5)%1.-Dphi |
---|
[763] | 2464 | return DX |
---|
| 2465 | |
---|
[1106] | 2466 | def ChargeFlip(data,reflDict,pgbar): |
---|
[950] | 2467 | '''default doc string |
---|
| 2468 | |
---|
| 2469 | :param type name: description |
---|
| 2470 | |
---|
| 2471 | :returns: type name: description |
---|
| 2472 | |
---|
| 2473 | ''' |
---|
[763] | 2474 | generalData = data['General'] |
---|
| 2475 | mapData = generalData['Map'] |
---|
| 2476 | flipData = generalData['Flip'] |
---|
| 2477 | FFtable = {} |
---|
| 2478 | if 'None' not in flipData['Norm element']: |
---|
| 2479 | normElem = flipData['Norm element'].upper() |
---|
| 2480 | FFs = G2el.GetFormFactorCoeff(normElem.split('+')[0].split('-')[0]) |
---|
| 2481 | for ff in FFs: |
---|
| 2482 | if ff['Symbol'] == normElem: |
---|
| 2483 | FFtable.update(ff) |
---|
| 2484 | dmin = flipData['Resolution'] |
---|
| 2485 | SGData = generalData['SGData'] |
---|
[1110] | 2486 | SGMT = np.array([ops[0].T for ops in SGData['SGOps']]) |
---|
| 2487 | SGT = np.array([ops[1] for ops in SGData['SGOps']]) |
---|
[763] | 2488 | cell = generalData['Cell'][1:8] |
---|
| 2489 | A = G2lat.cell2A(cell[:6]) |
---|
| 2490 | Vol = cell[6] |
---|
[1598] | 2491 | im = 0 |
---|
| 2492 | if generalData['Type'] in ['modulated','magnetic',]: |
---|
| 2493 | im = 1 |
---|
[763] | 2494 | Hmax = np.asarray(G2lat.getHKLmax(dmin,SGData,A),dtype='i')+1 |
---|
| 2495 | adjHKLmax(SGData,Hmax) |
---|
| 2496 | Ehkl = np.zeros(shape=2*Hmax,dtype='c16') #2X64bits per complex no. |
---|
| 2497 | time0 = time.time() |
---|
[1106] | 2498 | for iref,ref in enumerate(reflDict['RefList']): |
---|
[1598] | 2499 | dsp = ref[4+im] |
---|
[1622] | 2500 | if im and ref[3]: #skip super lattice reflections - result is 3D projection |
---|
[1598] | 2501 | continue |
---|
[1622] | 2502 | if dsp > dmin: |
---|
[763] | 2503 | ff = 0.1*Vol #est. no. atoms for ~10A**3/atom |
---|
| 2504 | if FFtable: |
---|
| 2505 | SQ = 0.25/dsp**2 |
---|
| 2506 | ff *= G2el.ScatFac(FFtable,SQ)[0] |
---|
[1598] | 2507 | if ref[8+im] > 0.: #use only +ve Fobs**2 |
---|
| 2508 | E = np.sqrt(ref[8+im])/ff |
---|
[763] | 2509 | else: |
---|
| 2510 | E = 0. |
---|
| 2511 | ph = ref[10] |
---|
| 2512 | ph = rn.uniform(0.,360.) |
---|
[1110] | 2513 | Uniq = np.inner(ref[:3],SGMT) |
---|
| 2514 | Phi = np.inner(ref[:3],SGT) |
---|
| 2515 | for i,hkl in enumerate(Uniq): #uses uniq |
---|
[763] | 2516 | hkl = np.asarray(hkl,dtype='i') |
---|
[1110] | 2517 | dp = 360.*Phi[i] #and phi |
---|
[763] | 2518 | a = cosd(ph+dp) |
---|
| 2519 | b = sind(ph+dp) |
---|
| 2520 | phasep = complex(a,b) |
---|
| 2521 | phasem = complex(a,-b) |
---|
| 2522 | h,k,l = hkl+Hmax |
---|
| 2523 | Ehkl[h,k,l] = E*phasep |
---|
| 2524 | h,k,l = -hkl+Hmax #Friedel pair refl. |
---|
| 2525 | Ehkl[h,k,l] = E*phasem |
---|
| 2526 | # Ehkl[Hmax] = 0.00001 #this to preserve F[0,0,0] |
---|
| 2527 | CEhkl = copy.copy(Ehkl) |
---|
| 2528 | MEhkl = ma.array(Ehkl,mask=(Ehkl==0.0)) |
---|
| 2529 | Emask = ma.getmask(MEhkl) |
---|
| 2530 | sumE = np.sum(ma.array(np.absolute(CEhkl),mask=Emask)) |
---|
| 2531 | Ncyc = 0 |
---|
| 2532 | old = np.seterr(all='raise') |
---|
| 2533 | while True: |
---|
| 2534 | CErho = np.real(fft.fftn(fft.fftshift(CEhkl)))*(1.+0j) |
---|
| 2535 | CEsig = np.std(CErho) |
---|
| 2536 | CFrho = np.where(np.real(CErho) >= flipData['k-factor']*CEsig,CErho,-CErho) |
---|
[1146] | 2537 | CFrho = np.where(np.real(CErho) <= flipData['k-Max']*CEsig,CFrho,-CFrho) #solves U atom problem! |
---|
[763] | 2538 | CFhkl = fft.ifftshift(fft.ifftn(CFrho)) |
---|
| 2539 | CFhkl = np.where(CFhkl,CFhkl,1.0) #avoid divide by zero |
---|
| 2540 | phase = CFhkl/np.absolute(CFhkl) |
---|
| 2541 | CEhkl = np.absolute(Ehkl)*phase |
---|
| 2542 | Ncyc += 1 |
---|
| 2543 | sumCF = np.sum(ma.array(np.absolute(CFhkl),mask=Emask)) |
---|
| 2544 | DEhkl = np.absolute(np.absolute(Ehkl)/sumE-np.absolute(CFhkl)/sumCF) |
---|
| 2545 | Rcf = min(100.,np.sum(ma.array(DEhkl,mask=Emask)*100.)) |
---|
| 2546 | if Rcf < 5.: |
---|
| 2547 | break |
---|
| 2548 | GoOn = pgbar.Update(Rcf,newmsg='%s%8.3f%s\n%s %d'%('Residual Rcf =',Rcf,'%','No.cycles = ',Ncyc))[0] |
---|
| 2549 | if not GoOn or Ncyc > 10000: |
---|
| 2550 | break |
---|
| 2551 | np.seterr(**old) |
---|
| 2552 | print ' Charge flip time: %.4f'%(time.time()-time0),'no. elements: %d'%(Ehkl.size) |
---|
| 2553 | CErho = np.real(fft.fftn(fft.fftshift(CEhkl))) |
---|
| 2554 | print ' No.cycles = ',Ncyc,'Residual Rcf =%8.3f%s'%(Rcf,'%')+' Map size:',CErho.shape |
---|
[1146] | 2555 | roll = findOffset(SGData,A,CEhkl) #CEhkl needs to be just the observed set, not the full set! |
---|
[763] | 2556 | |
---|
| 2557 | mapData['Rcf'] = Rcf |
---|
| 2558 | mapData['rho'] = np.roll(np.roll(np.roll(CErho,roll[0],axis=0),roll[1],axis=1),roll[2],axis=2) |
---|
| 2559 | mapData['rhoMax'] = max(np.max(mapData['rho']),-np.min(mapData['rho'])) |
---|
[1659] | 2560 | mapData['minmax'] = [np.max(mapData['rho']),np.min(mapData['rho'])] |
---|
[1645] | 2561 | mapData['Type'] = reflDict['Type'] |
---|
[763] | 2562 | return mapData |
---|
| 2563 | |
---|
[1626] | 2564 | def findSSOffset(SGData,SSGData,A,Fhklm): |
---|
| 2565 | '''default doc string |
---|
| 2566 | |
---|
| 2567 | :param type name: description |
---|
| 2568 | |
---|
| 2569 | :returns: type name: description |
---|
| 2570 | |
---|
| 2571 | ''' |
---|
| 2572 | if SGData['SpGrp'] == 'P 1': |
---|
| 2573 | return [0,0,0,0] |
---|
| 2574 | hklmShape = Fhklm.shape |
---|
| 2575 | hklmHalf = np.array(hklmShape)/2 |
---|
| 2576 | sortHKLM = np.argsort(Fhklm.flatten()) |
---|
| 2577 | Fdict = {} |
---|
| 2578 | for hklm in sortHKLM: |
---|
| 2579 | HKLM = np.unravel_index(hklm,hklmShape) |
---|
| 2580 | F = Fhklm[HKLM[0]][HKLM[1]][HKLM[2]][HKLM[3]] |
---|
| 2581 | if F == 0.: |
---|
| 2582 | break |
---|
| 2583 | Fdict['%.6f'%(np.absolute(F))] = hklm |
---|
| 2584 | Flist = np.flipud(np.sort(Fdict.keys())) |
---|
| 2585 | F = str(1.e6) |
---|
| 2586 | i = 0 |
---|
| 2587 | DH = [] |
---|
| 2588 | Dphi = [] |
---|
| 2589 | SSGMT = np.array([ops[0].T for ops in SSGData['SSGOps']]) |
---|
| 2590 | SSGT = np.array([ops[1] for ops in SSGData['SSGOps']]) |
---|
| 2591 | Hmax = 2*np.asarray(G2lat.getHKLmax(3.5,SGData,A),dtype='i') |
---|
| 2592 | for F in Flist: |
---|
| 2593 | hklm = np.unravel_index(Fdict[F],hklmShape) |
---|
| 2594 | if np.any(np.abs(hklm-hklmHalf)[:3]-Hmax > 0): |
---|
| 2595 | continue |
---|
| 2596 | Uniq = np.inner(hklm-hklmHalf,SSGMT) |
---|
| 2597 | Phi = np.inner(hklm-hklmHalf,SSGT) |
---|
| 2598 | Uniq = np.concatenate((Uniq,-Uniq))+hklmHalf # put in Friedel pairs & make as index to Farray |
---|
| 2599 | Phi = np.concatenate((Phi,-Phi)) # and their phase shifts |
---|
| 2600 | Fh0 = Fhklm[hklm[0],hklm[1],hklm[2],hklm[3]] |
---|
| 2601 | ang0 = np.angle(Fh0,deg=True)/360. |
---|
| 2602 | for H,phi in zip(Uniq,Phi)[1:]: |
---|
| 2603 | ang = (np.angle(Fhklm[H[0],H[1],H[2],H[3]],deg=True)/360.-phi) |
---|
| 2604 | dH = H-hklm |
---|
| 2605 | dang = ang-ang0 |
---|
| 2606 | DH.append(dH) |
---|
| 2607 | Dphi.append((dang+.5) % 1.0) |
---|
| 2608 | if i > 20 or len(DH) > 30: |
---|
| 2609 | break |
---|
| 2610 | i += 1 |
---|
| 2611 | DH = np.array(DH) |
---|
| 2612 | print ' map offset no.of terms: %d from %d reflections'%(len(DH),len(Flist)) |
---|
| 2613 | Dphi = np.array(Dphi) |
---|
| 2614 | steps = np.array(hklmShape) |
---|
| 2615 | X,Y,Z,T = np.mgrid[0:1:1./steps[0],0:1:1./steps[1],0:1:1./steps[2],0:1:1./steps[3]] |
---|
| 2616 | XYZT = np.array(zip(X.flatten(),Y.flatten(),Z.flatten(),T.flatten())) |
---|
| 2617 | Dang = (np.dot(XYZT,DH.T)+.5)%1.-Dphi |
---|
| 2618 | Mmap = np.reshape(np.sum((Dang)**2,axis=1),newshape=steps)/len(DH) |
---|
| 2619 | hist,bins = np.histogram(Mmap,bins=1000) |
---|
| 2620 | # for i,item in enumerate(hist[:10]): |
---|
| 2621 | # print item,bins[i] |
---|
| 2622 | chisq = np.min(Mmap) |
---|
| 2623 | DX = -np.array(np.unravel_index(np.argmin(Mmap),Mmap.shape)) |
---|
| 2624 | print ' map offset chi**2: %.3f, map offset: %d %d %d %d'%(chisq,DX[0],DX[1],DX[2],DX[3]) |
---|
| 2625 | # print (np.dot(DX,DH.T)+.5)%1.-Dphi |
---|
| 2626 | return DX |
---|
| 2627 | |
---|
[1622] | 2628 | def SSChargeFlip(data,reflDict,pgbar): |
---|
| 2629 | '''default doc string |
---|
| 2630 | |
---|
| 2631 | :param type name: description |
---|
| 2632 | |
---|
| 2633 | :returns: type name: description |
---|
| 2634 | |
---|
| 2635 | ''' |
---|
| 2636 | generalData = data['General'] |
---|
| 2637 | mapData = generalData['Map'] |
---|
| 2638 | map4DData = {} |
---|
| 2639 | flipData = generalData['Flip'] |
---|
| 2640 | FFtable = {} |
---|
| 2641 | if 'None' not in flipData['Norm element']: |
---|
| 2642 | normElem = flipData['Norm element'].upper() |
---|
| 2643 | FFs = G2el.GetFormFactorCoeff(normElem.split('+')[0].split('-')[0]) |
---|
| 2644 | for ff in FFs: |
---|
| 2645 | if ff['Symbol'] == normElem: |
---|
| 2646 | FFtable.update(ff) |
---|
| 2647 | dmin = flipData['Resolution'] |
---|
| 2648 | SGData = generalData['SGData'] |
---|
| 2649 | SSGData = generalData['SSGData'] |
---|
| 2650 | SGMT = np.array([ops[0].T for ops in SGData['SGOps']]) |
---|
| 2651 | SGT = np.array([ops[1] for ops in SGData['SGOps']]) |
---|
| 2652 | SSGMT = np.array([ops[0].T for ops in SSGData['SSGOps']]) |
---|
| 2653 | SSGT = np.array([ops[1] for ops in SSGData['SSGOps']]) |
---|
| 2654 | cell = generalData['Cell'][1:8] |
---|
| 2655 | A = G2lat.cell2A(cell[:6]) |
---|
| 2656 | Vol = cell[6] |
---|
| 2657 | maxM = generalData['SuperVec'][2] |
---|
| 2658 | Hmax = np.asarray(G2lat.getHKLmax(dmin,SGData,A)+[maxM,],dtype='i')+1 |
---|
| 2659 | adjHKLmax(SGData,Hmax) |
---|
| 2660 | Ehkl = np.zeros(shape=2*Hmax,dtype='c16') #2X64bits per complex no. |
---|
| 2661 | time0 = time.time() |
---|
| 2662 | for iref,ref in enumerate(reflDict['RefList']): |
---|
| 2663 | dsp = ref[5] |
---|
| 2664 | if dsp > dmin: |
---|
| 2665 | ff = 0.1*Vol #est. no. atoms for ~10A**3/atom |
---|
| 2666 | if FFtable: |
---|
| 2667 | SQ = 0.25/dsp**2 |
---|
| 2668 | ff *= G2el.ScatFac(FFtable,SQ)[0] |
---|
