[762] | 1 | # -*- coding: utf-8 -*- |
---|
[939] | 2 | ''' |
---|
| 3 | *GSASIIlattice: Unit cells* |
---|
| 4 | --------------------------- |
---|
| 5 | |
---|
[989] | 6 | Perform lattice-related computations |
---|
| 7 | |
---|
[3720] | 8 | Note that *G* is the reciprocal lattice tensor, and *g* is its inverse, |
---|
[989] | 9 | :math:`G = g^{-1}`, where |
---|
| 10 | |
---|
| 11 | .. math:: |
---|
| 12 | |
---|
[3720] | 13 | g = \\left( \\begin{matrix} |
---|
[4885] | 14 | a^2 & a b\\cos\\gamma & a c\\cos\\beta \\\\ |
---|
| 15 | a b\\cos\\gamma & b^2 & b c \\cos\\alpha \\\\ |
---|
[989] | 16 | a c\\cos\\beta & b c \\cos\\alpha & c^2 |
---|
| 17 | \\end{matrix}\\right) |
---|
| 18 | |
---|
| 19 | The "*A* tensor" terms are defined as |
---|
| 20 | :math:`A = (\\begin{matrix} G_{11} & G_{22} & G_{33} & 2G_{12} & 2G_{13} & 2G_{23}\\end{matrix})` and *A* can be used in this fashion: |
---|
[4818] | 21 | :math:`d^* = \\sqrt {A_0 h^2 + A_1 k^2 + A_2 l^2 + A_3 hk + A_4 hl + A_5 kl}`, where |
---|
[989] | 22 | *d* is the d-spacing, and :math:`d^*` is the reciprocal lattice spacing, |
---|
[4421] | 23 | :math:`Q = 2 \\pi d^* = 2 \\pi / d`. |
---|
[4636] | 24 | Note that GSAS-II variables ``p::Ai`` (i = 0, 1,... 5) and ``p`` is a phase number are |
---|
[4421] | 25 | used for the *Ai* values. See :func:`A2cell`, :func:`cell2A` for interconversion between A and |
---|
| 26 | unit cell parameters; :func:`cell2Gmat` :func:`Gmat2cell` for G and cell parameters. |
---|
| 27 | |
---|
| 28 | When the hydrostatic/elastic strain coefficients (*Dij*, :math:`D_{ij}`) are used, they are added to the |
---|
| 29 | *A* tensor terms (Ai, :math:`A_{i}`) so that A is redefined |
---|
[5038] | 30 | :math:`A = (\\begin{matrix} A_{0} + D_{11} & A_{1} + D_{22} & A_{2} + D_{33} & A_{3} + D_{12} & A_{4} + D_{13} & A_{5} + D_{23}\\end{matrix})`. See :func:`cellDijFill`. |
---|
[4636] | 31 | Note that GSAS-II variables ``p:h:Dij`` (i,j = 1, 2, 3) and ``p`` is a phase number |
---|
[4421] | 32 | and ``h`` a histogram number are used for the *Dij* values. |
---|
[989] | 33 | ''' |
---|
[762] | 34 | ########### SVN repository information ################### |
---|
| 35 | # $Date: 2022-01-27 18:16:54 +0000 (Thu, 27 Jan 2022) $ |
---|
| 36 | # $Author: toby $ |
---|
| 37 | # $Revision: 5162 $ |
---|
| 38 | # $URL: trunk/GSASIIlattice.py $ |
---|
| 39 | # $Id: GSASIIlattice.py 5162 2022-01-27 18:16:54Z toby $ |
---|
| 40 | ########### SVN repository information ################### |
---|
[3136] | 41 | from __future__ import division, print_function |
---|
[762] | 42 | import math |
---|
[4248] | 43 | import time |
---|
[2212] | 44 | import copy |
---|
| 45 | import sys |
---|
| 46 | import random as ran |
---|
[762] | 47 | import numpy as np |
---|
| 48 | import numpy.linalg as nl |
---|
[1046] | 49 | import GSASIIpath |
---|
[1372] | 50 | import GSASIImath as G2mth |
---|
[1594] | 51 | import GSASIIspc as G2spc |
---|
[2481] | 52 | import GSASIIElem as G2elem |
---|
[1046] | 53 | GSASIIpath.SetVersionNumber("$Revision: 5162 $") |
---|
[762] | 54 | # trig functions in degrees |
---|
| 55 | sind = lambda x: np.sin(x*np.pi/180.) |
---|
| 56 | asind = lambda x: 180.*np.arcsin(x)/np.pi |
---|
| 57 | tand = lambda x: np.tan(x*np.pi/180.) |
---|
| 58 | atand = lambda x: 180.*np.arctan(x)/np.pi |
---|
| 59 | atan2d = lambda y,x: 180.*np.arctan2(y,x)/np.pi |
---|
| 60 | cosd = lambda x: np.cos(x*np.pi/180.) |
---|
| 61 | acosd = lambda x: 180.*np.arccos(x)/np.pi |
---|
| 62 | rdsq2d = lambda x,p: round(1.0/np.sqrt(x),p) |
---|
[4213] | 63 | try: # fails on doc build |
---|
| 64 | rpd = np.pi/180. |
---|
| 65 | RSQ2PI = 1./np.sqrt(2.*np.pi) |
---|
| 66 | SQ2 = np.sqrt(2.) |
---|
| 67 | RSQPI = 1./np.sqrt(np.pi) |
---|
| 68 | R2pisq = 1./(2.*np.pi**2) |
---|
| 69 | except TypeError: |
---|
| 70 | pass |
---|
[2126] | 71 | nxs = np.newaxis |
---|
[762] | 72 | |
---|
| 73 | def sec2HMS(sec): |
---|
| 74 | """Convert time in sec to H:M:S string |
---|
| 75 | |
---|
| 76 | :param sec: time in seconds |
---|
[939] | 77 | :return: H:M:S string (to nearest 100th second) |
---|
[762] | 78 | |
---|
| 79 | """ |
---|
[3136] | 80 | H = int(sec//3600) |
---|
| 81 | M = int(sec//60-H*60) |
---|
[762] | 82 | S = sec-3600*H-60*M |
---|
| 83 | return '%d:%2d:%.2f'%(H,M,S) |
---|
| 84 | |
---|
| 85 | def rotdMat(angle,axis=0): |
---|
| 86 | """Prepare rotation matrix for angle in degrees about axis(=0,1,2) |
---|
| 87 | |
---|
| 88 | :param angle: angle in degrees |
---|
| 89 | :param axis: axis (0,1,2 = x,y,z) about which for the rotation |
---|
| 90 | :return: rotation matrix - 3x3 numpy array |
---|
| 91 | |
---|
| 92 | """ |
---|
| 93 | if axis == 2: |
---|
| 94 | return np.array([[cosd(angle),-sind(angle),0],[sind(angle),cosd(angle),0],[0,0,1]]) |
---|
| 95 | elif axis == 1: |
---|
| 96 | return np.array([[cosd(angle),0,-sind(angle)],[0,1,0],[sind(angle),0,cosd(angle)]]) |
---|
| 97 | else: |
---|
| 98 | return np.array([[1,0,0],[0,cosd(angle),-sind(angle)],[0,sind(angle),cosd(angle)]]) |
---|
| 99 | |
---|
| 100 | def rotdMat4(angle,axis=0): |
---|
| 101 | """Prepare rotation matrix for angle in degrees about axis(=0,1,2) with scaling for OpenGL |
---|
| 102 | |
---|
| 103 | :param angle: angle in degrees |
---|
| 104 | :param axis: axis (0,1,2 = x,y,z) about which for the rotation |
---|
| 105 | :return: rotation matrix - 4x4 numpy array (last row/column for openGL scaling) |
---|
| 106 | |
---|
| 107 | """ |
---|
| 108 | Mat = rotdMat(angle,axis) |
---|
| 109 | return np.concatenate((np.concatenate((Mat,[[0],[0],[0]]),axis=1),[[0,0,0,1],]),axis=0) |
---|
| 110 | |
---|
| 111 | def fillgmat(cell): |
---|
| 112 | """Compute lattice metric tensor from unit cell constants |
---|
| 113 | |
---|
| 114 | :param cell: tuple with a,b,c,alpha, beta, gamma (degrees) |
---|
| 115 | :return: 3x3 numpy array |
---|
| 116 | |
---|
| 117 | """ |
---|
| 118 | a,b,c,alp,bet,gam = cell |
---|
| 119 | g = np.array([ |
---|
| 120 | [a*a, a*b*cosd(gam), a*c*cosd(bet)], |
---|
| 121 | [a*b*cosd(gam), b*b, b*c*cosd(alp)], |
---|
| 122 | [a*c*cosd(bet) ,b*c*cosd(alp), c*c]]) |
---|
| 123 | return g |
---|
| 124 | |
---|
| 125 | def cell2Gmat(cell): |
---|
| 126 | """Compute real and reciprocal lattice metric tensor from unit cell constants |
---|
| 127 | |
---|
| 128 | :param cell: tuple with a,b,c,alpha, beta, gamma (degrees) |
---|
| 129 | :return: reciprocal (G) & real (g) metric tensors (list of two numpy 3x3 arrays) |
---|
| 130 | |
---|
| 131 | """ |
---|
| 132 | g = fillgmat(cell) |
---|
| 133 | G = nl.inv(g) |
---|
| 134 | return G,g |
---|
| 135 | |
---|
| 136 | def A2Gmat(A,inverse=True): |
---|
[989] | 137 | """Fill real & reciprocal metric tensor (G) from A. |
---|
[762] | 138 | |
---|
[939] | 139 | :param A: reciprocal metric tensor elements as [G11,G22,G33,2*G12,2*G13,2*G23] |
---|
[949] | 140 | :param bool inverse: if True return both G and g; else just G |
---|
[762] | 141 | :return: reciprocal (G) & real (g) metric tensors (list of two numpy 3x3 arrays) |
---|
| 142 | |
---|
| 143 | """ |
---|
[2560] | 144 | G = np.array([ |
---|
[762] | 145 | [A[0], A[3]/2., A[4]/2.], |
---|
| 146 | [A[3]/2.,A[1], A[5]/2.], |
---|
[2560] | 147 | [A[4]/2.,A[5]/2., A[2]]]) |
---|
[762] | 148 | if inverse: |
---|
| 149 | g = nl.inv(G) |
---|
| 150 | return G,g |
---|
| 151 | else: |
---|
| 152 | return G |
---|
| 153 | |
---|
| 154 | def Gmat2A(G): |
---|
| 155 | """Extract A from reciprocal metric tensor (G) |
---|
| 156 | |
---|
| 157 | :param G: reciprocal maetric tensor (3x3 numpy array |
---|
| 158 | :return: A = [G11,G22,G33,2*G12,2*G13,2*G23] |
---|
| 159 | |
---|
| 160 | """ |
---|
| 161 | return [G[0][0],G[1][1],G[2][2],2.*G[0][1],2.*G[0][2],2.*G[1][2]] |
---|
| 162 | |
---|
| 163 | def cell2A(cell): |
---|
| 164 | """Obtain A = [G11,G22,G33,2*G12,2*G13,2*G23] from lattice parameters |
---|
| 165 | |
---|
| 166 | :param cell: [a,b,c,alpha,beta,gamma] (degrees) |
---|
| 167 | :return: G reciprocal metric tensor as 3x3 numpy array |
---|
| 168 | |
---|
| 169 | """ |
---|
| 170 | G,g = cell2Gmat(cell) |
---|
| 171 | return Gmat2A(G) |
---|
| 172 | |
---|
| 173 | def A2cell(A): |
