1 | # -*- coding: utf-8 -*- |
---|
2 | ''' |
---|
3 | *GSASIIlattice: Unit cells* |
---|
4 | --------------------------- |
---|
5 | |
---|
6 | Perform lattice-related computations |
---|
7 | |
---|
8 | Note that *G* is the reciprocal lattice tensor, and *g* is its inverse, |
---|
9 | :math:`G = g^{-1}`, where |
---|
10 | |
---|
11 | .. math:: |
---|
12 | |
---|
13 | g = \\left( \\begin{matrix} |
---|
14 | a^2 & a b\\cos\gamma & a c\\cos\\beta \\\\ |
---|
15 | a b\\cos\\gamma & b^2 & b c \cos\\alpha \\\\ |
---|
16 | a c\\cos\\beta & b c \\cos\\alpha & c^2 |
---|
17 | \\end{matrix}\\right) |
---|
18 | |
---|
19 | The "*A* tensor" terms are defined as |
---|
20 | :math:`A = (\\begin{matrix} G_{11} & G_{22} & G_{33} & 2G_{12} & 2G_{13} & 2G_{23}\\end{matrix})` and *A* can be used in this fashion: |
---|
21 | :math:`d^* = \\sqrt {A_0 h^2 + A_1 k^2 + A_2 l^2 + A_3 hk + A_4 hl + A_5 kl}`, where |
---|
22 | *d* is the d-spacing, and :math:`d^*` is the reciprocal lattice spacing, |
---|
23 | :math:`Q = 2 \\pi d^* = 2 \\pi / d`. |
---|
24 | Note that GSAS-II variables ``p::Ai`` (i = 0, 1,... 5) and ``p`` is a phase number are |
---|
25 | used for the *Ai* values. See :func:`A2cell`, :func:`cell2A` for interconversion between A and |
---|
26 | unit cell parameters; :func:`cell2Gmat` :func:`Gmat2cell` for G and cell parameters. |
---|
27 | |
---|
28 | When the hydrostatic/elastic strain coefficients (*Dij*, :math:`D_{ij}`) are used, they are added to the |
---|
29 | *A* tensor terms (Ai, :math:`A_{i}`) so that A is redefined |
---|
30 | :math:`A = (\\begin{matrix} A_{0} + D_{11} & A_{1} + D_{22} & A_{2} + D_{33} & A_{3} + 2D_{12} & A_{4} + 2D_{13} & A_{5} + 2D_{23}\\end{matrix})`. See :func:`cellDijFill`. |
---|
31 | Note that GSAS-II variables ``p:h:Dij`` (i,j = 1, 2, 3) and ``p`` is a phase number |
---|
32 | and ``h`` a histogram number are used for the *Dij* values. |
---|
33 | ''' |
---|
34 | ########### SVN repository information ################### |
---|
35 | # $Date: 2021-03-23 19:02:01 +0000 (Tue, 23 Mar 2021) $ |
---|
36 | # $Author: vondreele $ |
---|
37 | # $Revision: 4862 $ |
---|
38 | # $URL: trunk/GSASIIlattice.py $ |
---|
39 | # $Id: GSASIIlattice.py 4862 2021-03-23 19:02:01Z vondreele $ |
---|
40 | ########### SVN repository information ################### |
---|
41 | from __future__ import division, print_function |
---|
42 | import math |
---|
43 | import time |
---|
44 | import copy |
---|
45 | import sys |
---|
46 | import random as ran |
---|
47 | import numpy as np |
---|
48 | import numpy.linalg as nl |
---|
49 | import GSASIIpath |
---|
50 | import GSASIImath as G2mth |
---|
51 | import GSASIIspc as G2spc |
---|
52 | import GSASIIElem as G2elem |
---|
53 | GSASIIpath.SetVersionNumber("$Revision: 4862 $") |
---|
54 | # trig functions in degrees |
---|
55 | sind = lambda x: np.sin(x*np.pi/180.) |
---|
56 | asind = lambda x: 180.*np.arcsin(x)/np.pi |
---|
57 | tand = lambda x: np.tan(x*np.pi/180.) |
---|
58 | atand = lambda x: 180.*np.arctan(x)/np.pi |
---|
59 | atan2d = lambda y,x: 180.*np.arctan2(y,x)/np.pi |
---|
60 | cosd = lambda x: np.cos(x*np.pi/180.) |
---|
61 | acosd = lambda x: 180.*np.arccos(x)/np.pi |
---|
62 | rdsq2d = lambda x,p: round(1.0/np.sqrt(x),p) |
---|
63 | try: # fails on doc build |
---|
64 | rpd = np.pi/180. |
---|
65 | RSQ2PI = 1./np.sqrt(2.*np.pi) |
---|
66 | SQ2 = np.sqrt(2.) |
---|
67 | RSQPI = 1./np.sqrt(np.pi) |
---|
68 | R2pisq = 1./(2.*np.pi**2) |
---|
69 | except TypeError: |
---|
70 | pass |
---|
71 | nxs = np.newaxis |
---|
72 | |
---|
73 | def sec2HMS(sec): |
---|
74 | """Convert time in sec to H:M:S string |
---|
75 | |
---|
76 | :param sec: time in seconds |
---|
77 | :return: H:M:S string (to nearest 100th second) |
---|
78 | |
---|
79 | """ |
---|
80 | H = int(sec//3600) |
---|
81 | M = int(sec//60-H*60) |
---|
82 | S = sec-3600*H-60*M |
---|
83 | return '%d:%2d:%.2f'%(H,M,S) |
---|
84 | |
---|
85 | def rotdMat(angle,axis=0): |
---|
86 | """Prepare rotation matrix for angle in degrees about axis(=0,1,2) |
---|
87 | |
---|
88 | :param angle: angle in degrees |
---|
89 | :param axis: axis (0,1,2 = x,y,z) about which for the rotation |
---|
90 | :return: rotation matrix - 3x3 numpy array |
---|
91 | |
---|
92 | """ |
---|
93 | if axis == 2: |
---|
94 | return np.array([[cosd(angle),-sind(angle),0],[sind(angle),cosd(angle),0],[0,0,1]]) |
---|
95 | elif axis == 1: |
---|
96 | return np.array([[cosd(angle),0,-sind(angle)],[0,1,0],[sind(angle),0,cosd(angle)]]) |
---|
97 | else: |
---|
98 | return np.array([[1,0,0],[0,cosd(angle),-sind(angle)],[0,sind(angle),cosd(angle)]]) |
---|
99 | |
---|
100 | def rotdMat4(angle,axis=0): |
---|
101 | """Prepare rotation matrix for angle in degrees about axis(=0,1,2) with scaling for OpenGL |
---|
102 | |
---|
103 | :param angle: angle in degrees |
---|
104 | :param axis: axis (0,1,2 = x,y,z) about which for the rotation |
---|
105 | :return: rotation matrix - 4x4 numpy array (last row/column for openGL scaling) |
---|
106 | |
---|
107 | """ |
---|
108 | Mat = rotdMat(angle,axis) |
---|
109 | return np.concatenate((np.concatenate((Mat,[[0],[0],[0]]),axis=1),[[0,0,0,1],]),axis=0) |
---|
110 | |
---|
111 | def fillgmat(cell): |
---|
112 | """Compute lattice metric tensor from unit cell constants |
---|
113 | |
---|
114 | :param cell: tuple with a,b,c,alpha, beta, gamma (degrees) |
---|
115 | :return: 3x3 numpy array |
---|
116 | |
---|
117 | """ |
---|
118 | a,b,c,alp,bet,gam = cell |
---|
119 | g = np.array([ |
---|
120 | [a*a, a*b*cosd(gam), a*c*cosd(bet)], |
---|
121 | [a*b*cosd(gam), b*b, b*c*cosd(alp)], |
---|
122 | [a*c*cosd(bet) ,b*c*cosd(alp), c*c]]) |
---|
123 | return g |
---|
124 | |
---|
125 | def cell2Gmat(cell): |
---|
126 | """Compute real and reciprocal lattice metric tensor from unit cell constants |
---|
127 | |
---|
128 | :param cell: tuple with a,b,c,alpha, beta, gamma (degrees) |
---|
129 | :return: reciprocal (G) & real (g) metric tensors (list of two numpy 3x3 arrays) |
---|
130 | |
---|
131 | """ |
---|
132 | g = fillgmat(cell) |
---|
133 | G = nl.inv(g) |
---|
134 | return G,g |
---|
135 | |
---|
136 | def A2Gmat(A,inverse=True): |
---|
137 | """Fill real & reciprocal metric tensor (G) from A. |
---|
138 | |
---|
139 | :param A: reciprocal metric tensor elements as [G11,G22,G33,2*G12,2*G13,2*G23] |
---|
140 | :param bool inverse: if True return both G and g; else just G |
---|
141 | :return: reciprocal (G) & real (g) metric tensors (list of two numpy 3x3 arrays) |
---|
142 | |
---|
143 | """ |
---|
144 | G = np.array([ |
---|
145 | [A[0], A[3]/2., A[4]/2.], |
---|
146 | [A[3]/2.,A[1], A[5]/2.], |
---|
147 | [A[4]/2.,A[5]/2., A[2]]]) |
---|
148 | if inverse: |
---|
149 | g = nl.inv(G) |
---|
150 | return G,g |
---|
151 | else: |
---|
152 | return G |
---|
153 | |
---|
154 | def Gmat2A(G): |
---|
155 | """Extract A from reciprocal metric tensor (G) |
---|
156 | |
---|
157 | :param G: reciprocal maetric tensor (3x3 numpy array |
---|
158 | :return: A = [G11,G22,G33,2*G12,2*G13,2*G23] |
---|
159 | |
---|
160 | """ |
---|
161 | return [G[0][0],G[1][1],G[2][2],2.*G[0][1],2.*G[0][2],2.*G[1][2]] |
---|
162 | |
---|
163 | def cell2A(cell): |
---|
164 | """Obtain A = [G11,G22,G33,2*G12,2*G13,2*G23] from lattice parameters |
---|
165 | |
---|
166 | :param cell: [a,b,c,alpha,beta,gamma] (degrees) |
---|
167 | :return: G reciprocal metric tensor as 3x3 numpy array |
---|
168 | |
---|
169 | """ |
---|
170 | G,g = cell2Gmat(cell) |
---|
171 | return Gmat2A(G) |
---|
172 | |
---|
173 | def A2cell(A): |
---|
174 | """Compute unit cell constants from A |
---|
175 | |
---|
176 | :param A: [G11,G22,G33,2*G12,2*G13,2*G23] G - reciprocal metric tensor |
---|
177 | :return: a,b,c,alpha, beta, gamma (degrees) - lattice parameters |
---|
178 | |
---|
179 | """ |
---|
180 | G,g = A2Gmat(A) |
---|
181 | return Gmat2cell(g) |
---|
182 | |
---|
183 | def Gmat2cell(g): |
---|
184 | """Compute real/reciprocal lattice parameters from real/reciprocal metric tensor (g/G) |
---|
185 | The math works the same either way. |
---|
186 | |
---|
187 | :param g (or G): real (or reciprocal) metric tensor 3x3 array |
---|
188 | :return: a,b,c,alpha, beta, gamma (degrees) (or a*,b*,c*,alpha*,beta*,gamma* degrees) |
---|
189 | |
---|
190 | """ |
---|
191 | oldset = np.seterr('raise') |
---|
192 | a = np.sqrt(max(0,g[0][0])) |
---|
193 | b = np.sqrt(max(0,g[1][1])) |
---|
194 | c = np.sqrt(max(0,g[2][2])) |
---|
195 | alp = acosd(g[2][1]/(b*c)) |
---|
196 | bet = acosd(g[2][0]/(a*c)) |
---|
197 | gam = acosd(g[0][1]/(a*b)) |
---|
198 | np.seterr(**oldset) |
---|
199 | return a,b,c,alp,bet,gam |
---|
200 | |
---|
201 | def invcell2Gmat(invcell): |
---|
202 | """Compute real and reciprocal lattice metric tensor from reciprocal |
---|
203 | unit cell constants |
---|
204 | |
---|
205 | :param invcell: [a*,b*,c*,alpha*, beta*, gamma*] (degrees) |
---|
206 | :return: reciprocal (G) & real (g) metric tensors (list of two 3x3 arrays) |
---|
207 | |
---|
208 | """ |
---|
209 | G = fillgmat(invcell) |
---|
210 | g = nl.inv(G) |
---|
211 | return G,g |
---|
212 | |
---|
213 | def cellDijFill(pfx,phfx,SGData,parmDict): |
---|
214 | '''Returns the filled-out reciprocal cell (A) terms |
---|
215 | from the parameter dictionaries corrected for Dij. |
---|
216 | |
---|
217 | :param str pfx: parameter prefix ("n::", where n is a phase number) |
---|
218 | :param dict SGdata: a symmetry object |
---|
219 | :param dict parmDict: a dictionary of parameters |
---|
220 | |
---|
221 | :returns: A,sigA where each is a list of six terms with the A terms |
---|
222 | ''' |
---|
223 | if SGData['SGLaue'] in ['-1',]: |
---|
224 | A = [parmDict[pfx+'A0']+parmDict[phfx+'D11'],parmDict[pfx+'A1']+parmDict[phfx+'D22'], |
---|
225 | parmDict[pfx+'A2']+parmDict[phfx+'D33'], |
---|
226 | parmDict[pfx+'A3']+parmDict[phfx+'D12'],parmDict[pfx+'A4']+parmDict[phfx+'D13'], |
---|
227 | parmDict[pfx+'A5']+parmDict[phfx+'D23']] |
---|
228 | elif SGData['SGLaue'] in ['2/m',]: |
---|
229 | if SGData['SGUniq'] == 'a': |
---|
230 | A = [parmDict[pfx+'A0']+parmDict[phfx+'D11'],parmDict[pfx+'A1']+parmDict[phfx+'D22'], |
---|
231 | parmDict[pfx+'A2']+parmDict[phfx+'D33'],0,0,parmDict[pfx+'A5']+parmDict[phfx+'D23']] |
---|
232 | elif SGData['SGUniq'] == 'b': |
---|
233 | A = [parmDict[pfx+'A0']+parmDict[phfx+'D11'],parmDict[pfx+'A1']+parmDict[phfx+'D22'], |
---|
234 | parmDict[pfx+'A2']+parmDict[phfx+'D33'],0,parmDict[pfx+'A4']+parmDict[phfx+'D13'],0] |
---|
235 | else: |
---|
236 | A = [parmDict[pfx+'A0']+parmDict[phfx+'D11'],parmDict[pfx+'A1']+parmDict[phfx+'D22'], |
---|
237 | parmDict[pfx+'A2']+parmDict[phfx+'D33'],parmDict[pfx+'A3']+parmDict[phfx+'D12'],0,0] |
---|
238 | elif SGData['SGLaue'] in ['mmm',]: |
---|
239 | A = [parmDict[pfx+'A0']+parmDict[phfx+'D11'],parmDict[pfx+'A1']+parmDict[phfx+'D22'], |
---|
240 | parmDict[pfx+'A2']+parmDict[phfx+'D33'],0,0,0] |
---|
241 | elif SGData['SGLaue'] in ['4/m','4/mmm']: |
---|
242 | A = [parmDict[pfx+'A0']+parmDict[phfx+'D11'],parmDict[pfx+'A0']+parmDict[phfx+'D11'], |
---|
243 | parmDict[pfx+'A2']+parmDict[phfx+'D33'],0,0,0] |
---|
244 | elif SGData['SGLaue'] in ['6/m','6/mmm','3m1', '31m', '3']: |
---|
245 | A = [parmDict[pfx+'A0']+parmDict[phfx+'D11'],parmDict[pfx+'A0']+parmDict[phfx+'D11'], |
---|
246 | parmDict[pfx+'A2']+parmDict[phfx+'D33'],parmDict[pfx+'A0']+parmDict[phfx+'D11'],0,0] |
---|
247 | elif SGData['SGLaue'] in ['3R', '3mR']: |
---|
248 | A = [parmDict[pfx+'A0']+parmDict[phfx+'D11'],parmDict[pfx+'A0']+parmDict[phfx+'D11'], |
---|
249 | parmDict[pfx+'A0']+parmDict[phfx+'D11'], |
---|
250 | parmDict[pfx+'A3']+parmDict[phfx+'D23'],parmDict[pfx+'A3']+parmDict[phfx+'D23'], |
---|
251 | parmDict[pfx+'A3']+parmDict[phfx+'D23']] |
---|
252 | elif SGData['SGLaue'] in ['m3m','m3']: |
---|
253 | A = [parmDict[pfx+'A0']+parmDict[phfx+'D11'],parmDict[pfx+'A0']+parmDict[phfx+'D11'], |
---|
254 | parmDict[pfx+'A0']+parmDict[phfx+'D11'],0,0,0] |
---|
255 | return A |
---|
256 | |
---|
257 | def prodMGMT(G,Mat): |
---|
258 | '''Transform metric tensor by matrix |
---|
259 | |
---|
260 | :param G: array metric tensor |
---|
261 | :param Mat: array transformation matrix |
---|
262 | :return: array new metric tensor |
---|
263 | |
---|
264 | ''' |
---|
265 | return np.inner(np.inner(Mat,G),Mat) #right |
---|
266 | # return np.inner(Mat,np.inner(Mat,G)) #right |
---|
267 | # return np.inner(np.inner(G,Mat).T,Mat) #right |
---|
268 | # return np.inner(Mat,np.inner(G,Mat).T) #right |
---|
269 | |
---|
270 | def TransformCell(cell,Trans): |
---|
271 | '''Transform lattice parameters by matrix |
---|
272 | |
---|
273 | :param cell: list a,b,c,alpha,beta,gamma,(volume) |
---|
274 | :param Trans: array transformation matrix |
---|
275 | :return: array transformed a,b,c,alpha,beta,gamma,volume |
---|
276 | |
---|
277 | ''' |
---|
278 | newCell = np.zeros(7) |
---|
279 | g = cell2Gmat(cell)[1] |
---|
280 | newg = prodMGMT(g,Trans) |
---|
281 | newCell[:6] = Gmat2cell(newg) |
---|
282 | newCell[6] = calc_V(cell2A(newCell[:6])) |
---|
283 | return newCell |
---|
284 | |
---|
285 | def TransformXYZ(XYZ,Trans,Vec): |
---|
286 | return np.inner(XYZ,Trans)+Vec |
---|
287 | |
---|
288 | def TransformU6(U6,Trans): |
---|
289 | Uij = np.inner(Trans,np.inner(U6toUij(U6),Trans).T)/nl.det(Trans) |
---|
290 | return UijtoU6(Uij) |
---|
291 | |
---|
292 | def ExpandCell(Atoms,atCodes,cx,Trans): |
---|
293 | Unit = [int(max(abs(np.array(unit)))-1) for unit in Trans.T] |
---|
294 | nUnit = (Unit[0]+1)*(Unit[1]+1)*(Unit[2]+1) |
---|
295 | Ugrid = np.mgrid[0:Unit[0]+1,0:Unit[1]+1,0:Unit[2]+1] |
---|
296 | Ugrid = np.reshape(Ugrid,(3,nUnit)).T |
---|
297 | Codes = copy.deepcopy(atCodes) |
---|
298 | newAtoms = copy.deepcopy(Atoms) |
---|
299 | for unit in Ugrid[1:]: |
---|
300 | moreAtoms = copy.deepcopy(Atoms) |
---|
301 | for atom in moreAtoms: |
---|
302 | atom[cx:cx+3] += unit |
---|
303 | newAtoms += moreAtoms |
---|
304 | codes = copy.deepcopy(atCodes) |
---|
305 | moreCodes = [code+'+%d,%d,%d'%(unit[0],unit[1],unit[2]) for code in codes] |
---|
306 | Codes += moreCodes |
---|
307 | return newAtoms,Codes |
---|
308 | |
---|
309 | def TransformPhase(oldPhase,newPhase,Trans,Uvec,Vvec,ifMag,Force=True): |
---|
310 | '''Transform atoms from oldPhase to newPhase |
---|
311 | M' is inv(M) |
---|
312 | does X' = M(X-U)+V transformation for coordinates and U' = MUM/det(M) |
---|
313 | for anisotropic thermal parameters |
---|
314 | |
---|
315 | :param oldPhase: dict G2 phase info for old phase |
---|
316 | :param newPhase: dict G2 phase info for new phase; with new cell & space group |
---|
317 | atoms are from oldPhase & will be transformed |
---|
318 | :param Trans: lattice transformation matrix M |
---|
319 | :param Uvec: array parent coordinates transformation vector U |
---|
320 | :param Vvec: array child coordinate transformation vector V |
---|
321 | :param ifMag: bool True if convert to magnetic phase; |
---|
322 | if True all nonmagnetic atoms will be removed |
---|
323 | |
---|
324 | :return: newPhase dict modified G2 phase info |
---|
325 | :return: atCodes list atom transformation codes |
---|
326 | |
---|
327 | ''' |
---|
328 | cx,ct,cs,cia = oldPhase['General']['AtomPtrs'] |
---|
329 | cm = 0 |
---|
330 | if oldPhase['General']['Type'] == 'magnetic': |
---|
331 | cm = cx+4 |
---|
332 | oAmat,oBmat = cell2AB(oldPhase['General']['Cell'][1:7]) |
---|
333 | nAmat,nBmat = cell2AB(newPhase['General']['Cell'][1:7]) |
---|
334 | SGData = newPhase['General']['SGData'] |
---|
335 | invTrans = nl.inv(Trans) |