| 2669 | if ref[9] > 0.: #use only +ve Fobs**2 |
---|
| 2670 | E = np.sqrt(ref[9])/ff |
---|
| 2671 | else: |
---|
| 2672 | E = 0. |
---|
| 2673 | ph = ref[11] |
---|
| 2674 | ph = rn.uniform(0.,360.) |
---|
| 2675 | Uniq = np.inner(ref[:4],SSGMT) |
---|
| 2676 | Phi = np.inner(ref[:4],SSGT) |
---|
| 2677 | for i,hklm in enumerate(Uniq): #uses uniq |
---|
| 2678 | hklm = np.asarray(hklm,dtype='i') |
---|
| 2679 | dp = 360.*Phi[i] #and phi |
---|
| 2680 | a = cosd(ph+dp) |
---|
| 2681 | b = sind(ph+dp) |
---|
| 2682 | phasep = complex(a,b) |
---|
| 2683 | phasem = complex(a,-b) |
---|
| 2684 | h,k,l,m = hklm+Hmax |
---|
| 2685 | Ehkl[h,k,l,m] = E*phasep |
---|
| 2686 | h,k,l,m = -hklm+Hmax #Friedel pair refl. |
---|
| 2687 | Ehkl[h,k,l,m] = E*phasem |
---|
| 2688 | # Ehkl[Hmax] = 0.00001 #this to preserve F[0,0,0] |
---|
| 2689 | CEhkl = copy.copy(Ehkl) |
---|
| 2690 | MEhkl = ma.array(Ehkl,mask=(Ehkl==0.0)) |
---|
| 2691 | Emask = ma.getmask(MEhkl) |
---|
| 2692 | sumE = np.sum(ma.array(np.absolute(CEhkl),mask=Emask)) |
---|
| 2693 | Ncyc = 0 |
---|
| 2694 | old = np.seterr(all='raise') |
---|
| 2695 | while True: |
---|
| 2696 | CErho = np.real(fft.fftn(fft.fftshift(CEhkl)))*(1.+0j) |
---|
| 2697 | CEsig = np.std(CErho) |
---|
| 2698 | CFrho = np.where(np.real(CErho) >= flipData['k-factor']*CEsig,CErho,-CErho) |
---|
| 2699 | CFrho = np.where(np.real(CErho) <= flipData['k-Max']*CEsig,CFrho,-CFrho) #solves U atom problem! |
---|
| 2700 | CFhkl = fft.ifftshift(fft.ifftn(CFrho)) |
---|
| 2701 | CFhkl = np.where(CFhkl,CFhkl,1.0) #avoid divide by zero |
---|
| 2702 | phase = CFhkl/np.absolute(CFhkl) |
---|
| 2703 | CEhkl = np.absolute(Ehkl)*phase |
---|
| 2704 | Ncyc += 1 |
---|
| 2705 | sumCF = np.sum(ma.array(np.absolute(CFhkl),mask=Emask)) |
---|
| 2706 | DEhkl = np.absolute(np.absolute(Ehkl)/sumE-np.absolute(CFhkl)/sumCF) |
---|
| 2707 | Rcf = min(100.,np.sum(ma.array(DEhkl,mask=Emask)*100.)) |
---|
| 2708 | if Rcf < 5.: |
---|
| 2709 | break |
---|
| 2710 | GoOn = pgbar.Update(Rcf,newmsg='%s%8.3f%s\n%s %d'%('Residual Rcf =',Rcf,'%','No.cycles = ',Ncyc))[0] |
---|
| 2711 | if not GoOn or Ncyc > 10000: |
---|
| 2712 | break |
---|
| 2713 | np.seterr(**old) |
---|
| 2714 | print ' Charge flip time: %.4f'%(time.time()-time0),'no. elements: %d'%(Ehkl.size) |
---|
| 2715 | CErho = np.real(fft.fftn(fft.fftshift(CEhkl[:,:,:,maxM+1]))) |
---|
| 2716 | SSrho = np.real(fft.fftn(fft.fftshift(CEhkl))) |
---|
| 2717 | print ' No.cycles = ',Ncyc,'Residual Rcf =%8.3f%s'%(Rcf,'%')+' Map size:',CErho.shape |
---|
[1626] | 2718 | roll = findSSOffset(SGData,SSGData,A,CEhkl) #CEhkl needs to be just the observed set, not the full set! |
---|
[1622] | 2719 | |
---|
| 2720 | mapData['Rcf'] = Rcf |
---|
| 2721 | mapData['rho'] = np.roll(np.roll(np.roll(CErho,roll[0],axis=0),roll[1],axis=1),roll[2],axis=2) |
---|
| 2722 | mapData['rhoMax'] = max(np.max(mapData['rho']),-np.min(mapData['rho'])) |
---|
[1659] | 2723 | mapData['minmax'] = [np.max(mapData['rho']),np.min(mapData['rho'])] |
---|
[1645] | 2724 | mapData['Type'] = reflDict['Type'] |
---|
[1622] | 2725 | |
---|
| 2726 | map4DData['Rcf'] = Rcf |
---|
[1626] | 2727 | map4DData['rho'] = np.real(np.roll(np.roll(np.roll(np.roll(SSrho,roll[0],axis=0),roll[1],axis=1),roll[2],axis=2),roll[3],axis=3)) |
---|
[1622] | 2728 | map4DData['rhoMax'] = max(np.max(map4DData['rho']),-np.min(map4DData['rho'])) |
---|
[1659] | 2729 | map4DData['minmax'] = [np.max(map4DData['rho']),np.min(map4DData['rho'])] |
---|
[1645] | 2730 | map4DData['Type'] = reflDict['Type'] |
---|
[1622] | 2731 | return mapData,map4DData |
---|
| 2732 | |
---|
[1928] | 2733 | def getRho(xyz,mapData): |
---|
| 2734 | ''' get scattering density at a point by 8-point interpolation |
---|
| 2735 | param xyz: coordinate to be probed |
---|
| 2736 | param: mapData: dict of map data |
---|
| 2737 | |
---|
| 2738 | :returns: density at xyz |
---|
| 2739 | ''' |
---|
| 2740 | rollMap = lambda rho,roll: np.roll(np.roll(np.roll(rho,roll[0],axis=0),roll[1],axis=1),roll[2],axis=2) |
---|
| 2741 | if not len(mapData): |
---|
| 2742 | return 0.0 |
---|
| 2743 | rho = copy.copy(mapData['rho']) #don't mess up original |
---|
| 2744 | if not len(rho): |
---|
| 2745 | return 0.0 |
---|
| 2746 | mapShape = np.array(rho.shape) |
---|
| 2747 | mapStep = 1./mapShape |
---|
| 2748 | X = np.array(xyz)%1. #get into unit cell |
---|
| 2749 | I = np.array(X*mapShape,dtype='int') |
---|
| 2750 | D = X-I*mapStep #position inside map cell |
---|
| 2751 | D12 = D[0]*D[1] |
---|
| 2752 | D13 = D[0]*D[2] |
---|
| 2753 | D23 = D[1]*D[2] |
---|
| 2754 | D123 = np.prod(D) |
---|
[1929] | 2755 | Rho = rollMap(rho,-I) #shifts map so point is in corner |
---|
[1928] | 2756 | R = Rho[0,0,0]*(1.-np.sum(D))+Rho[1,0,0]*D[0]+Rho[0,1,0]*D[1]+Rho[0,0,1]*D[2]+ \ |
---|
| 2757 | Rho[1,1,1]*D123+Rho[0,1,1]*(D23-D123)+Rho[1,0,1]*(D13-D123)+Rho[1,1,0]*(D12-D123)+ \ |
---|
| 2758 | Rho[0,0,0]*(D12+D13+D23-D123)-Rho[0,0,1]*(D13+D23-D123)- \ |
---|
| 2759 | Rho[0,1,0]*(D23+D12-D123)-Rho[1,0,0]*(D13+D12-D123) |
---|
| 2760 | return R |
---|
| 2761 | |
---|
[1646] | 2762 | def SearchMap(generalData,drawingData,Neg=False): |
---|
[950] | 2763 | '''Does a search of a density map for peaks meeting the criterion of peak |
---|
| 2764 | height is greater than mapData['cutOff']/100 of mapData['rhoMax'] where |
---|
| 2765 | mapData is data['General']['mapData']; the map is also in mapData. |
---|
| 2766 | |
---|
[1646] | 2767 | :param generalData: the phase data structure; includes the map |
---|
| 2768 | :param drawingData: the drawing data structure |
---|
| 2769 | :param Neg: if True then search for negative peaks (i.e. H-atoms & neutron data) |
---|
[957] | 2770 | |
---|
[950] | 2771 | :returns: (peaks,mags,dzeros) where |
---|
[957] | 2772 | |
---|
[950] | 2773 | * peaks : ndarray |
---|
[957] | 2774 | x,y,z positions of the peaks found in the map |
---|
[950] | 2775 | * mags : ndarray |
---|
[957] | 2776 | the magnitudes of the peaks |
---|
[950] | 2777 | * dzeros : ndarray |
---|
[957] | 2778 | the distance of the peaks from the unit cell origin |
---|
[1669] | 2779 | * dcent : ndarray |
---|
| 2780 | the distance of the peaks from the unit cell center |
---|
[950] | 2781 | |
---|
| 2782 | ''' |
---|
[763] | 2783 | rollMap = lambda rho,roll: np.roll(np.roll(np.roll(rho,roll[0],axis=0),roll[1],axis=1),roll[2],axis=2) |
---|
| 2784 | |
---|
| 2785 | norm = 1./(np.sqrt(3.)*np.sqrt(2.*np.pi)**3) |
---|
| 2786 | |
---|
[1146] | 2787 | # def noDuplicate(xyz,peaks,Amat): |
---|
| 2788 | # XYZ = np.inner(Amat,xyz) |
---|
| 2789 | # if True in [np.allclose(XYZ,np.inner(Amat,peak),atol=0.5) for peak in peaks]: |
---|
| 2790 | # print ' Peak',xyz,' <0.5A from another peak' |
---|
| 2791 | # return False |
---|
| 2792 | # return True |
---|
| 2793 | # |
---|
[763] | 2794 | def fixSpecialPos(xyz,SGData,Amat): |
---|
| 2795 | equivs = G2spc.GenAtom(xyz,SGData,Move=True) |
---|
| 2796 | X = [] |
---|
| 2797 | xyzs = [equiv[0] for equiv in equivs] |
---|
| 2798 | for x in xyzs: |
---|
| 2799 | if np.sqrt(np.sum(np.inner(Amat,xyz-x)**2,axis=0))<0.5: |
---|
| 2800 | X.append(x) |
---|
| 2801 | if len(X) > 1: |
---|
| 2802 | return np.average(X,axis=0) |
---|
| 2803 | else: |
---|
| 2804 | return xyz |
---|
| 2805 | |
---|
| 2806 | def rhoCalc(parms,rX,rY,rZ,res,SGLaue): |
---|
| 2807 | Mag,x0,y0,z0,sig = parms |
---|
[779] | 2808 | z = -((x0-rX)**2+(y0-rY)**2+(z0-rZ)**2)/(2.*sig**2) |
---|
| 2809 | # return norm*Mag*np.exp(z)/(sig*res**3) #not slower but some faults in LS |
---|
| 2810 | return norm*Mag*(1.+z+z**2/2.)/(sig*res**3) |
---|
[763] | 2811 | |
---|
| 2812 | def peakFunc(parms,rX,rY,rZ,rho,res,SGLaue): |
---|
| 2813 | Mag,x0,y0,z0,sig = parms |
---|
| 2814 | M = rho-rhoCalc(parms,rX,rY,rZ,res,SGLaue) |
---|
| 2815 | return M |
---|
| 2816 | |
---|
| 2817 | def peakHess(parms,rX,rY,rZ,rho,res,SGLaue): |
---|
| 2818 | Mag,x0,y0,z0,sig = parms |
---|
| 2819 | dMdv = np.zeros(([5,]+list(rX.shape))) |
---|
| 2820 | delt = .01 |
---|
| 2821 | for i in range(5): |
---|
| 2822 | parms[i] -= delt |
---|
| 2823 | rhoCm = rhoCalc(parms,rX,rY,rZ,res,SGLaue) |
---|
| 2824 | parms[i] += 2.*delt |
---|
| 2825 | rhoCp = rhoCalc(parms,rX,rY,rZ,res,SGLaue) |
---|
| 2826 | parms[i] -= delt |
---|
| 2827 | dMdv[i] = (rhoCp-rhoCm)/(2.*delt) |
---|
| 2828 | rhoC = rhoCalc(parms,rX,rY,rZ,res,SGLaue) |
---|
| 2829 | Vec = np.sum(np.sum(np.sum(dMdv*(rho-rhoC),axis=3),axis=2),axis=1) |
---|
| 2830 | dMdv = np.reshape(dMdv,(5,rX.size)) |
---|
| 2831 | Hess = np.inner(dMdv,dMdv) |
---|
| 2832 | |
---|
| 2833 | return Vec,Hess |
---|
| 2834 | |
---|
| 2835 | phaseName = generalData['Name'] |
---|
| 2836 | SGData = generalData['SGData'] |
---|
| 2837 | Amat,Bmat = G2lat.cell2AB(generalData['Cell'][1:7]) |
---|
| 2838 | peaks = [] |
---|
| 2839 | mags = [] |
---|
| 2840 | dzeros = [] |
---|
[1669] | 2841 | dcent = [] |
---|
[763] | 2842 | try: |
---|
| 2843 | mapData = generalData['Map'] |
---|
| 2844 | contLevel = mapData['cutOff']*mapData['rhoMax']/100. |
---|
[1646] | 2845 | if Neg: |
---|
| 2846 | rho = -copy.copy(mapData['rho']) #flip +/- |
---|
| 2847 | else: |
---|
| 2848 | rho = copy.copy(mapData['rho']) #don't mess up original |
---|
[763] | 2849 | mapHalf = np.array(rho.shape)/2 |
---|
| 2850 | res = mapData['Resolution'] |
---|
| 2851 | incre = np.array(rho.shape,dtype=np.float) |
---|
| 2852 | step = max(1.0,1./res)+1 |
---|
| 2853 | steps = np.array(3*[step,]) |
---|
| 2854 | except KeyError: |
---|
| 2855 | print '**** ERROR - Fourier map not defined' |
---|
| 2856 | return peaks,mags |
---|
| 2857 | rhoMask = ma.array(rho,mask=(rho<contLevel)) |
---|
| 2858 | indices = (-1,0,1) |
---|
| 2859 | rolls = np.array([[h,k,l] for h in indices for k in indices for l in indices]) |
---|
| 2860 | for roll in rolls: |
---|
| 2861 | if np.any(roll): |
---|
| 2862 | rhoMask = ma.array(rhoMask,mask=(rhoMask-rollMap(rho,roll)<=0.)) |
---|
| 2863 | indx = np.transpose(rhoMask.nonzero()) |
---|
| 2864 | peaks = indx/incre |
---|
| 2865 | mags = rhoMask[rhoMask.nonzero()] |
---|
| 2866 | for i,[ind,peak,mag] in enumerate(zip(indx,peaks,mags)): |