---|
| 174 | """Compute unit cell constants from A |
---|
| 175 | |
---|
| 176 | :param A: [G11,G22,G33,2*G12,2*G13,2*G23] G - reciprocal metric tensor |
---|
| 177 | :return: a,b,c,alpha, beta, gamma (degrees) - lattice parameters |
---|
| 178 | |
---|
| 179 | """ |
---|
| 180 | G,g = A2Gmat(A) |
---|
| 181 | return Gmat2cell(g) |
---|
| 182 | |
---|
| 183 | def Gmat2cell(g): |
---|
| 184 | """Compute real/reciprocal lattice parameters from real/reciprocal metric tensor (g/G) |
---|
| 185 | The math works the same either way. |
---|
| 186 | |
---|
| 187 | :param g (or G): real (or reciprocal) metric tensor 3x3 array |
---|
| 188 | :return: a,b,c,alpha, beta, gamma (degrees) (or a*,b*,c*,alpha*,beta*,gamma* degrees) |
---|
| 189 | |
---|
| 190 | """ |
---|
| 191 | oldset = np.seterr('raise') |
---|
| 192 | a = np.sqrt(max(0,g[0][0])) |
---|
| 193 | b = np.sqrt(max(0,g[1][1])) |
---|
| 194 | c = np.sqrt(max(0,g[2][2])) |
---|
| 195 | alp = acosd(g[2][1]/(b*c)) |
---|
| 196 | bet = acosd(g[2][0]/(a*c)) |
---|
| 197 | gam = acosd(g[0][1]/(a*b)) |
---|
| 198 | np.seterr(**oldset) |
---|
| 199 | return a,b,c,alp,bet,gam |
---|
| 200 | |
---|
| 201 | def invcell2Gmat(invcell): |
---|
| 202 | """Compute real and reciprocal lattice metric tensor from reciprocal |
---|
| 203 | unit cell constants |
---|
| 204 | |
---|
| 205 | :param invcell: [a*,b*,c*,alpha*, beta*, gamma*] (degrees) |
---|
| 206 | :return: reciprocal (G) & real (g) metric tensors (list of two 3x3 arrays) |
---|
| 207 | |
---|
| 208 | """ |
---|
| 209 | G = fillgmat(invcell) |
---|
| 210 | g = nl.inv(G) |
---|
| 211 | return G,g |
---|
[3103] | 212 | |
---|
| 213 | def cellDijFill(pfx,phfx,SGData,parmDict): |
---|
| 214 | '''Returns the filled-out reciprocal cell (A) terms |
---|
| 215 | from the parameter dictionaries corrected for Dij. |
---|
| 216 | |
---|
| 217 | :param str pfx: parameter prefix ("n::", where n is a phase number) |
---|
| 218 | :param dict SGdata: a symmetry object |
---|
| 219 | :param dict parmDict: a dictionary of parameters |
---|
| 220 | |
---|
| 221 | :returns: A,sigA where each is a list of six terms with the A terms |
---|
| 222 | ''' |
---|
[5162] | 223 | if pfx+'D11' not in parmDict: |
---|
| 224 | return None |
---|
[3103] | 225 | if SGData['SGLaue'] in ['-1',]: |
---|
| 226 | A = [parmDict[pfx+'A0']+parmDict[phfx+'D11'],parmDict[pfx+'A1']+parmDict[phfx+'D22'], |
---|
| 227 | parmDict[pfx+'A2']+parmDict[phfx+'D33'], |
---|
| 228 | parmDict[pfx+'A3']+parmDict[phfx+'D12'],parmDict[pfx+'A4']+parmDict[phfx+'D13'], |
---|
| 229 | parmDict[pfx+'A5']+parmDict[phfx+'D23']] |
---|
| 230 | elif SGData['SGLaue'] in ['2/m',]: |
---|
| 231 | if SGData['SGUniq'] == 'a': |
---|
| 232 | A = [parmDict[pfx+'A0']+parmDict[phfx+'D11'],parmDict[pfx+'A1']+parmDict[phfx+'D22'], |
---|
| 233 | parmDict[pfx+'A2']+parmDict[phfx+'D33'],0,0,parmDict[pfx+'A5']+parmDict[phfx+'D23']] |
---|
| 234 | elif SGData['SGUniq'] == 'b': |
---|
| 235 | A = [parmDict[pfx+'A0']+parmDict[phfx+'D11'],parmDict[pfx+'A1']+parmDict[phfx+'D22'], |
---|
| 236 | parmDict[pfx+'A2']+parmDict[phfx+'D33'],0,parmDict[pfx+'A4']+parmDict[phfx+'D13'],0] |
---|
| 237 | else: |
---|
| 238 | A = [parmDict[pfx+'A0']+parmDict[phfx+'D11'],parmDict[pfx+'A1']+parmDict[phfx+'D22'], |
---|
| 239 | parmDict[pfx+'A2']+parmDict[phfx+'D33'],parmDict[pfx+'A3']+parmDict[phfx+'D12'],0,0] |
---|
| 240 | elif SGData['SGLaue'] in ['mmm',]: |
---|
| 241 | A = [parmDict[pfx+'A0']+parmDict[phfx+'D11'],parmDict[pfx+'A1']+parmDict[phfx+'D22'], |
---|
| 242 | parmDict[pfx+'A2']+parmDict[phfx+'D33'],0,0,0] |
---|
| 243 | elif SGData['SGLaue'] in ['4/m','4/mmm']: |
---|
| 244 | A = [parmDict[pfx+'A0']+parmDict[phfx+'D11'],parmDict[pfx+'A0']+parmDict[phfx+'D11'], |
---|
| 245 | parmDict[pfx+'A2']+parmDict[phfx+'D33'],0,0,0] |
---|
| 246 | elif SGData['SGLaue'] in ['6/m','6/mmm','3m1', '31m', '3']: |
---|
| 247 | A = [parmDict[pfx+'A0']+parmDict[phfx+'D11'],parmDict[pfx+'A0']+parmDict[phfx+'D11'], |
---|
| 248 | parmDict[pfx+'A2']+parmDict[phfx+'D33'],parmDict[pfx+'A0']+parmDict[phfx+'D11'],0,0] |
---|
| 249 | elif SGData['SGLaue'] in ['3R', '3mR']: |
---|
| 250 | A = [parmDict[pfx+'A0']+parmDict[phfx+'D11'],parmDict[pfx+'A0']+parmDict[phfx+'D11'], |
---|
| 251 | parmDict[pfx+'A0']+parmDict[phfx+'D11'], |
---|
| 252 | parmDict[pfx+'A3']+parmDict[phfx+'D23'],parmDict[pfx+'A3']+parmDict[phfx+'D23'], |
---|
| 253 | parmDict[pfx+'A3']+parmDict[phfx+'D23']] |
---|
| 254 | elif SGData['SGLaue'] in ['m3m','m3']: |
---|
| 255 | A = [parmDict[pfx+'A0']+parmDict[phfx+'D11'],parmDict[pfx+'A0']+parmDict[phfx+'D11'], |
---|
| 256 | parmDict[pfx+'A0']+parmDict[phfx+'D11'],0,0,0] |
---|
| 257 | return A |
---|
[5090] | 258 | |
---|
| 259 | def CellDijCorr(Cell,SGData,Data,hist): |
---|
| 260 | '''Returns the cell corrected for Dij values. |
---|
| 261 | |
---|
| 262 | :param list Cell: lattice parameters |
---|
| 263 | :param dict SGdata: a symmetry object |
---|
| 264 | :param dict Data: phase data structure; contains set of Dij values |
---|
| 265 | :param str hist: histogram name |
---|
| 266 | |
---|
| 267 | :returns: cell corrected for Dij values |
---|
| 268 | ''' |
---|
| 269 | A = cell2A(Cell) |
---|
| 270 | Dij = Data[hist]['HStrain'][0] |
---|
[5147] | 271 | newA = AplusDij(A,Dij,SGData) |
---|
| 272 | return A2cell(newA) |
---|
| 273 | |
---|
| 274 | def AplusDij(A,Dij,SGData): |
---|
| 275 | ''' returns the A corrected by Dij |
---|
| 276 | |
---|
| 277 | :param list A: reciprocal metric terms A0-A5 |
---|
| 278 | :param array Dij: unique Dij values as stored in Hstrain |
---|
| 279 | :param dict SGdata: a symmetry object |
---|
| 280 | |
---|
| 281 | :returns list newA: A corrected by Dij |
---|
| 282 | ''' |
---|
[5090] | 283 | if SGData['SGLaue'] in ['-1',]: |
---|
| 284 | newA = [A[0]+Dij[0],A[1]+Dij[1],A[2]+Dij[2],A[3]+Dij[3],A[4]+Dij[4],A[5]+Dij[5]] |
---|
| 285 | elif SGData['SGLaue'] in ['2/m',]: |
---|
| 286 | if SGData['SGUniq'] == 'a': |
---|
| 287 | newA = [A[0]+Dij[0],A[1]+Dij[1],A[2]+Dij[2],0,0,A[5]+Dij[3]] |
---|
| 288 | elif SGData['SGUniq'] == 'b': |
---|
[5105] | 289 | newA = [A[0]+Dij[0],A[1]+Dij[1],A[2]+Dij[2],0,A[4]+Dij[3],0] |
---|
[5090] | 290 | else: |
---|
| 291 | newA = [A[0]+Dij[0],A[1]+Dij[1],A[2]+Dij[2],A[3]+Dij[3],0,0] |
---|
| 292 | elif SGData['SGLaue'] in ['mmm',]: |
---|
| 293 | newA = [A[0]+Dij[0],A[1]+Dij[1],A[2]+Dij[2],0,0,0] |
---|
| 294 | elif SGData['SGLaue'] in ['4/m','4/mmm']: |
---|
| 295 | newA = [A[0]+Dij[0],A[0]+Dij[0],A[2]+Dij[1],0,0,0] |
---|
| 296 | elif SGData['SGLaue'] in ['6/m','6/mmm','3m1', '31m', '3']: |
---|
| 297 | newA = [A[0]+Dij[0],A[0]+Dij[0],A[2]+Dij[1],A[0]+Dij[0],0,0] |
---|
| 298 | elif SGData['SGLaue'] in ['3R', '3mR']: |
---|
| 299 | newA = [A[0]+Dij[0],A[0]+Dij[0],A[0]+Dij[0],A[3]+Dij[1],A[3]+Dij[1],A[3]+Dij[1]] |
---|
| 300 | elif SGData['SGLaue'] in ['m3m','m3']: |
---|
| 301 | newA = [A[0]+Dij[0],A[0]+Dij[0],A[0]+Dij[0],0,0,0] |
---|
[5147] | 302 | |
---|
| 303 | return newA |
---|
[2154] | 304 | |
---|
| 305 | def prodMGMT(G,Mat): |
---|
| 306 | '''Transform metric tensor by matrix |
---|
| 307 | |
---|
| 308 | :param G: array metric tensor |
---|
| 309 | :param Mat: array transformation matrix |
---|
| 310 | :return: array new metric tensor |
---|
| 311 | |
---|
| 312 | ''' |
---|
[3617] | 313 | return np.inner(np.inner(Mat,G),Mat) #right |
---|
| 314 | # return np.inner(Mat,np.inner(Mat,G)) #right |
---|
| 315 | # return np.inner(np.inner(G,Mat).T,Mat) #right |
---|
| 316 | # return np.inner(Mat,np.inner(G,Mat).T) #right |
---|
[2154] | 317 | |
---|
| 318 | def TransformCell(cell,Trans): |
---|
| 319 | '''Transform lattice parameters by matrix |
---|
| 320 | |
---|
| 321 | :param cell: list a,b,c,alpha,beta,gamma,(volume) |
---|
| 322 | :param Trans: array transformation matrix |
---|
| 323 | :return: array transformed a,b,c,alpha,beta,gamma,volume |
---|
| 324 | |
---|
| 325 | ''' |
---|
| 326 | newCell = np.zeros(7) |
---|
| 327 | g = cell2Gmat(cell)[1] |
---|
| 328 | newg = prodMGMT(g,Trans) |
---|
| 329 | newCell[:6] = Gmat2cell(newg) |
---|
| 330 | newCell[6] = calc_V(cell2A(newCell[:6])) |
---|
| 331 | return newCell |