---|
336 | newAtoms,atCodes = FillUnitCell(oldPhase,Force) |
---|
337 | newAtoms,atCodes = ExpandCell(newAtoms,atCodes,cx,Trans) |
---|
338 | if ifMag: |
---|
339 | cia += 3 |
---|
340 | cs += 3 |
---|
341 | newPhase['General']['Type'] = 'magnetic' |
---|
342 | newPhase['General']['AtomPtrs'] = [cx,ct,cs,cia] |
---|
343 | magAtoms = [] |
---|
344 | magatCodes = [] |
---|
345 | Landeg = 2.0 |
---|
346 | for iat,atom in enumerate(newAtoms): |
---|
347 | if len(G2elem.GetMFtable([atom[ct],],[Landeg,])): |
---|
348 | magAtoms.append(atom[:cx+4]+[0.,0.,0.]+atom[cx+4:]) |
---|
349 | magatCodes.append(atCodes[iat]) |
---|
350 | newAtoms = magAtoms |
---|
351 | atCodes = magatCodes |
---|
352 | newPhase['Draw Atoms'] = [] |
---|
353 | for atom in newAtoms: |
---|
354 | xyz = TransformXYZ(atom[cx:cx+3]+Uvec,invTrans.T,Vvec) |
---|
355 | if Force: |
---|
356 | xyz = np.around(xyz,6)%1. |
---|
357 | atom[cx:cx+3] = xyz |
---|
358 | if atom[cia] == 'A': |
---|
359 | atom[cia+2:cia+8] = TransformU6(atom[cia+2:cia+8],Trans) |
---|
360 | atom[cs:cs+2] = G2spc.SytSym(atom[cx:cx+3],SGData)[:2] |
---|
361 | atom[cia+8] = ran.randint(0,sys.maxsize) |
---|
362 | if cm: |
---|
363 | mag = np.sqrt(np.sum(np.array(atom[cm:cm+3])**2)) |
---|
364 | if mag: |
---|
365 | mom = np.inner(np.array(atom[cm:cm+3]),oBmat) |
---|
366 | mom = np.inner(mom,invTrans) |
---|
367 | mom = np.inner(mom,nAmat) |
---|
368 | mom /= np.sqrt(np.sum(mom**2)) |
---|
369 | atom[cm:cm+3] = mom*mag |
---|
370 | newPhase['Atoms'] = newAtoms |
---|
371 | if SGData['SpGrp'] != 'P 1': |
---|
372 | newPhase['Atoms'],atCodes = GetUnique(newPhase,atCodes) |
---|
373 | newPhase['Drawing'] = [] |
---|
374 | newPhase['ranId'] = ran.randint(0,sys.maxsize) |
---|
375 | return newPhase,atCodes |
---|
376 | |
---|
377 | def FindNonstandard(controls,Phase): |
---|
378 | ''' |
---|
379 | Find nonstandard setting of magnetic cell that aligns with parent nuclear cell |
---|
380 | |
---|
381 | :param controls: list unit cell indexing controls |
---|
382 | :param Phase: dict new magnetic phase data (NB:not G2 phase construction); modified here |
---|
383 | :return: None |
---|
384 | |
---|
385 | ''' |
---|
386 | abc = np.eye(3) |
---|
387 | cba = np.rot90(np.eye(3)) |
---|
388 | cba[1,1] *= -1 #makes c-ba |
---|
389 | Mats = {'abc':abc,'cab':np.roll(abc,2,1),'bca':np.roll(abc,1,1), |
---|
390 | 'acb':np.roll(cba,1,1),'bac':np.roll(cba,2,1),'cba':cba} #ok |
---|
391 | BNS = {'A':{'abc':'A','cab':'C','bca':'B','acb':'A','bac':'B','cba':'C'}, |
---|
392 | 'B':{'abc':'B','cab':'A','bca':'C','acb':'C','bac':'A','cba':'B'}, |
---|
393 | 'C':{'abc':'C','cab':'B','bca':'A','acb':'B','bac':'C','cba':'A'}, |
---|
394 | 'a':{'abc':'a','cab':'c','bca':'b','acb':'a','bac':'b','cba':'c'}, #Ok |
---|
395 | 'b':{'abc':'b','cab':'a','bca':'c','acb':'c','bac':'a','cba':'b'}, |
---|
396 | 'c':{'abc':'c','cab':'b','bca':'a','acb':'b','bac':'c','cba':'a'}, |
---|
397 | 'S':{'abc':'S','cab':'S','bca':'S','acb':'S','bac':'S','cba':'S'}, |
---|
398 | 'I':{'abc':'I','cab':'I','bca':'I','acb':'I','bac':'I','cba':'I'}, |
---|
399 | } |
---|
400 | Trans = Phase['Trans'] |
---|
401 | Uvec = Phase['Uvec'] |
---|
402 | SGData = Phase['SGData'] |
---|
403 | MSG = SGData.get('MagSpGrp',SGData['SpGrp']).split(' ',1) |
---|
404 | MSG[0] += ' ' |
---|
405 | bns = '' |
---|
406 | if '_' in MSG[0]: |
---|
407 | bns = MSG[0][2] |
---|
408 | spn = SGData.get('SGSpin',[]) |
---|
409 | if 'ortho' in SGData['SGSys']: |
---|
410 | lattSym = G2spc.getlattSym(Trans) |
---|
411 | SpGrp = SGData['SpGrp'] |
---|
412 | NTrans = np.inner(Mats[lattSym].T,Trans.T) #ok |
---|
413 | if len(spn): spn[1:4] = np.inner(np.abs(nl.inv(Mats[lattSym])),spn[1:4]) #ok |
---|
414 | SGsym = G2spc.getlattSym(nl.inv(Mats[lattSym])) |
---|
415 | |
---|
416 | if lattSym != 'abc': |
---|
417 | NSG = G2spc.altSettingOrtho[SpGrp][SGsym].replace("'",'').split(' ') |
---|
418 | if ' '.join(NSG) in ['P 2 21 2',]: |
---|
419 | Uvec[1] += .25 |
---|
420 | elif ' '.join(NSG) in ['P 21 2 2',]: |
---|
421 | Uvec[0] += .25 |
---|
422 | elif ' '.join(NSG) in ['P 2 2 21',]: |
---|
423 | Uvec[2] += .25 |
---|
424 | Bns = '' |
---|
425 | if bns: |
---|
426 | Bns = BNS[bns][lattSym] |
---|
427 | NSG[0] += '_'+Bns+' ' |
---|
428 | elif len(spn): |
---|
429 | for ifld in [1,2,3]: |
---|
430 | if spn[ifld] < 0: |
---|
431 | NSG[ifld] += "'" |
---|
432 | Nresult = [''.join(NSG)+' ',Bns] |
---|
433 | return Nresult,Uvec,NTrans |
---|
434 | else: |
---|
435 | return None |
---|
436 | elif 'mono' in SGData['SGSys']: # and not 'P_A' in Phase['Name']: #skip the one that doesn't work |
---|
437 | newcell = TransformCell(controls[6:12],Trans) |
---|
438 | MatsA = np.array([[1.,0.,0.],[0.,1.,0.],[1.,0,1.]]) |
---|
439 | MatsB = np.array([[1.,0.,0.],[0.,1.,0.],[-1.,0,1.]]) |
---|
440 | if not 70. < newcell[4] < 110.: |
---|
441 | MSG[1] = MSG[1].replace('c','n') |
---|
442 | MSG[0] = MSG[0].replace('C_c','C_B').replace('P_A','P ') |
---|
443 | if '_' in MSG[0]: |
---|
444 | bns = MSG[0][2] |
---|
445 | if newcell[4] > 110.: |
---|
446 | if newcell[2] > newcell[0]: |
---|
447 | Mats = MatsA |
---|
448 | else: |
---|
449 | MSG[1] = MSG[1].replace('n','c') |
---|
450 | MSG[0] = MSG[0].replace('C ','I ') |
---|
451 | Mats = MatsA.T |
---|
452 | elif newcell[4] < 70.: |
---|
453 | if newcell[2] > newcell[0]: |
---|
454 | Mats = MatsB |
---|
455 | else: |
---|
456 | MSG[1] = MSG[1].replace('n','c') |
---|
457 | MSG[0] = MSG[0].replace('C ','I ') |
---|
458 | Mats = MatsB.T |
---|
459 | Nresult = [' '.join(MSG)+' ',bns] |
---|
460 | NTrans = np.inner(Mats,Trans.T) |
---|
461 | return Nresult,Uvec,NTrans |
---|
462 | return None |
---|
463 | |
---|
464 | def makeBilbaoPhase(result,uvec,trans,ifMag=False): |
---|
465 | phase = {} |
---|
466 | phase['Name'] = result[0].strip() |
---|
467 | phase['Uvec'] = uvec |
---|
468 | phase['Trans'] = trans |
---|
469 | phase['Keep'] = False |
---|
470 | phase['Use'] = False |
---|
471 | phase['aType'] = '' |
---|
472 | SpGp = result[0].replace("'",'') |
---|
473 | SpGrp = G2spc.StandardizeSpcName(SpGp) |
---|
474 | phase['SGData'] = G2spc.SpcGroup(SpGrp)[1] |
---|
475 | if ifMag: |
---|
476 | BNSlatt = phase['SGData']['SGLatt'] |
---|
477 | if not result[1]: |
---|
478 | phase['SGData']['SGSpin'] = G2spc.GetSGSpin(phase['SGData'],result[0]) |
---|
479 | phase['SGData']['GenSym'],phase['SGData']['GenFlg'],BNSsym = G2spc.GetGenSym(phase['SGData']) |
---|
480 | if result[1]: |
---|
481 | BNSlatt += '_'+result[1] |
---|
482 | if 'P_S' in BNSlatt: BNSlatt = 'P_c' #triclinic fix |
---|
483 | phase['SGData']['BNSlattsym'] = [BNSlatt,BNSsym[BNSlatt]] |
---|
484 | G2spc.ApplyBNSlatt(phase['SGData'],phase['SGData']['BNSlattsym']) |
---|
485 | phase['SGData']['SpnFlp'] = G2spc.GenMagOps(phase['SGData'])[1] |
---|
486 | phase['SGData']['MagSpGrp'] = G2spc.MagSGSym(phase['SGData']) |
---|
487 | return phase |
---|
488 | |
---|
489 | def FillUnitCell(Phase,Force=True): |
---|
490 | Atoms = copy.deepcopy(Phase['Atoms']) |
---|
491 | atomData = [] |
---|
492 | atCodes = [] |
---|
493 | SGData = Phase['General']['SGData'] |
---|
494 | SpnFlp = SGData.get('SpnFlp',[]) |
---|
495 | Amat,Bmat = cell2AB(Phase['General']['Cell'][1:7]) |
---|
496 | cx,ct,cs,cia = Phase['General']['AtomPtrs'] |
---|
497 | cm = 0 |
---|
498 | if Phase['General']['Type'] == 'magnetic': |
---|
499 | cm = cx+4 |
---|
500 | for iat,atom in enumerate(Atoms): |
---|
501 | XYZ = np.array(atom[cx:cx+3]) |
---|
502 | xyz = XYZ |
---|
503 | cellj = np.zeros(3,dtype=np.int32) |
---|
504 | if Force: |
---|
505 | xyz,cellj = G2spc.MoveToUnitCell(xyz) |
---|
506 | if atom[cia] == 'A': |
---|
507 | Uij = atom[cia+2:cia+8] |
---|
508 | result = G2spc.GenAtom(xyz,SGData,False,Uij,Force) |
---|
509 | for item in result: |
---|
510 | item = list(item) |
---|
511 | item[2] += cellj |
---|
512 | # if item[0][2] >= .95: item[0][2] -= 1. |
---|
513 | atom[cx:cx+3] = item[0] |
---|
514 | atom[cia+2:cia+8] = item[1] |
---|
515 | if cm: |
---|
516 | Opr = abs(item[2])%100 |
---|
517 | M = SGData['SGOps'][Opr-1][0] |
---|
518 | opNum = G2spc.GetOpNum(item[2],SGData) |
---|
519 | mom = np.inner(np.array(atom[cm:cm+3]),Bmat) |
---|
520 | atom[cm:cm+3] = np.inner(np.inner(mom,M),Amat)*nl.det(M)*SpnFlp[opNum-1] |
---|
521 | atCodes.append('%d:%s'%(iat,str(item[2]))) |
---|
522 | atomData.append(atom[:cia+9]) #not SS stuff |
---|
523 | else: |
---|
524 | result = G2spc.GenAtom(xyz,SGData,False,Move=Force) |
---|
525 | for item in result: |
---|
526 | item = list(item) |
---|
527 | item[2] += cellj |
---|
528 | # if item[0][2] >= .95: item[0][2] -= 1. |
---|
529 | atom[cx:cx+3] = item[0] |
---|
530 | if cm: |
---|
531 | Opr = abs(item[1])%100 |
---|
532 | M = SGData['SGOps'][Opr-1][0] |
---|
533 | opNum = G2spc.GetOpNum(item[1],SGData) |
---|
534 | mom = np.inner(np.array(atom[cm:cm+3]),Bmat) |
---|
535 | atom[cm:cm+3] = np.inner(np.inner(mom,M),Amat)*nl.det(M)*SpnFlp[opNum-1] |
---|
536 | atCodes.append('%d:%s'%(iat,str(item[1]))) |
---|
537 | atomData.append(atom[:cia+9]) #not SS stuff |
---|
538 | |
---|
539 | return atomData,atCodes |
---|
540 | |
---|
541 | def GetUnique(Phase,atCodes): |
---|
542 | |
---|
543 | def noDuplicate(xyzA,XYZ): |
---|
544 | if True in [np.allclose(xyzA%1.,xyzB%1.,atol=0.0002) for xyzB in XYZ]: |
---|
545 | return False |
---|
546 | return True |
---|
547 | |
---|
548 | cx,ct = Phase['General']['AtomPtrs'][:2] |
---|
549 | SGData = Phase['General']['SGData'] |
---|
550 | Atoms = Phase['Atoms'] |
---|
551 | Ind = len(Atoms) |
---|
552 | newAtoms = [] |
---|
553 | newAtCodes = [] |
---|
554 | Indx = {} |
---|
555 | XYZ = {} |
---|
556 | for ind in range(Ind): |
---|
557 | XYZ[ind] = np.array(Atoms[ind][cx:cx+3])%1. |
---|
558 | Indx[ind] = True |
---|
559 | for ind in range(Ind): |
---|
560 | if Indx[ind]: |
---|
561 | xyz = XYZ[ind] |
---|
562 | for jnd in range(Ind): |
---|
563 | if Atoms[ind][ct-1] == Atoms[jnd][ct-1]: |
---|
564 | if ind != jnd and Indx[jnd]: |
---|
565 | Equiv = G2spc.GenAtom(XYZ[jnd],SGData,Move=True) |
---|
566 | xyzs = np.array([equiv[0] for equiv in Equiv]) |
---|
567 | Indx[jnd] = noDuplicate(xyz,xyzs) |
---|
568 | Ind = [] |
---|
569 | for ind in Indx: |
---|
570 | if Indx[ind]: |
---|
571 | newAtoms.append(Atoms[ind]) |
---|
572 | newAtCodes.append(atCodes[ind]) |
---|
573 | return newAtoms,newAtCodes |
---|
574 | |
---|
575 | def calc_rVsq(A): |
---|
576 | """Compute the square of the reciprocal lattice volume (1/V**2) from A' |
---|
577 | |
---|
578 | """ |
---|
579 | G,g = A2Gmat(A) |
---|
580 | rVsq = nl.det(G) |
---|
581 | if rVsq < 0: |
---|
582 | return 1 |
---|
583 | return rVsq |
---|
584 | |
---|
585 | def calc_rV(A): |
---|
586 | """Compute the reciprocal lattice volume (V*) from A |
---|
587 | """ |
---|
588 | return np.sqrt(calc_rVsq(A)) |
---|
589 | |
---|
590 | def calc_V(A): |
---|
591 | """Compute the real lattice volume (V) from A |
---|
592 | """ |
---|
593 | return 1./calc_rV(A) |
---|
594 | |
---|
595 | def A2invcell(A): |
---|
596 | """Compute reciprocal unit cell constants from A |
---|
597 | returns tuple with a*,b*,c*,alpha*, beta*, gamma* (degrees) |
---|
598 | """ |
---|
599 | G,g = A2Gmat(A) |
---|
600 | return Gmat2cell(G) |
---|
601 | |
---|
602 | def Gmat2AB(G): |
---|
603 | """Computes orthogonalization matrix from reciprocal metric tensor G |
---|
604 | |
---|
605 | :returns: tuple of two 3x3 numpy arrays (A,B) |
---|
606 | |
---|
607 | * A for crystal to Cartesian transformations (A*x = np.inner(A,x) = X) |
---|
608 | * B (= inverse of A) for Cartesian to crystal transformation (B*X = np.inner(B,X) = x) |
---|
609 | |
---|
610 | """ |
---|
611 | # cellstar = Gmat2cell(G) |
---|
612 | g = nl.inv(G) |
---|
613 | cell = Gmat2cell(g) |
---|
614 | # A = np.zeros(shape=(3,3)) |
---|
615 | return cell2AB(cell) |
---|
616 | # # from Giacovazzo (Fundamentals 2nd Ed.) p.75 |
---|
617 | # A[0][0] = cell[0] # a |
---|
618 | # A[0][1] = cell[1]*cosd(cell[5]) # b cos(gamma) |
---|
619 | # A[0][2] = cell[2]*cosd(cell[4]) # c cos(beta) |
---|
620 | # A[1][1] = cell[1]*sind(cell[5]) # b sin(gamma) |
---|
621 | # A[1][2] = -cell[2]*cosd(cellstar[3])*sind(cell[4]) # - c cos(alpha*) sin(beta) |
---|
622 | # A[2][2] = 1./cellstar[2] # 1/c* |
---|
623 | # B = nl.inv(A) |
---|
624 | # return A,B |
---|
625 | |
---|
626 | def cell2AB(cell,alt=False): |
---|
627 | """Computes orthogonalization matrix from unit cell constants |
---|
628 | |
---|
629 | :param tuple cell: a,b,c, alpha, beta, gamma (degrees) |
---|
630 | :returns: tuple of two 3x3 numpy arrays (A,B) |
---|
631 | A for crystal to Cartesian transformations A*x = np.inner(A,x) = X |
---|
632 | B (= inverse of A) for Cartesian to crystal transformation B*X = np.inner(B,X) = x |
---|
633 | """ |
---|
634 | G,g = cell2Gmat(cell) |
---|
635 | cellstar = Gmat2cell(G) |
---|
636 | A = np.zeros(shape=(3,3)) |
---|
637 | if alt: #as used in RMCProfile!! |
---|
638 | A[0][0] = 1./cellstar[0] |
---|
639 | A[0][1] = cell[0]*cosd(cell[5])*sind(cell[3]) |
---|
640 | A[0][2] = cell[0]*cosd(cell[4]) |
---|
641 | A[1][1] = cell[1]*sind(cell[3]) |
---|
642 | A[1][2] = cell[1]*cosd(cell[3]) |
---|
643 | A[2][2] = cell[2] |
---|
644 | B = nl.inv(A) |
---|
645 | return A,B |
---|
646 | # from Giacovazzo (Fundamentals 2nd Ed.) p.75 |
---|
647 | A[0][0] = cell[0] # a |
---|
648 | A[0][1] = cell[1]*cosd(cell[5]) # b cos(gamma) |
---|
649 | A[0][2] = cell[2]*cosd(cell[4]) # c cos(beta) |
---|
650 | A[1][1] = cell[1]*sind(cell[5]) # b sin(gamma) |
---|
651 | A[1][2] = -cell[2]*cosd(cellstar[3])*sind(cell[4]) # - c cos(alpha*) sin(beta) |
---|
652 | A[2][2] = 1./cellstar[2] # 1/c* |
---|
653 | B = nl.inv(A) |
---|
654 | return A,B |
---|
655 | |
---|
656 | def HKL2SpAng(H,cell,SGData): |
---|
657 | """Computes spherical coords for hkls; view along 001 |
---|
658 | |
---|
659 | :param array H: arrays of hkl |
---|
660 | :param tuple cell: a,b,c, alpha, beta, gamma (degrees) |
---|
661 | :param dict SGData: space group dictionary |
---|
662 | :returns: arrays of r,phi,psi (radius,inclination,azimuth) about 001 |
---|
663 | """ |
---|
664 | A,B = cell2AB(cell) |
---|
665 | xH = np.inner(B.T,H) |
---|
666 | r = np.sqrt(np.sum(xH**2,axis=0)) |
---|
667 | phi = acosd(xH[2]/r) |
---|
668 | psi = atan2d(xH[1],xH[0]) |
---|
669 | phi = np.where(phi>90.,180.-phi,phi) |
---|
670 | # GSASIIpath.IPyBreak() |
---|
671 | return r,phi,psi |
---|
672 | |
---|
673 | def U6toUij(U6): |
---|
674 | """Fill matrix (Uij) from U6 = [U11,U22,U33,U12,U13,U23] |
---|
675 | NB: there is a non numpy version in GSASIIspc: U2Uij |
---|
676 | |
---|
677 | :param list U6: 6 terms of u11,u22,... |
---|
678 | :returns: |
---|
679 | Uij - numpy [3][3] array of uij |
---|
680 | """ |
---|
681 | U = np.array([ |
---|
682 | [U6[0], U6[3], U6[4]], |
---|
683 | [U6[3], U6[1], U6[5]], |
---|
684 | [U6[4], U6[5], U6[2]]]) |
---|
685 | return U |
---|
686 | |
---|
687 | def UijtoU6(U): |
---|
688 | """Fill vector [U11,U22,U33,U12,U13,U23] from Uij |
---|
689 | NB: there is a non numpy version in GSASIIspc: Uij2U |
---|
690 | """ |
---|
691 | U6 = np.array([U[0][0],U[1][1],U[2][2],U[0][1],U[0][2],U[1][2]]) |
---|
692 | return U6 |
---|
693 | |
---|
694 | def betaij2Uij(betaij,G): |
---|
695 | """ |
---|
696 | Convert beta-ij to Uij tensors |
---|
697 | |
---|
698 | :param beta-ij - numpy array [beta-ij] |
---|
699 | :param G: reciprocal metric tensor |
---|
700 | :returns: Uij: numpy array [Uij] |
---|
701 | """ |
---|
702 | ast = np.sqrt(np.diag(G)) #a*, b*, c* |
---|