---|
| 2867 | rho = rollMap(rho,ind) |
---|
| 2868 | rMM = mapHalf-steps |
---|
| 2869 | rMP = mapHalf+steps+1 |
---|
| 2870 | rhoPeak = rho[rMM[0]:rMP[0],rMM[1]:rMP[1],rMM[2]:rMP[2]] |
---|
| 2871 | peakInt = np.sum(rhoPeak)*res**3 |
---|
| 2872 | rX,rY,rZ = np.mgrid[rMM[0]:rMP[0],rMM[1]:rMP[1],rMM[2]:rMP[2]] |
---|
| 2873 | x0 = [peakInt,mapHalf[0],mapHalf[1],mapHalf[2],2.0] #magnitude, position & width(sig) |
---|
| 2874 | result = HessianLSQ(peakFunc,x0,Hess=peakHess, |
---|
| 2875 | args=(rX,rY,rZ,rhoPeak,res,SGData['SGLaue']),ftol=.01,maxcyc=10) |
---|
| 2876 | x1 = result[0] |
---|
| 2877 | if not np.any(x1 < 0): |
---|
| 2878 | mag = x1[0] |
---|
| 2879 | peak = (np.array(x1[1:4])-ind)/incre |
---|
| 2880 | peak = fixSpecialPos(peak,SGData,Amat) |
---|
[1669] | 2881 | rho = rollMap(rho,-ind) |
---|
| 2882 | cent = np.ones(3)*.5 |
---|
[763] | 2883 | dzeros = np.sqrt(np.sum(np.inner(Amat,peaks)**2,axis=0)) |
---|
[1669] | 2884 | dcent = np.sqrt(np.sum(np.inner(Amat,peaks-cent)**2,axis=0)) |
---|
[1646] | 2885 | if Neg: #want negative magnitudes for negative peaks |
---|
[1669] | 2886 | return np.array(peaks),-np.array([mags,]).T,np.array([dzeros,]).T,np.array([dcent,]).T |
---|
[1646] | 2887 | else: |
---|
[1669] | 2888 | return np.array(peaks),np.array([mags,]).T,np.array([dzeros,]).T,np.array([dcent,]).T |
---|
[763] | 2889 | |
---|
| 2890 | def sortArray(data,pos,reverse=False): |
---|
[939] | 2891 | '''data is a list of items |
---|
| 2892 | sort by pos in list; reverse if True |
---|
| 2893 | ''' |
---|
[763] | 2894 | T = [] |
---|
| 2895 | for i,M in enumerate(data): |
---|
[1669] | 2896 | try: |
---|
| 2897 | T.append((M[pos],i)) |
---|
| 2898 | except IndexError: |
---|
| 2899 | return data |
---|
[763] | 2900 | D = dict(zip(T,data)) |
---|
| 2901 | T.sort() |
---|
| 2902 | if reverse: |
---|
| 2903 | T.reverse() |
---|
| 2904 | X = [] |
---|
| 2905 | for key in T: |
---|
| 2906 | X.append(D[key]) |
---|
| 2907 | return X |
---|
[774] | 2908 | |
---|
| 2909 | def PeaksEquiv(data,Ind): |
---|
[950] | 2910 | '''Find the equivalent map peaks for those selected. Works on the |
---|
| 2911 | contents of data['Map Peaks']. |
---|
| 2912 | |
---|
| 2913 | :param data: the phase data structure |
---|
| 2914 | :param list Ind: list of selected peak indices |
---|
| 2915 | :returns: augmented list of peaks including those related by symmetry to the |
---|
| 2916 | ones in Ind |
---|
| 2917 | |
---|
| 2918 | ''' |
---|
[774] | 2919 | def Duplicate(xyz,peaks,Amat): |
---|
| 2920 | if True in [np.allclose(np.inner(Amat,xyz),np.inner(Amat,peak),atol=0.5) for peak in peaks]: |
---|
| 2921 | return True |
---|
| 2922 | return False |
---|
| 2923 | |
---|
| 2924 | generalData = data['General'] |
---|
| 2925 | cell = generalData['Cell'][1:7] |
---|
| 2926 | Amat,Bmat = G2lat.cell2AB(generalData['Cell'][1:7]) |
---|
| 2927 | A = G2lat.cell2A(cell) |
---|
| 2928 | SGData = generalData['SGData'] |
---|
| 2929 | mapPeaks = data['Map Peaks'] |
---|
| 2930 | XYZ = np.array([xyz[1:4] for xyz in mapPeaks]) |
---|
| 2931 | Indx = {} |
---|
| 2932 | for ind in Ind: |
---|
| 2933 | xyz = np.array(mapPeaks[ind][1:4]) |
---|
[805] | 2934 | xyzs = np.array([equiv[0] for equiv in G2spc.GenAtom(xyz,SGData,Move=True)]) |
---|
[774] | 2935 | for jnd,xyz in enumerate(XYZ): |
---|
| 2936 | Indx[jnd] = Duplicate(xyz,xyzs,Amat) |
---|
| 2937 | Ind = [] |
---|
| 2938 | for ind in Indx: |
---|
| 2939 | if Indx[ind]: |
---|
| 2940 | Ind.append(ind) |
---|
| 2941 | return Ind |
---|
[763] | 2942 | |
---|
| 2943 | def PeaksUnique(data,Ind): |
---|
[950] | 2944 | '''Finds the symmetry unique set of peaks from those selected. Works on the |
---|
| 2945 | contents of data['Map Peaks']. |
---|
| 2946 | |
---|
| 2947 | :param data: the phase data structure |
---|
| 2948 | :param list Ind: list of selected peak indices |
---|
| 2949 | :returns: the list of symmetry unique peaks from among those given in Ind |
---|
| 2950 | |
---|
| 2951 | ''' |
---|
[774] | 2952 | # XYZE = np.array([[equiv[0] for equiv in G2spc.GenAtom(xyz[1:4],SGData,Move=True)] for xyz in mapPeaks]) #keep this!! |
---|
[763] | 2953 | |
---|
| 2954 | def noDuplicate(xyz,peaks,Amat): |
---|
[1669] | 2955 | if True in [np.allclose(np.inner(Amat,xyz),np.inner(Amat,peak),atol=0.5) for peak in peaks]: |
---|
[763] | 2956 | return False |
---|
| 2957 | return True |
---|
| 2958 | |
---|
| 2959 | generalData = data['General'] |
---|
| 2960 | cell = generalData['Cell'][1:7] |
---|
| 2961 | Amat,Bmat = G2lat.cell2AB(generalData['Cell'][1:7]) |
---|
| 2962 | A = G2lat.cell2A(cell) |
---|
| 2963 | SGData = generalData['SGData'] |
---|
| 2964 | mapPeaks = data['Map Peaks'] |
---|
| 2965 | Indx = {} |
---|
| 2966 | XYZ = {} |
---|
| 2967 | for ind in Ind: |
---|
| 2968 | XYZ[ind] = np.array(mapPeaks[ind][1:4]) |
---|
| 2969 | Indx[ind] = True |
---|
| 2970 | for ind in Ind: |
---|
| 2971 | if Indx[ind]: |
---|
| 2972 | xyz = XYZ[ind] |
---|
| 2973 | for jnd in Ind: |
---|
| 2974 | if ind != jnd and Indx[jnd]: |
---|
| 2975 | Equiv = G2spc.GenAtom(XYZ[jnd],SGData,Move=True) |
---|
| 2976 | xyzs = np.array([equiv[0] for equiv in Equiv]) |
---|
| 2977 | Indx[jnd] = noDuplicate(xyz,xyzs,Amat) |
---|
| 2978 | Ind = [] |
---|
| 2979 | for ind in Indx: |
---|
| 2980 | if Indx[ind]: |
---|
| 2981 | Ind.append(ind) |
---|
| 2982 | return Ind |
---|
| 2983 | |
---|
[949] | 2984 | ################################################################################ |
---|
| 2985 | ##### single peak fitting profile fxn stuff |
---|
| 2986 | ################################################################################ |
---|
| 2987 | |
---|
[945] | 2988 | def getCWsig(ins,pos): |
---|
[1415] | 2989 | '''get CW peak profile sigma |
---|
[950] | 2990 | |
---|
[1415] | 2991 | :param dict ins: instrument parameters with at least 'U', 'V', & 'W' |
---|
[1513] | 2992 | as values only |
---|
[1415] | 2993 | :param float pos: 2-theta of peak |
---|
| 2994 | :returns: float getCWsig: peak sigma |
---|
[950] | 2995 | |
---|
| 2996 | ''' |
---|
[945] | 2997 | tp = tand(pos/2.0) |
---|
| 2998 | return ins['U']*tp**2+ins['V']*tp+ins['W'] |
---|
| 2999 | |
---|
| 3000 | def getCWsigDeriv(pos): |
---|
[1415] | 3001 | '''get derivatives of CW peak profile sigma wrt U,V, & W |
---|
[950] | 3002 | |
---|
[1415] | 3003 | :param float pos: 2-theta of peak |
---|
[950] | 3004 | |
---|
[1415] | 3005 | :returns: list getCWsigDeriv: d(sig)/dU, d(sig)/dV & d(sig)/dW |
---|
[950] | 3006 | |
---|
| 3007 | ''' |
---|
[945] | 3008 | tp = tand(pos/2.0) |
---|
| 3009 | return tp**2,tp,1.0 |
---|
| 3010 | |
---|
| 3011 | def getCWgam(ins,pos): |
---|
[1415] | 3012 | '''get CW peak profile gamma |
---|
[950] | 3013 | |
---|
[1415] | 3014 | :param dict ins: instrument parameters with at least 'X' & 'Y' |
---|
[1513] | 3015 | as values only |
---|
[1415] | 3016 | :param float pos: 2-theta of peak |
---|
| 3017 | :returns: float getCWgam: peak gamma |
---|
[950] | 3018 | |
---|
| 3019 | ''' |
---|
[945] | 3020 | return ins['X']/cosd(pos/2.0)+ins['Y']*tand(pos/2.0) |
---|
| 3021 | |
---|
| 3022 | def getCWgamDeriv(pos): |
---|
[1415] | 3023 | '''get derivatives of CW peak profile gamma wrt X & Y |
---|
[950] | 3024 | |
---|
[1415] | 3025 | :param float pos: 2-theta of peak |
---|
[950] | 3026 | |
---|
[1415] | 3027 | :returns: list getCWgamDeriv: d(gam)/dX & d(gam)/dY |
---|
[950] | 3028 | |
---|
| 3029 | ''' |
---|
[945] | 3030 | return 1./cosd(pos/2.0),tand(pos/2.0) |
---|
| 3031 | |
---|
| 3032 | def getTOFsig(ins,dsp): |
---|
[1415] | 3033 | '''get TOF peak profile sigma |
---|
[950] | 3034 | |
---|
[1415] | 3035 | :param dict ins: instrument parameters with at least 'sig-0', 'sig-1' & 'sig-q' |
---|
[1513] | 3036 | as values only |
---|
[1415] | 3037 | :param float dsp: d-spacing of peak |
---|
[950] | 3038 | |
---|
[1415] | 3039 | :returns: float getTOFsig: peak sigma |
---|
[950] | 3040 | |
---|
| 3041 | ''' |
---|
[1464] | 3042 | return ins['sig-0']+ins['sig-1']*dsp**2+ins['sig-2']*dsp**4+ins['sig-q']/dsp**2 |
---|
[945] | 3043 | |
---|
| 3044 | def getTOFsigDeriv(dsp): |
---|
[1415] | 3045 | '''get derivatives of TOF peak profile gamma wrt sig-0, sig-1, & sig-q |
---|
[950] | 3046 | |
---|
[1415] | 3047 | :param float dsp: d-spacing of peak |
---|
[950] | 3048 | |
---|
[1415] | 3049 | :returns: list getTOFsigDeriv: d(sig0/d(sig-0), d(sig)/d(sig-1) & d(sig)/d(sig-q) |
---|
[950] | 3050 | |
---|
| 3051 | ''' |
---|
[1464] | 3052 | return 1.0,dsp**2,dsp**4,1./dsp**2 |
---|
[945] | 3053 | |
---|
| 3054 | def getTOFgamma(ins,dsp): |
---|
[1415] | 3055 | '''get TOF peak profile gamma |
---|
[950] | 3056 | |
---|
[1415] | 3057 | :param dict ins: instrument parameters with at least 'X' & 'Y' |
---|
[1513] | 3058 | as values only |
---|
[1415] | 3059 | :param float dsp: d-spacing of peak |
---|
[950] | 3060 | |
---|
[1415] | 3061 | :returns: float getTOFgamma: peak gamma |
---|
[950] | 3062 | |
---|
| 3063 | ''' |
---|
[945] | 3064 | return ins['X']*dsp+ins['Y']*dsp**2 |
---|
| 3065 | |
---|
| 3066 | def getTOFgammaDeriv(dsp): |
---|
[1415] | 3067 | '''get derivatives of TOF peak profile gamma wrt X & Y |
---|
[950] | 3068 | |
---|
[1415] | 3069 | :param float dsp: d-spacing of peak |
---|
[950] | 3070 | |
---|
[1415] | 3071 | :returns: list getTOFgammaDeriv: d(gam)/dX & d(gam)/dY |
---|
[950] | 3072 | |
---|
| 3073 | ''' |
---|
[945] | 3074 | return dsp,dsp**2 |
---|
| 3075 | |
---|
| 3076 | def getTOFbeta(ins,dsp): |
---|
[1415] | 3077 | '''get TOF peak profile beta |
---|
[950] | 3078 | |
---|
[1415] | 3079 | :param dict ins: instrument parameters with at least 'beat-0', 'beta-1' & 'beta-q' |
---|
[1513] | 3080 | as values only |
---|
[1415] | 3081 | :param float dsp: d-spacing of peak |
---|
[950] | 3082 | |
---|
[1415] | 3083 | :returns: float getTOFbeta: peak beat |
---|
[950] | 3084 | |
---|
| 3085 | ''' |
---|
[1464] | 3086 | return ins['beta-0']+ins['beta-1']/dsp**4+ins['beta-q']/dsp**2 |
---|
[945] | 3087 | |
---|
| 3088 | def getTOFbetaDeriv(dsp): |
---|
[1415] | 3089 | '''get derivatives of TOF peak profile beta wrt beta-0, beta-1, & beat-q |