---|
[4998] | 332 | |
---|
| 333 | # code to generate lattice constraint relationships between two phases |
---|
| 334 | # (chemical & magnetic) related by a transformation matrix. |
---|
| 335 | |
---|
| 336 | def symInner(M1,M2): |
---|
| 337 | '''Compute inner product of two square matrices with symbolic processing |
---|
| 338 | Use dot product because sympy does not define an inner product primitive |
---|
| 339 | |
---|
| 340 | This requires that M1 & M2 be two sympy objects, as created in |
---|
| 341 | GenerateCellConstraints(). |
---|
| 342 | |
---|
| 343 | Note that this is only used to do the symbolic math needed to generate |
---|
| 344 | cell relationships. It is not used normally in GSAS-II. |
---|
| 345 | ''' |
---|
| 346 | import sympy as sym |
---|
| 347 | prodOuter = [] |
---|
| 348 | for i in range(3): |
---|
| 349 | prod = [] |
---|
| 350 | for j in range(3): |
---|
| 351 | prod.append(M1[i,:].dot(M2[j,:])) |
---|
| 352 | prodOuter.append(prod) |
---|
| 353 | return sym.Matrix(prodOuter) |
---|
| 354 | |
---|
| 355 | def GenerateCellConstraints(): |
---|
| 356 | '''Generate unit cell constraints for transforming one set of A tensor |
---|
| 357 | values to another using symbolic math (requires the sympy package) |
---|
| 358 | |
---|
| 359 | Note that this is only used to do the symbolic math needed to generate |
---|
| 360 | cell relationships. It is not used normally in GSAS-II. |
---|
| 361 | ''' |
---|
| 362 | import sympy as sym |
---|
| 363 | # define A tensor for starting cell |
---|
| 364 | A0, A1, A2, A3, A4, A5 = sym.symbols('A0, A1, A2, A3, A4, A5') |
---|
| 365 | G = sym.Matrix([ [A0, A3/2., A4/2.], |
---|
| 366 | [A3/2., A1, A5/2.], |
---|
| 367 | [A4/2., A5/2., A2 ]] ) |
---|
| 368 | # define transformation matrix |
---|
| 369 | T00, T10, T20, T01, T11, T21, T02, T12, T22 = sym.symbols( |
---|
| 370 | 'T00, T10, T20, T01, T11, T21, T02, T12, T22') |
---|
| 371 | Tr = sym.Matrix([ [T00, T10, T20], [T01, T11, T21], [T02, T12, T22],]) |
---|
| 372 | # apply transform |
---|
| 373 | newG = symInner(symInner(Tr,G),Tr).expand() |
---|
| 374 | # define A tensor for converted cell |
---|
| 375 | return [newG[0,0],newG[1,1],newG[2,2],2.*newG[0,1],2.*newG[0,2],2.*newG[1,2]] |
---|
| 376 | |
---|
| 377 | def subVals(expr,A,T): |
---|
| 378 | '''Evaluate the symbolic expressions by substituting for A0-A5 & Tij |
---|
| 379 | |
---|
| 380 | This can be used on the cell relationships created in |
---|
| 381 | :func:`GenerateCellConstraints` like this:: |
---|
| 382 | |
---|
| 383 | Trans = np.array([ [2/3, 4/3, 1/3], [-1, 0, 0], [-1/3, -2/3, 1/3] ]) |
---|
| 384 | T = np.linalg.inv(Trans).T |
---|
| 385 | print([subVals(i,Aold,T) for i in GenerateCellConstraints()]) |
---|
| 386 | |
---|
| 387 | :param list expr: a list of sympy expressions. |
---|
| 388 | :param list A: This is the A* tensor as defined above. |
---|
| 389 | :param np.array T: a 3x3 transformation matrix where, |
---|
| 390 | Trans = np.array([ [2/3, 4/3, 1/3], [-1, 0, 0], [-1/3, -2/3, 1/3] ]) |
---|
| 391 | (for a' = 2/3a + 4/3b + 1/3c; b' = -a; c' = -1/3, -2/3, 1/3) |
---|
| 392 | then T = np.linalg.inv(Trans).T |
---|
| 393 | |
---|
| 394 | Note that this is only used to do the symbolic math needed to generate |
---|
| 395 | cell relationships. It is not used normally in GSAS-II. |
---|
| 396 | ''' |
---|
| 397 | import sympy as sym |
---|
| 398 | A0, A1, A2, A3, A4, A5 = sym.symbols('A0, A1, A2, A3, A4, A5') |
---|
| 399 | # transformation matrix |
---|
| 400 | T00, T10, T20, T01, T11, T21, T02, T12, T22 = sym.symbols( |
---|
| 401 | 'T00, T10, T20, T01, T11, T21, T02, T12, T22') |
---|
| 402 | vals = dict(zip([T00, T10, T20, T01, T11, T21, T02, T12, T22],T.ravel())) |
---|
| 403 | vals.update(dict(zip([A0, A1, A2, A3, A4, A5],A))) |
---|
| 404 | return float(expr.subs(vals)) |
---|
| 405 | |
---|
| 406 | # some sample test code using the routines above follows:: |
---|
| 407 | # Trans = np.array([ [2/3, 4/3, 1/3], [-1, 0, 0], [-1/3, -2/3, 1/3] ]) |
---|
| 408 | # Mat = np.linalg.inv(Trans).T |
---|
| 409 | # Aold = [0.05259986634758891, 0.05259986634758891, 0.005290771904550856, 0.052599866347588925, 0, 0] |
---|
| 410 | # Anew = [0.018440738491448085, 0.03944989976069168, 0.034313054205100654, 0, -0.00513684555559103, 0] |
---|
| 411 | # cellConstr = G2lat.GenerateCellConstraints() |
---|
| 412 | # calcA = [G2lat.subVals(i,Aold,Mat) for i in cellConstr] |
---|
| 413 | # print('original xform A',Anew) |
---|
| 414 | # print('calculated xfrom A',calcA) |
---|
| 415 | # print('input') |
---|
| 416 | # print(' old cell',G2lat.A2cell(Aold)) |
---|
| 417 | # print(' new cell',G2lat.A2cell(Anew)) |
---|
| 418 | # print('derived results') |
---|
| 419 | # print(' from eq.',G2lat.A2cell(calcA)) |
---|
| 420 | # print(' diffs ',np.array(G2lat.A2cell(calcA)) - G2lat.A2cell(Anew)) |
---|
| 421 | |
---|
| 422 | def fmtCellConstraints(cellConstr): |
---|
| 423 | '''Format the cell relationships created in :func:`GenerateCellConstraints` |
---|
| 424 | in a format that can be used to generate constraints. |
---|
| 425 | |
---|
| 426 | Use:: |
---|
| 427 | |
---|
| 428 | cXforms = G2lat.fmtCellConstraints(G2lat.GenerateCellConstraints()) |
---|
| 429 | |
---|
| 430 | Note that this is only used to do the symbolic math needed to generate |
---|
| 431 | cell relationships. It is not used normally in GSAS-II. |
---|
| 432 | ''' |
---|
| 433 | import re |
---|
| 434 | import sympy as sym |
---|
| 435 | A3, A4, A5 = sym.symbols('A3, A4, A5') |
---|
| 436 | consDict = {} |
---|
| 437 | for num,cons in enumerate(cellConstr): |
---|
| 438 | cons = str(cons.factor(A3,A4,A5,deep=True).simplify()) |
---|
| 439 | cons = re.sub('T([0-2]?)([0-2]?)',r'T[\2,\1]',cons) # Tij to T[j,i] |
---|
| 440 | l = [] |
---|
| 441 | for i in str(cons).split('+'): |
---|
| 442 | if ')' in i: |
---|
| 443 | l[-1] += ' + ' + i.strip() |
---|
| 444 | else: |
---|
| 445 | l.append(i.strip()) |
---|
| 446 | print("\nA'{} = ".format(num),str(cons)) |
---|
| 447 | consDict[num] = l |
---|
| 448 | return consDict |
---|
| 449 | |
---|
| 450 | cellXformRelations = {0: ['1.0*A0*T[0,0]**2', |
---|
| 451 | '1.0*A1*T[0,1]**2', |
---|
| 452 | '1.0*A2*T[0,2]**2', |
---|
| 453 | '1.0*A3*T[0,0]*T[0,1]', |
---|
| 454 | '1.0*A4*T[0,0]*T[0,2]', |
---|
| 455 | '1.0*A5*T[0,1]*T[0,2]'], |
---|
| 456 | 1: ['1.0*A0*T[1,0]**2', |
---|
| 457 | '1.0*A1*T[1,1]**2', |
---|
| 458 | '1.0*A2*T[1,2]**2', |
---|
| 459 | '1.0*A3*T[1,0]*T[1,1]', |
---|
| 460 | '1.0*A4*T[1,0]*T[1,2]', |
---|
| 461 | '1.0*A5*T[1,1]*T[1,2]'], |
---|
| 462 | 2: ['1.0*A0*T[2,0]**2', |
---|
| 463 | '1.0*A1*T[2,1]**2', |
---|
| 464 | '1.0*A2*T[2,2]**2', |
---|
| 465 | '1.0*A3*T[2,0]*T[2,1]', |
---|
| 466 | '1.0*A4*T[2,0]*T[2,2]', |
---|
| 467 | '1.0*A5*T[2,1]*T[2,2]'], |
---|
| 468 | 3: ['2.0*A0*T[0,0]*T[1,0]', |
---|
| 469 | '2.0*A1*T[0,1]*T[1,1]', |
---|
| 470 | '2.0*A2*T[0,2]*T[1,2]', |
---|
| 471 | '1.0*A3*(T[0,0]*T[1,1] + T[1,0]*T[0,1])', |
---|
| 472 | '1.0*A4*(T[0,0]*T[1,2] + T[1,0]*T[0,2])', |
---|
| 473 | '1.0*A5*(T[0,1]*T[1,2] + T[1,1]*T[0,2])'], |
---|
| 474 | 4: ['2.0*A0*T[0,0]*T[2,0]', |
---|
| 475 | '2.0*A1*T[0,1]*T[2,1]', |
---|
| 476 | '2.0*A2*T[0,2]*T[2,2]', |
---|
| 477 | '1.0*A3*(T[0,0]*T[2,1] + T[2,0]*T[0,1])', |
---|
| 478 | '1.0*A4*(T[0,0]*T[2,2] + T[2,0]*T[0,2])', |
---|
| 479 | '1.0*A5*(T[0,1]*T[2,2] + T[2,1]*T[0,2])'], |
---|
| 480 | 5: ['2.0*A0*T[1,0]*T[2,0]', |
---|
| 481 | '2.0*A1*T[1,1]*T[2,1]', |
---|
| 482 | '2.0*A2*T[1,2]*T[2,2]', |
---|
| 483 | '1.0*A3*(T[1,0]*T[2,1] + T[2,0]*T[1,1])', |
---|
| 484 | '1.0*A4*(T[1,0]*T[2,2] + T[2,0]*T[1,2])', |
---|
| 485 | '1.0*A5*(T[1,1]*T[2,2] + T[2,1]*T[1,2])']} |
---|
| 486 | |
---|
| 487 | '''cellXformRelations provide the constraints on newA[i] values for a new |
---|
| 488 | cell generated from oldA[i] values. |
---|
| 489 | ''' |
---|
| 490 | # cellXformRelations values were generated using:: |
---|
| 491 | # from GSASIIlattice import fmtCellConstraints,GenerateCellConstraints |
---|
| 492 | # cellXformRelations = fmtCellConstraints(GenerateCellConstraints()) |
---|
| 493 | |
---|