703 | Mast = np.multiply.outer(ast,ast) |
---|
704 | return R2pisq*UijtoU6(U6toUij(betaij)/Mast) |
---|
705 | |
---|
706 | def Uij2betaij(Uij,G): |
---|
707 | """ |
---|
708 | Convert Uij to beta-ij tensors -- stub for eventual completion |
---|
709 | |
---|
710 | :param Uij: numpy array [Uij] |
---|
711 | :param G: reciprocal metric tensor |
---|
712 | :returns: beta-ij - numpy array [beta-ij] |
---|
713 | """ |
---|
714 | pass |
---|
715 | |
---|
716 | def cell2GS(cell): |
---|
717 | ''' returns Uij to betaij conversion matrix''' |
---|
718 | G,g = cell2Gmat(cell) |
---|
719 | GS = G |
---|
720 | GS[0][1] = GS[1][0] = math.sqrt(GS[0][0]*GS[1][1]) |
---|
721 | GS[0][2] = GS[2][0] = math.sqrt(GS[0][0]*GS[2][2]) |
---|
722 | GS[1][2] = GS[2][1] = math.sqrt(GS[1][1]*GS[2][2]) |
---|
723 | return GS |
---|
724 | |
---|
725 | def Uij2Ueqv(Uij,GS,Amat): |
---|
726 | ''' returns 1/3 trace of diagonalized U matrix''' |
---|
727 | U = np.multiply(U6toUij(Uij),GS) |
---|
728 | U = np.inner(Amat,np.inner(U,Amat).T) |
---|
729 | E,R = nl.eigh(U) |
---|
730 | return np.sum(E)/3. |
---|
731 | |
---|
732 | def CosAngle(U,V,G): |
---|
733 | """ calculate cos of angle between U & V in generalized coordinates |
---|
734 | defined by metric tensor G |
---|
735 | |
---|
736 | :param U: 3-vectors assume numpy arrays, can be multiple reflections as (N,3) array |
---|
737 | :param V: 3-vectors assume numpy arrays, only as (3) vector |
---|
738 | :param G: metric tensor for U & V defined space assume numpy array |
---|
739 | :returns: |
---|
740 | cos(phi) |
---|
741 | """ |
---|
742 | u = (U.T/np.sqrt(np.sum(np.inner(U,G)*U,axis=1))).T |
---|
743 | v = V/np.sqrt(np.inner(V,np.inner(G,V))) |
---|
744 | cosP = np.inner(u,np.inner(G,v)) |
---|
745 | return cosP |
---|
746 | |
---|
747 | def CosSinAngle(U,V,G): |
---|
748 | """ calculate sin & cos of angle between U & V in generalized coordinates |
---|
749 | defined by metric tensor G |
---|
750 | |
---|
751 | :param U: 3-vectors assume numpy arrays |
---|
752 | :param V: 3-vectors assume numpy arrays |
---|
753 | :param G: metric tensor for U & V defined space assume numpy array |
---|
754 | :returns: |
---|
755 | cos(phi) & sin(phi) |
---|
756 | """ |
---|
757 | u = U/np.sqrt(np.inner(U,np.inner(G,U))) |
---|
758 | v = V/np.sqrt(np.inner(V,np.inner(G,V))) |
---|
759 | cosP = np.inner(u,np.inner(G,v)) |
---|
760 | sinP = np.sqrt(max(0.0,1.0-cosP**2)) |
---|
761 | return cosP,sinP |
---|
762 | |
---|
763 | def criticalEllipse(prob): |
---|
764 | """ |
---|
765 | Calculate critical values for probability ellipsoids from probability |
---|
766 | """ |
---|
767 | if not ( 0.01 <= prob < 1.0): |
---|
768 | return 1.54 |
---|
769 | coeff = np.array([6.44988E-09,4.16479E-07,1.11172E-05,1.58767E-04,0.00130554, |
---|
770 | 0.00604091,0.0114921,-0.040301,-0.6337203,1.311582]) |
---|
771 | llpr = math.log(-math.log(prob)) |
---|
772 | return np.polyval(coeff,llpr) |
---|
773 | |
---|
774 | def CellBlock(nCells): |
---|
775 | """ |
---|
776 | Generate block of unit cells n*n*n on a side; [0,0,0] centered, n = 2*nCells+1 |
---|
777 | currently only works for nCells = 0 or 1 (not >1) |
---|
778 | """ |
---|
779 | if nCells: |
---|
780 | N = 2*nCells+1 |
---|
781 | N2 = N*N |
---|
782 | N3 = N*N*N |
---|
783 | cellArray = [] |
---|
784 | A = np.array(range(N3)) |
---|
785 | cellGen = np.array([A//N2-1,A//N%N-1,A%N-1]).T |
---|
786 | for cell in cellGen: |
---|
787 | cellArray.append(cell) |
---|
788 | return cellArray |
---|
789 | else: |
---|
790 | return [0,0,0] |
---|
791 | |
---|
792 | def CellAbsorption(ElList,Volume): |
---|
793 | '''Compute unit cell absorption |
---|
794 | |
---|
795 | :param dict ElList: dictionary of element contents including mu and |
---|
796 | number of atoms be cell |
---|
797 | :param float Volume: unit cell volume |
---|
798 | :returns: mu-total/Volume |
---|
799 | ''' |
---|
800 | muT = 0 |
---|
801 | for El in ElList: |
---|
802 | muT += ElList[El]['mu']*ElList[El]['FormulaNo'] |
---|
803 | return muT/Volume |
---|
804 | |
---|
805 | #Permutations and Combinations |
---|
806 | # Four routines: combinations,uniqueCombinations, selections & permutations |
---|
807 | #These taken from Python Cookbook, 2nd Edition. 19.15 p724-726 |
---|
808 | # |
---|
809 | def _combinators(_handle, items, n): |
---|
810 | """ factored-out common structure of all following combinators """ |
---|
811 | if n==0: |
---|
812 | yield [ ] |
---|
813 | return |
---|
814 | for i, item in enumerate(items): |
---|
815 | this_one = [ item ] |
---|
816 | for cc in _combinators(_handle, _handle(items, i), n-1): |
---|
817 | yield this_one + cc |
---|
818 | def combinations(items, n): |
---|
819 | """ take n distinct items, order matters """ |
---|
820 | def skipIthItem(items, i): |
---|
821 | return items[:i] + items[i+1:] |
---|
822 | return _combinators(skipIthItem, items, n) |
---|
823 | def uniqueCombinations(items, n): |
---|
824 | """ take n distinct items, order is irrelevant """ |
---|
825 | def afterIthItem(items, i): |
---|
826 | return items[i+1:] |
---|
827 | return _combinators(afterIthItem, items, n) |
---|
828 | def selections(items, n): |
---|
829 | """ take n (not necessarily distinct) items, order matters """ |
---|
830 | def keepAllItems(items, i): |
---|
831 | return items |
---|
832 | return _combinators(keepAllItems, items, n) |
---|
833 | def permutations(items): |
---|
834 | """ take all items, order matters """ |
---|
835 | return combinations(items, len(items)) |
---|
836 | |
---|
837 | #reflection generation routines |
---|
838 | #for these: H = [h,k,l]; A is as used in calc_rDsq; G - inv metric tensor, g - metric tensor; |
---|
839 | # cell - a,b,c,alp,bet,gam in A & deg |
---|
840 | |
---|
841 | def Pos2dsp(Inst,pos): |
---|
842 | ''' convert powder pattern position (2-theta or TOF, musec) to d-spacing |
---|
843 | ''' |
---|
844 | if 'T' in Inst['Type'][0]: |
---|
845 | return TOF2dsp(Inst,pos) |
---|
846 | else: #'PKS', 'C' or 'B' |
---|
847 | wave = G2mth.getWave(Inst) |
---|
848 | return wave/(2.0*sind((pos-Inst.get('Zero',[0,0])[1])/2.0)) |
---|
849 | |
---|
850 | def TOF2dsp(Inst,Pos): |
---|
851 | ''' convert powder pattern TOF, musec to d-spacing by successive approximation |
---|
852 | Pos can be numpy array |
---|
853 | ''' |
---|
854 | def func(d,pos,Inst): |
---|
855 | return (pos-Inst['difA'][1]*d**2-Inst['Zero'][1]-Inst['difB'][1]/d)/Inst['difC'][1] |
---|
856 | dsp0 = Pos/Inst['difC'][1] |
---|
857 | N = 0 |
---|
858 | while True: #successive approximations |
---|
859 | dsp = func(dsp0,Pos,Inst) |
---|
860 | if np.allclose(dsp,dsp0,atol=0.000001): |
---|
861 | return dsp |
---|
862 | dsp0 = dsp |
---|
863 | N += 1 |
---|
864 | if N > 10: |
---|
865 | return dsp |
---|
866 | |
---|
867 | def Dsp2pos(Inst,dsp): |
---|
868 | ''' convert d-spacing to powder pattern position (2-theta or TOF, musec) |
---|
869 | ''' |
---|
870 | if 'T' in Inst['Type'][0]: |
---|
871 | pos = Inst['difC'][1]*dsp+Inst['Zero'][1]+Inst['difA'][1]*dsp**2+Inst.get('difB',[0,0,False])[1]/dsp |
---|
872 | else: #'C' or 'B' |
---|
873 | wave = G2mth.getWave(Inst) |
---|
874 | val = min(0.995,wave/(2.*dsp)) #set max at 168deg |
---|
875 | pos = 2.0*asind(val)+Inst.get('Zero',[0,0])[1] |
---|
876 | return pos |
---|
877 | |
---|
878 | def getPeakPos(dataType,parmdict,dsp): |
---|
879 | ''' convert d-spacing to powder pattern position (2-theta or TOF, musec) |
---|
880 | ''' |
---|
881 | if 'T' in dataType: |
---|
882 | pos = parmdict['difC']*dsp+parmdict['difA']*dsp**2+parmdict['difB']/dsp+parmdict['Zero'] |
---|
883 | else: #'C' or 'B' |
---|
884 | pos = 2.0*asind(parmdict['Lam']/(2.*dsp))+parmdict['Zero'] |
---|
885 | return pos |
---|
886 | |
---|
887 | def calc_rDsq(H,A): |
---|
888 | 'needs doc string' |
---|
889 | rdsq = H[0]*H[0]*A[0]+H[1]*H[1]*A[1]+H[2]*H[2]*A[2]+H[0]*H[1]*A[3]+H[0]*H[2]*A[4]+H[1]*H[2]*A[5] |
---|
890 | return rdsq |
---|
891 | |
---|
892 | def calc_rDsq2(H,G): |
---|
893 | 'needs doc string' |
---|
894 | return np.inner(H,np.inner(G,H)) |
---|
895 | |
---|
896 | def calc_rDsqSS(H,A,vec): |
---|
897 | 'needs doc string' |
---|
898 | rdsq = calc_rDsq(H[:3]+(H[3]*vec).T,A) |
---|
899 | return rdsq |
---|
900 | |
---|
901 | def calc_rDsqZ(H,A,Z,tth,lam): |
---|
902 | 'needs doc string' |
---|
903 | rdsq = calc_rDsq(H,A)+Z*sind(tth)*2.0*rpd/lam**2 |
---|
904 | return rdsq |
---|
905 | |
---|
906 | def calc_rDsqZSS(H,A,vec,Z,tth,lam): |
---|
907 | 'needs doc string' |
---|
908 | rdsq = calc_rDsq(H[:3]+(H[3][:,np.newaxis]*vec).T,A)+Z*sind(tth)*2.0*rpd/lam**2 |
---|
909 | return rdsq |
---|
910 | |
---|
911 | def calc_rDsqT(H,A,Z,tof,difC): |
---|
912 | 'needs doc string' |
---|
913 | rdsq = calc_rDsq(H,A)+Z/difC |
---|
914 | return rdsq |
---|
915 | |
---|
916 | def calc_rDsqTSS(H,A,vec,Z,tof,difC): |
---|
917 | 'needs doc string' |
---|
918 | rdsq = calc_rDsq(H[:3]+(H[3][:,np.newaxis]*vec).T,A)+Z/difC |
---|
919 | return rdsq |
---|
920 | |
---|
921 | def PlaneIntercepts(Amat,H,phase,stack): |
---|
922 | ''' find unit cell intercepts for a stack of hkl planes |
---|
923 | ''' |
---|
924 | Steps = range(-1,2,2) |
---|
925 | if stack: |
---|
926 | Steps = range(-10,10,1) |
---|
927 | Stack = [] |
---|
928 | Ux = np.array([[0,0],[1,0],[1,1],[0,1]]) |
---|
929 | for step in Steps: |
---|
930 | HX = [] |
---|
931 | for i in [0,1,2]: |
---|
932 | if H[i]: |
---|
933 | h,k,l = [(i+1)%3,(i+2)%3,(i+3)%3] |
---|
934 | for j in [0,1,2,3]: |
---|
935 | hx = [0,0,0] |
---|
936 | intcpt = ((phase)/360.+step-H[h]*Ux[j,0]-H[k]*Ux[j,1])/H[l] |
---|
937 | if 0. <= intcpt <= 1.: |
---|
938 | hx[h] = Ux[j,0] |
---|
939 | hx[k] = Ux[j,1] |
---|
940 | hx[l] = intcpt |
---|
941 | HX.append(hx) |
---|
942 | if len(HX)> 2: |
---|
943 | HX = np.array(HX) |
---|
944 | DX = np.inner(HX-HX[0],Amat) |
---|
945 | D = np.sqrt(np.sum(DX**2,axis=1)) |
---|
946 | Dsort = np.argsort(D) |
---|
947 | HX = HX[Dsort] |
---|
948 | DX = DX[Dsort] |
---|
949 | D = D[Dsort] |
---|
950 | DX[1:,:] = DX[1:,:]/D[1:,nxs] |
---|
951 | A = 2.*np.ones(HX.shape[0]) |
---|
952 | A[1:] = [np.dot(DX[1],dx) for dx in DX[1:]] |
---|
953 | HX = HX[np.argsort(A)] |
---|
954 | Stack.append(HX) |
---|
955 | return Stack |
---|
956 | |
---|
957 | def MaxIndex(dmin,A): |
---|
958 | 'needs doc string' |
---|
959 | Hmax = [0,0,0] |
---|
960 | try: |
---|
961 | cell = A2cell(A) |
---|
962 | except: |
---|
963 | cell = [1.,1.,1.,90.,90.,90.] |
---|
964 | for i in range(3): |
---|
965 | Hmax[i] = int(np.round(cell[i]/dmin)) |
---|
966 | return Hmax |
---|
967 | |
---|
968 | def transposeHKLF(transMat,Super,refList): |
---|
969 | ''' Apply transformation matrix to hkl(m) |
---|
970 | param: transmat: 3x3 or 4x4 array |
---|
971 | param: Super: 0 or 1 for extra index |
---|
972 | param: refList list of h,k,l,.... |
---|
973 | return: newRefs transformed list of h',k',l',,, |
---|
974 | return: badRefs list of noninteger h',k',l'... |
---|
975 | ''' |
---|
976 | newRefs = np.copy(refList) |
---|
977 | badRefs = [] |
---|
978 | for H in newRefs: |
---|
979 | newH = np.inner(transMat,H[:3+Super]) |
---|
980 | H[:3+Super] = np.rint(newH) |
---|
981 | if not np.allclose(newH,H[:3+Super],atol=0.01): |
---|
982 | badRefs.append(newH) |
---|
983 | return newRefs,badRefs |
---|
984 | |
---|
985 | def sortHKLd(HKLd,ifreverse,ifdup,ifSS=False): |
---|
986 | '''sort reflection list on d-spacing; can sort in either order |
---|
987 | |
---|
988 | :param HKLd: a list of [h,k,l,d,...]; |
---|
989 | :param ifreverse: True for largest d first |
---|
990 | :param ifdup: True if duplicate d-spacings allowed |
---|
991 | :return: sorted reflection list |
---|
992 | ''' |
---|
993 | T = [] |
---|
994 | N = 3 |
---|
995 | if ifSS: |
---|
996 | N = 4 |
---|
997 | for i,H in enumerate(HKLd): |
---|
998 | if ifdup: |
---|
999 | T.append((H[N],i)) |
---|
1000 | else: |
---|
1001 | T.append(H[N]) |
---|
1002 | D = dict(zip(T,HKLd)) |
---|
1003 | T.sort() |
---|
1004 | if ifreverse: |
---|
1005 | T.reverse() |
---|
1006 | X = [] |
---|
1007 | okey = '' |
---|
1008 | for key in T: |
---|
1009 | if key != okey: X.append(D[key]) #remove duplicate d-spacings |
---|
1010 | okey = key |
---|
1011 | return X |
---|
1012 | |
---|
1013 | def SwapIndx(Axis,H): |
---|
1014 | 'needs doc string' |
---|
1015 | if Axis in [1,-1]: |
---|
1016 | return H |
---|
1017 | elif Axis in [2,-3]: |
---|
1018 | return [H[1],H[2],H[0]] |
---|
1019 | else: |
---|
1020 | return [H[2],H[0],H[1]] |
---|
1021 | |
---|
1022 | def SwapItems(Alist,pos1,pos2): |
---|
1023 | 'exchange 2 items in a list' |
---|
1024 | try: |
---|
1025 | get = Alist[pos1],Alist[pos2] |
---|
1026 | Alist[pos2],Alist[pos1] = get |
---|
1027 | except IndexError: |
---|
1028 | pass |
---|
1029 | return Alist |
---|
1030 | |
---|
1031 | def Rh2Hx(Rh): |
---|
1032 | 'needs doc string' |
---|
1033 | Hx = [0,0,0] |
---|
1034 | Hx[0] = Rh[0]-Rh[1] |
---|
1035 | Hx[1] = Rh[1]-Rh[2] |
---|
1036 | Hx[2] = np.sum(Rh) |
---|
1037 | return Hx |
---|
1038 | |
---|
1039 | def Hx2Rh(Hx): |
---|
1040 | 'needs doc string' |
---|
1041 | Rh = [0,0,0] |
---|
1042 | itk = -Hx[0]+Hx[1]+Hx[2] |
---|
1043 | if itk%3 != 0: |
---|
1044 | return 0 #error - not rhombohedral reflection |
---|
1045 | else: |
---|
1046 | Rh[1] = itk//3 |
---|
1047 | Rh[0] = Rh[1]+Hx[0] |
---|
1048 | Rh[2] = Rh[1]-Hx[1] |
---|
1049 | if Rh[0] < 0: |
---|
1050 | for i in range(3): |
---|
1051 | Rh[i] = -Rh[i] |
---|
1052 | return Rh |
---|
1053 | |
---|
1054 | def CentCheck(Cent,H): |
---|
1055 | 'needs doc string' |
---|
1056 | h,k,l = H |
---|
1057 | if Cent == 'A' and (k+l)%2: |
---|
1058 | return False |
---|
1059 | elif Cent == 'B' and (h+l)%2: |
---|
1060 | return False |
---|
1061 | elif Cent == 'C' and (h+k)%2: |
---|
1062 | return False |
---|
1063 | elif Cent == 'I' and (h+k+l)%2: |
---|
1064 | return False |
---|
1065 | elif Cent == 'F' and ((h+k)%2 or (h+l)%2 or (k+l)%2): |
---|
1066 | return False |
---|
1067 | elif Cent == 'R' and (-h+k+l)%3: |
---|
1068 | return False |
---|
1069 | else: |
---|
1070 | return True |
---|
1071 | |
---|
1072 | def RBsymCheck(Atoms,ct,cx,cs,AtLookUp,Amat,RBObjIds,SGData): |
---|
1073 | """ Checks members of a rigid body to see if one is a symmetry equivalent of another. |
---|
1074 | If so the atom site frac is set to zero. |
---|
1075 | param: Atoms: atom array as defined in GSAS-II; modified here |
---|
1076 | param: ct: int location of atom type in Atoms item |
---|
1077 | param: cx: int location of x,y,z,frac in Atoms item |
---|
1078 | param: AtLookUp: dict: atom lookup by Id table |
---|
1079 | param: Amat: np .array: crystal-to-Cartesian transformationmatri |
---|
1080 | param: RBObjIds: list: atom Id belonging to rigid body being tested |
---|
1081 | param: SGData: Dict: GSAS-II space group info. |
---|
1082 | :return: Atoms with modified atom frac entries |
---|
1083 | |
---|
1084 | """ |
---|
1085 | for i,Id in enumerate(RBObjIds): |
---|
1086 | XYZo = np.array(Atoms[AtLookUp[Id]][cx:cx+3])%1. |
---|
1087 | typo = Atoms[AtLookUp[Id]][ct] |
---|
1088 | for Jd in RBObjIds[i+1:]: |
---|
1089 | if Atoms[AtLookUp[Jd]][ct] == typo: |
---|
1090 | XYZt = Atoms[AtLookUp[Jd]][cx:cx+3] |
---|
1091 | Xeqv = list(G2spc.GenAtom(np.array(XYZt)%1.,SGData,True)) |
---|
1092 | close = [np.allclose(np.inner(Amat,XYZo),np.inner(Amat,eqv[0]),atol=0.01) for eqv in Xeqv] |
---|
1093 | if True in close: |
---|
1094 | Atoms[AtLookUp[Jd]][cx+3] = 0.0 |
---|
1095 | Sytsym,Mult = G2spc.SytSym(Atoms[AtLookUp[Id]][cx:cx+3],SGData)[:2] |
---|
1096 | Atoms[AtLookUp[Id]][cs] = Sytsym |