---|
[950] | 3090 | |
---|
[1415] | 3091 | :param float dsp: d-spacing of peak |
---|
[950] | 3092 | |
---|
[1415] | 3093 | :returns: list getTOFbetaDeriv: d(beta)/d(beat-0), d(beta)/d(beta-1) & d(beta)/d(beta-q) |
---|
[950] | 3094 | |
---|
| 3095 | ''' |
---|
[1464] | 3096 | return 1.0,1./dsp**4,1./dsp**2 |
---|
[945] | 3097 | |
---|
| 3098 | def getTOFalpha(ins,dsp): |
---|
[1415] | 3099 | '''get TOF peak profile alpha |
---|
[950] | 3100 | |
---|
[1415] | 3101 | :param dict ins: instrument parameters with at least 'alpha' |
---|
[1513] | 3102 | as values only |
---|
[1415] | 3103 | :param float dsp: d-spacing of peak |
---|
[950] | 3104 | |
---|
[1415] | 3105 | :returns: flaot getTOFalpha: peak alpha |
---|
[950] | 3106 | |
---|
| 3107 | ''' |
---|
[945] | 3108 | return ins['alpha']/dsp |
---|
| 3109 | |
---|
| 3110 | def getTOFalphaDeriv(dsp): |
---|
[1415] | 3111 | '''get derivatives of TOF peak profile beta wrt alpha |
---|
[950] | 3112 | |
---|
[1415] | 3113 | :param float dsp: d-spacing of peak |
---|
[950] | 3114 | |
---|
[1415] | 3115 | :returns: float getTOFalphaDeriv: d(alp)/d(alpha) |
---|
[950] | 3116 | |
---|
| 3117 | ''' |
---|
[945] | 3118 | return 1./dsp |
---|
| 3119 | |
---|
[803] | 3120 | def setPeakparms(Parms,Parms2,pos,mag,ifQ=False,useFit=False): |
---|
[1415] | 3121 | '''set starting peak parameters for single peak fits from plot selection or auto selection |
---|
[950] | 3122 | |
---|
[1415] | 3123 | :param dict Parms: instrument parameters dictionary |
---|
| 3124 | :param dict Parms2: table lookup for TOF profile coefficients |
---|
| 3125 | :param float pos: peak position in 2-theta, TOF or Q (ifQ=True) |
---|
| 3126 | :param float mag: peak top magnitude from pick |
---|
| 3127 | :param bool ifQ: True if pos in Q |
---|
| 3128 | :param bool useFit: True if use fitted CW Parms values (not defaults) |
---|
[950] | 3129 | |
---|
[1415] | 3130 | :returns: list XY: peak list entry: |
---|
| 3131 | for CW: [pos,0,mag,1,sig,0,gam,0] |
---|
| 3132 | for TOF: [pos,0,mag,1,alp,0,bet,0,sig,0,gam,0] |
---|
| 3133 | NB: mag refinement set by default, all others off |
---|
[950] | 3134 | |
---|
| 3135 | ''' |
---|
[803] | 3136 | ind = 0 |
---|
| 3137 | if useFit: |
---|
| 3138 | ind = 1 |
---|
[795] | 3139 | ins = {} |
---|
| 3140 | if 'C' in Parms['Type'][0]: #CW data - TOF later in an elif |
---|
| 3141 | for x in ['U','V','W','X','Y']: |
---|
[803] | 3142 | ins[x] = Parms[x][ind] |
---|
[795] | 3143 | if ifQ: #qplot - convert back to 2-theta |
---|
| 3144 | pos = 2.0*asind(pos*wave/(4*math.pi)) |
---|
[945] | 3145 | sig = getCWsig(ins,pos) |
---|
| 3146 | gam = getCWgam(ins,pos) |
---|
[795] | 3147 | XY = [pos,0, mag,1, sig,0, gam,0] #default refine intensity 1st |
---|
| 3148 | else: |
---|
[798] | 3149 | if ifQ: |
---|
| 3150 | dsp = 2.*np.pi/pos |
---|
| 3151 | pos = Parms['difC']*dsp |
---|
| 3152 | else: |
---|
| 3153 | dsp = pos/Parms['difC'][1] |
---|
[796] | 3154 | if 'Pdabc' in Parms2: |
---|
[1462] | 3155 | for x in ['sig-0','sig-1','sig-2','sig-q','X','Y']: |
---|
[803] | 3156 | ins[x] = Parms[x][ind] |
---|
[796] | 3157 | Pdabc = Parms2['Pdabc'].T |
---|
[795] | 3158 | alp = np.interp(dsp,Pdabc[0],Pdabc[1]) |
---|
| 3159 | bet = np.interp(dsp,Pdabc[0],Pdabc[2]) |
---|
| 3160 | else: |
---|
[1462] | 3161 | for x in ['alpha','beta-0','beta-1','beta-q','sig-0','sig-1','sig-2','sig-q','X','Y']: |
---|
[803] | 3162 | ins[x] = Parms[x][ind] |
---|
[945] | 3163 | alp = getTOFalpha(ins,dsp) |
---|
| 3164 | bet = getTOFbeta(ins,dsp) |
---|
| 3165 | sig = getTOFsig(ins,dsp) |
---|
| 3166 | gam = getTOFgamma(ins,dsp) |
---|
[795] | 3167 | XY = [pos,0,mag,1,alp,0,bet,0,sig,0,gam,0] |
---|
| 3168 | return XY |
---|
[940] | 3169 | |
---|
| 3170 | ################################################################################ |
---|
| 3171 | ##### MC/SA stuff |
---|
| 3172 | ################################################################################ |
---|
[934] | 3173 | |
---|
[940] | 3174 | #scipy/optimize/anneal.py code modified by R. Von Dreele 2013 |
---|
| 3175 | # Original Author: Travis Oliphant 2002 |
---|
| 3176 | # Bug-fixes in 2006 by Tim Leslie |
---|
| 3177 | |
---|
| 3178 | |
---|
| 3179 | import numpy |
---|
| 3180 | from numpy import asarray, tan, exp, ones, squeeze, sign, \ |
---|
| 3181 | all, log, sqrt, pi, shape, array, minimum, where |
---|
| 3182 | from numpy import random |
---|
| 3183 | |
---|
[956] | 3184 | #__all__ = ['anneal'] |
---|
[940] | 3185 | |
---|
| 3186 | _double_min = numpy.finfo(float).min |
---|
| 3187 | _double_max = numpy.finfo(float).max |
---|
| 3188 | class base_schedule(object): |
---|
| 3189 | def __init__(self): |
---|
| 3190 | self.dwell = 20 |
---|
| 3191 | self.learn_rate = 0.5 |
---|
| 3192 | self.lower = -10 |
---|
| 3193 | self.upper = 10 |
---|
| 3194 | self.Ninit = 50 |
---|
| 3195 | self.accepted = 0 |
---|
| 3196 | self.tests = 0 |
---|
| 3197 | self.feval = 0 |
---|
| 3198 | self.k = 0 |
---|
| 3199 | self.T = None |
---|
| 3200 | |
---|
| 3201 | def init(self, **options): |
---|
| 3202 | self.__dict__.update(options) |
---|
| 3203 | self.lower = asarray(self.lower) |
---|
| 3204 | self.lower = where(self.lower == numpy.NINF, -_double_max, self.lower) |
---|
| 3205 | self.upper = asarray(self.upper) |
---|
| 3206 | self.upper = where(self.upper == numpy.PINF, _double_max, self.upper) |
---|
| 3207 | self.k = 0 |
---|
| 3208 | self.accepted = 0 |
---|
| 3209 | self.feval = 0 |
---|
| 3210 | self.tests = 0 |
---|
| 3211 | |
---|
| 3212 | def getstart_temp(self, best_state): |
---|
| 3213 | """ Find a matching starting temperature and starting parameters vector |
---|
| 3214 | i.e. find x0 such that func(x0) = T0. |
---|
| 3215 | |
---|
| 3216 | Parameters |
---|
| 3217 | ---------- |
---|
| 3218 | best_state : _state |
---|
| 3219 | A _state object to store the function value and x0 found. |
---|
| 3220 | |
---|
[950] | 3221 | returns |
---|
[940] | 3222 | ------- |
---|
| 3223 | x0 : array |
---|
| 3224 | The starting parameters vector. |
---|
| 3225 | """ |
---|
| 3226 | |
---|
| 3227 | assert(not self.dims is None) |
---|
| 3228 | lrange = self.lower |
---|
| 3229 | urange = self.upper |
---|
| 3230 | fmax = _double_min |
---|
| 3231 | fmin = _double_max |
---|
| 3232 | for _ in range(self.Ninit): |
---|
| 3233 | x0 = random.uniform(size=self.dims)*(urange-lrange) + lrange |
---|
| 3234 | fval = self.func(x0, *self.args) |
---|
| 3235 | self.feval += 1 |
---|
| 3236 | if fval > fmax: |
---|
| 3237 | fmax = fval |
---|
| 3238 | if fval < fmin: |
---|
| 3239 | fmin = fval |
---|
| 3240 | best_state.cost = fval |
---|
| 3241 | best_state.x = array(x0) |
---|
| 3242 | |
---|
| 3243 | self.T0 = (fmax-fmin)*1.5 |
---|
| 3244 | return best_state.x |
---|
[1065] | 3245 | |
---|
| 3246 | def set_range(self,x0,frac): |
---|
| 3247 | delrange = frac*(self.upper-self.lower) |
---|
| 3248 | self.upper = x0+delrange |
---|
| 3249 | self.lower = x0-delrange |
---|
[940] | 3250 | |
---|
| 3251 | def accept_test(self, dE): |
---|
| 3252 | T = self.T |
---|
| 3253 | self.tests += 1 |
---|
| 3254 | if dE < 0: |
---|
| 3255 | self.accepted += 1 |
---|
| 3256 | return 1 |
---|
| 3257 | p = exp(-dE*1.0/self.boltzmann/T) |
---|
| 3258 | if (p > random.uniform(0.0, 1.0)): |
---|
| 3259 | self.accepted += 1 |
---|
| 3260 | return 1 |
---|
| 3261 | return 0 |
---|
| 3262 | |
---|
| 3263 | def update_guess(self, x0): |
---|
[949] | 3264 | return np.squeeze(np.random.uniform(0.,1.,size=self.dims))*(self.upper-self.lower)+self.lower |
---|
[940] | 3265 | |
---|
| 3266 | def update_temp(self, x0): |
---|
| 3267 | pass |
---|
| 3268 | |
---|
| 3269 | |
---|
[961] | 3270 | # A schedule due to Lester Ingber modified to use bounds - OK |
---|
[940] | 3271 | class fast_sa(base_schedule): |
---|
| 3272 | def init(self, **options): |
---|
| 3273 | self.__dict__.update(options) |
---|
| 3274 | if self.m is None: |
---|
| 3275 | self.m = 1.0 |
---|
| 3276 | if self.n is None: |
---|
| 3277 | self.n = 1.0 |
---|
| 3278 | self.c = self.m * exp(-self.n * self.quench) |
---|
| 3279 | |
---|
[950] | 3280 | def update_guess(self, x0): |
---|
| 3281 | x0 = asarray(x0) |
---|
| 3282 | u = squeeze(random.uniform(0.0, 1.0, size=self.dims)) |
---|
| 3283 | T = self.T |
---|
[961] | 3284 | xc = (sign(u-0.5)*T*((1+1.0/T)**abs(2*u-1)-1.0)+1.0)/2.0 |
---|
| 3285 | xnew = xc*(self.upper - self.lower)+self.lower |
---|
| 3286 | return xnew |
---|
[949] | 3287 | # y = sign(u-0.5)*T*((1+1.0/T)**abs(2*u-1)-1.0) |
---|
| 3288 | # xc = y*(self.upper - self.lower) |
---|
| 3289 | # xnew = x0 + xc |
---|
| 3290 | # return xnew |
---|
[940] | 3291 | |
---|
| 3292 | def update_temp(self): |
---|
| 3293 | self.T = self.T0*exp(-self.c * self.k**(self.quench)) |
---|
| 3294 | self.k += 1 |
---|
| 3295 | return |
---|
| 3296 | |
---|
[961] | 3297 | class cauchy_sa(base_schedule): #modified to use bounds - not good |
---|
| 3298 | def update_guess(self, x0): |
---|
| 3299 | x0 = asarray(x0) |
---|
| 3300 | numbers = squeeze(random.uniform(-pi/4, pi/4, size=self.dims)) |
---|
| 3301 | xc = (1.+(self.learn_rate * self.T * tan(numbers))%1.) |
---|
| 3302 | xnew = xc*(self.upper - self.lower)+self.lower |
---|
| 3303 | return xnew |
---|
[949] | 3304 | # numbers = squeeze(random.uniform(-pi/2, pi/2, size=self.dims)) |
---|
| 3305 | # xc = self.learn_rate * self.T * tan(numbers) |
---|
| 3306 | # xnew = x0 + xc |
---|
| 3307 | # return xnew |
---|
[940] | 3308 | |
---|
| 3309 | def update_temp(self): |
---|
| 3310 | self.T = self.T0/(1+self.k) |
---|
| 3311 | self.k += 1 |
---|
| 3312 | return |
---|
| 3313 | |
---|
| 3314 | class boltzmann_sa(base_schedule): |
---|
[949] | 3315 | # def update_guess(self, x0): |
---|
| 3316 | # std = minimum(sqrt(self.T)*ones(self.dims), (self.upper-self.lower)/3.0/self.learn_rate) |
---|
| 3317 | # x0 = asarray(x0) |
---|
| 3318 | # xc = squeeze(random.normal(0, 1.0, size=self.dims)) |
---|
| 3319 | # |
---|
| 3320 | # xnew = x0 + xc*std*self.learn_rate |
---|
| 3321 | # return xnew |
---|
[940] | 3322 | |
---|
| 3323 | def update_temp(self): |