[5038] | 494 | def GenCellConstraints(Trans,origPhase,newPhase,origA,oSGLaue,nSGLaue,debug=False): |
---|
[4998] | 495 | '''Generate the constraints between two unit cells constants for a phase transformed |
---|
| 496 | by matrix Trans. |
---|
| 497 | |
---|
| 498 | :param np.array Trans: a 3x3 direct cell transformation matrix where, |
---|
| 499 | Trans = np.array([ [2/3, 4/3, 1/3], [-1, 0, 0], [-1/3, -2/3, 1/3] ]) |
---|
| 500 | (for a' = 2/3a + 4/3b + 1/3c; b' = -a; c' = -1/3, -2/3, 1/3) |
---|
| 501 | :param int origPhase: phase id (pId) for original phase |
---|
| 502 | :param int newPhase: phase id for the transformed phase to be constrained from |
---|
| 503 | original phase |
---|
[5038] | 504 | :param list origA: reciprocal cell ("A*") tensor (used for debug only) |
---|
| 505 | :param dict oSGLaue: space group info for original phase |
---|
| 506 | :param dict nSGLaue: space group info for transformed phase |
---|
[4998] | 507 | :param bool debug: If true, the constraint input is used to compute and print A* |
---|
| 508 | and from that the direct cell for the transformed phase. |
---|
| 509 | ''' |
---|
| 510 | import GSASIIobj as G2obj |
---|
| 511 | T = Mat = np.linalg.inv(Trans).T |
---|
| 512 | Anew = [] |
---|
| 513 | constrList = [] |
---|
[5038] | 514 | uniqueAnew = cellUnique(nSGLaue) |
---|
| 515 | zeroAorig = cellZeros(oSGLaue) |
---|
[4998] | 516 | for i in range(6): |
---|
| 517 | constr = [[-1.0,G2obj.G2VarObj('{}::A{}'.format(newPhase,i))]] |
---|
| 518 | mult = [] |
---|
| 519 | for j,item in enumerate(cellXformRelations[i]): |
---|
| 520 | const, aTerm, tTerm = item.split('*',2) |
---|
| 521 | const = float(const) * eval(tTerm) |
---|
[5038] | 522 | mult.append(const) |
---|
| 523 | # skip over A terms that are required to be zero |
---|
| 524 | if zeroAorig[int(aTerm[1])]: continue # only add non-zero terms |
---|
| 525 | # ignore terms where either the Transform contribution is zero [= abs() < 1e-8] |
---|
| 526 | # If the multiplier term is zero I don't think this accidental |
---|
| 527 | # but since it will not change there is no reason to include that |
---|
| 528 | # term in any case |
---|
| 529 | if abs(const) < 1e-8: continue |
---|
| 530 | constr.append([const,G2obj.G2VarObj('{}::{}'.format(origPhase,aTerm))]) |
---|
| 531 | if i in uniqueAnew: |
---|
| 532 | constrList.append(constr + [0.0,None,'c']) |
---|
[4998] | 533 | if debug: Anew.append(np.dot(origA,mult)) |
---|
| 534 | if debug: |
---|
| 535 | print('xformed A* ',Anew) |
---|
| 536 | print('xformed cell',A2cell(Anew)) |
---|
| 537 | return constrList |
---|
| 538 | |
---|
[5038] | 539 | def cellUnique(SGData): |
---|
| 540 | '''Returns the indices for the unique A tensor terms |
---|
| 541 | based on the Laue class. |
---|
| 542 | Any terms that are determined from others or are zero are not included. |
---|
| 543 | |
---|
| 544 | :param dict SGdata: a symmetry object |
---|
| 545 | :returns: a list of 0 to 6 terms with indices of the unique A terms |
---|
| 546 | ''' |
---|
| 547 | if SGData['SGLaue'] in ['-1',]: |
---|
| 548 | return [0,1,2,3,4,5] |
---|
| 549 | elif SGData['SGLaue'] in ['2/m',]: |
---|
| 550 | if SGData['SGUniq'] == 'a': |
---|
| 551 | return [0,1,2,5] |
---|
| 552 | elif SGData['SGUniq'] == 'b': |
---|
| 553 | return [0,1,2,4] |
---|
| 554 | else: |
---|
| 555 | return [0,1,2,3] |
---|
| 556 | elif SGData['SGLaue'] in ['mmm',]: |
---|
| 557 | return [0,1,2] |
---|
| 558 | elif SGData['SGLaue'] in ['4/m','4/mmm']: |
---|
| 559 | return [0,2] |
---|
| 560 | elif SGData['SGLaue'] in ['6/m','6/mmm','3m1', '31m', '3']: |
---|
| 561 | return [0,2] |
---|
| 562 | elif SGData['SGLaue'] in ['3R', '3mR']: |
---|
| 563 | return [0,3] |
---|
| 564 | elif SGData['SGLaue'] in ['m3m','m3']: |
---|
| 565 | return [0,] |
---|
| 566 | |
---|
| 567 | def cellZeros(SGData): |
---|
| 568 | '''Returns a list with the A terms required to be zero based on Laue symmetry |
---|
| 569 | |
---|
| 570 | :param dict SGdata: a symmetry object |
---|
| 571 | :returns: A list of six terms where the values are True if the |
---|
| 572 | A term must be zero, False otherwise. |
---|
| 573 | ''' |
---|
| 574 | if SGData['SGLaue'] in ['-1',]: |
---|
| 575 | return 6*[False] |
---|
| 576 | elif SGData['SGLaue'] in ['2/m',]: |
---|
| 577 | if SGData['SGUniq'] == 'a': |
---|
| 578 | return [False,False,False,True,True,False] |
---|
| 579 | elif SGData['SGUniq'] == 'b': |
---|
| 580 | return [False,False,False,True,False,True] |
---|
| 581 | else: |
---|
| 582 | return [False,False,False,False,True,True] |
---|
| 583 | elif SGData['SGLaue'] in ['mmm',]: |
---|
| 584 | return [False,False,False,True,True,True] |
---|
| 585 | elif SGData['SGLaue'] in ['4/m','4/mmm']: |
---|
| 586 | return [False,False,False,True,True,True] |
---|
| 587 | elif SGData['SGLaue'] in ['6/m','6/mmm','3m1', '31m', '3']: |
---|
| 588 | return [False,False,False,False,True,True] |
---|
| 589 | elif SGData['SGLaue'] in ['3R', '3mR']: |
---|
| 590 | return 6*[False] |
---|
| 591 | elif SGData['SGLaue'] in ['m3m','m3']: |
---|
| 592 | return [False,False,False,True,True,True] |
---|
| 593 | |
---|
[2154] | 594 | def TransformXYZ(XYZ,Trans,Vec): |
---|
| 595 | return np.inner(XYZ,Trans)+Vec |
---|
| 596 | |
---|
| 597 | def TransformU6(U6,Trans): |
---|
[3406] | 598 | Uij = np.inner(Trans,np.inner(U6toUij(U6),Trans).T)/nl.det(Trans) |
---|
[2154] | 599 | return UijtoU6(Uij) |
---|
[3646] | 600 | |
---|
| 601 | def ExpandCell(Atoms,atCodes,cx,Trans): |
---|
[4195] | 602 | Unit = [int(max(abs(np.array(unit)))-1) for unit in Trans.T] |
---|
| 603 | nUnit = (Unit[0]+1)*(Unit[1]+1)*(Unit[2]+1) |
---|
| 604 | Ugrid = np.mgrid[0:Unit[0]+1,0:Unit[1]+1,0:Unit[2]+1] |
---|
| 605 | Ugrid = np.reshape(Ugrid,(3,nUnit)).T |
---|
| 606 | Codes = copy.deepcopy(atCodes) |
---|
| 607 | newAtoms = copy.deepcopy(Atoms) |
---|
| 608 | for unit in Ugrid[1:]: |
---|
| 609 | moreAtoms = copy.deepcopy(Atoms) |
---|
| 610 | for atom in moreAtoms: |
---|
| 611 | atom[cx:cx+3] += unit |
---|
| 612 | newAtoms += moreAtoms |
---|
| 613 | codes = copy.deepcopy(atCodes) |
---|
| 614 | moreCodes = [code+'+%d,%d,%d'%(unit[0],unit[1],unit[2]) for code in codes] |
---|
| 615 | Codes += moreCodes |
---|
| 616 | return newAtoms,Codes |
---|
[2212] | 617 | |
---|
[4415] | 618 | def TransformPhase(oldPhase,newPhase,Trans,Uvec,Vvec,ifMag,Force=True): |
---|
[3406] | 619 | '''Transform atoms from oldPhase to newPhase |
---|
| 620 | M' is inv(M) |
---|
[3617] | 621 | does X' = M(X-U)+V transformation for coordinates and U' = MUM/det(M) |
---|
[3406] | 622 | for anisotropic thermal parameters |
---|
[2212] | 623 | |
---|
| 624 | :param oldPhase: dict G2 phase info for old phase |
---|
| 625 | :param newPhase: dict G2 phase info for new phase; with new cell & space group |
---|
| 626 | atoms are from oldPhase & will be transformed |
---|
[3406] | 627 | :param Trans: lattice transformation matrix M |
---|
| 628 | :param Uvec: array parent coordinates transformation vector U |
---|
| 629 | :param Vvec: array child coordinate transformation vector V |
---|
[2481] | 630 | :param ifMag: bool True if convert to magnetic phase; |
---|
| 631 | if True all nonmagnetic atoms will be removed |
---|
[2482] | 632 | |
---|
[3654] | 633 | :return: newPhase dict modified G2 phase info |
---|
| 634 | :return: atCodes list atom transformation codes |
---|
| 635 | |
---|
[2212] | 636 | ''' |
---|
| 637 | cx,ct,cs,cia = oldPhase['General']['AtomPtrs'] |
---|
[2484] | 638 | cm = 0 |
---|
| 639 | if oldPhase['General']['Type'] == 'magnetic': |
---|
| 640 | cm = cx+4 |
---|
| 641 | oAmat,oBmat = cell2AB(oldPhase['General']['Cell'][1:7]) |
---|
| 642 | nAmat,nBmat = cell2AB(newPhase['General']['Cell'][1:7]) |
---|
[2212] | 643 | SGData = newPhase['General']['SGData'] |
---|
| 644 | invTrans = nl.inv(Trans) |
---|
[4415] | 645 | newAtoms,atCodes = FillUnitCell(oldPhase,Force) |
---|
[3646] | 646 | newAtoms,atCodes = ExpandCell(newAtoms,atCodes,cx,Trans) |
---|
[2480] | 647 | if ifMag: |
---|
| 648 | cia += 3 |
---|
| 649 | cs += 3 |
---|
| 650 | newPhase['General']['Type'] = 'magnetic' |
---|
| 651 | newPhase['General']['AtomPtrs'] = [cx,ct,cs,cia] |
---|
| 652 | magAtoms = [] |