---|
1097 | Atoms[AtLookUp[Id]][cs+1] = Mult |
---|
1098 | return Atoms |
---|
1099 | |
---|
1100 | def GetBraviasNum(center,system): |
---|
1101 | """Determine the Bravais lattice number, as used in GenHBravais |
---|
1102 | |
---|
1103 | :param center: one of: 'P', 'C', 'I', 'F', 'R' (see SGLatt from GSASIIspc.SpcGroup) |
---|
1104 | :param system: one of 'cubic', 'hexagonal', 'tetragonal', 'orthorhombic', 'trigonal' (for R) |
---|
1105 | 'monoclinic', 'triclinic' (see SGSys from GSASIIspc.SpcGroup) |
---|
1106 | :return: a number between 0 and 13 |
---|
1107 | or throws a ValueError exception if the combination of center, system is not found (i.e. non-standard) |
---|
1108 | |
---|
1109 | """ |
---|
1110 | if center.upper() == 'F' and system.lower() == 'cubic': |
---|
1111 | return 0 |
---|
1112 | elif center.upper() == 'I' and system.lower() == 'cubic': |
---|
1113 | return 1 |
---|
1114 | elif center.upper() == 'P' and system.lower() == 'cubic': |
---|
1115 | return 2 |
---|
1116 | elif center.upper() == 'R' and system.lower() == 'trigonal': |
---|
1117 | return 3 |
---|
1118 | elif center.upper() == 'P' and system.lower() == 'hexagonal': |
---|
1119 | return 4 |
---|
1120 | elif center.upper() == 'I' and system.lower() == 'tetragonal': |
---|
1121 | return 5 |
---|
1122 | elif center.upper() == 'P' and system.lower() == 'tetragonal': |
---|
1123 | return 6 |
---|
1124 | elif center.upper() == 'F' and system.lower() == 'orthorhombic': |
---|
1125 | return 7 |
---|
1126 | elif center.upper() == 'I' and system.lower() == 'orthorhombic': |
---|
1127 | return 8 |
---|
1128 | elif center.upper() == 'A' and system.lower() == 'orthorhombic': |
---|
1129 | return 9 |
---|
1130 | elif center.upper() == 'B' and system.lower() == 'orthorhombic': |
---|
1131 | return 10 |
---|
1132 | elif center.upper() == 'C' and system.lower() == 'orthorhombic': |
---|
1133 | return 11 |
---|
1134 | elif center.upper() == 'P' and system.lower() == 'orthorhombic': |
---|
1135 | return 12 |
---|
1136 | elif center.upper() == 'C' and system.lower() == 'monoclinic': |
---|
1137 | return 13 |
---|
1138 | elif center.upper() == 'P' and system.lower() == 'monoclinic': |
---|
1139 | return 14 |
---|
1140 | elif center.upper() == 'P' and system.lower() == 'triclinic': |
---|
1141 | return 15 |
---|
1142 | raise ValueError('non-standard Bravais lattice center=%s, cell=%s' % (center,system)) |
---|
1143 | |
---|
1144 | def _GenHBravais_cctbx(dmin, Bravais, A, sg_type, uctbx_unit_cell, miller_index_generator): |
---|
1145 | '''Alternate form of :func:`GenHBravais` that uses CCTBX internals |
---|
1146 | ''' |
---|
1147 | g_inv = np.array([[A[0], A[3]/2, A[4]/2], |
---|
1148 | [A[3]/2, A[1], A[5]/2], |
---|
1149 | [A[4]/2, A[5]/2, A[2]]]) |
---|
1150 | g = np.linalg.inv(g_inv) |
---|
1151 | g_elems = (g[0][0], g[1][1], g[2][2], g[0][1], g[0][2], g[1][2]) |
---|
1152 | try: |
---|
1153 | uc = uctbx_unit_cell(metrical_matrix=g_elems) |
---|
1154 | except ValueError: # this function sometimes receives an A matrix that gives |
---|
1155 | # numbers <0 in the diagonal elems of g. Not sure why. |
---|
1156 | return [] |
---|
1157 | #if sg_type is None: |
---|
1158 | # sg_type = make_sgtype(Bravais) |
---|
1159 | mig = miller_index_generator(uc, sg_type, 0, dmin) |
---|
1160 | result = [] |
---|
1161 | for h,k,l in mig: |
---|
1162 | d = uc.d((h,k,l)) |
---|
1163 | result.append([h, k, l, d, -1]) |
---|
1164 | result.sort(key=lambda l: l[3], reverse=True) |
---|
1165 | return result |
---|
1166 | |
---|
1167 | def GenHBravais(dmin, Bravais, A, cctbx_args=None): |
---|
1168 | """Generate the positionally unique powder diffraction reflections |
---|
1169 | |
---|
1170 | :param dmin: minimum d-spacing in A |
---|
1171 | :param Bravais: lattice type (see GetBraviasNum). Bravais is one of: |
---|
1172 | |
---|
1173 | * 0 F cubic |
---|
1174 | * 1 I cubic |
---|
1175 | * 2 P cubic |
---|
1176 | * 3 R hexagonal (trigonal not rhombohedral) |
---|
1177 | * 4 P hexagonal |
---|
1178 | * 5 I tetragonal |
---|
1179 | * 6 P tetragonal |
---|
1180 | * 7 F orthorhombic |
---|
1181 | * 8 I orthorhombic |
---|
1182 | * 9 A orthorhombic |
---|
1183 | * 10 B orthorhombic |
---|
1184 | * 11 C orthorhombic |
---|
1185 | * 12 P orthorhombic |
---|
1186 | * 13 I monoclinic |
---|
1187 | = 14 A monoclinic |
---|
1188 | * 15 C monoclinic |
---|
1189 | * 16 P monoclinic |
---|
1190 | * 17 P triclinic |
---|
1191 | |
---|
1192 | :param A: reciprocal metric tensor elements as [G11,G22,G33,2*G12,2*G13,2*G23] |
---|
1193 | :param dict cctbx_args: items defined in CCTBX: |
---|
1194 | |
---|
1195 | * 'sg_type': value from cctbx.sgtbx.space_group_type(symmorphic_sgs[ibrav]) |
---|
1196 | * 'uctbx_unit_cell': pointer to :meth:`cctbx.uctbx.unit_cell` |
---|
1197 | * 'miller_index_generator': pointer to :meth:`cctbx.miller.index_generator` |
---|
1198 | |
---|
1199 | :returns: HKL unique d list of [h,k,l,d,-1] sorted with largest d first |
---|
1200 | |
---|
1201 | """ |
---|
1202 | if cctbx_args: |
---|
1203 | return _GenHBravais_cctbx(dmin, Bravais, A, |
---|
1204 | cctbx_args['sg_type'], cctbx_args['uctbx_unit_cell'], cctbx_args['miller_index_generator']) |
---|
1205 | |
---|
1206 | if Bravais in [9,14]: |
---|
1207 | Cent = 'A' |
---|
1208 | elif Bravais in [10,]: |
---|
1209 | Cent = 'B' |
---|
1210 | elif Bravais in [11,15]: |
---|
1211 | Cent = 'C' |
---|
1212 | elif Bravais in [1,5,8,13]: |
---|
1213 | Cent = 'I' |
---|
1214 | elif Bravais in [0,7]: |
---|
1215 | Cent = 'F' |
---|
1216 | elif Bravais in [3]: |
---|
1217 | Cent = 'R' |
---|
1218 | else: |
---|
1219 | Cent = 'P' |
---|
1220 | Hmax = MaxIndex(dmin,A) |
---|
1221 | dminsq = 1./(dmin**2) |
---|
1222 | HKL = [] |
---|
1223 | if Bravais == 17: #triclinic |
---|
1224 | for l in range(-Hmax[2],Hmax[2]+1): |
---|
1225 | for k in range(-Hmax[1],Hmax[1]+1): |
---|
1226 | hmin = 0 |
---|
1227 | if (k < 0): hmin = 1 |
---|
1228 | if (k ==0 and l < 0): hmin = 1 |
---|
1229 | for h in range(hmin,Hmax[0]+1): |
---|
1230 | H=[h,k,l] |
---|
1231 | rdsq = calc_rDsq(H,A) |
---|
1232 | if 0 < rdsq <= dminsq: |
---|
1233 | HKL.append([h,k,l,rdsq2d(rdsq,6),-1]) |
---|
1234 | elif Bravais in [13,14,15,16]: #monoclinic - b unique |
---|
1235 | Hmax = SwapIndx(2,Hmax) |
---|
1236 | for h in range(Hmax[0]+1): |
---|
1237 | for k in range(-Hmax[1],Hmax[1]+1): |
---|
1238 | lmin = 0 |
---|
1239 | if k < 0:lmin = 1 |
---|
1240 | for l in range(lmin,Hmax[2]+1): |
---|
1241 | [h,k,l] = SwapIndx(-2,[h,k,l]) |
---|
1242 | H = [] |
---|
1243 | if CentCheck(Cent,[h,k,l]): H=[h,k,l] |
---|
1244 | if H: |
---|
1245 | rdsq = calc_rDsq(H,A) |
---|
1246 | if 0 < rdsq <= dminsq: |
---|
1247 | HKL.append([h,k,l,rdsq2d(rdsq,6),-1]) |
---|
1248 | [h,k,l] = SwapIndx(2,[h,k,l]) |
---|
1249 | elif Bravais in [7,8,9,10,11,12]: #orthorhombic |
---|
1250 | for h in range(Hmax[0]+1): |
---|
1251 | for k in range(Hmax[1]+1): |
---|
1252 | for l in range(Hmax[2]+1): |
---|
1253 | H = [] |
---|
1254 | if CentCheck(Cent,[h,k,l]): H=[h,k,l] |
---|
1255 | if H: |
---|
1256 | rdsq = calc_rDsq(H,A) |
---|
1257 | if 0 < rdsq <= dminsq: |
---|
1258 | HKL.append([h,k,l,rdsq2d(rdsq,6),-1]) |
---|
1259 | elif Bravais in [5,6]: #tetragonal |
---|
1260 | for l in range(Hmax[2]+1): |
---|
1261 | for k in range(Hmax[1]+1): |
---|
1262 | for h in range(k,Hmax[0]+1): |
---|
1263 | H = [] |
---|
1264 | if CentCheck(Cent,[h,k,l]): H=[h,k,l] |
---|
1265 | if H: |
---|
1266 | rdsq = calc_rDsq(H,A) |
---|
1267 | if 0 < rdsq <= dminsq: |
---|
1268 | HKL.append([h,k,l,rdsq2d(rdsq,6),-1]) |
---|
1269 | elif Bravais in [3,4]: |
---|
1270 | lmin = 0 |
---|
1271 | if Bravais == 3: lmin = -Hmax[2] #hexagonal/trigonal |
---|
1272 | for l in range(lmin,Hmax[2]+1): |
---|
1273 | for k in range(Hmax[1]+1): |
---|
1274 | hmin = k |
---|
1275 | if l < 0: hmin += 1 |
---|
1276 | for h in range(hmin,Hmax[0]+1): |
---|
1277 | H = [] |
---|
1278 | if CentCheck(Cent,[h,k,l]): H=[h,k,l] |
---|
1279 | if H: |
---|
1280 | rdsq = calc_rDsq(H,A) |
---|
1281 | if 0 < rdsq <= dminsq: |
---|
1282 | HKL.append([h,k,l,rdsq2d(rdsq,6),-1]) |
---|
1283 | |
---|
1284 | else: #cubic |
---|
1285 | for l in range(Hmax[2]+1): |
---|
1286 | for k in range(l,Hmax[1]+1): |
---|
1287 | for h in range(k,Hmax[0]+1): |
---|
1288 | H = [] |
---|
1289 | if CentCheck(Cent,[h,k,l]): H=[h,k,l] |
---|
1290 | if H: |
---|
1291 | rdsq = calc_rDsq(H,A) |
---|
1292 | if 0 < rdsq <= dminsq: |
---|
1293 | HKL.append([h,k,l,rdsq2d(rdsq,6),-1]) |
---|
1294 | return sortHKLd(HKL,True,False) |
---|
1295 | |
---|
1296 | def getHKLmax(dmin,SGData,A): |
---|
1297 | 'finds maximum allowed hkl for given A within dmin' |
---|
1298 | SGLaue = SGData['SGLaue'] |
---|
1299 | if SGLaue in ['3R','3mR']: #Rhombohedral axes |
---|
1300 | Hmax = [0,0,0] |
---|
1301 | cell = A2cell(A) |
---|
1302 | aHx = cell[0]*math.sqrt(2.0*(1.0-cosd(cell[3]))) |
---|
1303 | cHx = cell[0]*math.sqrt(3.0*(1.0+2.0*cosd(cell[3]))) |
---|
1304 | Hmax[0] = Hmax[1] = int(round(aHx/dmin)) |
---|
1305 | Hmax[2] = int(round(cHx/dmin)) |
---|
1306 | #print Hmax,aHx,cHx |
---|
1307 | else: # all others |
---|
1308 | Hmax = MaxIndex(dmin,A) |
---|
1309 | return Hmax |
---|
1310 | |
---|
1311 | def GenHLaue(dmin,SGData,A): |
---|
1312 | """Generate the crystallographically unique powder diffraction reflections |
---|
1313 | for a lattice and Bravais type |
---|
1314 | |
---|
1315 | :param dmin: minimum d-spacing |
---|
1316 | :param SGData: space group dictionary with at least |
---|
1317 | |
---|
1318 | * 'SGLaue': Laue group symbol: one of '-1','2/m','mmm','4/m','6/m','4/mmm','6/mmm', '3m1', '31m', '3', '3R', '3mR', 'm3', 'm3m' |
---|
1319 | * 'SGLatt': lattice centering: one of 'P','A','B','C','I','F' |
---|
1320 | * 'SGUniq': code for unique monoclinic axis one of 'a','b','c' (only if 'SGLaue' is '2/m') otherwise an empty string |
---|
1321 | |
---|
1322 | :param A: reciprocal metric tensor elements as [G11,G22,G33,2*G12,2*G13,2*G23] |
---|
1323 | :return: HKL = list of [h,k,l,d] sorted with largest d first and is unique |
---|
1324 | part of reciprocal space ignoring anomalous dispersion |
---|
1325 | |
---|
1326 | """ |
---|
1327 | import math |
---|
1328 | SGLaue = SGData['SGLaue'] |
---|
1329 | SGLatt = SGData['SGLatt'] |
---|
1330 | SGUniq = SGData['SGUniq'] |
---|
1331 | #finds maximum allowed hkl for given A within dmin |
---|
1332 | Hmax = getHKLmax(dmin,SGData,A) |
---|
1333 | |
---|
1334 | dminsq = 1./(dmin**2) |
---|
1335 | HKL = [] |
---|
1336 | if SGLaue == '-1': #triclinic |
---|
1337 | for l in range(-Hmax[2],Hmax[2]+1): |
---|
1338 | for k in range(-Hmax[1],Hmax[1]+1): |
---|
1339 | hmin = 0 |
---|
1340 | if (k < 0) or (k ==0 and l < 0): hmin = 1 |
---|
1341 | for h in range(hmin,Hmax[0]+1): |
---|
1342 | H = [] |
---|
1343 | if CentCheck(SGLatt,[h,k,l]): H=[h,k,l] |
---|
1344 | if H: |
---|
1345 | rdsq = calc_rDsq(H,A) |
---|
1346 | if 0 < rdsq <= dminsq: |
---|
1347 | HKL.append([h,k,l,1./math.sqrt(rdsq)]) |
---|
1348 | elif SGLaue == '2/m': #monoclinic |
---|
1349 | axisnum = 1 + ['a','b','c'].index(SGUniq) |
---|
1350 | Hmax = SwapIndx(axisnum,Hmax) |
---|
1351 | for h in range(Hmax[0]+1): |
---|
1352 | for k in range(-Hmax[1],Hmax[1]+1): |
---|
1353 | lmin = 0 |
---|
1354 | if k < 0:lmin = 1 |
---|
1355 | for l in range(lmin,Hmax[2]+1): |
---|
1356 | [h,k,l] = SwapIndx(-axisnum,[h,k,l]) |
---|
1357 | H = [] |
---|
1358 | if CentCheck(SGLatt,[h,k,l]): H=[h,k,l] |
---|
1359 | if H: |
---|
1360 | rdsq = calc_rDsq(H,A) |
---|
1361 | if 0 < rdsq <= dminsq: |
---|
1362 | HKL.append([h,k,l,1./math.sqrt(rdsq)]) |
---|
1363 | [h,k,l] = SwapIndx(axisnum,[h,k,l]) |
---|
1364 | elif SGLaue in ['mmm','4/m','6/m']: #orthorhombic |
---|
1365 | for l in range(Hmax[2]+1): |
---|
1366 | for h in range(Hmax[0]+1): |
---|
1367 | kmin = 1 |
---|
1368 | if SGLaue == 'mmm' or h ==0: kmin = 0 |
---|
1369 | for k in range(kmin,Hmax[1]+1): |
---|
1370 | H = [] |
---|
1371 | if CentCheck(SGLatt,[h,k,l]): H=[h,k,l] |
---|
1372 | if H: |
---|
1373 | rdsq = calc_rDsq(H,A) |
---|
1374 | if 0 < rdsq <= dminsq: |
---|
1375 | HKL.append([h,k,l,1./math.sqrt(rdsq)]) |
---|
1376 | elif SGLaue in ['4/mmm','6/mmm']: #tetragonal & hexagonal |
---|
1377 | for l in range(Hmax[2]+1): |
---|
1378 | for h in range(Hmax[0]+1): |
---|
1379 | for k in range(h+1): |
---|
1380 | H = [] |
---|
1381 | if CentCheck(SGLatt,[h,k,l]): H=[h,k,l] |
---|
1382 | if H: |
---|
1383 | rdsq = calc_rDsq(H,A) |
---|
1384 | if 0 < rdsq <= dminsq: |
---|
1385 | HKL.append([h,k,l,1./math.sqrt(rdsq)]) |
---|
1386 | elif SGLaue in ['3m1','31m','3','3R','3mR']: #trigonals |
---|
1387 | for l in range(-Hmax[2],Hmax[2]+1): |
---|
1388 | hmin = 0 |
---|
1389 | if l < 0: hmin = 1 |
---|
1390 | for h in range(hmin,Hmax[0]+1): |
---|
1391 | if SGLaue in ['3R','3']: |
---|
1392 | kmax = h |
---|
1393 | kmin = -int((h-1.)/2.) |
---|
1394 | else: |
---|
1395 | kmin = 0 |
---|
1396 | kmax = h |
---|
1397 | if SGLaue in ['3m1','3mR'] and l < 0: kmax = h-1 |
---|
1398 | if SGLaue == '31m' and l < 0: kmin = 1 |
---|
1399 | for k in range(kmin,kmax+1): |
---|
1400 | H = [] |
---|
1401 | if CentCheck(SGLatt,[h,k,l]): H=[h,k,l] |
---|
1402 | if SGLaue in ['3R','3mR']: |
---|
1403 | H = Hx2Rh(H) |
---|
1404 | if H: |
---|
1405 | rdsq = calc_rDsq(H,A) |
---|
1406 | if 0 < rdsq <= dminsq: |
---|
1407 | HKL.append([H[0],H[1],H[2],1./math.sqrt(rdsq)]) |
---|
1408 | else: #cubic |
---|
1409 | for h in range(Hmax[0]+1): |
---|
1410 | for k in range(h+1): |
---|
1411 | lmin = 0 |
---|
1412 | lmax = k |
---|
1413 | if SGLaue =='m3': |
---|
1414 | lmax = h-1 |
---|
1415 | if h == k: lmax += 1 |
---|
1416 | for l in range(lmin,lmax+1): |
---|
1417 | H = [] |
---|
1418 | if CentCheck(SGLatt,[h,k,l]): H=[h,k,l] |
---|
1419 | if H: |
---|
1420 | rdsq = calc_rDsq(H,A) |
---|
1421 | if 0 < rdsq <= dminsq: |
---|
1422 | HKL.append([h,k,l,1./math.sqrt(rdsq)]) |
---|
1423 | return sortHKLd(HKL,True,True) |
---|
1424 | |
---|
1425 | def GenPfHKLs(nMax,SGData,A): |
---|
1426 | """Generate the unique pole figure reflections for a lattice and Bravais type. |
---|
1427 | Min d-spacing=1.0A & no more than nMax returned |
---|
1428 | |
---|
1429 | :param nMax: maximum number of hkls returned |
---|
1430 | :param SGData: space group dictionary with at least |
---|
1431 | |
---|
1432 | * 'SGLaue': Laue group symbol: one of '-1','2/m','mmm','4/m','6/m','4/mmm','6/mmm', '3m1', '31m', '3', '3R', '3mR', 'm3', 'm3m' |
---|
1433 | * 'SGLatt': lattice centering: one of 'P','A','B','C','I','F' |
---|
1434 | * 'SGUniq': code for unique monoclinic axis one of 'a','b','c' (only if 'SGLaue' is '2/m') otherwise an empty string |
---|
1435 | |
---|
1436 | :param A: reciprocal metric tensor elements as [G11,G22,G33,2*G12,2*G13,2*G23] |
---|
1437 | :return: HKL = list of 'h k l' strings sorted with largest d first; no duplicate zones |
---|
1438 | |
---|
1439 | """ |
---|
1440 | HKL = np.array(GenHLaue(1.0,SGData,A)).T[:3].T #strip d-spacings |
---|
1441 | N = min(nMax,len(HKL)) |
---|
1442 | return ['%d %d %d'%(h[0],h[1],h[2]) for h in HKL[:N]] |
---|
1443 | |
---|
1444 | def GenSSHLaue(dmin,SGData,SSGData,Vec,maxH,A): |
---|
1445 | 'needs a doc string' |
---|
1446 | ifMag = False |
---|
1447 | if 'MagSpGrp' in SGData: |
---|
1448 | ifMag = True |
---|
1449 | HKLs = [] |
---|
1450 | vec = np.array(Vec) |
---|
1451 | vstar = np.sqrt(calc_rDsq(vec,A)) #find extra needed for -n SS reflections |
---|
1452 | dvec = 1./(maxH*vstar+1./dmin) |
---|
1453 | HKL = GenHLaue(dvec,SGData,A) |
---|
1454 | SSdH = [vec*h for h in range(-maxH,maxH+1)] |