---|
| 3324 | self.k += 1 |
---|
| 3325 | self.T = self.T0 / log(self.k+1.0) |
---|
| 3326 | return |
---|
| 3327 | |
---|
[961] | 3328 | class log_sa(base_schedule): #OK |
---|
[940] | 3329 | |
---|
| 3330 | def init(self,**options): |
---|
| 3331 | self.__dict__.update(options) |
---|
| 3332 | |
---|
[1063] | 3333 | def update_guess(self,x0): #same as default |
---|
| 3334 | return np.squeeze(np.random.uniform(0.,1.,size=self.dims))*(self.upper-self.lower)+self.lower |
---|
[940] | 3335 | |
---|
| 3336 | def update_temp(self): |
---|
| 3337 | self.k += 1 |
---|
[949] | 3338 | self.T = self.T0*self.slope**self.k |
---|
[940] | 3339 | |
---|
| 3340 | class _state(object): |
---|
| 3341 | def __init__(self): |
---|
| 3342 | self.x = None |
---|
| 3343 | self.cost = None |
---|
| 3344 | |
---|
| 3345 | # TODO: |
---|
| 3346 | # allow for general annealing temperature profile |
---|
| 3347 | # in that case use update given by alpha and omega and |
---|
| 3348 | # variation of all previous updates and temperature? |
---|
| 3349 | |
---|
| 3350 | # Simulated annealing |
---|
| 3351 | |
---|
| 3352 | def anneal(func, x0, args=(), schedule='fast', full_output=0, |
---|
| 3353 | T0=None, Tf=1e-12, maxeval=None, maxaccept=None, maxiter=400, |
---|
| 3354 | boltzmann=1.0, learn_rate=0.5, feps=1e-6, quench=1.0, m=1.0, n=1.0, |
---|
[1065] | 3355 | lower=-100, upper=100, dwell=50, slope=0.9,ranStart=False, |
---|
| 3356 | ranRange=0.10,autoRan=False,dlg=None): |
---|
[940] | 3357 | """Minimize a function using simulated annealing. |
---|
| 3358 | |
---|
| 3359 | Schedule is a schedule class implementing the annealing schedule. |
---|
| 3360 | Available ones are 'fast', 'cauchy', 'boltzmann' |
---|
| 3361 | |
---|
[948] | 3362 | :param callable func: f(x, \*args) |
---|
[940] | 3363 | Function to be optimized. |
---|
[948] | 3364 | :param ndarray x0: |
---|
[940] | 3365 | Initial guess. |
---|
[948] | 3366 | :param tuple args: |
---|
[940] | 3367 | Extra parameters to `func`. |
---|
[948] | 3368 | :param base_schedule schedule: |
---|
[940] | 3369 | Annealing schedule to use (a class). |
---|
[948] | 3370 | :param bool full_output: |
---|
[940] | 3371 | Whether to return optional outputs. |
---|
[948] | 3372 | :param float T0: |
---|
[940] | 3373 | Initial Temperature (estimated as 1.2 times the largest |
---|
| 3374 | cost-function deviation over random points in the range). |
---|
[948] | 3375 | :param float Tf: |
---|
[940] | 3376 | Final goal temperature. |
---|
[948] | 3377 | :param int maxeval: |
---|
[940] | 3378 | Maximum function evaluations. |
---|
[948] | 3379 | :param int maxaccept: |
---|
[940] | 3380 | Maximum changes to accept. |
---|
[948] | 3381 | :param int maxiter: |
---|
[940] | 3382 | Maximum cooling iterations. |
---|
[948] | 3383 | :param float learn_rate: |
---|
[940] | 3384 | Scale constant for adjusting guesses. |
---|
[948] | 3385 | :param float boltzmann: |
---|
[940] | 3386 | Boltzmann constant in acceptance test |
---|
| 3387 | (increase for less stringent test at each temperature). |
---|
[948] | 3388 | :param float feps: |
---|
[940] | 3389 | Stopping relative error tolerance for the function value in |
---|
| 3390 | last four coolings. |
---|
[948] | 3391 | :param float quench,m,n: |
---|
[940] | 3392 | Parameters to alter fast_sa schedule. |
---|
[948] | 3393 | :param float/ndarray lower,upper: |
---|
[940] | 3394 | Lower and upper bounds on `x`. |
---|
[948] | 3395 | :param int dwell: |
---|
[940] | 3396 | The number of times to search the space at each temperature. |
---|
[948] | 3397 | :param float slope: |
---|
[940] | 3398 | Parameter for log schedule |
---|
[1065] | 3399 | :param bool ranStart=False: |
---|
| 3400 | True for set 10% of ranges about x |
---|
[940] | 3401 | |
---|
[948] | 3402 | :returns: (xmin, Jmin, T, feval, iters, accept, retval) where |
---|
[940] | 3403 | |
---|
[948] | 3404 | * xmin (ndarray): Point giving smallest value found. |
---|
| 3405 | * Jmin (float): Minimum value of function found. |
---|
| 3406 | * T (float): Final temperature. |
---|
| 3407 | * feval (int): Number of function evaluations. |
---|
| 3408 | * iters (int): Number of cooling iterations. |
---|
| 3409 | * accept (int): Number of tests accepted. |
---|
| 3410 | * retval (int): Flag indicating stopping condition: |
---|
[940] | 3411 | |
---|
[948] | 3412 | * 0: Points no longer changing |
---|
| 3413 | * 1: Cooled to final temperature |
---|
| 3414 | * 2: Maximum function evaluations |
---|
| 3415 | * 3: Maximum cooling iterations reached |
---|
| 3416 | * 4: Maximum accepted query locations reached |
---|
| 3417 | * 5: Final point not the minimum amongst encountered points |
---|
| 3418 | |
---|
| 3419 | *Notes*: |
---|
[940] | 3420 | Simulated annealing is a random algorithm which uses no derivative |
---|
| 3421 | information from the function being optimized. In practice it has |
---|
| 3422 | been more useful in discrete optimization than continuous |
---|
| 3423 | optimization, as there are usually better algorithms for continuous |
---|
| 3424 | optimization problems. |
---|
| 3425 | |
---|
| 3426 | Some experimentation by trying the difference temperature |
---|
| 3427 | schedules and altering their parameters is likely required to |
---|
| 3428 | obtain good performance. |
---|
| 3429 | |
---|
| 3430 | The randomness in the algorithm comes from random sampling in numpy. |
---|
| 3431 | To obtain the same results you can call numpy.random.seed with the |
---|
| 3432 | same seed immediately before calling scipy.optimize.anneal. |
---|
| 3433 | |
---|
| 3434 | We give a brief description of how the three temperature schedules |
---|
| 3435 | generate new points and vary their temperature. Temperatures are |
---|
| 3436 | only updated with iterations in the outer loop. The inner loop is |
---|
[949] | 3437 | over xrange(dwell), and new points are generated for |
---|
[940] | 3438 | every iteration in the inner loop. (Though whether the proposed |
---|
| 3439 | new points are accepted is probabilistic.) |
---|
| 3440 | |
---|
| 3441 | For readability, let d denote the dimension of the inputs to func. |
---|
| 3442 | Also, let x_old denote the previous state, and k denote the |
---|
| 3443 | iteration number of the outer loop. All other variables not |
---|
| 3444 | defined below are input variables to scipy.optimize.anneal itself. |
---|
| 3445 | |
---|
| 3446 | In the 'fast' schedule the updates are :: |
---|
| 3447 | |
---|
| 3448 | u ~ Uniform(0, 1, size=d) |
---|
| 3449 | y = sgn(u - 0.5) * T * ((1+ 1/T)**abs(2u-1) -1.0) |
---|
| 3450 | xc = y * (upper - lower) |
---|
| 3451 | x_new = x_old + xc |
---|
| 3452 | |
---|
| 3453 | c = n * exp(-n * quench) |
---|
| 3454 | T_new = T0 * exp(-c * k**quench) |
---|
| 3455 | |
---|
| 3456 | |
---|
| 3457 | In the 'cauchy' schedule the updates are :: |
---|
| 3458 | |
---|
| 3459 | u ~ Uniform(-pi/2, pi/2, size=d) |
---|
| 3460 | xc = learn_rate * T * tan(u) |
---|
| 3461 | x_new = x_old + xc |
---|
| 3462 | |
---|
| 3463 | T_new = T0 / (1+k) |
---|
| 3464 | |
---|
| 3465 | In the 'boltzmann' schedule the updates are :: |
---|
| 3466 | |
---|
| 3467 | std = minimum( sqrt(T) * ones(d), (upper-lower) / (3*learn_rate) ) |
---|
| 3468 | y ~ Normal(0, std, size=d) |
---|
| 3469 | x_new = x_old + learn_rate * y |
---|
| 3470 | |
---|
| 3471 | T_new = T0 / log(1+k) |
---|
| 3472 | |
---|
| 3473 | """ |
---|
| 3474 | x0 = asarray(x0) |
---|
| 3475 | lower = asarray(lower) |
---|
| 3476 | upper = asarray(upper) |
---|
| 3477 | |
---|
| 3478 | schedule = eval(schedule+'_sa()') |
---|
| 3479 | # initialize the schedule |
---|
| 3480 | schedule.init(dims=shape(x0),func=func,args=args,boltzmann=boltzmann,T0=T0, |
---|
| 3481 | learn_rate=learn_rate, lower=lower, upper=upper, |
---|
[949] | 3482 | m=m, n=n, quench=quench, dwell=dwell, slope=slope) |
---|
[940] | 3483 | |
---|
| 3484 | current_state, last_state, best_state = _state(), _state(), _state() |
---|
[1065] | 3485 | if ranStart: |
---|
| 3486 | schedule.set_range(x0,ranRange) |
---|
[940] | 3487 | if T0 is None: |
---|
| 3488 | x0 = schedule.getstart_temp(best_state) |
---|
| 3489 | else: |
---|
[1065] | 3490 | x0 = random.uniform(size=len(x0))*(upper-lower) + lower |
---|
[940] | 3491 | best_state.x = None |
---|
| 3492 | best_state.cost = numpy.Inf |
---|
| 3493 | |
---|
| 3494 | last_state.x = asarray(x0).copy() |
---|
| 3495 | fval = func(x0,*args) |
---|
| 3496 | schedule.feval += 1 |
---|
| 3497 | last_state.cost = fval |
---|
| 3498 | if last_state.cost < best_state.cost: |
---|
| 3499 | best_state.cost = fval |
---|
| 3500 | best_state.x = asarray(x0).copy() |
---|
| 3501 | schedule.T = schedule.T0 |
---|
| 3502 | fqueue = [100, 300, 500, 700] |
---|
[1001] | 3503 | iters = 1 |
---|
[970] | 3504 | keepGoing = True |
---|
[1055] | 3505 | bestn = 0 |
---|
[970] | 3506 | while keepGoing: |
---|
| 3507 | retval = 0 |
---|
[940] | 3508 | for n in xrange(dwell): |
---|
| 3509 | current_state.x = schedule.update_guess(last_state.x) |
---|
| 3510 | current_state.cost = func(current_state.x,*args) |
---|
| 3511 | schedule.feval += 1 |
---|
| 3512 | |
---|
| 3513 | dE = current_state.cost - last_state.cost |
---|
| 3514 | if schedule.accept_test(dE): |
---|
| 3515 | last_state.x = current_state.x.copy() |
---|
| 3516 | last_state.cost = current_state.cost |
---|
| 3517 | if last_state.cost < best_state.cost: |
---|
| 3518 | best_state.x = last_state.x.copy() |
---|
| 3519 | best_state.cost = last_state.cost |
---|
[1055] | 3520 | bestn = n |
---|
[1065] | 3521 | if best_state.cost < 1.0 and autoRan: |
---|
| 3522 | schedule.set_range(x0,best_state.cost/2.) |
---|
[949] | 3523 | if dlg: |
---|
[1055] | 3524 | GoOn = dlg.Update(min(100.,best_state.cost*100), |
---|
| 3525 | newmsg='%s%8.5f, %s%d\n%s%8.4f%s'%('Temperature =',schedule.T, \ |
---|
| 3526 | 'Best trial:',bestn, \ |
---|
| 3527 | 'MC/SA Residual:',best_state.cost*100,'%', \ |
---|
| 3528 | ))[0] |
---|
[949] | 3529 | if not GoOn: |
---|
[962] | 3530 | best_state.x = last_state.x.copy() |
---|
| 3531 | best_state.cost = last_state.cost |