---|
[2512] | 653 | magatCodes = [] |
---|
[2481] | 654 | Landeg = 2.0 |
---|
[2512] | 655 | for iat,atom in enumerate(newAtoms): |
---|
[2481] | 656 | if len(G2elem.GetMFtable([atom[ct],],[Landeg,])): |
---|
| 657 | magAtoms.append(atom[:cx+4]+[0.,0.,0.]+atom[cx+4:]) |
---|
[2512] | 658 | magatCodes.append(atCodes[iat]) |
---|
[2480] | 659 | newAtoms = magAtoms |
---|
[2512] | 660 | atCodes = magatCodes |
---|
[2480] | 661 | newPhase['Draw Atoms'] = [] |
---|
[2212] | 662 | for atom in newAtoms: |
---|
[4415] | 663 | xyz = TransformXYZ(atom[cx:cx+3]+Uvec,invTrans.T,Vvec) |
---|
| 664 | if Force: |
---|
| 665 | xyz = np.around(xyz,6)%1. |
---|
| 666 | atom[cx:cx+3] = xyz |
---|
[2212] | 667 | if atom[cia] == 'A': |
---|
[3403] | 668 | atom[cia+2:cia+8] = TransformU6(atom[cia+2:cia+8],Trans) |
---|
[2470] | 669 | atom[cs:cs+2] = G2spc.SytSym(atom[cx:cx+3],SGData)[:2] |
---|
[3136] | 670 | atom[cia+8] = ran.randint(0,sys.maxsize) |
---|
[2484] | 671 | if cm: |
---|
| 672 | mag = np.sqrt(np.sum(np.array(atom[cm:cm+3])**2)) |
---|
[2486] | 673 | if mag: |
---|
| 674 | mom = np.inner(np.array(atom[cm:cm+3]),oBmat) |
---|
[3402] | 675 | mom = np.inner(mom,invTrans) |
---|
[2486] | 676 | mom = np.inner(mom,nAmat) |
---|
| 677 | mom /= np.sqrt(np.sum(mom**2)) |
---|
| 678 | atom[cm:cm+3] = mom*mag |
---|
[2212] | 679 | newPhase['Atoms'] = newAtoms |
---|
[4248] | 680 | if SGData['SpGrp'] != 'P 1': |
---|
| 681 | newPhase['Atoms'],atCodes = GetUnique(newPhase,atCodes) |
---|
[3092] | 682 | newPhase['Drawing'] = [] |
---|
[3136] | 683 | newPhase['ranId'] = ran.randint(0,sys.maxsize) |
---|
[2512] | 684 | return newPhase,atCodes |
---|
[2212] | 685 | |
---|
[3654] | 686 | def FindNonstandard(controls,Phase): |
---|
| 687 | ''' |
---|
| 688 | Find nonstandard setting of magnetic cell that aligns with parent nuclear cell |
---|
| 689 | |
---|
| 690 | :param controls: list unit cell indexing controls |
---|
| 691 | :param Phase: dict new magnetic phase data (NB:not G2 phase construction); modified here |
---|
| 692 | :return: None |
---|
| 693 | |
---|
| 694 | ''' |
---|
[3583] | 695 | abc = np.eye(3) |
---|
| 696 | cba = np.rot90(np.eye(3)) |
---|
[3617] | 697 | cba[1,1] *= -1 #makes c-ba |
---|
[3621] | 698 | Mats = {'abc':abc,'cab':np.roll(abc,2,1),'bca':np.roll(abc,1,1), |
---|
[3591] | 699 | 'acb':np.roll(cba,1,1),'bac':np.roll(cba,2,1),'cba':cba} #ok |
---|
| 700 | BNS = {'A':{'abc':'A','cab':'C','bca':'B','acb':'A','bac':'B','cba':'C'}, |
---|
[3583] | 701 | 'B':{'abc':'B','cab':'A','bca':'C','acb':'C','bac':'A','cba':'B'}, |
---|
[3591] | 702 | 'C':{'abc':'C','cab':'B','bca':'A','acb':'B','bac':'C','cba':'A'}, |
---|
| 703 | 'a':{'abc':'a','cab':'c','bca':'b','acb':'a','bac':'b','cba':'c'}, #Ok |
---|
[3583] | 704 | 'b':{'abc':'b','cab':'a','bca':'c','acb':'c','bac':'a','cba':'b'}, |
---|
[3591] | 705 | 'c':{'abc':'c','cab':'b','bca':'a','acb':'b','bac':'c','cba':'a'}, |
---|
[3583] | 706 | 'S':{'abc':'S','cab':'S','bca':'S','acb':'S','bac':'S','cba':'S'}, |
---|
[3636] | 707 | 'I':{'abc':'I','cab':'I','bca':'I','acb':'I','bac':'I','cba':'I'}, |
---|
[3583] | 708 | } |
---|
| 709 | Trans = Phase['Trans'] |
---|
| 710 | Uvec = Phase['Uvec'] |
---|
| 711 | SGData = Phase['SGData'] |
---|
[3686] | 712 | MSG = SGData.get('MagSpGrp',SGData['SpGrp']).split(' ',1) |
---|
[3657] | 713 | MSG[0] += ' ' |
---|
[3583] | 714 | bns = '' |
---|
| 715 | if '_' in MSG[0]: |
---|
| 716 | bns = MSG[0][2] |
---|
[3686] | 717 | spn = SGData.get('SGSpin',[]) |
---|
[3583] | 718 | if 'ortho' in SGData['SGSys']: |
---|
[3591] | 719 | lattSym = G2spc.getlattSym(Trans) |
---|
[3583] | 720 | SpGrp = SGData['SpGrp'] |
---|
[3621] | 721 | NTrans = np.inner(Mats[lattSym].T,Trans.T) #ok |
---|
[3686] | 722 | if len(spn): spn[1:4] = np.inner(np.abs(nl.inv(Mats[lattSym])),spn[1:4]) #ok |
---|
[3621] | 723 | SGsym = G2spc.getlattSym(nl.inv(Mats[lattSym])) |
---|
[3591] | 724 | |
---|
| 725 | if lattSym != 'abc': |
---|
[3594] | 726 | NSG = G2spc.altSettingOrtho[SpGrp][SGsym].replace("'",'').split(' ') |
---|
[3622] | 727 | if ' '.join(NSG) in ['P 2 21 2',]: |
---|
| 728 | Uvec[1] += .25 |
---|
| 729 | elif ' '.join(NSG) in ['P 21 2 2',]: |
---|
| 730 | Uvec[0] += .25 |
---|
| 731 | elif ' '.join(NSG) in ['P 2 2 21',]: |
---|
| 732 | Uvec[2] += .25 |
---|
[3583] | 733 | Bns = '' |
---|
| 734 | if bns: |
---|
| 735 | Bns = BNS[bns][lattSym] |
---|
| 736 | NSG[0] += '_'+Bns+' ' |
---|
[3686] | 737 | elif len(spn): |
---|
[3583] | 738 | for ifld in [1,2,3]: |
---|
| 739 | if spn[ifld] < 0: |
---|
| 740 | NSG[ifld] += "'" |
---|
| 741 | Nresult = [''.join(NSG)+' ',Bns] |
---|
[3594] | 742 | return Nresult,Uvec,NTrans |
---|
[3583] | 743 | else: |
---|
| 744 | return None |
---|
[3659] | 745 | elif 'mono' in SGData['SGSys']: # and not 'P_A' in Phase['Name']: #skip the one that doesn't work |
---|
[3654] | 746 | newcell = TransformCell(controls[6:12],Trans) |
---|
| 747 | MatsA = np.array([[1.,0.,0.],[0.,1.,0.],[1.,0,1.]]) |
---|
| 748 | MatsB = np.array([[1.,0.,0.],[0.,1.,0.],[-1.,0,1.]]) |
---|
| 749 | if not 70. < newcell[4] < 110.: |
---|
| 750 | MSG[1] = MSG[1].replace('c','n') |
---|
[3659] | 751 | MSG[0] = MSG[0].replace('C_c','C_B').replace('P_A','P ') |
---|
[3654] | 752 | if '_' in MSG[0]: |
---|
| 753 | bns = MSG[0][2] |
---|
| 754 | if newcell[4] > 110.: |
---|
| 755 | if newcell[2] > newcell[0]: |
---|
| 756 | Mats = MatsA |
---|
| 757 | else: |
---|
[3658] | 758 | MSG[1] = MSG[1].replace('n','c') |
---|
| 759 | MSG[0] = MSG[0].replace('C ','I ') |
---|
[3654] | 760 | Mats = MatsA.T |
---|
| 761 | elif newcell[4] < 70.: |
---|
| 762 | if newcell[2] > newcell[0]: |
---|
| 763 | Mats = MatsB |
---|
| 764 | else: |
---|
[3658] | 765 | MSG[1] = MSG[1].replace('n','c') |
---|
[3657] | 766 | MSG[0] = MSG[0].replace('C ','I ') |
---|
[3654] | 767 | Mats = MatsB.T |
---|
[3658] | 768 | Nresult = [' '.join(MSG)+' ',bns] |
---|
[3654] | 769 | NTrans = np.inner(Mats,Trans.T) |
---|
| 770 | return Nresult,Uvec,NTrans |
---|
[3583] | 771 | return None |
---|
[3736] | 772 | |
---|
[3686] | 773 | def makeBilbaoPhase(result,uvec,trans,ifMag=False): |
---|
[3583] | 774 | phase = {} |
---|
| 775 | phase['Name'] = result[0].strip() |
---|
| 776 | phase['Uvec'] = uvec |
---|
| 777 | phase['Trans'] = trans |
---|
| 778 | phase['Keep'] = False |
---|
| 779 | phase['Use'] = False |
---|
[3586] | 780 | phase['aType'] = '' |
---|
[3583] | 781 | SpGp = result[0].replace("'",'') |
---|
| 782 | SpGrp = G2spc.StandardizeSpcName(SpGp) |
---|
| 783 | phase['SGData'] = G2spc.SpcGroup(SpGrp)[1] |
---|
[3686] | 784 | if ifMag: |
---|
| 785 | BNSlatt = phase['SGData']['SGLatt'] |
---|
| 786 | if not result[1]: |
---|
| 787 | phase['SGData']['SGSpin'] = G2spc.GetSGSpin(phase['SGData'],result[0]) |
---|
| 788 | phase['SGData']['GenSym'],phase['SGData']['GenFlg'],BNSsym = G2spc.GetGenSym(phase['SGData']) |
---|
| 789 | if result[1]: |
---|
| 790 | BNSlatt += '_'+result[1] |
---|
[3716] | 791 | if 'P_S' in BNSlatt: BNSlatt = 'P_c' #triclinic fix |
---|
[3686] | 792 | phase['SGData']['BNSlattsym'] = [BNSlatt,BNSsym[BNSlatt]] |
---|
| 793 | G2spc.ApplyBNSlatt(phase['SGData'],phase['SGData']['BNSlattsym']) |
---|
| 794 | phase['SGData']['SpnFlp'] = G2spc.GenMagOps(phase['SGData'])[1] |
---|
| 795 | phase['SGData']['MagSpGrp'] = G2spc.MagSGSym(phase['SGData']) |
---|
[3583] | 796 | return phase |
---|
| 797 | |
---|
[4415] | 798 | def FillUnitCell(Phase,Force=True): |
---|
[3097] | 799 | Atoms = copy.deepcopy(Phase['Atoms']) |
---|
[2218] | 800 | atomData = [] |
---|
[2512] | 801 | atCodes = [] |
---|
[2212] | 802 | SGData = Phase['General']['SGData'] |
---|
[2484] | 803 | SpnFlp = SGData.get('SpnFlp',[]) |
---|
| 804 | Amat,Bmat = cell2AB(Phase['General']['Cell'][1:7]) |
---|
[2212] | 805 | cx,ct,cs,cia = Phase['General']['AtomPtrs'] |
---|
[2484] | 806 | cm = 0 |
---|
| 807 | if Phase['General']['Type'] == 'magnetic': |
---|
| 808 | cm = cx+4 |
---|
[2512] | 809 | for iat,atom in enumerate(Atoms): |
---|
[2212] | 810 | XYZ = np.array(atom[cx:cx+3]) |
---|
[4415] | 811 | xyz = XYZ |
---|
[4440] | 812 | cellj = np.zeros(3,dtype=np.int32) |
---|
[4415] | 813 | if Force: |