---|
1455 | SSdH = dict(zip(range(-maxH,maxH+1),SSdH)) |
---|
1456 | for h,k,l,d in HKL: |
---|
1457 | ext = G2spc.GenHKLf([h,k,l],SGData)[0] #h,k,l must be integral values here |
---|
1458 | if not ext and d >= dmin: |
---|
1459 | HKLs.append([h,k,l,0,d]) |
---|
1460 | for dH in SSdH: |
---|
1461 | if dH: |
---|
1462 | DH = SSdH[dH] |
---|
1463 | H = [h+DH[0],k+DH[1],l+DH[2]] |
---|
1464 | d = 1./np.sqrt(calc_rDsq(H,A)) |
---|
1465 | if d >= dmin: |
---|
1466 | HKLM = np.array([h,k,l,dH]) |
---|
1467 | if (G2spc.checkSSLaue([h,k,l,dH],SGData,SSGData) and G2spc.checkSSextc(HKLM,SSGData)) or ifMag: |
---|
1468 | HKLs.append([h,k,l,dH,d]) |
---|
1469 | return HKLs |
---|
1470 | |
---|
1471 | def LaueUnique2(SGData,refList): |
---|
1472 | ''' Impose Laue symmetry on hkl |
---|
1473 | |
---|
1474 | :param SGData: space group data from 'P '+Laue |
---|
1475 | :param HKLF: np.array([[h,k,l,...]]) reflection set to be converted |
---|
1476 | |
---|
1477 | :return: HKLF new reflection array with imposed Laue symmetry |
---|
1478 | ''' |
---|
1479 | for ref in refList: |
---|
1480 | H = ref[:3] |
---|
1481 | Uniq = G2spc.GenHKLf(H,SGData)[2] |
---|
1482 | Uniq = G2mth.sortArray(G2mth.sortArray(G2mth.sortArray(Uniq,2),1),0) |
---|
1483 | ref[:3] = Uniq[-1] |
---|
1484 | return refList |
---|
1485 | |
---|
1486 | def LaueUnique(Laue,HKLF): |
---|
1487 | ''' Impose Laue symmetry on hkl |
---|
1488 | |
---|
1489 | :param str Laue: Laue symbol, as below |
---|
1490 | |
---|
1491 | centrosymmetric Laue groups:: |
---|
1492 | |
---|
1493 | ['-1','2/m','112/m','2/m11','mmm','-42m','-4m2','4/mmm','-3', |
---|
1494 | '-31m','-3m1','6/m','6/mmm','m3','m3m'] |
---|
1495 | |
---|
1496 | noncentrosymmetric Laue groups:: |
---|
1497 | |
---|
1498 | ['1','2','211','112','m','m11','11m','222','mm2','m2m','2mm', |
---|
1499 | '4','-4','422','4mm','3','312','321','31m','3m1','6','-6', |
---|
1500 | '622','6mm','-62m','-6m2','23','432','-43m'] |
---|
1501 | |
---|
1502 | :param HKLF: np.array([[h,k,l,...]]) reflection set to be converted |
---|
1503 | |
---|
1504 | :returns: HKLF new reflection array with imposed Laue symmetry |
---|
1505 | ''' |
---|
1506 | |
---|
1507 | HKLFT = HKLF.T |
---|
1508 | mat41 = np.array([[0,1,0],[-1,0,0],[0,0,1]]) #hkl -> k,-h,l |
---|
1509 | mat43 = np.array([[0,-1,0],[1,0,0],[0,0,1]]) #hkl -> -k,h,l |
---|
1510 | mat4bar = np.array([[0,-1,0],[1,0,0],[0,0,-1]]) #hkl -> k,-h,-l |
---|
1511 | mat31 = np.array([[-1,-1,0],[1,0,0],[0,0,1]]) #hkl -> ihl = -h-k,h,l |
---|
1512 | mat32 = np.array([[0,1,0],[-1,-1,0],[0,0,1]]) #hkl -> kil = k,-h-k,l |
---|
1513 | matd3 = np.array([[0,1,0],[0,0,1],[1,0,0]]) #hkl -> k,l,h |
---|
1514 | matd3q = np.array([[0,0,-1],[-1,0,0],[0,1,0]]) #hkl -> -l,-h,k |
---|
1515 | matd3t = np.array([[0,0,-1],[1,0,0],[0,-1,0]]) #hkl -> -l,h,-k |
---|
1516 | mat6 = np.array([[1,1,0],[-1,0,0],[0,0,1]]) #hkl -> h+k,-h,l really 65 |
---|
1517 | matdm = np.array([[0,1,0],[1,0,0],[0,0,1]]) #hkl -> k,h,l |
---|
1518 | matdmp = np.array([[-1,-1,0],[0,1,0],[0,0,1]]) #hkl -> -h-k,k,l |
---|
1519 | matkm = np.array([[-1,0,0],[1,1,0],[0,0,1]]) #hkl -> -h,h+k,l |
---|
1520 | matd2 = np.array([[0,1,0],[1,0,0],[0,0,-1]]) #hkl -> k,h,-l |
---|
1521 | matdm3 = np.array([[1,0,0],[0,0,1],[0,1,0]]) #hkl -> h,l,k |
---|
1522 | mat2d43 = np.array([[0,1,0],[1,0,0],[0,0,1]]) #hkl -> k,-h,l |
---|
1523 | matk2 = np.array([[-1,0,0],[1,1,0],[0,0,-1]]) #hkl -> -h,-i,-l |
---|
1524 | #triclinic |
---|
1525 | if Laue == '1': #ok |
---|
1526 | pass |
---|
1527 | elif Laue == '-1': #ok |
---|
1528 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,-1,-1])[:,nxs],HKLFT[:3]) |
---|
1529 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[1]<0),HKLFT[:3]*np.array([-1,-1,-1])[:,nxs],HKLFT[:3]) |
---|
1530 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([-1,-1,-1])[:,nxs],HKLFT[:3]) |
---|
1531 | #monoclinic |
---|
1532 | #noncentrosymmetric - all ok |
---|
1533 | elif Laue == '2': |
---|
1534 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1535 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([-1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1536 | elif Laue == '1 1 2': |
---|
1537 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1538 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[1]<0),HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1539 | elif Laue == '2 1 1': |
---|
1540 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([1,-1,-1])[:,nxs],HKLFT[:3]) |
---|
1541 | HKLFT[:3] = np.where((HKLFT[1]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([1,-1,-1])[:,nxs],HKLFT[:3]) |
---|
1542 | elif Laue == 'm': |
---|
1543 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1544 | elif Laue == 'm 1 1': |
---|
1545 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,1,1])[:,nxs],HKLFT[:3]) |
---|
1546 | elif Laue == '1 1 m': |
---|
1547 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1548 | #centrosymmetric - all ok |
---|
1549 | elif Laue == '2/m 1 1': |
---|
1550 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,-1,-1])[:,nxs],HKLFT[:3]) |
---|
1551 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,1,1])[:,nxs],HKLFT[:3]) |
---|
1552 | HKLFT[:3] = np.where((HKLFT[2]*HKLFT[0]==0)&(HKLFT[1]<0),HKLFT[:3]*np.array([1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1553 | elif Laue == '2/m': |
---|
1554 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1555 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1556 | HKLFT[:3] = np.where((HKLFT[0]*HKLFT[1]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1557 | elif Laue == '1 1 2/m': |
---|
1558 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1559 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1560 | HKLFT[:3] = np.where((HKLFT[1]*HKLFT[2]==0)&(HKLFT[0]<0),HKLFT[:3]*np.array([-1,1,1])[:,nxs],HKLFT[:3]) |
---|
1561 | #orthorhombic |
---|
1562 | #noncentrosymmetric - all OK |
---|
1563 | elif Laue == '2 2 2': |
---|
1564 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1565 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([1,-1,-1])[:,nxs],HKLFT[:3]) |
---|
1566 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1567 | HKLFT[:3] = np.where((HKLFT[1]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1568 | elif Laue == 'm m 2': |
---|
1569 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,1,1])[:,nxs],HKLFT[:3]) |
---|
1570 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1571 | elif Laue == '2 m m': |
---|
1572 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1573 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1574 | elif Laue == 'm 2 m': |
---|
1575 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,1,1])[:,nxs],HKLFT[:3]) |
---|
1576 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1577 | #centrosymmetric - all ok |
---|
1578 | elif Laue == 'm m m': |
---|
1579 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,1,1])[:,nxs],HKLFT[:3]) |
---|
1580 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1581 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1582 | #tetragonal |
---|
1583 | #noncentrosymmetric - all ok |
---|
1584 | elif Laue == '4': |
---|
1585 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1586 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat43[nxs,:,:])).T,HKLFT[:3]) |
---|
1587 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[1]>0),np.squeeze(np.inner(HKLF[:,:3],mat41[nxs,:,:])).T,HKLFT[:3]) |
---|
1588 | elif Laue == '-4': |
---|
1589 | HKLFT[:3] = np.where(HKLFT[0]<=0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1590 | HKLFT[:3] = np.where(HKLFT[0]<=0,np.squeeze(np.inner(HKLF[:,:3],mat4bar[nxs,:,:])).T,HKLFT[:3]) |
---|
1591 | HKLFT[:3] = np.where(HKLFT[0]<=0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1592 | HKLFT[:3] = np.where(HKLFT[1]<=0,np.squeeze(np.inner(HKLF[:,:3],mat4bar[nxs,:,:])).T,HKLFT[:3]) |
---|
1593 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[1]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1594 | elif Laue == '4 2 2': |
---|
1595 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,-1,-1])[:,nxs],HKLFT[:3]) |
---|
1596 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1597 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat43[nxs,:,:])).T,HKLFT[:3]) |
---|
1598 | HKLFT[:3] = np.where((HKLFT[2]==0)&(HKLFT[1]<HKLFT[0]),np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T,HKLFT[:3]) |
---|
1599 | HKLFT[:3] = np.where(HKLFT[0]==0,np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) #in lieu od 2-fold |
---|
1600 | elif Laue == '4 m m': |
---|
1601 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1602 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1603 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat43[nxs,:,:])).T,HKLFT[:3]) |
---|
1604 | HKLFT[:3] = np.where(HKLFT[0]<HKLFT[1],np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) |
---|
1605 | elif Laue == '-4 2 m': |
---|
1606 | HKLFT[:3] = np.where(HKLFT[0]<=0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1607 | HKLFT[:3] = np.where(HKLFT[0]<=0,np.squeeze(np.inner(HKLF[:,:3],mat4bar[nxs,:,:])).T,HKLFT[:3]) |
---|
1608 | HKLFT[:3] = np.where(HKLFT[0]<=0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1609 | HKLFT[:3] = np.where(HKLFT[1]<=0,np.squeeze(np.inner(HKLF[:,:3],mat4bar[nxs,:,:])).T,HKLFT[:3]) |
---|
1610 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[1]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1611 | HKLFT[:3] = np.where(HKLFT[1]<HKLFT[0],np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) |
---|
1612 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1613 | elif Laue == '-4 m 2': |
---|
1614 | HKLFT[:3] = np.where(HKLFT[2]<0,np.squeeze(np.inner(HKLF[:,:3],mat4bar[nxs,:,:])).T,HKLFT[:3]) |
---|
1615 | HKLFT[:3] = np.where(HKLFT[0]<=0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1616 | HKLFT[:3] = np.where((HKLFT[2]==0)&(HKLFT[1]<=0),np.squeeze(np.inner(HKLF[:,:3],mat4bar[nxs,:,:])).T,HKLFT[:3]) |
---|
1617 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[1]<0),HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1618 | HKLFT[:3] = np.where((HKLFT[2]==0)&(HKLFT[1]==0),np.squeeze(np.inner(HKLF[:,:3],mat4bar[nxs,:,:])).T,HKLFT[:3]) |
---|
1619 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1620 | HKLFT[:3] = np.where((HKLFT[2]==0)&(HKLFT[0]>HKLFT[1]),np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) |
---|
1621 | #centrosymmetric - all ok |
---|
1622 | elif Laue == '4/m': |
---|
1623 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1624 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1625 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat43[nxs,:,:])).T,HKLFT[:3]) |
---|
1626 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[1]>0),np.squeeze(np.inner(HKLF[:,:3],mat41[nxs,:,:])).T,HKLFT[:3]) |
---|
1627 | elif Laue == '4/m m m': |
---|
1628 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1629 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1630 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat43[nxs,:,:])).T,HKLFT[:3]) |
---|
1631 | HKLFT[:3] = np.where(HKLFT[1]<HKLFT[0],np.squeeze(np.inner(HKLF[:,:3],mat41[nxs,:,:])).T,HKLFT[:3]) |
---|
1632 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1633 | #trigonal - all hex cell |
---|
1634 | #noncentrosymmetric - all ok |
---|
1635 | elif Laue == '3': |
---|
1636 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1637 | HKLFT[:3] = np.where((HKLFT[0]+HKLFT[1])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1638 | HKLFT[:3] = np.where(HKLFT[1]==0,np.squeeze(np.inner(HKLF[:,:3],mat31[nxs,:,:])).T,HKLFT[:3]) |
---|
1639 | elif Laue == '3 1 2': |
---|
1640 | HKLFT[:3] = np.where(HKLFT[2]<0,np.squeeze(np.inner(HKLF[:,:3],matk2[nxs,:,:])).T,HKLFT[:3]) |
---|
1641 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1642 | HKLFT[:3] = np.where((HKLFT[0]+HKLFT[1])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1643 | HKLFT[:3] = np.where(HKLFT[1]==0,np.squeeze(np.inner(HKLF[:,:3],mat31[nxs,:,:])).T,HKLFT[:3]) |
---|
1644 | HKLFT[:3] = np.where(HKLFT[0]<0,np.squeeze(np.inner(HKLF[:,:3],matk2[nxs,:,:])).T,HKLFT[:3]) |
---|
1645 | elif Laue == '3 2 1': |
---|
1646 | HKLFT[:3] = np.where(HKLFT[0]<=-2*HKLFT[1],np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1647 | HKLFT[:3] = np.where(HKLFT[1]<-2*HKLFT[0],np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1648 | HKLFT[:3] = np.where(HKLFT[1]<HKLFT[0],np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T,HKLFT[:3]) |
---|
1649 | HKLFT[:3] = np.where((HKLFT[2]>0)&(HKLFT[1]==HKLFT[0]),np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T,HKLFT[:3]) |
---|
1650 | HKLFT[:3] = np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T |
---|
1651 | HKLFT[:3] = np.where((HKLFT[0]!=0)&(HKLFT[2]>0)&(HKLFT[0]==-2*HKLFT[1]),HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1652 | elif Laue == '3 1 m': |
---|
1653 | HKLFT[:3] = np.where(HKLFT[0]>=HKLFT[1],np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1654 | HKLFT[:3] = np.where(2*HKLFT[1]<-HKLFT[0],np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1655 | HKLFT[:3] = np.where(HKLFT[1]>-2*HKLFT[0],np.squeeze(np.inner(HKLF[:,:3],matdmp[nxs,:,:])).T,HKLFT[:3]) |
---|
1656 | HKLFT[:3] = np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T |
---|
1657 | elif Laue == '3 m 1': |
---|
1658 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1659 | HKLFT[:3] = np.where((HKLFT[1]+HKLFT[0])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1660 | HKLFT[:3] = np.where(HKLFT[0]<0,np.squeeze(np.inner(HKLF[:,:3],matkm[nxs,:,:])).T,HKLFT[:3]) |
---|
1661 | #centrosymmetric |
---|
1662 | elif Laue == '-3': #ok |
---|
1663 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([-1,-1,-1])[:,nxs],HKLFT[:3]) |
---|
1664 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1665 | HKLFT[:3] = np.where((HKLFT[0]+HKLFT[1])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1666 | HKLFT[:3] = np.where(HKLFT[1]==0,np.squeeze(np.inner(HKLF[:,:3],mat31[nxs,:,:])).T,HKLFT[:3]) |
---|
1667 | HKLFT[:3] = np.where((HKLFT[2]==0)&(HKLFT[0]<0),-np.squeeze(np.inner(HKLF[:,:3],mat31[nxs,:,:])).T,HKLFT[:3]) |
---|
1668 | HKLFT[:3] = np.where(HKLFT[0]<0,np.squeeze(np.inner(HKLF[:,:3],-mat31[nxs,:,:])).T,HKLFT[:3]) |
---|
1669 | elif Laue == '-3 m 1': #ok |
---|
1670 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1671 | HKLFT[:3] = np.where((HKLFT[1]+HKLFT[0])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1672 | HKLFT[:3] = np.where(HKLFT[0]<0,np.squeeze(np.inner(HKLF[:,:3],matkm[nxs,:,:])).T,HKLFT[:3]) |
---|
1673 | HKLFT[:3] = np.where(HKLFT[2]<0,np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T,HKLFT[:3]) |
---|
1674 | HKLFT[:3] = np.where((HKLFT[2]==0)&(HKLFT[1]<HKLFT[0]),np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T,HKLFT[:3]) |
---|
1675 | elif Laue == '-3 1 m': #ok |
---|
1676 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([-1,-1,-1])[:,nxs],HKLFT[:3]) |
---|
1677 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1678 | HKLFT[:3] = np.where((HKLFT[0]+HKLFT[1])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1679 | HKLFT[:3] = np.where(HKLFT[1]==0,np.squeeze(np.inner(HKLF[:,:3],mat31[nxs,:,:])).T,HKLFT[:3]) |
---|
1680 | HKLFT[:3] = np.where(HKLFT[0]<=0,np.squeeze(np.inner(HKLF[:,:3],-mat31[nxs,:,:])).T,HKLFT[:3]) |
---|
1681 | HKLFT[:3] = np.where(HKLFT[1]<HKLFT[0],np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) |
---|
1682 | #hexagonal |
---|
1683 | #noncentrosymmetric |
---|
1684 | elif Laue == '6': #ok |