---|
[970] | 3532 | retval = 5 |
---|
[940] | 3533 | schedule.update_temp() |
---|
| 3534 | iters += 1 |
---|
| 3535 | # Stopping conditions |
---|
| 3536 | # 0) last saved values of f from each cooling step |
---|
| 3537 | # are all very similar (effectively cooled) |
---|
| 3538 | # 1) Tf is set and we are below it |
---|
| 3539 | # 2) maxeval is set and we are past it |
---|
| 3540 | # 3) maxiter is set and we are past it |
---|
| 3541 | # 4) maxaccept is set and we are past it |
---|
[970] | 3542 | # 5) user canceled run via progress bar |
---|
[940] | 3543 | |
---|
| 3544 | fqueue.append(squeeze(last_state.cost)) |
---|
| 3545 | fqueue.pop(0) |
---|
| 3546 | af = asarray(fqueue)*1.0 |
---|
[970] | 3547 | if retval == 5: |
---|
| 3548 | print ' User terminated run; incomplete MC/SA' |
---|
| 3549 | keepGoing = False |
---|
| 3550 | break |
---|
[940] | 3551 | if all(abs((af-af[0])/af[0]) < feps): |
---|
| 3552 | retval = 0 |
---|
| 3553 | if abs(af[-1]-best_state.cost) > feps*10: |
---|
| 3554 | retval = 5 |
---|
[961] | 3555 | # print "Warning: Cooled to %f at %s but this is not" \ |
---|
| 3556 | # % (squeeze(last_state.cost), str(squeeze(last_state.x))) \ |
---|
| 3557 | # + " the smallest point found." |
---|
[940] | 3558 | break |
---|
| 3559 | if (Tf is not None) and (schedule.T < Tf): |
---|
| 3560 | retval = 1 |
---|
| 3561 | break |
---|
| 3562 | if (maxeval is not None) and (schedule.feval > maxeval): |
---|
| 3563 | retval = 2 |
---|
| 3564 | break |
---|
| 3565 | if (iters > maxiter): |
---|
| 3566 | print "Warning: Maximum number of iterations exceeded." |
---|
| 3567 | retval = 3 |
---|
| 3568 | break |
---|
| 3569 | if (maxaccept is not None) and (schedule.accepted > maxaccept): |
---|
| 3570 | retval = 4 |
---|
| 3571 | break |
---|
| 3572 | |
---|
| 3573 | if full_output: |
---|
| 3574 | return best_state.x, best_state.cost, schedule.T, \ |
---|
| 3575 | schedule.feval, iters, schedule.accepted, retval |
---|
| 3576 | else: |
---|
| 3577 | return best_state.x, retval |
---|
| 3578 | |
---|
[1091] | 3579 | def worker(iCyc,data,RBdata,reflType,reflData,covData,out_q,nprocess=-1): |
---|
[962] | 3580 | outlist = [] |
---|
[1096] | 3581 | random.seed(int(time.time())%100000+nprocess) #make sure each process has a different random start |
---|
[962] | 3582 | for n in range(iCyc): |
---|
[1083] | 3583 | result = mcsaSearch(data,RBdata,reflType,reflData,covData,None) |
---|
[962] | 3584 | outlist.append(result[0]) |
---|
| 3585 | print ' MC/SA residual: %.3f%% structure factor time: %.3f'%(100*result[0][2],result[1]) |
---|
| 3586 | out_q.put(outlist) |
---|
[940] | 3587 | |
---|
[962] | 3588 | def MPmcsaSearch(nCyc,data,RBdata,reflType,reflData,covData): |
---|
| 3589 | import multiprocessing as mp |
---|
| 3590 | |
---|
| 3591 | nprocs = mp.cpu_count() |
---|
| 3592 | out_q = mp.Queue() |
---|
| 3593 | procs = [] |
---|
| 3594 | iCyc = np.zeros(nprocs) |
---|
| 3595 | for i in range(nCyc): |
---|
| 3596 | iCyc[i%nprocs] += 1 |
---|
| 3597 | for i in range(nprocs): |
---|
[1091] | 3598 | p = mp.Process(target=worker,args=(int(iCyc[i]),data,RBdata,reflType,reflData,covData,out_q,i)) |
---|
[962] | 3599 | procs.append(p) |
---|
| 3600 | p.start() |
---|
| 3601 | resultlist = [] |
---|
| 3602 | for i in range(nprocs): |
---|
| 3603 | resultlist += out_q.get() |
---|
| 3604 | for p in procs: |
---|
| 3605 | p.join() |
---|
| 3606 | return resultlist |
---|
| 3607 | |
---|
[942] | 3608 | def mcsaSearch(data,RBdata,reflType,reflData,covData,pgbar): |
---|
[950] | 3609 | '''default doc string |
---|
| 3610 | |
---|
| 3611 | :param type name: description |
---|
| 3612 | |
---|
| 3613 | :returns: type name: description |
---|
| 3614 | |
---|
| 3615 | ''' |
---|
[940] | 3616 | |
---|
[961] | 3617 | global tsum |
---|
| 3618 | tsum = 0. |
---|
| 3619 | |
---|
[940] | 3620 | def getMDparms(item,pfx,parmDict,varyList): |
---|
| 3621 | parmDict[pfx+'MDaxis'] = item['axis'] |
---|
| 3622 | parmDict[pfx+'MDval'] = item['Coef'][0] |
---|
| 3623 | if item['Coef'][1]: |
---|
| 3624 | varyList += [pfx+'MDval',] |
---|
| 3625 | limits = item['Coef'][2] |
---|
| 3626 | lower.append(limits[0]) |
---|
| 3627 | upper.append(limits[1]) |
---|
[949] | 3628 | |
---|
[942] | 3629 | def getAtomparms(item,pfx,aTypes,SGData,parmDict,varyList): |
---|
[940] | 3630 | parmDict[pfx+'Atype'] = item['atType'] |
---|
[942] | 3631 | aTypes |= set([item['atType'],]) |
---|
| 3632 | pstr = ['Ax','Ay','Az'] |
---|
| 3633 | XYZ = [0,0,0] |
---|
[940] | 3634 | for i in range(3): |
---|
| 3635 | name = pfx+pstr[i] |
---|
| 3636 | parmDict[name] = item['Pos'][0][i] |
---|
[942] | 3637 | XYZ[i] = parmDict[name] |
---|
[940] | 3638 | if item['Pos'][1][i]: |
---|
| 3639 | varyList += [name,] |
---|
| 3640 | limits = item['Pos'][2][i] |
---|
| 3641 | lower.append(limits[0]) |
---|
| 3642 | upper.append(limits[1]) |
---|
[942] | 3643 | parmDict[pfx+'Amul'] = len(G2spc.GenAtom(XYZ,SGData)) |
---|
[940] | 3644 | |
---|
[949] | 3645 | def getRBparms(item,mfx,aTypes,RBdata,SGData,atNo,parmDict,varyList): |
---|
[942] | 3646 | parmDict[mfx+'MolCent'] = item['MolCent'] |
---|
| 3647 | parmDict[mfx+'RBId'] = item['RBId'] |
---|
[940] | 3648 | pstr = ['Px','Py','Pz'] |
---|
[1055] | 3649 | ostr = ['Qa','Qi','Qj','Qk'] #angle,vector not quaternion |
---|
[940] | 3650 | for i in range(3): |
---|
[942] | 3651 | name = mfx+pstr[i] |
---|
[940] | 3652 | parmDict[name] = item['Pos'][0][i] |
---|
| 3653 | if item['Pos'][1][i]: |
---|
| 3654 | varyList += [name,] |
---|
| 3655 | limits = item['Pos'][2][i] |
---|
| 3656 | lower.append(limits[0]) |
---|
| 3657 | upper.append(limits[1]) |
---|
[1055] | 3658 | AV = item['Ori'][0] |
---|
| 3659 | A = AV[0] |
---|
| 3660 | V = AV[1:] |
---|
[940] | 3661 | for i in range(4): |
---|
[942] | 3662 | name = mfx+ostr[i] |
---|
[1055] | 3663 | if i: |
---|
| 3664 | parmDict[name] = V[i-1] |
---|
| 3665 | else: |
---|
| 3666 | parmDict[name] = A |
---|
| 3667 | if item['Ovar'] == 'AV': |
---|
[940] | 3668 | varyList += [name,] |
---|
| 3669 | limits = item['Ori'][2][i] |
---|
| 3670 | lower.append(limits[0]) |
---|
| 3671 | upper.append(limits[1]) |
---|
| 3672 | elif item['Ovar'] == 'A' and not i: |
---|
| 3673 | varyList += [name,] |
---|
| 3674 | limits = item['Ori'][2][i] |
---|
| 3675 | lower.append(limits[0]) |
---|
| 3676 | upper.append(limits[1]) |
---|
| 3677 | if 'Tor' in item: #'Tor' not there for 'Vector' RBs |
---|
| 3678 | for i in range(len(item['Tor'][0])): |
---|
[942] | 3679 | name = mfx+'Tor'+str(i) |
---|
[940] | 3680 | parmDict[name] = item['Tor'][0][i] |
---|
| 3681 | if item['Tor'][1][i]: |
---|
| 3682 | varyList += [name,] |
---|
| 3683 | limits = item['Tor'][2][i] |
---|
| 3684 | lower.append(limits[0]) |
---|
| 3685 | upper.append(limits[1]) |
---|
[943] | 3686 | atypes = RBdata[item['Type']][item['RBId']]['rbTypes'] |
---|
| 3687 | aTypes |= set(atypes) |
---|
| 3688 | atNo += len(atypes) |
---|
| 3689 | return atNo |
---|
[1051] | 3690 | |
---|
[949] | 3691 | def GetAtomM(Xdata,SGData): |
---|
| 3692 | Mdata = [] |
---|
[961] | 3693 | for xyz in Xdata: |
---|
[952] | 3694 | Mdata.append(float(len(G2spc.GenAtom(xyz,SGData)))) |
---|
[949] | 3695 | return np.array(Mdata) |
---|
[965] | 3696 | |
---|
[1062] | 3697 | def GetAtomT(RBdata,parmDict): |
---|
[942] | 3698 | 'Needs a doc string' |
---|
[1062] | 3699 | atNo = parmDict['atNo'] |
---|
| 3700 | nfixAt = parmDict['nfixAt'] |
---|
| 3701 | Tdata = atNo*[' ',] |
---|
| 3702 | for iatm in range(nfixAt): |
---|
| 3703 | parm = ':'+str(iatm)+':Atype' |
---|
| 3704 | if parm in parmDict: |
---|
| 3705 | Tdata[iatm] = aTypes.index(parmDict[parm]) |
---|
| 3706 | iatm = nfixAt |
---|
| 3707 | for iObj in range(parmDict['nObj']): |
---|
| 3708 | pfx = str(iObj)+':' |
---|
| 3709 | if parmDict[pfx+'Type'] in ['Vector','Residue']: |
---|
| 3710 | if parmDict[pfx+'Type'] == 'Vector': |
---|
| 3711 | RBRes = RBdata['Vector'][parmDict[pfx+'RBId']] |
---|
| 3712 | nAtm = len(RBRes['rbVect'][0]) |
---|
| 3713 | else: #Residue |
---|
| 3714 | RBRes = RBdata['Residue'][parmDict[pfx+'RBId']] |
---|
| 3715 | nAtm = len(RBRes['rbXYZ']) |
---|
| 3716 | for i in range(nAtm): |
---|
| 3717 | Tdata[iatm] = aTypes.index(RBRes['rbTypes'][i]) |
---|
| 3718 | iatm += 1 |
---|
| 3719 | elif parmDict[pfx+'Type'] == 'Atom': |
---|
| 3720 | atNo = parmDict[pfx+'atNo'] |
---|
| 3721 | parm = pfx+'Atype' #remove extra ':' |
---|
| 3722 | if parm in parmDict: |
---|
| 3723 | Tdata[atNo] = aTypes.index(parmDict[parm]) |
---|
| 3724 | iatm += 1 |
---|
| 3725 | else: |
---|
| 3726 | continue #skips March Dollase |
---|
| 3727 | return Tdata |
---|
| 3728 | |
---|
| 3729 | def GetAtomX(RBdata,parmDict): |
---|
| 3730 | 'Needs a doc string' |
---|
[949] | 3731 | Bmat = parmDict['Bmat'] |
---|
| 3732 | atNo = parmDict['atNo'] |
---|
[943] | 3733 | nfixAt = parmDict['nfixAt'] |
---|
| 3734 | Xdata = np.zeros((3,atNo)) |
---|
[1062] | 3735 | keys = {':Ax':Xdata[0],':Ay':Xdata[1],':Az':Xdata[2]} |
---|
[943] | 3736 | for iatm in range(nfixAt): |
---|
[942] | 3737 | for key in keys: |
---|
[949] | 3738 | parm = ':'+str(iatm)+key |
---|
[942] | 3739 | if parm in parmDict: |
---|
[1062] | 3740 | keys[key][iatm] = parmDict[parm] |
---|
[949] | 3741 | iatm = nfixAt |
---|
| 3742 | for iObj in range(parmDict['nObj']): |
---|
| 3743 | pfx = str(iObj)+':' |
---|
| 3744 | if parmDict[pfx+'Type'] in ['Vector','Residue']: |
---|
| 3745 | if parmDict[pfx+'Type'] == 'Vector': |
---|
[961] | 3746 | RBRes = RBdata['Vector'][parmDict[pfx+'RBId']] |
---|
[949] | 3747 | vecs = RBRes['rbVect'] |
---|
| 3748 | mags = RBRes['VectMag'] |
---|
| 3749 | Cart = np.zeros_like(vecs[0]) |
---|
| 3750 | for vec,mag in zip(vecs,mags): |
---|
| 3751 | Cart += vec*mag |
---|
| 3752 | elif parmDict[pfx+'Type'] == 'Residue': |
---|
[961] | 3753 | RBRes = RBdata['Residue'][parmDict[pfx+'RBId']] |
---|
[949] | 3754 | Cart = np.array(RBRes['rbXYZ']) |
---|
| 3755 | for itor,seq in enumerate(RBRes['rbSeq']): |
---|
[1058] | 3756 | QuatA = AVdeg2Q(parmDict[pfx+'Tor'+str(itor)],Cart[seq[0]]-Cart[seq[1]]) |
---|