---|
[4440] | 814 | xyz,cellj = G2spc.MoveToUnitCell(xyz) |
---|
[2212] | 815 | if atom[cia] == 'A': |
---|
| 816 | Uij = atom[cia+2:cia+8] |
---|
[4440] | 817 | result = G2spc.GenAtom(xyz,SGData,False,Uij,Force) |
---|
[2212] | 818 | for item in result: |
---|
[4440] | 819 | item = list(item) |
---|
| 820 | item[2] += cellj |
---|
[4415] | 821 | # if item[0][2] >= .95: item[0][2] -= 1. |
---|
[2228] | 822 | atom[cx:cx+3] = item[0] |
---|
[2212] | 823 | atom[cia+2:cia+8] = item[1] |
---|
[2484] | 824 | if cm: |
---|
| 825 | Opr = abs(item[2])%100 |
---|
| 826 | M = SGData['SGOps'][Opr-1][0] |
---|
| 827 | opNum = G2spc.GetOpNum(item[2],SGData) |
---|
| 828 | mom = np.inner(np.array(atom[cm:cm+3]),Bmat) |
---|
| 829 | atom[cm:cm+3] = np.inner(np.inner(mom,M),Amat)*nl.det(M)*SpnFlp[opNum-1] |
---|
[2512] | 830 | atCodes.append('%d:%s'%(iat,str(item[2]))) |
---|
[2212] | 831 | atomData.append(atom[:cia+9]) #not SS stuff |
---|
| 832 | else: |
---|
[4440] | 833 | result = G2spc.GenAtom(xyz,SGData,False,Move=Force) |
---|
[2212] | 834 | for item in result: |
---|
[4440] | 835 | item = list(item) |
---|
| 836 | item[2] += cellj |
---|
| 837 | # if item[0][2] >= .95: item[0][2] -= 1. |
---|
[2228] | 838 | atom[cx:cx+3] = item[0] |
---|
[2484] | 839 | if cm: |
---|
| 840 | Opr = abs(item[1])%100 |
---|
| 841 | M = SGData['SGOps'][Opr-1][0] |
---|
| 842 | opNum = G2spc.GetOpNum(item[1],SGData) |
---|
| 843 | mom = np.inner(np.array(atom[cm:cm+3]),Bmat) |
---|
| 844 | atom[cm:cm+3] = np.inner(np.inner(mom,M),Amat)*nl.det(M)*SpnFlp[opNum-1] |
---|
[2512] | 845 | atCodes.append('%d:%s'%(iat,str(item[1]))) |
---|
[2212] | 846 | atomData.append(atom[:cia+9]) #not SS stuff |
---|
[2484] | 847 | |
---|
[2512] | 848 | return atomData,atCodes |
---|
[2212] | 849 | |
---|
[2512] | 850 | def GetUnique(Phase,atCodes): |
---|
[2218] | 851 | |
---|
[3568] | 852 | def noDuplicate(xyzA,XYZ): |
---|
[3685] | 853 | if True in [np.allclose(xyzA%1.,xyzB%1.,atol=0.0002) for xyzB in XYZ]: |
---|
[2218] | 854 | return False |
---|
| 855 | return True |
---|
[2212] | 856 | |
---|
[3638] | 857 | cx,ct = Phase['General']['AtomPtrs'][:2] |
---|
[2218] | 858 | SGData = Phase['General']['SGData'] |
---|
| 859 | Atoms = Phase['Atoms'] |
---|
| 860 | Ind = len(Atoms) |
---|
| 861 | newAtoms = [] |
---|
[2512] | 862 | newAtCodes = [] |
---|
[2218] | 863 | Indx = {} |
---|
| 864 | XYZ = {} |
---|
| 865 | for ind in range(Ind): |
---|
[2228] | 866 | XYZ[ind] = np.array(Atoms[ind][cx:cx+3])%1. |
---|
[2218] | 867 | Indx[ind] = True |
---|
| 868 | for ind in range(Ind): |
---|
| 869 | if Indx[ind]: |
---|
| 870 | xyz = XYZ[ind] |
---|
| 871 | for jnd in range(Ind): |
---|
[3568] | 872 | if Atoms[ind][ct-1] == Atoms[jnd][ct-1]: |
---|
[3474] | 873 | if ind != jnd and Indx[jnd]: |
---|
| 874 | Equiv = G2spc.GenAtom(XYZ[jnd],SGData,Move=True) |
---|
| 875 | xyzs = np.array([equiv[0] for equiv in Equiv]) |
---|
[3568] | 876 | Indx[jnd] = noDuplicate(xyz,xyzs) |
---|
[2218] | 877 | Ind = [] |
---|
| 878 | for ind in Indx: |
---|
| 879 | if Indx[ind]: |
---|
| 880 | newAtoms.append(Atoms[ind]) |
---|
[2512] | 881 | newAtCodes.append(atCodes[ind]) |
---|
| 882 | return newAtoms,newAtCodes |
---|
[2212] | 883 | |
---|
[762] | 884 | def calc_rVsq(A): |
---|
[939] | 885 | """Compute the square of the reciprocal lattice volume (1/V**2) from A' |
---|
[762] | 886 | |
---|
| 887 | """ |
---|
| 888 | G,g = A2Gmat(A) |
---|
| 889 | rVsq = nl.det(G) |
---|
| 890 | if rVsq < 0: |
---|
| 891 | return 1 |
---|
| 892 | return rVsq |
---|
| 893 | |
---|
| 894 | def calc_rV(A): |
---|
| 895 | """Compute the reciprocal lattice volume (V*) from A |
---|
| 896 | """ |
---|
| 897 | return np.sqrt(calc_rVsq(A)) |
---|
| 898 | |
---|
| 899 | def calc_V(A): |
---|
| 900 | """Compute the real lattice volume (V) from A |
---|
| 901 | """ |
---|
| 902 | return 1./calc_rV(A) |
---|
| 903 | |
---|
| 904 | def A2invcell(A): |
---|
| 905 | """Compute reciprocal unit cell constants from A |
---|
| 906 | returns tuple with a*,b*,c*,alpha*, beta*, gamma* (degrees) |
---|
| 907 | """ |
---|
| 908 | G,g = A2Gmat(A) |
---|
| 909 | return Gmat2cell(G) |
---|
| 910 | |
---|
| 911 | def Gmat2AB(G): |
---|
| 912 | """Computes orthogonalization matrix from reciprocal metric tensor G |
---|
[939] | 913 | |
---|
| 914 | :returns: tuple of two 3x3 numpy arrays (A,B) |
---|
| 915 | |
---|
[3000] | 916 | * A for crystal to Cartesian transformations (A*x = np.inner(A,x) = X) |
---|
| 917 | * B (= inverse of A) for Cartesian to crystal transformation (B*X = np.inner(B,X) = x) |
---|
[939] | 918 | |
---|
[762] | 919 | """ |
---|
[3801] | 920 | # cellstar = Gmat2cell(G) |
---|
[762] | 921 | g = nl.inv(G) |
---|
| 922 | cell = Gmat2cell(g) |
---|
[3801] | 923 | # A = np.zeros(shape=(3,3)) |
---|
| 924 | return cell2AB(cell) |
---|
| 925 | # # from Giacovazzo (Fundamentals 2nd Ed.) p.75 |
---|
| 926 | # A[0][0] = cell[0] # a |
---|
| 927 | # A[0][1] = cell[1]*cosd(cell[5]) # b cos(gamma) |
---|
| 928 | # A[0][2] = cell[2]*cosd(cell[4]) # c cos(beta) |
---|
| 929 | # A[1][1] = cell[1]*sind(cell[5]) # b sin(gamma) |
---|
| 930 | # A[1][2] = -cell[2]*cosd(cellstar[3])*sind(cell[4]) # - c cos(alpha*) sin(beta) |
---|
| 931 | # A[2][2] = 1./cellstar[2] # 1/c* |
---|
| 932 | # B = nl.inv(A) |
---|
| 933 | # return A,B |
---|
[762] | 934 | |
---|
[4268] | 935 | def cell2AB(cell,alt=False): |
---|
[762] | 936 | """Computes orthogonalization matrix from unit cell constants |
---|
[939] | 937 | |
---|
| 938 | :param tuple cell: a,b,c, alpha, beta, gamma (degrees) |
---|
| 939 | :returns: tuple of two 3x3 numpy arrays (A,B) |
---|
[762] | 940 | A for crystal to Cartesian transformations A*x = np.inner(A,x) = X |
---|
| 941 | B (= inverse of A) for Cartesian to crystal transformation B*X = np.inner(B,X) = x |
---|
| 942 | """ |
---|
| 943 | G,g = cell2Gmat(cell) |
---|
| 944 | cellstar = Gmat2cell(G) |
---|
| 945 | A = np.zeros(shape=(3,3)) |
---|
[4268] | 946 | if alt: #as used in RMCProfile!! |
---|
| 947 | A[0][0] = 1./cellstar[0] |
---|
| 948 | A[0][1] = cell[0]*cosd(cell[5])*sind(cell[3]) |
---|
| 949 | A[0][2] = cell[0]*cosd(cell[4]) |
---|
| 950 | A[1][1] = cell[1]*sind(cell[3]) |
---|
| 951 | A[1][2] = cell[1]*cosd(cell[3]) |
---|
| 952 | A[2][2] = cell[2] |
---|
| 953 | B = nl.inv(A) |
---|
| 954 | return A,B |
---|
[762] | 955 | # from Giacovazzo (Fundamentals 2nd Ed.) p.75 |
---|
| 956 | A[0][0] = cell[0] # a |
---|
| 957 | A[0][1] = cell[1]*cosd(cell[5]) # b cos(gamma) |
---|
| 958 | A[0][2] = cell[2]*cosd(cell[4]) # c cos(beta) |
---|
| 959 | A[1][1] = cell[1]*sind(cell[5]) # b sin(gamma) |
---|
| 960 | A[1][2] = -cell[2]*cosd(cellstar[3])*sind(cell[4]) # - c cos(alpha*) sin(beta) |
---|
[3136] | 961 | A[2][2] = 1./cellstar[2] # 1/c* |
---|
[762] | 962 | B = nl.inv(A) |
---|
| 963 | return A,B |
---|
| 964 | |
---|
[2367] | 965 | def HKL2SpAng(H,cell,SGData): |
---|
| 966 | """Computes spherical coords for hkls; view along 001 |
---|
| 967 | |
---|
| 968 | :param array H: arrays of hkl |
---|
| 969 | :param tuple cell: a,b,c, alpha, beta, gamma (degrees) |
---|
| 970 | :param dict SGData: space group dictionary |
---|
| 971 | :returns: arrays of r,phi,psi (radius,inclination,azimuth) about 001 |
---|
| 972 | """ |
---|
| 973 | A,B = cell2AB(cell) |
---|
[2369] | 974 | xH = np.inner(B.T,H) |
---|
[2367] | 975 | r = np.sqrt(np.sum(xH**2,axis=0)) |
---|
| 976 | phi = acosd(xH[2]/r) |
---|
| 977 | psi = atan2d(xH[1],xH[0]) |
---|
| 978 | phi = np.where(phi>90.,180.-phi,phi) |
---|
| 979 | # GSASIIpath.IPyBreak() |
---|
| 980 | return r,phi,psi |
---|
| 981 | |
---|
[762] | 982 | def U6toUij(U6): |
---|
| 983 | """Fill matrix (Uij) from U6 = [U11,U22,U33,U12,U13,U23] |
---|
| 984 | NB: there is a non numpy version in GSASIIspc: U2Uij |
---|
[939] | 985 | |
---|
| 986 | :param list U6: 6 terms of u11,u22,... |
---|
| 987 | :returns: |
---|
[762] | 988 | Uij - numpy [3][3] array of uij |
---|
| 989 | """ |
---|
[885] | 990 | U = np.array([ |
---|
[1999] | 991 | [U6[0], U6[3], U6[4]], |
---|
| 992 | [U6[3], U6[1], U6[5]], |
---|
| 993 | [U6[4], U6[5], U6[2]]]) |
---|
[762] | 994 | return U |
---|