---|
1685 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1686 | HKLFT[:3] = np.where((HKLFT[0]+HKLFT[1])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1687 | HKLFT[:3] = np.where(HKLFT[0]<0,np.squeeze(np.inner(HKLF[:,:3],mat6[nxs,:,:])).T,HKLFT[:3]) |
---|
1688 | HKLFT[:3] = np.where(HKLFT[0]==0,np.squeeze(np.inner(HKLF[:,:3],mat6[nxs,:,:])).T,HKLFT[:3]) |
---|
1689 | elif Laue == '-6': #ok |
---|
1690 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1691 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1692 | HKLFT[:3] = np.where((HKLFT[0]+HKLFT[1])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1693 | HKLFT[:3] = np.where(HKLFT[1]==0,np.squeeze(np.inner(HKLF[:,:3],mat31[nxs,:,:])).T,HKLFT[:3]) |
---|
1694 | elif Laue == '6 2 2': #ok |
---|
1695 | HKLFT[:3] = np.where(HKLFT[2]<0,np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T,HKLFT[:3]) |
---|
1696 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1697 | HKLFT[:3] = np.where((HKLFT[0]+HKLFT[1])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1698 | HKLFT[:3] = np.where(HKLFT[0]<0,np.squeeze(np.inner(HKLF[:,:3],mat6[nxs,:,:])).T,HKLFT[:3]) |
---|
1699 | HKLFT[:3] = np.where(HKLFT[1]==0,np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) |
---|
1700 | HKLFT[:3] = np.where((HKLFT[2]==0)&(HKLFT[0]>HKLFT[1]),np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) |
---|
1701 | elif Laue == '6 m m': #ok |
---|
1702 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1703 | HKLFT[:3] = np.where((HKLFT[0]+HKLFT[1])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1704 | HKLFT[:3] = np.where(HKLFT[0]<0,np.squeeze(np.inner(HKLF[:,:3],mat6[nxs,:,:])).T,HKLFT[:3]) |
---|
1705 | HKLFT[:3] = np.where(HKLFT[0]==0,np.squeeze(np.inner(HKLF[:,:3],mat6[nxs,:,:])).T,HKLFT[:3]) |
---|
1706 | HKLFT[:3] = np.where(HKLFT[0]>HKLFT[1],np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) |
---|
1707 | elif Laue == '-6 m 2': #ok |
---|
1708 | HKLFT[:3] = np.where(HKLFT[2]<0,np.squeeze(np.inner(HKLF[:,:3],matk2[nxs,:,:])).T,HKLFT[:3]) |
---|
1709 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1710 | HKLFT[:3] = np.where((HKLFT[0]+HKLFT[1])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1711 | HKLFT[:3] = np.where(HKLFT[1]==0,np.squeeze(np.inner(HKLF[:,:3],mat31[nxs,:,:])).T,HKLFT[:3]) |
---|
1712 | HKLFT[:3] = np.where(HKLFT[0]<0,np.squeeze(np.inner(HKLF[:,:3],matk2[nxs,:,:])).T,HKLFT[:3]) |
---|
1713 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1714 | elif Laue == '-6 2 m': #ok |
---|
1715 | HKLFT[:3] = np.where(HKLFT[2]<0,np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T,HKLFT[:3]) |
---|
1716 | HKLFT[:3] = np.where(HKLFT[0]<=-2*HKLFT[1],np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1717 | HKLFT[:3] = np.where(HKLFT[1]<-2*HKLFT[0],np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1718 | HKLFT[:3] = np.where(HKLFT[1]<HKLFT[0],np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T,HKLFT[:3]) |
---|
1719 | HKLFT[:3] = np.where((HKLFT[2]>0)&(HKLFT[1]==HKLFT[0]),np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T,HKLFT[:3]) |
---|
1720 | HKLFT[:3] = np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T |
---|
1721 | HKLFT[:3] = np.where(HKLFT[2]<0,np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T,HKLFT[:3]) |
---|
1722 | HKLFT[:3] = np.where(HKLFT[0]>HKLFT[1],np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) |
---|
1723 | #centrosymmetric |
---|
1724 | elif Laue == '6/m': #ok |
---|
1725 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1726 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1727 | HKLFT[:3] = np.where((HKLFT[0]+HKLFT[1])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1728 | HKLFT[:3] = np.where(HKLFT[0]<0,np.squeeze(np.inner(HKLF[:,:3],mat6[nxs,:,:])).T,HKLFT[:3]) |
---|
1729 | HKLFT[:3] = np.where(HKLFT[0]==0,np.squeeze(np.inner(HKLF[:,:3],mat6[nxs,:,:])).T,HKLFT[:3]) |
---|
1730 | elif Laue == '6/m m m': #ok |
---|
1731 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1732 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1733 | HKLFT[:3] = np.where((HKLFT[0]+HKLFT[1])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
1734 | HKLFT[:3] = np.where(HKLFT[0]<0,np.squeeze(np.inner(HKLF[:,:3],mat6[nxs,:,:])).T,HKLFT[:3]) |
---|
1735 | HKLFT[:3] = np.where(HKLFT[0]>HKLFT[1],np.squeeze(np.inner(HKLF[:,:3],matdm.T[nxs,:,:])).T,HKLFT[:3]) |
---|
1736 | #cubic - all ok |
---|
1737 | #noncentrosymmetric - |
---|
1738 | elif Laue == '2 3': |
---|
1739 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1740 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([1,-1,-1])[:,nxs],HKLFT[:3]) |
---|
1741 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1742 | HKLFT[:3] = np.where((HKLFT[1]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1743 | HKLFT[:3] = np.where((HKLFT[2]>=0)&((HKLFT[0]>=HKLFT[2])|(HKLFT[1]>HKLFT[2])),np.squeeze(np.inner(HKLF[:,:3],matd3[nxs,:,:])).T,HKLFT[:3]) |
---|
1744 | HKLFT[:3] = np.where((HKLFT[2]>=0)&((HKLFT[0]>=HKLFT[2])|(HKLFT[1]>HKLFT[2])),np.squeeze(np.inner(HKLF[:,:3],matd3[nxs,:,:])).T,HKLFT[:3]) |
---|
1745 | HKLFT[:3] = np.where((HKLFT[2]<0)&((HKLFT[0]>-HKLFT[2])|(HKLFT[1]>-HKLFT[2])),np.squeeze(np.inner(HKLF[:,:3],matd3t[nxs,:,:])).T,HKLFT[:3]) |
---|
1746 | HKLFT[:3] = np.where((HKLFT[2]<0)&((HKLFT[0]>-HKLFT[2])|(HKLFT[1]>=-HKLFT[2])),np.squeeze(np.inner(HKLF[:,:3],matd3t[nxs,:,:])).T,HKLFT[:3]) |
---|
1747 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([-1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1748 | elif Laue == '4 3 2': |
---|
1749 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,-1,-1])[:,nxs],HKLFT[:3]) |
---|
1750 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1751 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat43[nxs,:,:])).T,HKLFT[:3]) |
---|
1752 | HKLFT[:3] = np.where((HKLFT[2]==0)&(HKLFT[1]<HKLFT[0]),np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T,HKLFT[:3]) |
---|
1753 | HKLFT[:3] = np.where(HKLFT[0]==0,np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) #in lieu od 2-fold |
---|
1754 | HKLFT[:3] = np.where((HKLFT[0]>=HKLFT[2])|(HKLFT[1]>HKLFT[2]),np.squeeze(np.inner(HKLF[:,:3],matd3[nxs,:,:])).T,HKLFT[:3]) |
---|
1755 | HKLFT[:3] = np.where((HKLFT[0]>=HKLFT[2])|(HKLFT[1]>HKLFT[2]),np.squeeze(np.inner(HKLF[:,:3],matd3[nxs,:,:])).T,HKLFT[:3]) |
---|
1756 | HKLFT[:3] = np.where(HKLFT[1]==0,np.squeeze(np.inner(HKLF[:,:3],mat2d43[nxs,:,:])).T,HKLFT[:3]) |
---|
1757 | elif Laue == '-4 3 m': |
---|
1758 | HKLFT[:3] = np.where(HKLFT[0]<=0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1759 | HKLFT[:3] = np.where(HKLFT[0]<=0,np.squeeze(np.inner(HKLF[:,:3],mat4bar[nxs,:,:])).T,HKLFT[:3]) |
---|
1760 | HKLFT[:3] = np.where(HKLFT[0]<=0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1761 | HKLFT[:3] = np.where(HKLFT[1]<=0,np.squeeze(np.inner(HKLF[:,:3],mat4bar[nxs,:,:])).T,HKLFT[:3]) |
---|
1762 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[1]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1763 | HKLFT[:3] = np.where(HKLFT[1]<HKLFT[0],np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) |
---|
1764 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1765 | HKLFT[:3] = np.where((HKLFT[2]>=0)&((HKLFT[0]>=HKLFT[2])|(HKLFT[1]>HKLFT[2])),np.squeeze(np.inner(HKLF[:,:3],matd3[nxs,:,:])).T,HKLFT[:3]) |
---|
1766 | HKLFT[:3] = np.where((HKLFT[2]>=0)&((HKLFT[0]>=HKLFT[2])|(HKLFT[1]>HKLFT[2])),np.squeeze(np.inner(HKLF[:,:3],matd3[nxs,:,:])).T,HKLFT[:3]) |
---|
1767 | HKLFT[:3] = np.where((HKLFT[2]>=0)&(HKLFT[1]<HKLFT[0]),np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) |
---|
1768 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([-1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1769 | HKLFT[:3] = np.where((HKLFT[0]<0)&(HKLFT[2]<-HKLFT[0])&(HKLFT[1]>HKLFT[2]),np.squeeze(np.inner(HKLF[:,:3],matd3q[nxs,:,:])).T,HKLFT[:3]) |
---|
1770 | HKLFT[:3] = np.where((HKLFT[0]<0)&(HKLFT[2]>=-HKLFT[0])&(HKLFT[1]>HKLFT[2]),np.squeeze(np.inner(HKLF[:,:3],matdm3[nxs,:,:])).T,HKLFT[:3]) |
---|
1771 | #centrosymmetric |
---|
1772 | elif Laue == 'm 3': |
---|
1773 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,1,1])[:,nxs],HKLFT[:3]) |
---|
1774 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1775 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1776 | HKLFT[:3] = np.where((HKLFT[2]>=0)&((HKLFT[0]>=HKLFT[2])|(HKLFT[1]>HKLFT[2])),np.squeeze(np.inner(HKLF[:,:3],matd3[nxs,:,:])).T,HKLFT[:3]) |
---|
1777 | HKLFT[:3] = np.where((HKLFT[2]>=0)&((HKLFT[0]>=HKLFT[2])|(HKLFT[1]>HKLFT[2])),np.squeeze(np.inner(HKLF[:,:3],matd3[nxs,:,:])).T,HKLFT[:3]) |
---|
1778 | elif Laue == 'm 3 m': |
---|
1779 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,1,1])[:,nxs],HKLFT[:3]) |
---|
1780 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([1,-1,1])[:,nxs],HKLFT[:3]) |
---|
1781 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
1782 | HKLFT[:3] = np.where((HKLFT[2]>=0)&((HKLFT[0]>=HKLFT[2])|(HKLFT[1]>HKLFT[2])),np.squeeze(np.inner(HKLF[:,:3],matd3[nxs,:,:])).T,HKLFT[:3]) |
---|
1783 | HKLFT[:3] = np.where((HKLFT[2]>=0)&((HKLFT[0]>=HKLFT[2])|(HKLFT[1]>HKLFT[2])),np.squeeze(np.inner(HKLF[:,:3],matd3[nxs,:,:])).T,HKLFT[:3]) |
---|
1784 | HKLFT[:3] = np.where(HKLFT[0]>HKLFT[1],np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) |
---|
1785 | return HKLFT.T |
---|
1786 | |
---|
1787 | |
---|
1788 | #Spherical harmonics routines |
---|
1789 | def OdfChk(SGLaue,L,M): |
---|
1790 | 'needs doc string' |
---|
1791 | if not L%2 and abs(M) <= L: |
---|
1792 | if SGLaue == '0': #cylindrical symmetry |
---|
1793 | if M == 0: return True |
---|
1794 | elif SGLaue == '-1': |
---|
1795 | return True |
---|
1796 | elif SGLaue == '2/m': |
---|
1797 | if not abs(M)%2: return True |
---|
1798 | elif SGLaue == 'mmm': |
---|
1799 | if not abs(M)%2 and M >= 0: return True |
---|
1800 | elif SGLaue == '4/m': |
---|
1801 | if not abs(M)%4: return True |
---|
1802 | elif SGLaue == '4/mmm': |
---|
1803 | if not abs(M)%4 and M >= 0: return True |
---|
1804 | elif SGLaue in ['3R','3']: |
---|
1805 | if not abs(M)%3: return True |
---|
1806 | elif SGLaue in ['3mR','3m1','31m']: |
---|
1807 | if not abs(M)%3 and M >= 0: return True |
---|
1808 | elif SGLaue == '6/m': |
---|
1809 | if not abs(M)%6: return True |
---|
1810 | elif SGLaue == '6/mmm': |
---|
1811 | if not abs(M)%6 and M >= 0: return True |
---|
1812 | elif SGLaue == 'm3': |
---|
1813 | if M > 0: |
---|
1814 | if L%12 == 2: |
---|
1815 | if M <= L//12: return True |
---|
1816 | else: |
---|
1817 | if M <= L//12+1: return True |
---|
1818 | elif SGLaue == 'm3m': |
---|
1819 | if M > 0: |
---|
1820 | if L%12 == 2: |
---|
1821 | if M <= L//12: return True |
---|
1822 | else: |
---|
1823 | if M <= L//12+1: return True |
---|
1824 | return False |
---|
1825 | |
---|
1826 | def GenSHCoeff(SGLaue,SamSym,L,IfLMN=True): |
---|
1827 | 'needs doc string' |
---|
1828 | coeffNames = [] |
---|
1829 | for iord in [2*i+2 for i in range(L//2)]: |
---|
1830 | for m in [i-iord for i in range(2*iord+1)]: |
---|
1831 | if OdfChk(SamSym,iord,m): |
---|
1832 | for n in [i-iord for i in range(2*iord+1)]: |
---|
1833 | if OdfChk(SGLaue,iord,n): |
---|
1834 | if IfLMN: |
---|
1835 | coeffNames.append('C(%d,%d,%d)'%(iord,m,n)) |
---|
1836 | else: |
---|
1837 | coeffNames.append('C(%d,%d)'%(iord,n)) |
---|
1838 | return coeffNames |
---|
1839 | |
---|
1840 | def CrsAng(H,cell,SGData): |
---|
1841 | 'needs doc string' |
---|
1842 | a,b,c,al,be,ga = cell |
---|
1843 | SQ3 = 1.732050807569 |
---|
1844 | H1 = np.array([1,0,0]) |
---|
1845 | H2 = np.array([0,1,0]) |
---|
1846 | H3 = np.array([0,0,1]) |
---|
1847 | H4 = np.array([1,1,1]) |
---|
1848 | G,g = cell2Gmat(cell) |
---|
1849 | Laue = SGData['SGLaue'] |
---|
1850 | Naxis = SGData['SGUniq'] |
---|
1851 | if len(H.shape) == 1: |
---|
1852 | DH = np.inner(H,np.inner(G,H)) |
---|
1853 | else: |
---|
1854 | DH = np.array([np.inner(h,np.inner(G,h)) for h in H]) |
---|
1855 | if Laue == '2/m': |
---|
1856 | if Naxis == 'a': |
---|
1857 | DR = np.inner(H1,np.inner(G,H1)) |
---|
1858 | DHR = np.inner(H,np.inner(G,H1)) |
---|
1859 | elif Naxis == 'b': |
---|
1860 | DR = np.inner(H2,np.inner(G,H2)) |
---|
1861 | DHR = np.inner(H,np.inner(G,H2)) |
---|
1862 | else: |
---|
1863 | DR = np.inner(H3,np.inner(G,H3)) |
---|
1864 | DHR = np.inner(H,np.inner(G,H3)) |
---|
1865 | elif Laue in ['R3','R3m']: |
---|
1866 | DR = np.inner(H4,np.inner(G,H4)) |
---|
1867 | DHR = np.inner(H,np.inner(G,H4)) |
---|
1868 | else: |
---|
1869 | DR = np.inner(H3,np.inner(G,H3)) |
---|
1870 | DHR = np.inner(H,np.inner(G,H3)) |
---|
1871 | DHR /= np.sqrt(DR*DH) |
---|
1872 | phi = np.where(DHR <= 1.0,acosd(DHR),0.0) |
---|
1873 | if Laue == '-1': |
---|
1874 | BA = H.T[1]*a/(b-H.T[0]*cosd(ga)) |
---|
1875 | BB = H.T[0]*sind(ga)**2 |
---|
1876 | elif Laue == '2/m': |
---|
1877 | if Naxis == 'a': |
---|
1878 | BA = H.T[2]*b/(c-H.T[1]*cosd(al)) |
---|
1879 | BB = H.T[1]*sind(al)**2 |
---|
1880 | elif Naxis == 'b': |
---|
1881 | BA = H.T[0]*c/(a-H.T[2]*cosd(be)) |
---|
1882 | BB = H.T[2]*sind(be)**2 |
---|
1883 | else: |
---|
1884 | BA = H.T[1]*a/(b-H.T[0]*cosd(ga)) |
---|
1885 | BB = H.T[0]*sind(ga)**2 |
---|
1886 | elif Laue in ['mmm','4/m','4/mmm']: |
---|
1887 | BA = H.T[1]*a |
---|
1888 | BB = H.T[0]*b |
---|
1889 | elif Laue in ['3R','3mR']: |
---|
1890 | BA = H.T[0]+H.T[1]-2.0*H.T[2] |
---|
1891 | BB = SQ3*(H.T[0]-H.T[1]) |
---|
1892 | elif Laue in ['m3','m3m']: |
---|
1893 | BA = H.T[1] |
---|
1894 | BB = H.T[0] |
---|
1895 | else: |
---|
1896 | BA = H.T[0]+2.0*H.T[1] |
---|
1897 | BB = SQ3*H.T[0] |
---|
1898 | beta = atan2d(BA,BB) |
---|
1899 | return phi,beta |
---|
1900 | |
---|
1901 | def SamAng(Tth,Gangls,Sangl,IFCoup): |
---|
1902 | """Compute sample orientation angles vs laboratory coord. system |
---|
1903 | |
---|
1904 | :param Tth: Signed theta |
---|
1905 | :param Gangls: Sample goniometer angles phi,chi,omega,azmuth |
---|
1906 | :param Sangl: Sample angle zeros om-0, chi-0, phi-0 |
---|
1907 | :param IFCoup: True if omega & 2-theta coupled in CW scan |
---|
1908 | :returns: |
---|
1909 | psi,gam: Sample odf angles |
---|
1910 | dPSdA,dGMdA: Angle zero derivatives |
---|
1911 | """ |
---|
1912 | |
---|
1913 | if IFCoup: |
---|
1914 | GSomeg = sind(Gangls[2]+Tth) |
---|
1915 | GComeg = cosd(Gangls[2]+Tth) |
---|
1916 | else: |
---|
1917 | GSomeg = sind(Gangls[2]) |
---|
1918 | GComeg = cosd(Gangls[2]) |
---|
1919 | GSTth = sind(Tth) |
---|
1920 | GCTth = cosd(Tth) |
---|
1921 | GSazm = sind(Gangls[3]) |
---|
1922 | GCazm = cosd(Gangls[3]) |
---|
1923 | GSchi = sind(Gangls[1]) |
---|
1924 | GCchi = cosd(Gangls[1]) |
---|
1925 | GSphi = sind(Gangls[0]+Sangl[2]) |
---|
1926 | GCphi = cosd(Gangls[0]+Sangl[2]) |
---|
1927 | SSomeg = sind(Sangl[0]) |
---|
1928 | SComeg = cosd(Sangl[0]) |
---|
1929 | SSchi = sind(Sangl[1]) |
---|
1930 | SCchi = cosd(Sangl[1]) |
---|
1931 | AT = -GSTth*GComeg+GCTth*GCazm*GSomeg |
---|
1932 | BT = GSTth*GSomeg+GCTth*GCazm*GComeg |
---|
1933 | CT = -GCTth*GSazm*GSchi |
---|
1934 | DT = -GCTth*GSazm*GCchi |
---|
1935 | |
---|
1936 | BC1 = -AT*GSphi+(CT+BT*GCchi)*GCphi |
---|
1937 | BC2 = DT-BT*GSchi |
---|
1938 | BC3 = AT*GCphi+(CT+BT*GCchi)*GSphi |
---|
1939 | |
---|
1940 | BC = BC1*SComeg*SCchi+BC2*SComeg*SSchi-BC3*SSomeg |
---|
1941 | psi = acosd(BC) |
---|
1942 | |
---|
1943 | BD = 1.0-BC**2 |
---|
1944 | C = np.where(BD>1.e-6,rpd/np.sqrt(BD),0.) |
---|
1945 | dPSdA = [-C*(-BC1*SSomeg*SCchi-BC2*SSomeg*SSchi-BC3*SComeg), |
---|
1946 | -C*(-BC1*SComeg*SSchi+BC2*SComeg*SCchi), |
---|