[1061] | 3757 | Cart[seq[3]] = prodQVQ(QuatA,Cart[seq[3]]-Cart[seq[1]])+Cart[seq[1]] |
---|
[951] | 3758 | if parmDict[pfx+'MolCent'][1]: |
---|
| 3759 | Cart -= parmDict[pfx+'MolCent'][0] |
---|
[1055] | 3760 | Qori = AVdeg2Q(parmDict[pfx+'Qa'],[parmDict[pfx+'Qi'],parmDict[pfx+'Qj'],parmDict[pfx+'Qk']]) |
---|
[951] | 3761 | Pos = np.array([parmDict[pfx+'Px'],parmDict[pfx+'Py'],parmDict[pfx+'Pz']]) |
---|
[1064] | 3762 | Xdata.T[iatm:iatm+len(Cart)] = np.inner(Bmat,prodQVQ(Qori,Cart)).T+Pos |
---|
[1062] | 3763 | iatm += len(Cart) |
---|
[949] | 3764 | elif parmDict[pfx+'Type'] == 'Atom': |
---|
| 3765 | atNo = parmDict[pfx+'atNo'] |
---|
| 3766 | for key in keys: |
---|
[951] | 3767 | parm = pfx+key[1:] #remove extra ':' |
---|
[949] | 3768 | if parm in parmDict: |
---|
[1062] | 3769 | keys[key][atNo] = parmDict[parm] |
---|
[961] | 3770 | iatm += 1 |
---|
[949] | 3771 | else: |
---|
| 3772 | continue #skips March Dollase |
---|
[1062] | 3773 | return Xdata.T |
---|
[1051] | 3774 | |
---|
| 3775 | def getAllTX(Tdata,Mdata,Xdata,SGM,SGT): |
---|
| 3776 | allX = np.inner(Xdata,SGM)+SGT |
---|
| 3777 | allT = np.repeat(Tdata,allX.shape[1]) |
---|
| 3778 | allM = np.repeat(Mdata,allX.shape[1]) |
---|
| 3779 | allX = np.reshape(allX,(-1,3)) |
---|
| 3780 | return allT,allM,allX |
---|
[973] | 3781 | |
---|
[1051] | 3782 | def getAllX(Xdata,SGM,SGT): |
---|
| 3783 | allX = np.inner(Xdata,SGM)+SGT |
---|
| 3784 | allX = np.reshape(allX,(-1,3)) |
---|
| 3785 | return allX |
---|
| 3786 | |
---|
[1055] | 3787 | def normQuaternions(RBdata,parmDict,varyList,values): |
---|
| 3788 | for iObj in range(parmDict['nObj']): |
---|
| 3789 | pfx = str(iObj)+':' |
---|
| 3790 | if parmDict[pfx+'Type'] in ['Vector','Residue']: |
---|
| 3791 | Qori = AVdeg2Q(parmDict[pfx+'Qa'],[parmDict[pfx+'Qi'],parmDict[pfx+'Qj'],parmDict[pfx+'Qk']]) |
---|
| 3792 | A,V = Q2AVdeg(Qori) |
---|
| 3793 | for i,name in enumerate(['Qa','Qi','Qj','Qk']): |
---|
| 3794 | if i: |
---|
| 3795 | parmDict[pfx+name] = V[i-1] |
---|
| 3796 | else: |
---|
| 3797 | parmDict[pfx+name] = A |
---|
| 3798 | |
---|
[1075] | 3799 | def mcsaCalc(values,refList,rcov,cosTable,ifInv,allFF,RBdata,varyList,parmDict): |
---|
[965] | 3800 | ''' Compute structure factors for all h,k,l for phase |
---|
| 3801 | input: |
---|
[1051] | 3802 | refList: [ref] where each ref = h,k,l,m,d,... |
---|
| 3803 | rcov: array[nref,nref] covariance terms between Fo^2 values |
---|
| 3804 | ifInv: bool True if centrosymmetric |
---|
| 3805 | allFF: array[nref,natoms] each value is mult*FF(H)/max(mult) |
---|
| 3806 | RBdata: [dict] rigid body dictionary |
---|
| 3807 | varyList: [list] names of varied parameters in MC/SA (not used here) |
---|
| 3808 | ParmDict: [dict] problem parameters |
---|
| 3809 | puts result F^2 in each ref[5] in refList |
---|
| 3810 | returns: |
---|
| 3811 | delt-F*rcov*delt-F/sum(Fo^2)^2 |
---|
[965] | 3812 | ''' |
---|
[961] | 3813 | global tsum |
---|
[1063] | 3814 | t0 = time.time() |
---|
[1058] | 3815 | parmDict.update(dict(zip(varyList,values))) #update parameter tables |
---|
[1070] | 3816 | Xdata = GetAtomX(RBdata,parmDict) #get new atom coords from RB |
---|
[1051] | 3817 | allX = getAllX(Xdata,SGM,SGT) #fill unit cell - dups. OK |
---|
| 3818 | MDval = parmDict['0:MDval'] #get March-Dollase coeff |
---|
| 3819 | HX2pi = 2.*np.pi*np.inner(allX,refList[:3].T) #form 2piHX for every H,X pair |
---|
| 3820 | Aterm = refList[3]*np.sum(allFF*np.cos(HX2pi),axis=0)**2 #compute real part for all H |
---|
[1207] | 3821 | refList[5] = Aterm |
---|
| 3822 | if not ifInv: |
---|
| 3823 | refList[5] += refList[3]*np.sum(allFF*np.sin(HX2pi),axis=0)**2 #imaginary part for all H |
---|
[1075] | 3824 | if len(cosTable): #apply MD correction |
---|
| 3825 | refList[5] *= np.sum(np.sqrt((MDval/(cosTable*(MDval**3-1.)+1.))**3),axis=1)/cosTable.shape[1] |
---|
[1051] | 3826 | sumFcsq = np.sum(refList[5]) |
---|
[1055] | 3827 | scale = parmDict['sumFosq']/sumFcsq |
---|
[1051] | 3828 | refList[5] *= scale |
---|
[1055] | 3829 | refList[6] = refList[4]-refList[5] |
---|
| 3830 | M = np.inner(refList[6],np.inner(rcov,refList[6])) |
---|
[1063] | 3831 | tsum += (time.time()-t0) |
---|
[1055] | 3832 | return M/np.sum(refList[4]**2) |
---|
[1051] | 3833 | |
---|
[940] | 3834 | sq8ln2 = np.sqrt(8*np.log(2)) |
---|
| 3835 | sq2pi = np.sqrt(2*np.pi) |
---|
| 3836 | sq4pi = np.sqrt(4*np.pi) |
---|
[934] | 3837 | generalData = data['General'] |
---|
[949] | 3838 | Amat,Bmat = G2lat.cell2AB(generalData['Cell'][1:7]) |
---|
[1075] | 3839 | Gmat,gmat = G2lat.cell2Gmat(generalData['Cell'][1:7]) |
---|
[942] | 3840 | SGData = generalData['SGData'] |
---|
[1075] | 3841 | SGM = np.array([SGData['SGOps'][i][0] for i in range(len(SGData['SGOps']))]) |
---|
| 3842 | SGMT = np.array([SGData['SGOps'][i][0].T for i in range(len(SGData['SGOps']))]) |
---|
| 3843 | SGT = np.array([SGData['SGOps'][i][1] for i in range(len(SGData['SGOps']))]) |
---|
[942] | 3844 | fixAtoms = data['Atoms'] #if any |
---|
| 3845 | cx,ct,cs = generalData['AtomPtrs'][:3] |
---|
| 3846 | aTypes = set([]) |
---|
[949] | 3847 | parmDict = {'Bmat':Bmat,'Gmat':Gmat} |
---|
[942] | 3848 | varyList = [] |
---|
| 3849 | atNo = 0 |
---|
| 3850 | for atm in fixAtoms: |
---|
| 3851 | pfx = ':'+str(atNo)+':' |
---|
| 3852 | parmDict[pfx+'Atype'] = atm[ct] |
---|
| 3853 | aTypes |= set([atm[ct],]) |
---|
| 3854 | pstr = ['Ax','Ay','Az'] |
---|
| 3855 | parmDict[pfx+'Amul'] = atm[cs+1] |
---|
| 3856 | for i in range(3): |
---|
| 3857 | name = pfx+pstr[i] |
---|
| 3858 | parmDict[name] = atm[cx+i] |
---|
[943] | 3859 | atNo += 1 |
---|
| 3860 | parmDict['nfixAt'] = len(fixAtoms) |
---|
[949] | 3861 | MCSA = generalData['MCSA controls'] |
---|
| 3862 | reflName = MCSA['Data source'] |
---|
[934] | 3863 | phaseName = generalData['Name'] |
---|
[940] | 3864 | MCSAObjs = data['MCSA']['Models'] #list of MCSA models |
---|
| 3865 | upper = [] |
---|
| 3866 | lower = [] |
---|
[1075] | 3867 | MDvec = np.zeros(3) |
---|
[940] | 3868 | for i,item in enumerate(MCSAObjs): |
---|
| 3869 | mfx = str(i)+':' |
---|
[943] | 3870 | parmDict[mfx+'Type'] = item['Type'] |
---|
[940] | 3871 | if item['Type'] == 'MD': |
---|
| 3872 | getMDparms(item,mfx,parmDict,varyList) |
---|
[1075] | 3873 | MDvec = np.array(item['axis']) |
---|
[940] | 3874 | elif item['Type'] == 'Atom': |
---|
[951] | 3875 | getAtomparms(item,mfx,aTypes,SGData,parmDict,varyList) |
---|
[949] | 3876 | parmDict[mfx+'atNo'] = atNo |
---|
[942] | 3877 | atNo += 1 |
---|
[940] | 3878 | elif item['Type'] in ['Residue','Vector']: |
---|
[951] | 3879 | atNo = getRBparms(item,mfx,aTypes,RBdata,SGData,atNo,parmDict,varyList) |
---|
[943] | 3880 | parmDict['atNo'] = atNo #total no. of atoms |
---|
| 3881 | parmDict['nObj'] = len(MCSAObjs) |
---|
[965] | 3882 | aTypes = list(aTypes) |
---|
[1062] | 3883 | Tdata = GetAtomT(RBdata,parmDict) |
---|
| 3884 | Xdata = GetAtomX(RBdata,parmDict) |
---|
[1051] | 3885 | Mdata = GetAtomM(Xdata,SGData) |
---|
| 3886 | allT,allM = getAllTX(Tdata,Mdata,Xdata,SGM,SGT)[:2] |
---|
[942] | 3887 | FFtables = G2el.GetFFtable(aTypes) |
---|
| 3888 | refs = [] |
---|
[1051] | 3889 | allFF = [] |
---|
[1075] | 3890 | cosTable = [] |
---|
[949] | 3891 | sumFosq = 0 |
---|
[940] | 3892 | if 'PWDR' in reflName: |
---|
| 3893 | for ref in reflData: |
---|
[943] | 3894 | h,k,l,m,d,pos,sig,gam,f = ref[:9] |
---|
[949] | 3895 | if d >= MCSA['dmin']: |
---|
[1001] | 3896 | sig = G2pwd.getgamFW(sig,gam)/sq8ln2 #--> sig from FWHM |
---|
[942] | 3897 | SQ = 0.25/d**2 |
---|
[1051] | 3898 | allFF.append(allM*[G2el.getFFvalues(FFtables,SQ,True)[i] for i in allT]/np.max(allM)) |
---|
| 3899 | refs.append([h,k,l,m,f*m,pos,sig]) |
---|
[949] | 3900 | sumFosq += f*m |
---|
[1075] | 3901 | Heqv = np.inner(np.array([h,k,l]),SGMT) |
---|
| 3902 | cosTable.append(G2lat.CosAngle(Heqv,MDvec,Gmat)) |
---|
[942] | 3903 | nRef = len(refs) |
---|
[1075] | 3904 | cosTable = np.array(cosTable)**2 |
---|
[942] | 3905 | rcov = np.zeros((nRef,nRef)) |
---|
| 3906 | for iref,refI in enumerate(refs): |
---|
| 3907 | rcov[iref][iref] = 1./(sq4pi*refI[6]) |
---|
| 3908 | for jref,refJ in enumerate(refs[:iref]): |
---|
| 3909 | t1 = refI[6]**2+refJ[6]**2 |
---|
| 3910 | t2 = (refJ[5]-refI[5])**2/(2.*t1) |
---|
| 3911 | if t2 > 10.: |
---|
| 3912 | rcov[iref][jref] = 0. |
---|
| 3913 | else: |
---|
| 3914 | rcov[iref][jref] = 1./(sq2pi*np.sqrt(t1)*np.exp(t2)) |
---|
| 3915 | rcov += (rcov.T-np.diagflat(np.diagonal(rcov))) |
---|
| 3916 | Rdiag = np.sqrt(np.diag(rcov)) |
---|
| 3917 | Rnorm = np.outer(Rdiag,Rdiag) |
---|
| 3918 | rcov /= Rnorm |
---|
[1055] | 3919 | elif 'Pawley' in reflName: #need a bail out if Pawley cov matrix doesn't exist. |
---|
[1066] | 3920 | vNames = [] |
---|
| 3921 | pfx = str(data['pId'])+'::PWLref:' |
---|
| 3922 | for iref,refI in enumerate(reflData): #Pawley reflection set |
---|
[940] | 3923 | h,k,l,m,d,v,f,s = refI |
---|
[949] | 3924 | if d >= MCSA['dmin'] and v: #skip unrefined ones |
---|
[1066] | 3925 | vNames.append(pfx+str(iref)) |
---|
[942] | 3926 | SQ = 0.25/d**2 |
---|
[1051] | 3927 | allFF.append(allM*[G2el.getFFvalues(FFtables,SQ,True)[i] for i in allT]/np.max(allM)) |
---|
| 3928 | refs.append([h,k,l,m,f*m,iref,0.]) |
---|
[949] | 3929 | sumFosq += f*m |
---|
[1075] | 3930 | Heqv = np.inner(np.array([h,k,l]),SGMT) |
---|
| 3931 | cosTable.append(G2lat.CosAngle(Heqv,MDvec,Gmat)) |
---|
| 3932 | cosTable = np.array(cosTable)**2 |
---|
[940] | 3933 | nRef = len(refs) |
---|
[1506] | 3934 | # if generalData['doPawley'] and (covData['freshCOV'] or MCSA['newDmin']): |
---|
| 3935 | if covData['freshCOV'] or MCSA['newDmin']: |
---|
[1066] | 3936 | vList = covData['varyList'] |
---|
[1058] | 3937 | covMatrix = covData['covMatrix'] |
---|
[1066] | 3938 | rcov = getVCov(vNames,vList,covMatrix) |
---|
[1058] | 3939 | rcov += (rcov.T-np.diagflat(np.diagonal(rcov))) |
---|
| 3940 | Rdiag = np.sqrt(np.diag(rcov)) |
---|
[1066] | 3941 | Rdiag = np.where(Rdiag,Rdiag,1.0) |
---|
[1058] | 3942 | Rnorm = np.outer(Rdiag,Rdiag) |
---|
| 3943 | rcov /= Rnorm |
---|
| 3944 | MCSA['rcov'] = rcov |