| 995 | |
---|
| 996 | def UijtoU6(U): |
---|
| 997 | """Fill vector [U11,U22,U33,U12,U13,U23] from Uij |
---|
| 998 | NB: there is a non numpy version in GSASIIspc: Uij2U |
---|
| 999 | """ |
---|
[1999] | 1000 | U6 = np.array([U[0][0],U[1][1],U[2][2],U[0][1],U[0][2],U[1][2]]) |
---|
[762] | 1001 | return U6 |
---|
| 1002 | |
---|
[2038] | 1003 | def betaij2Uij(betaij,G): |
---|
| 1004 | """ |
---|
| 1005 | Convert beta-ij to Uij tensors |
---|
| 1006 | |
---|
| 1007 | :param beta-ij - numpy array [beta-ij] |
---|
| 1008 | :param G: reciprocal metric tensor |
---|
| 1009 | :returns: Uij: numpy array [Uij] |
---|
| 1010 | """ |
---|
| 1011 | ast = np.sqrt(np.diag(G)) #a*, b*, c* |
---|
| 1012 | Mast = np.multiply.outer(ast,ast) |
---|
| 1013 | return R2pisq*UijtoU6(U6toUij(betaij)/Mast) |
---|
| 1014 | |
---|
[762] | 1015 | def Uij2betaij(Uij,G): |
---|
| 1016 | """ |
---|
[939] | 1017 | Convert Uij to beta-ij tensors -- stub for eventual completion |
---|
| 1018 | |
---|
| 1019 | :param Uij: numpy array [Uij] |
---|
| 1020 | :param G: reciprocal metric tensor |
---|
| 1021 | :returns: beta-ij - numpy array [beta-ij] |
---|
[762] | 1022 | """ |
---|
| 1023 | pass |
---|
| 1024 | |
---|
[959] | 1025 | def cell2GS(cell): |
---|
| 1026 | ''' returns Uij to betaij conversion matrix''' |
---|
| 1027 | G,g = cell2Gmat(cell) |
---|
| 1028 | GS = G |
---|
| 1029 | GS[0][1] = GS[1][0] = math.sqrt(GS[0][0]*GS[1][1]) |
---|
| 1030 | GS[0][2] = GS[2][0] = math.sqrt(GS[0][0]*GS[2][2]) |
---|
| 1031 | GS[1][2] = GS[2][1] = math.sqrt(GS[1][1]*GS[2][2]) |
---|
| 1032 | return GS |
---|
| 1033 | |
---|
| 1034 | def Uij2Ueqv(Uij,GS,Amat): |
---|
[4881] | 1035 | ''' returns 1/3 trace of diagonalized U matrix |
---|
| 1036 | :param Uij: numpy array [Uij] |
---|
| 1037 | :param GS: Uij too betaij conversion matrix |
---|
| 1038 | :param Amat: crystal to Cartesian transformation matrix |
---|
| 1039 | :returns: 1/3 trace of diagonalized U matrix |
---|
| 1040 | :returns: True if nonpositive-definate; False otherwise |
---|
| 1041 | ''' |
---|
[959] | 1042 | U = np.multiply(U6toUij(Uij),GS) |
---|
| 1043 | U = np.inner(Amat,np.inner(U,Amat).T) |
---|
| 1044 | E,R = nl.eigh(U) |
---|
[4881] | 1045 | return np.sum(E)/3.,E[0] < 0. |
---|
[959] | 1046 | |
---|
[1075] | 1047 | def CosAngle(U,V,G): |
---|
| 1048 | """ calculate cos of angle between U & V in generalized coordinates |
---|
| 1049 | defined by metric tensor G |
---|
| 1050 | |
---|
| 1051 | :param U: 3-vectors assume numpy arrays, can be multiple reflections as (N,3) array |
---|
| 1052 | :param V: 3-vectors assume numpy arrays, only as (3) vector |
---|
| 1053 | :param G: metric tensor for U & V defined space assume numpy array |
---|
| 1054 | :returns: |
---|
| 1055 | cos(phi) |
---|
| 1056 | """ |
---|
| 1057 | u = (U.T/np.sqrt(np.sum(np.inner(U,G)*U,axis=1))).T |
---|
| 1058 | v = V/np.sqrt(np.inner(V,np.inner(G,V))) |
---|
| 1059 | cosP = np.inner(u,np.inner(G,v)) |
---|
| 1060 | return cosP |
---|
[4582] | 1061 | |
---|
[762] | 1062 | def CosSinAngle(U,V,G): |
---|
[949] | 1063 | """ calculate sin & cos of angle between U & V in generalized coordinates |
---|
[762] | 1064 | defined by metric tensor G |
---|
[939] | 1065 | |
---|
| 1066 | :param U: 3-vectors assume numpy arrays |
---|
| 1067 | :param V: 3-vectors assume numpy arrays |
---|
| 1068 | :param G: metric tensor for U & V defined space assume numpy array |
---|
| 1069 | :returns: |
---|
[762] | 1070 | cos(phi) & sin(phi) |
---|
| 1071 | """ |
---|
| 1072 | u = U/np.sqrt(np.inner(U,np.inner(G,U))) |
---|
| 1073 | v = V/np.sqrt(np.inner(V,np.inner(G,V))) |
---|
| 1074 | cosP = np.inner(u,np.inner(G,v)) |
---|
| 1075 | sinP = np.sqrt(max(0.0,1.0-cosP**2)) |
---|
| 1076 | return cosP,sinP |
---|
| 1077 | |
---|
| 1078 | def criticalEllipse(prob): |
---|
| 1079 | """ |
---|
| 1080 | Calculate critical values for probability ellipsoids from probability |
---|
| 1081 | """ |
---|
| 1082 | if not ( 0.01 <= prob < 1.0): |
---|
| 1083 | return 1.54 |
---|
| 1084 | coeff = np.array([6.44988E-09,4.16479E-07,1.11172E-05,1.58767E-04,0.00130554, |
---|
| 1085 | 0.00604091,0.0114921,-0.040301,-0.6337203,1.311582]) |
---|
| 1086 | llpr = math.log(-math.log(prob)) |
---|
| 1087 | return np.polyval(coeff,llpr) |
---|
| 1088 | |
---|
| 1089 | def CellBlock(nCells): |
---|
| 1090 | """ |
---|
| 1091 | Generate block of unit cells n*n*n on a side; [0,0,0] centered, n = 2*nCells+1 |
---|
| 1092 | currently only works for nCells = 0 or 1 (not >1) |
---|
| 1093 | """ |
---|
| 1094 | if nCells: |
---|
| 1095 | N = 2*nCells+1 |
---|
| 1096 | N2 = N*N |
---|
| 1097 | N3 = N*N*N |
---|
| 1098 | cellArray = [] |
---|
| 1099 | A = np.array(range(N3)) |
---|
[3136] | 1100 | cellGen = np.array([A//N2-1,A//N%N-1,A%N-1]).T |
---|
[762] | 1101 | for cell in cellGen: |
---|
| 1102 | cellArray.append(cell) |
---|
| 1103 | return cellArray |
---|
| 1104 | else: |
---|
| 1105 | return [0,0,0] |
---|
| 1106 | |
---|
| 1107 | def CellAbsorption(ElList,Volume): |
---|
[939] | 1108 | '''Compute unit cell absorption |
---|
| 1109 | |
---|
| 1110 | :param dict ElList: dictionary of element contents including mu and |
---|
| 1111 | number of atoms be cell |
---|
| 1112 | :param float Volume: unit cell volume |
---|
| 1113 | :returns: mu-total/Volume |
---|
| 1114 | ''' |
---|
[762] | 1115 | muT = 0 |
---|
| 1116 | for El in ElList: |
---|
| 1117 | muT += ElList[El]['mu']*ElList[El]['FormulaNo'] |
---|
| 1118 | return muT/Volume |
---|
| 1119 | |
---|
| 1120 | #Permutations and Combinations |
---|
| 1121 | # Four routines: combinations,uniqueCombinations, selections & permutations |
---|
| 1122 | #These taken from Python Cookbook, 2nd Edition. 19.15 p724-726 |
---|
| 1123 | # |
---|
| 1124 | def _combinators(_handle, items, n): |
---|
| 1125 | """ factored-out common structure of all following combinators """ |
---|
| 1126 | if n==0: |
---|
| 1127 | yield [ ] |
---|
| 1128 | return |
---|
| 1129 | for i, item in enumerate(items): |
---|
| 1130 | this_one = [ item ] |
---|
| 1131 | for cc in _combinators(_handle, _handle(items, i), n-1): |
---|
| 1132 | yield this_one + cc |
---|
| 1133 | def combinations(items, n): |
---|
| 1134 | """ take n distinct items, order matters """ |
---|
| 1135 | def skipIthItem(items, i): |
---|
| 1136 | return items[:i] + items[i+1:] |
---|
| 1137 | return _combinators(skipIthItem, items, n) |
---|
| 1138 | def uniqueCombinations(items, n): |
---|
| 1139 | """ take n distinct items, order is irrelevant """ |
---|
| 1140 | def afterIthItem(items, i): |
---|
| 1141 | return items[i+1:] |
---|
| 1142 | return _combinators(afterIthItem, items, n) |
---|
| 1143 | def selections(items, n): |
---|
| 1144 | """ take n (not necessarily distinct) items, order matters """ |
---|
| 1145 | def keepAllItems(items, i): |
---|
| 1146 | return items |
---|
| 1147 | return _combinators(keepAllItems, items, n) |
---|
| 1148 | def permutations(items): |
---|
| 1149 | """ take all items, order matters """ |
---|
| 1150 | return combinations(items, len(items)) |
---|
| 1151 | |
---|
| 1152 | #reflection generation routines |
---|
| 1153 | #for these: H = [h,k,l]; A is as used in calc_rDsq; G - inv metric tensor, g - metric tensor; |
---|
| 1154 | # cell - a,b,c,alp,bet,gam in A & deg |
---|
| 1155 | |
---|
[1367] | 1156 | def Pos2dsp(Inst,pos): |
---|
| 1157 | ''' convert powder pattern position (2-theta or TOF, musec) to d-spacing |
---|
[5112] | 1158 | is currently only approximate for EDX data; accurate for others. |
---|
[1367] | 1159 | ''' |
---|
[4826] | 1160 | if 'T' in Inst['Type'][0]: |
---|
[4519] | 1161 | return TOF2dsp(Inst,pos) |
---|
[5112] | 1162 | elif 'E' in Inst['Type'][0]: |
---|
| 1163 | return 12.398/(2.0*pos*sind(Inst['2-theta'][1]/2.0)) |
---|
[4826] | 1164 | else: #'PKS', 'C' or 'B' |
---|
[1367] | 1165 | wave = G2mth.getWave(Inst) |
---|
[1475] | 1166 | return wave/(2.0*sind((pos-Inst.get('Zero',[0,0])[1])/2.0)) |
---|
[1585] | 1167 | |
---|
| 1168 | def TOF2dsp(Inst,Pos): |
---|
[1587] | 1169 | ''' convert powder pattern TOF, musec to d-spacing by successive approximation |
---|
| 1170 | Pos can be numpy array |