1947 | -C*(-BC1*SSomeg-BC3*SComeg*SCchi)] |
---|
1948 | |
---|
1949 | BA = -BC1*SSchi+BC2*SCchi |
---|
1950 | BB = BC1*SSomeg*SCchi+BC2*SSomeg*SSchi+BC3*SComeg |
---|
1951 | gam = atan2d(BB,BA) |
---|
1952 | |
---|
1953 | BD = (BA**2+BB**2)/rpd |
---|
1954 | |
---|
1955 | dBAdO = 0 |
---|
1956 | dBAdC = -BC1*SCchi-BC2*SSchi |
---|
1957 | dBAdF = BC3*SSchi |
---|
1958 | |
---|
1959 | dBBdO = BC1*SComeg*SCchi+BC2*SComeg*SSchi-BC3*SSomeg |
---|
1960 | dBBdC = -BC1*SSomeg*SSchi+BC2*SSomeg*SCchi |
---|
1961 | dBBdF = BC1*SComeg-BC3*SSomeg*SCchi |
---|
1962 | |
---|
1963 | dGMdA = np.where(BD > 1.e-6,[(BA*dBBdO-BB*dBAdO)/BD,(BA*dBBdC-BB*dBAdC)/BD, \ |
---|
1964 | (BA*dBBdF-BB*dBAdF)/BD],[np.zeros_like(BD),np.zeros_like(BD),np.zeros_like(BD)]) |
---|
1965 | |
---|
1966 | return psi,gam,dPSdA,dGMdA |
---|
1967 | |
---|
1968 | BOH = { |
---|
1969 | 'L=2':[[],[],[]], |
---|
1970 | 'L=4':[[0.30469720,0.36418281],[],[]], |
---|
1971 | 'L=6':[[-0.14104740,0.52775103],[],[]], |
---|
1972 | 'L=8':[[0.28646862,0.21545346,0.32826995],[],[]], |
---|
1973 | 'L=10':[[-0.16413497,0.33078546,0.39371345],[],[]], |
---|
1974 | 'L=12':[[0.26141975,0.27266871,0.03277460,0.32589402], |
---|
1975 | [0.09298802,-0.23773812,0.49446631,0.0],[]], |
---|
1976 | 'L=14':[[-0.17557309,0.25821932,0.27709173,0.33645360],[],[]], |
---|
1977 | 'L=16':[[0.24370673,0.29873515,0.06447688,0.00377,0.32574495], |
---|
1978 | [0.12039646,-0.25330128,0.23950998,0.40962508,0.0],[]], |
---|
1979 | 'L=18':[[-0.16914245,0.17017340,0.34598142,0.07433932,0.32696037], |
---|
1980 | [-0.06901768,0.16006562,-0.24743528,0.47110273,0.0],[]], |
---|
1981 | 'L=20':[[0.23067026,0.31151832,0.09287682,0.01089683,0.00037564,0.32573563], |
---|
1982 | [0.13615420,-0.25048007,0.12882081,0.28642879,0.34620433,0.0],[]], |
---|
1983 | 'L=22':[[-0.16109560,0.10244188,0.36285175,0.13377513,0.01314399,0.32585583], |
---|
1984 | [-0.09620055,0.20244115,-0.22389483,0.17928946,0.42017231,0.0],[]], |
---|
1985 | 'L=24':[[0.22050742,0.31770654,0.11661736,0.02049853,0.00150861,0.00003426,0.32573505], |
---|
1986 | [0.13651722,-0.21386648,0.00522051,0.33939435,0.10837396,0.32914497,0.0], |
---|
1987 | [0.05378596,-0.11945819,0.16272298,-0.26449730,0.44923956,0.0,0.0]], |
---|
1988 | 'L=26':[[-0.15435003,0.05261630,0.35524646,0.18578869,0.03259103,0.00186197,0.32574594], |
---|
1989 | [-0.11306511,0.22072681,-0.18706142,0.05439948,0.28122966,0.35634355,0.0],[]], |
---|
1990 | 'L=28':[[0.21225019,0.32031716,0.13604702,0.03132468,0.00362703,0.00018294,0.00000294,0.32573501], |
---|
1991 | [0.13219496,-0.17206256,-0.08742608,0.32671661,0.17973107,0.02567515,0.32619598,0.0], |
---|
1992 | [0.07989184,-0.16735346,0.18839770,-0.20705337,0.12926808,0.42715602,0.0,0.0]], |
---|
1993 | 'L=30':[[-0.14878368,0.01524973,0.33628434,0.22632587,0.05790047,0.00609812,0.00022898,0.32573594], |
---|
1994 | [-0.11721726,0.20915005,-0.11723436,-0.07815329,0.31318947,0.13655742,0.33241385,0.0], |
---|
1995 | [-0.04297703,0.09317876,-0.11831248,0.17355132,-0.28164031,0.42719361,0.0,0.0]], |
---|
1996 | 'L=32':[[0.20533892,0.32087437,0.15187897,0.04249238,0.00670516,0.00054977,0.00002018,0.00000024,0.32573501], |
---|
1997 | [0.12775091,-0.13523423,-0.14935701,0.28227378,0.23670434,0.05661270,0.00469819,0.32578978,0.0], |
---|
1998 | [0.09703829,-0.19373733,0.18610682,-0.14407046,0.00220535,0.26897090,0.36633402,0.0,0.0]], |
---|
1999 | 'L=34':[[-0.14409234,-0.01343681,0.31248977,0.25557722,0.08571889,0.01351208,0.00095792,0.00002550,0.32573508], |
---|
2000 | [-0.11527834,0.18472133,-0.04403280,-0.16908618,0.27227021,0.21086614,0.04041752,0.32688152,0.0], |
---|
2001 | [-0.06773139,0.14120811,-0.15835721,0.18357456,-0.19364673,0.08377174,0.43116318,0.0,0.0]] |
---|
2002 | } |
---|
2003 | |
---|
2004 | Lnorm = lambda L: 4.*np.pi/(2.0*L+1.) |
---|
2005 | |
---|
2006 | def GetKcl(L,N,SGLaue,phi,beta): |
---|
2007 | 'needs doc string' |
---|
2008 | import pytexture as ptx |
---|
2009 | if SGLaue in ['m3','m3m']: |
---|
2010 | if 'array' in str(type(phi)) and np.any(phi.shape): |
---|
2011 | Kcl = np.zeros_like(phi) |
---|
2012 | else: |
---|
2013 | Kcl = 0. |
---|
2014 | for j in range(0,L+1,4): |
---|
2015 | im = j//4 |
---|
2016 | if 'array' in str(type(phi)) and np.any(phi.shape): |
---|
2017 | pcrs = ptx.pyplmpsi(L,j,len(phi),phi)[0] |
---|
2018 | else: |
---|
2019 | pcrs = ptx.pyplmpsi(L,j,1,phi)[0] |
---|
2020 | Kcl += BOH['L=%d'%(L)][N-1][im]*pcrs*cosd(j*beta) |
---|
2021 | else: |
---|
2022 | if 'array' in str(type(phi)) and np.any(phi.shape): |
---|
2023 | pcrs = ptx.pyplmpsi(L,N,len(phi),phi)[0] |
---|
2024 | else: |
---|
2025 | pcrs = ptx.pyplmpsi(L,N,1,phi)[0] |
---|
2026 | pcrs *= RSQ2PI |
---|
2027 | if N: |
---|
2028 | pcrs *= SQ2 |
---|
2029 | if SGLaue in ['mmm','4/mmm','6/mmm','R3mR','3m1','31m']: |
---|
2030 | if SGLaue in ['3mR','3m1','31m']: |
---|
2031 | if N%6 == 3: |
---|
2032 | Kcl = pcrs*sind(N*beta) |
---|
2033 | else: |
---|
2034 | Kcl = pcrs*cosd(N*beta) |
---|
2035 | else: |
---|
2036 | Kcl = pcrs*cosd(N*beta) |
---|
2037 | else: |
---|
2038 | Kcl = pcrs*(cosd(N*beta)+sind(N*beta)) |
---|
2039 | return Kcl |
---|
2040 | |
---|
2041 | def GetKsl(L,M,SamSym,psi,gam): |
---|
2042 | 'needs doc string' |
---|
2043 | import pytexture as ptx |
---|
2044 | if 'array' in str(type(psi)) and np.any(psi.shape): |
---|
2045 | psrs,dpdps = ptx.pyplmpsi(L,M,len(psi),psi) |
---|
2046 | else: |
---|
2047 | psrs,dpdps = ptx.pyplmpsi(L,M,1,psi) |
---|
2048 | psrs *= RSQ2PI |
---|
2049 | dpdps *= RSQ2PI |
---|
2050 | if M: |
---|
2051 | psrs *= SQ2 |
---|
2052 | dpdps *= SQ2 |
---|
2053 | if SamSym in ['mmm',]: |
---|
2054 | dum = cosd(M*gam) |
---|
2055 | Ksl = psrs*dum |
---|
2056 | dKsdp = dpdps*dum |
---|
2057 | dKsdg = -psrs*M*sind(M*gam) |
---|
2058 | else: |
---|
2059 | dum = cosd(M*gam)+sind(M*gam) |
---|
2060 | Ksl = psrs*dum |
---|
2061 | dKsdp = dpdps*dum |
---|
2062 | dKsdg = psrs*M*(-sind(M*gam)+cosd(M*gam)) |
---|
2063 | return Ksl,dKsdp,dKsdg |
---|
2064 | |
---|
2065 | def GetKclKsl(L,N,SGLaue,psi,phi,beta): |
---|
2066 | """ |
---|
2067 | This is used for spherical harmonics description of preferred orientation; |
---|
2068 | cylindrical symmetry only (M=0) and no sample angle derivatives returned |
---|
2069 | """ |
---|
2070 | import pytexture as ptx |
---|
2071 | Ksl,x = ptx.pyplmpsi(L,0,1,psi) |
---|
2072 | Ksl *= RSQ2PI |
---|
2073 | if SGLaue in ['m3','m3m']: |
---|
2074 | Kcl = 0.0 |
---|
2075 | for j in range(0,L+1,4): |
---|
2076 | im = j//4 |
---|
2077 | pcrs,dum = ptx.pyplmpsi(L,j,1,phi) |
---|
2078 | Kcl += BOH['L=%d'%(L)][N-1][im]*pcrs*cosd(j*beta) |
---|
2079 | else: |
---|
2080 | pcrs,dum = ptx.pyplmpsi(L,N,1,phi) |
---|
2081 | pcrs *= RSQ2PI |
---|
2082 | if N: |
---|
2083 | pcrs *= SQ2 |
---|
2084 | if SGLaue in ['mmm','4/mmm','6/mmm','R3mR','3m1','31m']: |
---|
2085 | if SGLaue in ['3mR','3m1','31m']: |
---|
2086 | if N%6 == 3: |
---|
2087 | Kcl = pcrs*sind(N*beta) |
---|
2088 | else: |
---|
2089 | Kcl = pcrs*cosd(N*beta) |
---|
2090 | else: |
---|
2091 | Kcl = pcrs*cosd(N*beta) |
---|
2092 | else: |
---|
2093 | Kcl = pcrs*(cosd(N*beta)+sind(N*beta)) |
---|
2094 | return Kcl*Ksl,Lnorm(L) |
---|
2095 | |
---|
2096 | def Glnh(Start,SHCoef,psi,gam,SamSym): |
---|
2097 | 'needs doc string' |
---|
2098 | import pytexture as ptx |
---|
2099 | |
---|
2100 | if Start: |
---|
2101 | ptx.pyqlmninit() |
---|
2102 | Start = False |
---|
2103 | Fln = np.zeros(len(SHCoef)) |
---|
2104 | for i,term in enumerate(SHCoef): |
---|
2105 | l,m,n = eval(term.strip('C')) |
---|
2106 | pcrs,dum = ptx.pyplmpsi(l,m,1,psi) |
---|
2107 | pcrs *= RSQPI |
---|
2108 | if m == 0: |
---|
2109 | pcrs /= SQ2 |
---|
2110 | if SamSym in ['mmm',]: |
---|
2111 | Ksl = pcrs*cosd(m*gam) |
---|
2112 | else: |
---|
2113 | Ksl = pcrs*(cosd(m*gam)+sind(m*gam)) |
---|
2114 | Fln[i] = SHCoef[term]*Ksl*Lnorm(l) |
---|
2115 | ODFln = dict(zip(SHCoef.keys(),list(zip(SHCoef.values(),Fln)))) |
---|
2116 | return ODFln |
---|
2117 | |
---|
2118 | def Flnh(Start,SHCoef,phi,beta,SGData): |
---|
2119 | 'needs doc string' |
---|
2120 | import pytexture as ptx |
---|
2121 | |
---|
2122 | if Start: |
---|
2123 | ptx.pyqlmninit() |
---|
2124 | Start = False |
---|
2125 | Fln = np.zeros(len(SHCoef)) |
---|
2126 | for i,term in enumerate(SHCoef): |
---|
2127 | l,m,n = eval(term.strip('C')) |
---|
2128 | if SGData['SGLaue'] in ['m3','m3m']: |
---|
2129 | Kcl = 0.0 |
---|
2130 | for j in range(0,l+1,4): |
---|
2131 | im = j//4 |
---|
2132 | pcrs,dum = ptx.pyplmpsi(l,j,1,phi) |
---|
2133 | Kcl += BOH['L='+str(l)][n-1][im]*pcrs*cosd(j*beta) |
---|
2134 | else: #all but cubic |
---|
2135 | pcrs,dum = ptx.pyplmpsi(l,n,1,phi) |
---|
2136 | pcrs *= RSQPI |
---|
2137 | if n == 0: |
---|
2138 | pcrs /= SQ2 |
---|
2139 | if SGData['SGLaue'] in ['mmm','4/mmm','6/mmm','R3mR','3m1','31m']: |
---|
2140 | if SGData['SGLaue'] in ['3mR','3m1','31m']: |
---|
2141 | if n%6 == 3: |
---|
2142 | Kcl = pcrs*sind(n*beta) |
---|
2143 | else: |
---|
2144 | Kcl = pcrs*cosd(n*beta) |
---|
2145 | else: |
---|
2146 | Kcl = pcrs*cosd(n*beta) |
---|
2147 | else: |
---|
2148 | Kcl = pcrs*(cosd(n*beta)+sind(n*beta)) |
---|
2149 | Fln[i] = SHCoef[term]*Kcl*Lnorm(l) |
---|
2150 | ODFln = dict(zip(SHCoef.keys(),list(zip(SHCoef.values(),Fln)))) |
---|
2151 | return ODFln |
---|
2152 | |
---|
2153 | def polfcal(ODFln,SamSym,psi,gam): |
---|
2154 | '''Perform a pole figure computation. |
---|
2155 | Note that the the number of gam values must either be 1 or must |
---|
2156 | match psi. Updated for numpy 1.8.0 |
---|
2157 | ''' |
---|
2158 | import pytexture as ptx |
---|
2159 | PolVal = np.ones_like(psi) |
---|
2160 | for term in ODFln: |
---|
2161 | if abs(ODFln[term][1]) > 1.e-3: |
---|
2162 | l,m,n = eval(term.strip('C')) |
---|
2163 | psrs,dum = ptx.pyplmpsi(l,m,len(psi),psi) |
---|
2164 | if SamSym in ['-1','2/m']: |
---|
2165 | if m: |
---|
2166 | Ksl = RSQPI*psrs*(cosd(m*gam)+sind(m*gam)) |
---|
2167 | else: |
---|
2168 | Ksl = RSQPI*psrs/SQ2 |
---|
2169 | else: |
---|
2170 | if m: |
---|
2171 | Ksl = RSQPI*psrs*cosd(m*gam) |
---|
2172 | else: |
---|
2173 | Ksl = RSQPI*psrs/SQ2 |
---|
2174 | PolVal += ODFln[term][1]*Ksl |
---|
2175 | return PolVal |
---|
2176 | |
---|
2177 | def invpolfcal(ODFln,SGData,phi,beta): |
---|
2178 | 'needs doc string' |
---|
2179 | import pytexture as ptx |
---|
2180 | |
---|
2181 | invPolVal = np.ones_like(beta) |
---|
2182 | for term in ODFln: |
---|
2183 | if abs(ODFln[term][1]) > 1.e-3: |
---|
2184 | l,m,n = eval(term.strip('C')) |
---|
2185 | if SGData['SGLaue'] in ['m3','m3m']: |
---|
2186 | Kcl = 0.0 |
---|
2187 | for j in range(0,l+1,4): |
---|
2188 | im = j//4 |
---|
2189 | pcrs,dum = ptx.pyplmpsi(l,j,len(beta),phi) |
---|
2190 | Kcl += BOH['L=%d'%(l)][n-1][im]*pcrs*cosd(j*beta) |
---|
2191 | else: #all but cubic |
---|
2192 | pcrs,dum = ptx.pyplmpsi(l,n,len(beta),phi) |
---|
2193 | pcrs *= RSQPI |
---|
2194 | if n == 0: |
---|
2195 | pcrs /= SQ2 |
---|
2196 | if SGData['SGLaue'] in ['mmm','4/mmm','6/mmm','R3mR','3m1','31m']: |
---|
2197 | if SGData['SGLaue'] in ['3mR','3m1','31m']: |
---|
2198 | if n%6 == 3: |
---|
2199 | Kcl = pcrs*sind(n*beta) |
---|
2200 | else: |
---|
2201 | Kcl = pcrs*cosd(n*beta) |
---|
2202 | else: |
---|
2203 | Kcl = pcrs*cosd(n*beta) |
---|
2204 | else: |
---|
2205 | Kcl = pcrs*(cosd(n*beta)+sind(n*beta)) |
---|
2206 | invPolVal += ODFln[term][1]*Kcl |
---|
2207 | return invPolVal |
---|
2208 | |
---|
2209 | |
---|
2210 | def textureIndex(SHCoef): |
---|
2211 | 'needs doc string' |
---|
2212 | Tindx = 1.0 |
---|
2213 | for term in SHCoef: |
---|
2214 | l = eval(term.strip('C'))[0] |
---|
2215 | Tindx += SHCoef[term]**2/(2.0*l+1.) |
---|
2216 | return Tindx |
---|
2217 | |
---|
2218 | # self-test materials follow. |
---|
2219 | selftestlist = [] |
---|
2220 | '''Defines a list of self-tests''' |
---|
2221 | selftestquiet = True |
---|
2222 | def _ReportTest(): |
---|
2223 | 'Report name and doc string of current routine when ``selftestquiet`` is False' |
---|
2224 | if not selftestquiet: |
---|
2225 | import inspect |
---|
2226 | caller = inspect.stack()[1][3] |
---|
2227 | doc = eval(caller).__doc__ |
---|
2228 | if doc is not None: |
---|
2229 | print('testing '+__file__+' with '+caller+' ('+doc+')') |
---|
2230 | else: |
---|
2231 | print('testing '+__file__()+" with "+caller) |
---|
2232 | NeedTestData = True |
---|
2233 | def TestData(): |
---|
2234 | array = np.array |
---|
2235 | global NeedTestData |
---|
2236 | NeedTestData = False |
---|
2237 | global CellTestData |
---|
2238 | # output from uctbx computed on platform darwin on 2010-05-28 |
---|
2239 | CellTestData = [ |
---|
2240 | # cell, g, G, cell*, V, V* |
---|
2241 | [(4, 4, 4, 90, 90, 90), |
---|
2242 | array([[ 1.60000000e+01, 9.79717439e-16, 9.79717439e-16], |
---|
2243 | [ 9.79717439e-16, 1.60000000e+01, 9.79717439e-16], |
---|
2244 | [ 9.79717439e-16, 9.79717439e-16, 1.60000000e+01]]), array([[ 6.25000000e-02, 3.82702125e-18, 3.82702125e-18], |
---|
2245 | [ 3.82702125e-18, 6.25000000e-02, 3.82702125e-18], |
---|
2246 | [ 3.82702125e-18, 3.82702125e-18, 6.25000000e-02]]), (0.25, 0.25, 0.25, 90.0, 90.0, 90.0), 64.0, 0.015625], |
---|
2247 | # cell, g, G, cell*, V, V* |
---|
2248 | [(4.0999999999999996, 5.2000000000000002, 6.2999999999999998, 100, 80, 130), |
---|
2249 | array([[ 16.81 , -13.70423184, 4.48533243], |
---|
2250 | [-13.70423184, 27.04 , -5.6887143 ], |
---|
2251 | [ 4.48533243, -5.6887143 , 39.69 ]]), array([[ 0.10206349, 0.05083339, -0.00424823], |
---|
2252 | [ 0.05083339, 0.06344997, 0.00334956], |
---|
2253 | [-0.00424823, 0.00334956, 0.02615544]]), (0.31947376387537696, 0.25189277536327803, 0.16172643497798223, 85.283666420376008, 94.716333579624006, 50.825714168082683), 100.98576357983838, 0.0099023858863968445], |
---|
2254 | # cell, g, G, cell*, V, V* |
---|
2255 | [(3.5, 3.5, 6, 90, 90, 120), |
---|
2256 | array([[ 1.22500000e+01, -6.12500000e+00, 1.28587914e-15], |
---|
2257 | [ -6.12500000e+00, 1.22500000e+01, 1.28587914e-15], |
---|
2258 | [ 1.28587914e-15, 1.28587914e-15, 3.60000000e+01]]), array([[ 1.08843537e-01, 5.44217687e-02, 3.36690552e-18], |
---|
2259 | [ 5.44217687e-02, 1.08843537e-01, 3.36690552e-18], |
---|
2260 | [ 3.36690552e-18, 3.36690552e-18, 2.77777778e-02]]), (0.32991443953692895, 0.32991443953692895, 0.16666666666666669, 90.0, 90.0, 60.000000000000021), 63.652867178156257, 0.015710211406520427], |
---|
2261 | ] |
---|
2262 | global CoordTestData |
---|
2263 | CoordTestData = [ |
---|
2264 | # cell, ((frac, ortho),...) |
---|
2265 | ((4,4,4,90,90,90,), [ |
---|
2266 | ((0.10000000000000001, 0.0, 0.0),(0.40000000000000002, 0.0, 0.0)), |
---|
2267 | ((0.0, 0.10000000000000001, 0.0),(2.4492935982947065e-17, 0.40000000000000002, 0.0)), |
---|
2268 | ((0.0, 0.0, 0.10000000000000001),(2.4492935982947065e-17, -2.4492935982947065e-17, 0.40000000000000002)), |
---|
2269 | ((0.10000000000000001, 0.20000000000000001, 0.29999999999999999),(0.40000000000000013, 0.79999999999999993, 1.2)), |
---|
2270 | ((0.20000000000000001, 0.29999999999999999, 0.10000000000000001),(0.80000000000000016, 1.2, 0.40000000000000002)), |
---|
2271 | ((0.29999999999999999, 0.20000000000000001, 0.10000000000000001),(1.2, 0.80000000000000004, 0.40000000000000002)), |
---|
2272 | ((0.5, 0.5, 0.5),(2.0, 1.9999999999999998, 2.0)), |
---|
2273 | ]), |
---|
2274 | # cell, ((frac, ortho),...) |
---|
2275 | ((4.1,5.2,6.3,100,80,130,), [ |
---|
2276 | ((0.10000000000000001, 0.0, 0.0),(0.40999999999999998, 0.0, 0.0)), |
---|