---|
| 3945 | covData['freshCOV'] = False |
---|
[1060] | 3946 | MCSA['newDmin'] = False |
---|
[1058] | 3947 | else: |
---|
| 3948 | rcov = MCSA['rcov'] |
---|
[940] | 3949 | elif 'HKLF' in reflName: |
---|
| 3950 | for ref in reflData: |
---|
[942] | 3951 | [h,k,l,m,d],f = ref[:5],ref[6] |
---|
[949] | 3952 | if d >= MCSA['dmin']: |
---|
[942] | 3953 | SQ = 0.25/d**2 |
---|
[1051] | 3954 | allFF.append(allM*[G2el.getFFvalues(FFtables,SQ,True)[i] for i in allT]/np.max(allM)) |
---|
| 3955 | refs.append([h,k,l,m,f*m,0.,0.]) |
---|
[949] | 3956 | sumFosq += f*m |
---|
[965] | 3957 | nRef = len(refs) |
---|
[942] | 3958 | rcov = np.identity(len(refs)) |
---|
[1051] | 3959 | allFF = np.array(allFF).T |
---|
| 3960 | refs = np.array(refs).T |
---|
[965] | 3961 | print ' Minimum d-spacing used: %.2f No. reflections used: %d'%(MCSA['dmin'],nRef) |
---|
[974] | 3962 | print ' Number of parameters varied: %d'%(len(varyList)) |
---|
[949] | 3963 | parmDict['sumFosq'] = sumFosq |
---|
| 3964 | x0 = [parmDict[val] for val in varyList] |
---|
| 3965 | ifInv = SGData['SGInv'] |
---|
[1581] | 3966 | # consider replacing anneal with scipy.optimize.basinhopping |
---|
[1075] | 3967 | results = anneal(mcsaCalc,x0,args=(refs,rcov,cosTable,ifInv,allFF,RBdata,varyList,parmDict), |
---|
[951] | 3968 | schedule=MCSA['Algorithm'], full_output=True, |
---|
| 3969 | T0=MCSA['Annealing'][0], Tf=MCSA['Annealing'][1],dwell=MCSA['Annealing'][2], |
---|
| 3970 | boltzmann=MCSA['boltzmann'], learn_rate=0.5, |
---|
| 3971 | quench=MCSA['fast parms'][0], m=MCSA['fast parms'][1], n=MCSA['fast parms'][2], |
---|
[1065] | 3972 | lower=lower, upper=upper, slope=MCSA['log slope'],ranStart=MCSA.get('ranStart',False), |
---|
| 3973 | ranRange=MCSA.get('ranRange',0.10),autoRan=MCSA.get('autoRan',False),dlg=pgbar) |
---|
[1075] | 3974 | M = mcsaCalc(results[0],refs,rcov,cosTable,ifInv,allFF,RBdata,varyList,parmDict) |
---|
[1055] | 3975 | # for ref in refs.T: |
---|
| 3976 | # print ' %4d %4d %4d %10.3f %10.3f %10.3f'%(int(ref[0]),int(ref[1]),int(ref[2]),ref[4],ref[5],ref[6]) |
---|
| 3977 | # print np.sqrt((np.sum(refs[6]**2)/np.sum(refs[4]**2))) |
---|
[961] | 3978 | Result = [False,False,results[1],results[2],]+list(results[0]) |
---|
| 3979 | Result.append(varyList) |
---|
| 3980 | return Result,tsum |
---|
[934] | 3981 | |
---|
[795] | 3982 | |
---|
[940] | 3983 | ################################################################################ |
---|
| 3984 | ##### Quaternion stuff |
---|
| 3985 | ################################################################################ |
---|
| 3986 | |
---|
[763] | 3987 | def prodQQ(QA,QB): |
---|
| 3988 | ''' Grassman quaternion product |
---|
| 3989 | QA,QB quaternions; q=r+ai+bj+ck |
---|
| 3990 | ''' |
---|
| 3991 | D = np.zeros(4) |
---|
| 3992 | D[0] = QA[0]*QB[0]-QA[1]*QB[1]-QA[2]*QB[2]-QA[3]*QB[3] |
---|
| 3993 | D[1] = QA[0]*QB[1]+QA[1]*QB[0]+QA[2]*QB[3]-QA[3]*QB[2] |
---|
| 3994 | D[2] = QA[0]*QB[2]-QA[1]*QB[3]+QA[2]*QB[0]+QA[3]*QB[1] |
---|
| 3995 | D[3] = QA[0]*QB[3]+QA[1]*QB[2]-QA[2]*QB[1]+QA[3]*QB[0] |
---|
[953] | 3996 | |
---|
| 3997 | # D[0] = QA[0]*QB[0]-np.dot(QA[1:],QB[1:]) |
---|
| 3998 | # D[1:] = QA[0]*QB[1:]+QB[0]*QA[1:]+np.cross(QA[1:],QB[1:]) |
---|
| 3999 | |
---|
[763] | 4000 | return D |
---|
| 4001 | |
---|
| 4002 | def normQ(QA): |
---|
| 4003 | ''' get length of quaternion & normalize it |
---|
| 4004 | q=r+ai+bj+ck |
---|
| 4005 | ''' |
---|
| 4006 | n = np.sqrt(np.sum(np.array(QA)**2)) |
---|
| 4007 | return QA/n |
---|
| 4008 | |
---|
| 4009 | def invQ(Q): |
---|
| 4010 | ''' |
---|
| 4011 | get inverse of quaternion |
---|
| 4012 | q=r+ai+bj+ck; q* = r-ai-bj-ck |
---|
| 4013 | ''' |
---|
| 4014 | return Q*np.array([1,-1,-1,-1]) |
---|
| 4015 | |
---|
| 4016 | def prodQVQ(Q,V): |
---|
[939] | 4017 | """ |
---|
| 4018 | compute the quaternion vector rotation qvq-1 = v' |
---|
| 4019 | q=r+ai+bj+ck |
---|
| 4020 | """ |
---|
[763] | 4021 | T2 = Q[0]*Q[1] |
---|
| 4022 | T3 = Q[0]*Q[2] |
---|
| 4023 | T4 = Q[0]*Q[3] |
---|
| 4024 | T5 = -Q[1]*Q[1] |
---|
| 4025 | T6 = Q[1]*Q[2] |
---|
| 4026 | T7 = Q[1]*Q[3] |
---|
| 4027 | T8 = -Q[2]*Q[2] |
---|
| 4028 | T9 = Q[2]*Q[3] |
---|
| 4029 | T10 = -Q[3]*Q[3] |
---|
[1060] | 4030 | M = np.array([[T8+T10,T6-T4,T3+T7],[T4+T6,T5+T10,T9-T2],[T7-T3,T2+T9,T5+T8]]) |
---|
[1061] | 4031 | VP = 2.*np.inner(V,M) |
---|
[1060] | 4032 | return VP+V |
---|
[763] | 4033 | |
---|
| 4034 | def Q2Mat(Q): |
---|
| 4035 | ''' make rotation matrix from quaternion |
---|
| 4036 | q=r+ai+bj+ck |
---|
| 4037 | ''' |
---|
[915] | 4038 | QN = normQ(Q) |
---|
| 4039 | aa = QN[0]**2 |
---|
| 4040 | ab = QN[0]*QN[1] |
---|
| 4041 | ac = QN[0]*QN[2] |
---|
| 4042 | ad = QN[0]*QN[3] |
---|
| 4043 | bb = QN[1]**2 |
---|
| 4044 | bc = QN[1]*QN[2] |
---|
| 4045 | bd = QN[1]*QN[3] |
---|
| 4046 | cc = QN[2]**2 |
---|
| 4047 | cd = QN[2]*QN[3] |
---|
| 4048 | dd = QN[3]**2 |
---|
[763] | 4049 | M = [[aa+bb-cc-dd, 2.*(bc-ad), 2.*(ac+bd)], |
---|
| 4050 | [2*(ad+bc), aa-bb+cc-dd, 2.*(cd-ab)], |
---|
| 4051 | [2*(bd-ac), 2.*(ab+cd), aa-bb-cc+dd]] |
---|
| 4052 | return np.array(M) |
---|
| 4053 | |
---|
| 4054 | def AV2Q(A,V): |
---|
[859] | 4055 | ''' convert angle (radians) & vector to quaternion |
---|
[763] | 4056 | q=r+ai+bj+ck |
---|
| 4057 | ''' |
---|
| 4058 | Q = np.zeros(4) |
---|
[1060] | 4059 | d = nl.norm(np.array(V)) |
---|
[763] | 4060 | if d: |
---|
| 4061 | V /= d |
---|
[1065] | 4062 | if not A: #==0. |
---|
| 4063 | A = 2.*np.pi |
---|
[1055] | 4064 | p = A/2. |
---|
| 4065 | Q[0] = np.cos(p) |
---|
| 4066 | Q[1:4] = V*np.sin(p) |
---|
[763] | 4067 | else: |
---|
[1055] | 4068 | Q[3] = 1. |
---|
[763] | 4069 | return Q |
---|
| 4070 | |
---|
| 4071 | def AVdeg2Q(A,V): |
---|
[859] | 4072 | ''' convert angle (degrees) & vector to quaternion |
---|
[763] | 4073 | q=r+ai+bj+ck |
---|
| 4074 | ''' |
---|
| 4075 | Q = np.zeros(4) |
---|
[1060] | 4076 | d = nl.norm(np.array(V)) |
---|
[1065] | 4077 | if not A: #== 0.! |
---|
| 4078 | A = 360. |
---|
[763] | 4079 | if d: |
---|
| 4080 | V /= d |
---|
[1055] | 4081 | p = A/2. |
---|
| 4082 | Q[0] = cosd(p) |
---|
| 4083 | Q[1:4] = V*sind(p) |
---|
[763] | 4084 | else: |
---|
[1055] | 4085 | Q[3] = 1. |
---|
[763] | 4086 | return Q |
---|
[859] | 4087 | |
---|
| 4088 | def Q2AVdeg(Q): |
---|
| 4089 | ''' convert quaternion to angle (degrees 0-360) & normalized vector |
---|
| 4090 | q=r+ai+bj+ck |
---|
| 4091 | ''' |
---|
| 4092 | A = 2.*acosd(Q[0]) |
---|
[885] | 4093 | V = np.array(Q[1:]) |
---|
[1055] | 4094 | V /= sind(A/2.) |
---|
[859] | 4095 | return A,V |
---|
| 4096 | |
---|
| 4097 | def Q2AV(Q): |
---|
| 4098 | ''' convert quaternion to angle (radians 0-2pi) & normalized vector |
---|
| 4099 | q=r+ai+bj+ck |
---|
| 4100 | ''' |
---|
| 4101 | A = 2.*np.arccos(Q[0]) |
---|
[885] | 4102 | V = np.array(Q[1:]) |
---|
[1055] | 4103 | V /= np.sin(A/2.) |
---|
[859] | 4104 | return A,V |
---|
| 4105 | |
---|
[1060] | 4106 | def randomQ(r0,r1,r2,r3): |
---|
| 4107 | ''' create random quaternion from 4 random numbers in range (-1,1) |
---|
| 4108 | ''' |
---|
| 4109 | sum = 0 |
---|
| 4110 | Q = np.array(4) |
---|
| 4111 | Q[0] = r0 |
---|
| 4112 | sum += Q[0]**2 |
---|
| 4113 | Q[1] = np.sqrt(1.-sum)*r1 |
---|
| 4114 | sum += Q[1]**2 |
---|
| 4115 | Q[2] = np.sqrt(1.-sum)*r2 |
---|
| 4116 | sum += Q[2]**2 |
---|
| 4117 | Q[3] = np.sqrt(1.-sum)*np.where(r3<0.,-1.,1.) |
---|
| 4118 | return Q |
---|
| 4119 | |
---|
| 4120 | def randomAVdeg(r0,r1,r2,r3): |
---|
| 4121 | ''' create random angle (deg),vector from 4 random number in range (-1,1) |
---|
| 4122 | ''' |
---|
| 4123 | return Q2AVdeg(randomQ(r0,r1,r2,r3)) |
---|
| 4124 | |
---|
[848] | 4125 | def makeQuat(A,B,C): |
---|
| 4126 | ''' Make quaternion from rotation of A vector to B vector about C axis |
---|
[939] | 4127 | |
---|
| 4128 | :param np.array A,B,C: Cartesian 3-vectors |
---|
[950] | 4129 | :returns: quaternion & rotation angle in radians q=r+ai+bj+ck |
---|
[848] | 4130 | ''' |
---|
| 4131 | |
---|
| 4132 | V1 = np.cross(A,C) |
---|
| 4133 | V2 = np.cross(B,C) |
---|
| 4134 | if nl.norm(V1)*nl.norm(V2): |
---|
| 4135 | V1 /= nl.norm(V1) |
---|
| 4136 | V2 /= nl.norm(V2) |
---|
| 4137 | V3 = np.cross(V1,V2) |
---|
| 4138 | else: |
---|
[853] | 4139 | V3 = np.zeros(3) |
---|
[860] | 4140 | Q = np.array([0.,0.,0.,1.]) |
---|
[848] | 4141 | D = 0. |
---|
| 4142 | if nl.norm(V3): |
---|
| 4143 | V3 /= nl.norm(V3) |
---|
| 4144 | D1 = min(1.0,max(-1.0,np.vdot(V1,V2))) |
---|
| 4145 | D = np.arccos(D1)/2.0 |
---|
| 4146 | V1 = C-V3 |
---|
| 4147 | V2 = C+V3 |
---|
| 4148 | DM = nl.norm(V1) |
---|
| 4149 | DP = nl.norm(V2) |
---|
| 4150 | S = np.sin(D) |
---|
| 4151 | Q[0] = np.cos(D) |
---|
| 4152 | Q[1:] = V3*S |
---|
| 4153 | D *= 2. |
---|
| 4154 | if DM > DP: |
---|
| 4155 | D *= -1. |
---|
| 4156 | return Q,D |
---|
[940] | 4157 | |
---|
[1244] | 4158 | def annealtests(): |
---|
[940] | 4159 | from numpy import cos |
---|
| 4160 | # minimum expected at ~-0.195 |
---|
| 4161 | func = lambda x: cos(14.5*x-0.3) + (x+0.2)*x |
---|
| 4162 | print anneal(func,1.0,full_output=1,upper=3.0,lower=-3.0,feps=1e-4,maxiter=2000,schedule='cauchy') |
---|
| 4163 | print anneal(func,1.0,full_output=1,upper=3.0,lower=-3.0,feps=1e-4,maxiter=2000,schedule='fast') |
---|
| 4164 | print anneal(func,1.0,full_output=1,upper=3.0,lower=-3.0,feps=1e-4,maxiter=2000,schedule='boltzmann') |
---|
| 4165 | |
---|
| 4166 | # minimum expected at ~[-0.195, -0.1] |
---|
| 4167 | func = lambda x: cos(14.5*x[0]-0.3) + (x[1]+0.2)*x[1] + (x[0]+0.2)*x[0] |
---|
| 4168 | print anneal(func,[1.0, 1.0],full_output=1,upper=[3.0, 3.0],lower=[-3.0, -3.0],feps=1e-4,maxiter=2000,schedule='cauchy') |
---|
| 4169 | print anneal(func,[1.0, 1.0],full_output=1,upper=[3.0, 3.0],lower=[-3.0, -3.0],feps=1e-4,maxiter=2000,schedule='fast') |
---|
| 4170 | print anneal(func,[1.0, 1.0],full_output=1,upper=[3.0, 3.0],lower=[-3.0, -3.0],feps=1e-4,maxiter=2000,schedule='boltzmann') |
---|
[1244] | 4171 | |
---|
| 4172 | |
---|
| 4173 | if __name__ == '__main__': |
---|
| 4174 | annealtests() |
---|