2277 | ((0.0, 0.10000000000000001, 0.0),(-0.33424955703700043, 0.39834311042186865, 0.0)), |
---|
2278 | ((0.0, 0.0, 0.10000000000000001),(0.10939835193016617, -0.051013289294572106, 0.6183281045774256)), |
---|
2279 | ((0.10000000000000001, 0.20000000000000001, 0.29999999999999999),(0.069695941716497567, 0.64364635296002093, 1.8549843137322766)), |
---|
2280 | ((0.20000000000000001, 0.29999999999999999, 0.10000000000000001),(-0.073350319180835066, 1.1440160419710339, 0.6183281045774256)), |
---|
2281 | ((0.29999999999999999, 0.20000000000000001, 0.10000000000000001),(0.67089923785616512, 0.74567293154916525, 0.6183281045774256)), |
---|
2282 | ((0.5, 0.5, 0.5),(0.92574397446582857, 1.7366491056364828, 3.0916405228871278)), |
---|
2283 | ]), |
---|
2284 | # cell, ((frac, ortho),...) |
---|
2285 | ((3.5,3.5,6,90,90,120,), [ |
---|
2286 | ((0.10000000000000001, 0.0, 0.0),(0.35000000000000003, 0.0, 0.0)), |
---|
2287 | ((0.0, 0.10000000000000001, 0.0),(-0.17499999999999993, 0.3031088913245536, 0.0)), |
---|
2288 | ((0.0, 0.0, 0.10000000000000001),(3.6739403974420595e-17, -3.6739403974420595e-17, 0.60000000000000009)), |
---|
2289 | ((0.10000000000000001, 0.20000000000000001, 0.29999999999999999),(2.7675166561703527e-16, 0.60621778264910708, 1.7999999999999998)), |
---|
2290 | ((0.20000000000000001, 0.29999999999999999, 0.10000000000000001),(0.17500000000000041, 0.90932667397366063, 0.60000000000000009)), |
---|
2291 | ((0.29999999999999999, 0.20000000000000001, 0.10000000000000001),(0.70000000000000018, 0.6062177826491072, 0.60000000000000009)), |
---|
2292 | ((0.5, 0.5, 0.5),(0.87500000000000067, 1.5155444566227676, 3.0)), |
---|
2293 | ]), |
---|
2294 | ] |
---|
2295 | global LaueTestData #generated by GSAS |
---|
2296 | LaueTestData = { |
---|
2297 | 'R 3 m':[(4.,4.,6.,90.,90.,120.),((1,0,1,6),(1,0,-2,6),(0,0,3,2),(1,1,0,6),(2,0,-1,6),(2,0,2,6), |
---|
2298 | (1,1,3,12),(1,0,4,6),(2,1,1,12),(2,1,-2,12),(3,0,0,6),(1,0,-5,6),(2,0,-4,6),(3,0,-3,6),(3,0,3,6), |
---|
2299 | (0,0,6,2),(2,2,0,6),(2,1,4,12),(2,0,5,6),(3,1,-1,12),(3,1,2,12),(1,1,6,12),(2,2,3,12),(2,1,-5,12))], |
---|
2300 | 'R 3':[(4.,4.,6.,90.,90.,120.),((1,0,1,6),(1,0,-2,6),(0,0,3,2),(1,1,0,6),(2,0,-1,6),(2,0,2,6),(1,1,3,6), |
---|
2301 | (1,1,-3,6),(1,0,4,6),(3,-1,1,6),(2,1,1,6),(3,-1,-2,6),(2,1,-2,6),(3,0,0,6),(1,0,-5,6),(2,0,-4,6), |
---|
2302 | (2,2,0,6),(3,0,3,6),(3,0,-3,6),(0,0,6,2),(3,-1,4,6),(2,0,5,6),(2,1,4,6),(4,-1,-1,6),(3,1,-1,6), |
---|
2303 | (3,1,2,6),(4,-1,2,6),(2,2,-3,6),(1,1,-6,6),(1,1,6,6),(2,2,3,6),(2,1,-5,6),(3,-1,-5,6))], |
---|
2304 | 'P 3':[(4.,4.,6.,90.,90.,120.),((0,0,1,2),(1,0,0,6),(1,0,1,6),(0,0,2,2),(1,0,-1,6),(1,0,2,6),(1,0,-2,6), |
---|
2305 | (1,1,0,6),(0,0,3,2),(1,1,1,6),(1,1,-1,6),(1,0,3,6),(1,0,-3,6),(2,0,0,6),(2,0,-1,6),(1,1,-2,6), |
---|
2306 | (1,1,2,6),(2,0,1,6),(2,0,-2,6),(2,0,2,6),(0,0,4,2),(1,1,-3,6),(1,1,3,6),(1,0,-4,6),(1,0,4,6), |
---|
2307 | (2,0,-3,6),(2,1,0,6),(2,0,3,6),(3,-1,0,6),(2,1,1,6),(3,-1,-1,6),(2,1,-1,6),(3,-1,1,6),(1,1,4,6), |
---|
2308 | (3,-1,2,6),(3,-1,-2,6),(1,1,-4,6),(0,0,5,2),(2,1,2,6),(2,1,-2,6),(3,0,0,6),(3,0,1,6),(2,0,4,6), |
---|
2309 | (2,0,-4,6),(3,0,-1,6),(1,0,-5,6),(1,0,5,6),(3,-1,-3,6),(2,1,-3,6),(2,1,3,6),(3,-1,3,6),(3,0,-2,6), |
---|
2310 | (3,0,2,6),(1,1,5,6),(1,1,-5,6),(2,2,0,6),(3,0,3,6),(3,0,-3,6),(0,0,6,2),(2,0,-5,6),(2,1,-4,6), |
---|
2311 | (2,2,-1,6),(3,-1,-4,6),(2,2,1,6),(3,-1,4,6),(2,1,4,6),(2,0,5,6),(1,0,-6,6),(1,0,6,6),(4,-1,0,6), |
---|
2312 | (3,1,0,6),(3,1,-1,6),(3,1,1,6),(4,-1,-1,6),(2,2,2,6),(4,-1,1,6),(2,2,-2,6),(3,1,2,6),(3,1,-2,6), |
---|
2313 | (3,0,4,6),(3,0,-4,6),(4,-1,-2,6),(4,-1,2,6),(2,2,-3,6),(1,1,6,6),(1,1,-6,6),(2,2,3,6),(3,-1,5,6), |
---|
2314 | (2,1,5,6),(2,1,-5,6),(3,-1,-5,6))], |
---|
2315 | 'P 3 m 1':[(4.,4.,6.,90.,90.,120.),((0,0,1,2),(1,0,0,6),(1,0,-1,6),(1,0,1,6),(0,0,2,2),(1,0,-2,6), |
---|
2316 | (1,0,2,6),(1,1,0,6),(0,0,3,2),(1,1,1,12),(1,0,-3,6),(1,0,3,6),(2,0,0,6),(1,1,2,12),(2,0,1,6), |
---|
2317 | (2,0,-1,6),(0,0,4,2),(2,0,-2,6),(2,0,2,6),(1,1,3,12),(1,0,-4,6),(1,0,4,6),(2,0,3,6),(2,1,0,12), |
---|
2318 | (2,0,-3,6),(2,1,1,12),(2,1,-1,12),(1,1,4,12),(2,1,2,12),(0,0,5,2),(2,1,-2,12),(3,0,0,6),(1,0,-5,6), |
---|
2319 | (3,0,1,6),(3,0,-1,6),(1,0,5,6),(2,0,4,6),(2,0,-4,6),(2,1,3,12),(2,1,-3,12),(3,0,-2,6),(3,0,2,6), |
---|
2320 | (1,1,5,12),(3,0,-3,6),(0,0,6,2),(2,2,0,6),(3,0,3,6),(2,1,4,12),(2,2,1,12),(2,0,5,6),(2,1,-4,12), |
---|
2321 | (2,0,-5,6),(1,0,-6,6),(1,0,6,6),(3,1,0,12),(3,1,-1,12),(3,1,1,12),(2,2,2,12),(3,1,2,12), |
---|
2322 | (3,0,4,6),(3,1,-2,12),(3,0,-4,6),(1,1,6,12),(2,2,3,12))], |
---|
2323 | 'P 3 1 m':[(4.,4.,6.,90.,90.,120.),((0,0,1,2),(1,0,0,6),(0,0,2,2),(1,0,1,12),(1,0,2,12),(1,1,0,6), |
---|
2324 | (0,0,3,2),(1,1,-1,6),(1,1,1,6),(1,0,3,12),(2,0,0,6),(2,0,1,12),(1,1,2,6),(1,1,-2,6),(2,0,2,12), |
---|
2325 | (0,0,4,2),(1,1,-3,6),(1,1,3,6),(1,0,4,12),(2,1,0,12),(2,0,3,12),(2,1,1,12),(2,1,-1,12),(1,1,-4,6), |
---|
2326 | (1,1,4,6),(0,0,5,2),(2,1,-2,12),(2,1,2,12),(3,0,0,6),(1,0,5,12),(2,0,4,12),(3,0,1,12),(2,1,-3,12), |
---|
2327 | (2,1,3,12),(3,0,2,12),(1,1,5,6),(1,1,-5,6),(3,0,3,12),(0,0,6,2),(2,2,0,6),(2,1,-4,12),(2,0,5,12), |
---|
2328 | (2,2,-1,6),(2,2,1,6),(2,1,4,12),(3,1,0,12),(1,0,6,12),(2,2,2,6),(3,1,-1,12),(2,2,-2,6),(3,1,1,12), |
---|
2329 | (3,1,-2,12),(3,0,4,12),(3,1,2,12),(1,1,-6,6),(2,2,3,6),(2,2,-3,6),(1,1,6,6))], |
---|
2330 | } |
---|
2331 | |
---|
2332 | global FLnhTestData |
---|
2333 | FLnhTestData = [{ |
---|
2334 | 'C(4,0,0)': (0.965, 0.42760447), |
---|
2335 | 'C(2,0,0)': (1.0122, -0.80233610), |
---|
2336 | 'C(2,0,2)': (0.0061, 8.37491546E-03), |
---|
2337 | 'C(6,0,4)': (-0.0898, 4.37985696E-02), |
---|
2338 | 'C(6,0,6)': (-0.1369, -9.04081762E-02), |
---|
2339 | 'C(6,0,0)': (0.5935, -0.18234928), |
---|
2340 | 'C(4,0,4)': (0.1872, 0.16358127), |
---|
2341 | 'C(6,0,2)': (0.6193, 0.27573633), |
---|
2342 | 'C(4,0,2)': (-0.1897, 0.12530720)},[1,0,0]] |
---|
2343 | def test0(): |
---|
2344 | if NeedTestData: TestData() |
---|
2345 | msg = 'test cell2Gmat, fillgmat, Gmat2cell' |
---|
2346 | for (cell, tg, tG, trcell, tV, trV) in CellTestData: |
---|
2347 | G, g = cell2Gmat(cell) |
---|
2348 | assert np.allclose(G,tG),msg |
---|
2349 | assert np.allclose(g,tg),msg |
---|
2350 | tcell = Gmat2cell(g) |
---|
2351 | assert np.allclose(cell,tcell),msg |
---|
2352 | tcell = Gmat2cell(G) |
---|
2353 | assert np.allclose(tcell,trcell),msg |
---|
2354 | if __name__ == '__main__': selftestlist.append(test0) |
---|
2355 | |
---|
2356 | def test1(): |
---|
2357 | 'test cell2A and A2Gmat' |
---|
2358 | _ReportTest() |
---|
2359 | if NeedTestData: TestData() |
---|
2360 | msg = 'test cell2A and A2Gmat' |
---|
2361 | for (cell, tg, tG, trcell, tV, trV) in CellTestData: |
---|
2362 | G, g = A2Gmat(cell2A(cell)) |
---|
2363 | assert np.allclose(G,tG),msg |
---|
2364 | assert np.allclose(g,tg),msg |
---|
2365 | if __name__ == '__main__': selftestlist.append(test1) |
---|
2366 | |
---|
2367 | def test2(): |
---|
2368 | 'test Gmat2A, A2cell, A2Gmat, Gmat2cell' |
---|
2369 | _ReportTest() |
---|
2370 | if NeedTestData: TestData() |
---|
2371 | msg = 'test Gmat2A, A2cell, A2Gmat, Gmat2cell' |
---|
2372 | for (cell, tg, tG, trcell, tV, trV) in CellTestData: |
---|
2373 | G, g = cell2Gmat(cell) |
---|
2374 | tcell = A2cell(Gmat2A(G)) |
---|
2375 | assert np.allclose(cell,tcell),msg |
---|
2376 | if __name__ == '__main__': selftestlist.append(test2) |
---|
2377 | |
---|
2378 | def test3(): |
---|
2379 | 'test invcell2Gmat' |
---|
2380 | _ReportTest() |
---|
2381 | if NeedTestData: TestData() |
---|
2382 | msg = 'test invcell2Gmat' |
---|
2383 | for (cell, tg, tG, trcell, tV, trV) in CellTestData: |
---|
2384 | G, g = invcell2Gmat(trcell) |
---|
2385 | assert np.allclose(G,tG),msg |
---|
2386 | assert np.allclose(g,tg),msg |
---|
2387 | if __name__ == '__main__': selftestlist.append(test3) |
---|
2388 | |
---|
2389 | def test4(): |
---|
2390 | 'test calc_rVsq, calc_rV, calc_V' |
---|
2391 | _ReportTest() |
---|
2392 | if NeedTestData: TestData() |
---|
2393 | msg = 'test calc_rVsq, calc_rV, calc_V' |
---|
2394 | for (cell, tg, tG, trcell, tV, trV) in CellTestData: |
---|
2395 | assert np.allclose(calc_rV(cell2A(cell)),trV), msg |
---|
2396 | assert np.allclose(calc_V(cell2A(cell)),tV), msg |
---|
2397 | if __name__ == '__main__': selftestlist.append(test4) |
---|
2398 | |
---|
2399 | def test5(): |
---|
2400 | 'test A2invcell' |
---|
2401 | _ReportTest() |
---|
2402 | if NeedTestData: TestData() |
---|
2403 | msg = 'test A2invcell' |
---|
2404 | for (cell, tg, tG, trcell, tV, trV) in CellTestData: |
---|
2405 | rcell = A2invcell(cell2A(cell)) |
---|
2406 | assert np.allclose(rcell,trcell),msg |
---|
2407 | if __name__ == '__main__': selftestlist.append(test5) |
---|
2408 | |
---|
2409 | def test6(): |
---|
2410 | 'test cell2AB' |
---|
2411 | _ReportTest() |
---|
2412 | if NeedTestData: TestData() |
---|
2413 | msg = 'test cell2AB' |
---|
2414 | for (cell,coordlist) in CoordTestData: |
---|
2415 | A,B = cell2AB(cell) |
---|
2416 | for (frac,ortho) in coordlist: |
---|
2417 | to = np.inner(A,frac) |
---|
2418 | tf = np.inner(B,to) |
---|
2419 | assert np.allclose(ortho,to), msg |
---|
2420 | assert np.allclose(frac,tf), msg |
---|
2421 | to = np.sum(A*frac,axis=1) |
---|
2422 | tf = np.sum(B*to,axis=1) |
---|
2423 | assert np.allclose(ortho,to), msg |
---|
2424 | assert np.allclose(frac,tf), msg |
---|
2425 | if __name__ == '__main__': selftestlist.append(test6) |
---|
2426 | |
---|
2427 | def test7(): |
---|
2428 | 'test GetBraviasNum(...) and GenHBravais(...)' |
---|
2429 | _ReportTest() |
---|
2430 | import os.path |
---|
2431 | import sys |
---|
2432 | import GSASIIspc as spc |
---|
2433 | testdir = os.path.join(os.path.split(os.path.abspath( __file__ ))[0],'testinp') |
---|
2434 | if os.path.exists(testdir): |
---|
2435 | if testdir not in sys.path: sys.path.insert(0,testdir) |
---|
2436 | import sgtbxlattinp |
---|
2437 | derror = 1e-4 |
---|
2438 | def indexmatch(hklin, hkllist, system): |
---|
2439 | for hklref in hkllist: |
---|
2440 | hklref = list(hklref) |
---|
2441 | # these permutations are far from complete, but are sufficient to |
---|
2442 | # allow the test to complete |
---|
2443 | if system == 'cubic': |
---|
2444 | permlist = [(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),] |
---|
2445 | elif system == 'monoclinic': |
---|
2446 | permlist = [(1,2,3),(-1,2,-3)] |
---|
2447 | else: |
---|
2448 | permlist = [(1,2,3)] |
---|
2449 | |
---|
2450 | for perm in permlist: |
---|
2451 | hkl = [abs(i) * hklin[abs(i)-1] / i for i in perm] |
---|
2452 | if hkl == hklref: return True |
---|
2453 | if [-i for i in hkl] == hklref: return True |
---|
2454 | else: |
---|
2455 | return False |
---|
2456 | |
---|
2457 | for key in sgtbxlattinp.sgtbx7: |
---|
2458 | spdict = spc.SpcGroup(key) |
---|
2459 | cell = sgtbxlattinp.sgtbx7[key][0] |
---|
2460 | system = spdict[1]['SGSys'] |
---|
2461 | center = spdict[1]['SGLatt'] |
---|
2462 | |
---|
2463 | bravcode = GetBraviasNum(center, system) |
---|
2464 | |
---|
2465 | g2list = GenHBravais(sgtbxlattinp.dmin, bravcode, cell2A(cell)) |
---|
2466 | |
---|
2467 | assert len(sgtbxlattinp.sgtbx7[key][1]) == len(g2list), 'Reflection lists differ for %s' % key |
---|
2468 | for h,k,l,d,num in g2list: |
---|
2469 | for hkllist,dref in sgtbxlattinp.sgtbx7[key][1]: |
---|
2470 | if abs(d-dref) < derror: |
---|
2471 | if indexmatch((h,k,l,), hkllist, system): |
---|
2472 | break |
---|
2473 | else: |
---|
2474 | assert 0,'No match for %s at %s (%s)' % ((h,k,l),d,key) |
---|
2475 | if __name__ == '__main__': selftestlist.append(test7) |
---|
2476 | |
---|
2477 | def test8(): |
---|
2478 | 'test GenHLaue' |
---|
2479 | _ReportTest() |
---|
2480 | import GSASIIspc as spc |
---|
2481 | import sgtbxlattinp |
---|
2482 | derror = 1e-4 |
---|
2483 | dmin = sgtbxlattinp.dmin |
---|
2484 | |
---|
2485 | def indexmatch(hklin, hklref, system, axis): |
---|
2486 | # these permutations are far from complete, but are sufficient to |
---|
2487 | # allow the test to complete |
---|
2488 | if system == 'cubic': |
---|
2489 | permlist = [(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),] |
---|
2490 | elif system == 'monoclinic' and axis=='b': |
---|
2491 | permlist = [(1,2,3),(-1,2,-3)] |
---|
2492 | elif system == 'monoclinic' and axis=='a': |
---|
2493 | permlist = [(1,2,3),(1,-2,-3)] |
---|
2494 | elif system == 'monoclinic' and axis=='c': |
---|
2495 | permlist = [(1,2,3),(-1,-2,3)] |
---|
2496 | elif system == 'trigonal': |
---|
2497 | permlist = [(1,2,3),(2,1,3),(-1,-2,3),(-2,-1,3)] |
---|
2498 | elif system == 'rhombohedral': |
---|
2499 | permlist = [(1,2,3),(2,3,1),(3,1,2)] |
---|
2500 | else: |
---|
2501 | permlist = [(1,2,3)] |
---|
2502 | |
---|
2503 | hklref = list(hklref) |
---|
2504 | for perm in permlist: |
---|
2505 | hkl = [abs(i) * hklin[abs(i)-1] / i for i in perm] |
---|
2506 | if hkl == hklref: return True |
---|
2507 | if [-i for i in hkl] == hklref: return True |
---|
2508 | return False |
---|
2509 | |
---|
2510 | for key in sgtbxlattinp.sgtbx8: |
---|
2511 | spdict = spc.SpcGroup(key)[1] |
---|
2512 | cell = sgtbxlattinp.sgtbx8[key][0] |
---|
2513 | Axis = spdict['SGUniq'] |
---|
2514 | system = spdict['SGSys'] |
---|
2515 | |
---|
2516 | g2list = GenHLaue(dmin,spdict,cell2A(cell)) |
---|
2517 | #if len(g2list) != len(sgtbxlattinp.sgtbx8[key][1]): |
---|
2518 | # print 'failed',key,':' ,len(g2list),'vs',len(sgtbxlattinp.sgtbx8[key][1]) |
---|
2519 | # print 'GSAS-II:' |
---|
2520 | # for h,k,l,d in g2list: print ' ',(h,k,l),d |
---|
2521 | # print 'SGTBX:' |
---|
2522 | # for hkllist,dref in sgtbxlattinp.sgtbx8[key][1]: print ' ',hkllist,dref |
---|
2523 | assert len(g2list) == len(sgtbxlattinp.sgtbx8[key][1]), ( |
---|
2524 | 'Reflection lists differ for %s' % key |
---|
2525 | ) |
---|
2526 | #match = True |
---|
2527 | for h,k,l,d in g2list: |
---|
2528 | for hkllist,dref in sgtbxlattinp.sgtbx8[key][1]: |
---|
2529 | if abs(d-dref) < derror: |
---|
2530 | if indexmatch((h,k,l,), hkllist, system, Axis): break |
---|
2531 | else: |
---|
2532 | assert 0,'No match for %s at %s (%s)' % ((h,k,l),d,key) |
---|
2533 | #match = False |
---|
2534 | #if not match: |
---|
2535 | #for hkllist,dref in sgtbxlattinp.sgtbx8[key][1]: print ' ',hkllist,dref |
---|
2536 | #print center, Laue, Axis, system |
---|
2537 | if __name__ == '__main__': selftestlist.append(test8) |
---|
2538 | |
---|
2539 | def test9(): |
---|
2540 | 'test GenHLaue' |
---|
2541 | _ReportTest() |
---|
2542 | import GSASIIspc as G2spc |
---|
2543 | if NeedTestData: TestData() |
---|
2544 | for spc in LaueTestData: |
---|
2545 | data = LaueTestData[spc] |
---|
2546 | cell = data[0] |
---|
2547 | hklm = np.array(data[1]) |
---|
2548 | H = hklm[-1][:3] |
---|
2549 | hklO = hklm.T[:3].T |
---|
2550 | A = cell2A(cell) |
---|
2551 | dmin = 1./np.sqrt(calc_rDsq(H,A)) |
---|
2552 | SGData = G2spc.SpcGroup(spc)[1] |
---|
2553 | hkls = np.array(GenHLaue(dmin,SGData,A)) |
---|
2554 | hklN = hkls.T[:3].T |
---|
2555 | #print spc,hklO.shape,hklN.shape |
---|
2556 | err = True |
---|
2557 | for H in hklO: |
---|
2558 | if H not in hklN: |
---|
2559 | print ('%d %s'%(H,' missing from hkl from GSASII')) |
---|
2560 | err = False |
---|
2561 | assert(err) |
---|
2562 | if __name__ == '__main__': selftestlist.append(test9) |
---|
2563 | |
---|
2564 | |
---|
2565 | |
---|
2566 | |
---|
2567 | if __name__ == '__main__': |
---|
2568 | # run self-tests |
---|
2569 | selftestquiet = False |
---|
2570 | for test in selftestlist: |
---|
2571 | test() |
---|
2572 | print ("OK") |
---|