---|
| 1171 | ''' |
---|
| 1172 | def func(d,pos,Inst): |
---|
| 1173 | return (pos-Inst['difA'][1]*d**2-Inst['Zero'][1]-Inst['difB'][1]/d)/Inst['difC'][1] |
---|
[4531] | 1174 | dsp0 = Pos/Inst['difC'][1] |
---|
[2120] | 1175 | N = 0 |
---|
[1587] | 1176 | while True: #successive approximations |
---|
| 1177 | dsp = func(dsp0,Pos,Inst) |
---|
| 1178 | if np.allclose(dsp,dsp0,atol=0.000001): |
---|
| 1179 | return dsp |
---|
| 1180 | dsp0 = dsp |
---|
[2120] | 1181 | N += 1 |
---|
| 1182 | if N > 10: |
---|
| 1183 | return dsp |
---|
[1367] | 1184 | |
---|
| 1185 | def Dsp2pos(Inst,dsp): |
---|
| 1186 | ''' convert d-spacing to powder pattern position (2-theta or TOF, musec) |
---|
| 1187 | ''' |
---|
[4862] | 1188 | if 'T' in Inst['Type'][0]: |
---|
[4519] | 1189 | pos = Inst['difC'][1]*dsp+Inst['Zero'][1]+Inst['difA'][1]*dsp**2+Inst.get('difB',[0,0,False])[1]/dsp |
---|
[5112] | 1190 | elif 'E' in Inst['Type'][0]: |
---|
[5116] | 1191 | return 12.398/(2.0*dsp*sind(Inst['2-theta'][1]/2.0))+Inst['ZE'][1]+Inst['YE'][1]*dsp+Inst['XE'][1]*dsp**2 |
---|
[4519] | 1192 | else: #'C' or 'B' |
---|
[1367] | 1193 | wave = G2mth.getWave(Inst) |
---|
[2430] | 1194 | val = min(0.995,wave/(2.*dsp)) #set max at 168deg |
---|
| 1195 | pos = 2.0*asind(val)+Inst.get('Zero',[0,0])[1] |
---|
[1443] | 1196 | return pos |
---|
| 1197 | |
---|
| 1198 | def getPeakPos(dataType,parmdict,dsp): |
---|
[5112] | 1199 | ''' convert d-spacing to powder pattern position (2-theta, E or TOF, musec) |
---|
[1443] | 1200 | ''' |
---|
[4519] | 1201 | if 'T' in dataType: |
---|
| 1202 | pos = parmdict['difC']*dsp+parmdict['difA']*dsp**2+parmdict['difB']/dsp+parmdict['Zero'] |
---|
[5112] | 1203 | elif 'E'in dataType: |
---|
| 1204 | pos = 12.398/(2.0*dsp*sind(parmdict['2-theta']/2.0)+parmdict['ZE']+parmdict['YE']*dsp+parmdict['XE']*dsp**2) |
---|
[4519] | 1205 | else: #'C' or 'B' |
---|
[1443] | 1206 | pos = 2.0*asind(parmdict['Lam']/(2.*dsp))+parmdict['Zero'] |
---|
| 1207 | return pos |
---|
| 1208 | |
---|
[762] | 1209 | def calc_rDsq(H,A): |
---|
[939] | 1210 | 'needs doc string' |
---|
[762] | 1211 | rdsq = H[0]*H[0]*A[0]+H[1]*H[1]*A[1]+H[2]*H[2]*A[2]+H[0]*H[1]*A[3]+H[0]*H[2]*A[4]+H[1]*H[2]*A[5] |
---|
| 1212 | return rdsq |
---|
| 1213 | |
---|
| 1214 | def calc_rDsq2(H,G): |
---|
[939] | 1215 | 'needs doc string' |
---|
[762] | 1216 | return np.inner(H,np.inner(G,H)) |
---|
| 1217 | |
---|
[1597] | 1218 | def calc_rDsqSS(H,A,vec): |
---|
| 1219 | 'needs doc string' |
---|
| 1220 | rdsq = calc_rDsq(H[:3]+(H[3]*vec).T,A) |
---|
| 1221 | return rdsq |
---|
| 1222 | |
---|
[762] | 1223 | def calc_rDsqZ(H,A,Z,tth,lam): |
---|
[939] | 1224 | 'needs doc string' |
---|
[762] | 1225 | rdsq = calc_rDsq(H,A)+Z*sind(tth)*2.0*rpd/lam**2 |
---|
| 1226 | return rdsq |
---|
| 1227 | |
---|
[1578] | 1228 | def calc_rDsqZSS(H,A,vec,Z,tth,lam): |
---|
| 1229 | 'needs doc string' |
---|
| 1230 | rdsq = calc_rDsq(H[:3]+(H[3][:,np.newaxis]*vec).T,A)+Z*sind(tth)*2.0*rpd/lam**2 |
---|
| 1231 | return rdsq |
---|
| 1232 | |
---|
[1445] | 1233 | def calc_rDsqT(H,A,Z,tof,difC): |
---|
| 1234 | 'needs doc string' |
---|
| 1235 | rdsq = calc_rDsq(H,A)+Z/difC |
---|
| 1236 | return rdsq |
---|
| 1237 | |
---|
[1578] | 1238 | def calc_rDsqTSS(H,A,vec,Z,tof,difC): |
---|
| 1239 | 'needs doc string' |
---|
[2022] | 1240 | rdsq = calc_rDsq(H[:3]+(H[3][:,np.newaxis]*vec).T,A)+Z/difC |
---|
[1578] | 1241 | return rdsq |
---|
[2476] | 1242 | |
---|
[3888] | 1243 | def PlaneIntercepts(Amat,H,phase,stack): |
---|
[2476] | 1244 | ''' find unit cell intercepts for a stack of hkl planes |
---|
| 1245 | ''' |
---|
| 1246 | Steps = range(-1,2,2) |
---|
| 1247 | if stack: |
---|
| 1248 | Steps = range(-10,10,1) |
---|
| 1249 | Stack = [] |
---|
| 1250 | Ux = np.array([[0,0],[1,0],[1,1],[0,1]]) |
---|
| 1251 | for step in Steps: |
---|
| 1252 | HX = [] |
---|
| 1253 | for i in [0,1,2]: |
---|
| 1254 | if H[i]: |
---|
| 1255 | h,k,l = [(i+1)%3,(i+2)%3,(i+3)%3] |
---|
| 1256 | for j in [0,1,2,3]: |
---|
| 1257 | hx = [0,0,0] |
---|
[3888] | 1258 | intcpt = ((phase)/360.+step-H[h]*Ux[j,0]-H[k]*Ux[j,1])/H[l] |
---|
[2476] | 1259 | if 0. <= intcpt <= 1.: |
---|
| 1260 | hx[h] = Ux[j,0] |
---|
| 1261 | hx[k] = Ux[j,1] |
---|
| 1262 | hx[l] = intcpt |
---|
| 1263 | HX.append(hx) |
---|
| 1264 | if len(HX)> 2: |
---|
| 1265 | HX = np.array(HX) |
---|
| 1266 | DX = np.inner(HX-HX[0],Amat) |
---|
| 1267 | D = np.sqrt(np.sum(DX**2,axis=1)) |
---|
| 1268 | Dsort = np.argsort(D) |
---|
| 1269 | HX = HX[Dsort] |
---|
| 1270 | DX = DX[Dsort] |
---|
| 1271 | D = D[Dsort] |
---|
| 1272 | DX[1:,:] = DX[1:,:]/D[1:,nxs] |
---|
| 1273 | A = 2.*np.ones(HX.shape[0]) |
---|
| 1274 | A[1:] = [np.dot(DX[1],dx) for dx in DX[1:]] |
---|
| 1275 | HX = HX[np.argsort(A)] |
---|
| 1276 | Stack.append(HX) |
---|
| 1277 | return Stack |
---|
[1578] | 1278 | |
---|
[762] | 1279 | def MaxIndex(dmin,A): |
---|
[939] | 1280 | 'needs doc string' |
---|
[762] | 1281 | Hmax = [0,0,0] |
---|
| 1282 | try: |
---|
| 1283 | cell = A2cell(A) |
---|
| 1284 | except: |
---|
[3346] | 1285 | cell = [1.,1.,1.,90.,90.,90.] |
---|
[762] | 1286 | for i in range(3): |
---|
[4810] | 1287 | Hmax[i] = int(np.round(cell[i]/dmin)) |
---|
[762] | 1288 | return Hmax |
---|
| 1289 | |
---|
[2129] | 1290 | def transposeHKLF(transMat,Super,refList): |
---|
[2147] | 1291 | ''' Apply transformation matrix to hkl(m) |
---|
| 1292 | param: transmat: 3x3 or 4x4 array |
---|
| 1293 | param: Super: 0 or 1 for extra index |
---|
| 1294 | param: refList list of h,k,l,.... |
---|
| 1295 | return: newRefs transformed list of h',k',l',,, |
---|
| 1296 | return: badRefs list of noninteger h',k',l'... |
---|
| 1297 | ''' |
---|
[2129] | 1298 | newRefs = np.copy(refList) |
---|
[2147] | 1299 | badRefs = [] |
---|
[2129] | 1300 | for H in newRefs: |
---|
[2146] | 1301 | newH = np.inner(transMat,H[:3+Super]) |
---|
| 1302 | H[:3+Super] = np.rint(newH) |
---|
| 1303 | if not np.allclose(newH,H[:3+Super],atol=0.01): |
---|
[2147] | 1304 | badRefs.append(newH) |
---|
| 1305 | return newRefs,badRefs |
---|
[2129] | 1306 | |
---|
[1578] | 1307 | def sortHKLd(HKLd,ifreverse,ifdup,ifSS=False): |
---|
[2129] | 1308 | '''sort reflection list on d-spacing; can sort in either order |
---|
[939] | 1309 | |
---|
| 1310 | :param HKLd: a list of [h,k,l,d,...]; |
---|
| 1311 | :param ifreverse: True for largest d first |
---|
| 1312 | :param ifdup: True if duplicate d-spacings allowed |
---|
[2802] | 1313 | :return: sorted reflection list |
---|
[939] | 1314 | ''' |
---|
[762] | 1315 | T = [] |
---|
[1578] | 1316 | N = 3 |
---|
| 1317 | if ifSS: |
---|
| 1318 | N = 4 |
---|
[762] | 1319 | for i,H in enumerate(HKLd): |
---|
| 1320 | if ifdup: |
---|
[1578] | 1321 | T.append((H[N],i)) |
---|
[762] | 1322 | else: |
---|
[1578] | 1323 | T.append(H[N]) |
---|
[762] | 1324 | D = dict(zip(T,HKLd)) |
---|
| 1325 | T.sort() |
---|
| 1326 | if ifreverse: |
---|
| 1327 | T.reverse() |
---|
| 1328 | X = [] |
---|
| 1329 | okey = '' |
---|
| 1330 | for key in T: |
---|
| 1331 | if key != okey: X.append(D[key]) #remove duplicate d-spacings |
---|
| 1332 | okey = key |
---|
| 1333 | return X |
---|
| 1334 | |
---|
| 1335 | def SwapIndx(Axis,H): |
---|
[939] | 1336 | 'needs doc string' |
---|
[762] | 1337 | if Axis in [1,-1]: |
---|
| 1338 | return H |
---|
| 1339 | elif Axis in [2,-3]: |
---|
| 1340 | return [H[1],H[2],H[0]] |
---|
| 1341 | else: |
---|
| 1342 | return [H[2],H[0],H[1]] |
---|
[4195] | 1343 | |
---|
| 1344 | def SwapItems(Alist,pos1,pos2): |
---|
| 1345 | 'exchange 2 items in a list' |
---|
| 1346 | try: |
---|
| 1347 | get = Alist[pos1],Alist[pos2] |
---|
| 1348 | Alist[pos2],Alist[pos1] = get |
---|
| 1349 | except IndexError: |
---|
| 1350 | pass |
---|
| 1351 | return Alist |
---|
[762] | 1352 | |
---|
| 1353 | def Rh2Hx(Rh): |
---|
[939] | 1354 | 'needs doc string' |
---|
[762] | 1355 | Hx = [0,0,0] |
---|
| 1356 | Hx[0] = Rh[0]-Rh[1] |
---|
| 1357 | Hx[1] = Rh[1]-Rh[2] |
---|
| 1358 | Hx[2] = np.sum(Rh) |
---|
| 1359 | return Hx |
---|
| 1360 | |
---|
| 1361 | def Hx2Rh(Hx): |
---|
[939] | 1362 | 'needs doc string' |
---|
| 1363 | Rh = [0,0,0] |
---|
| 1364 | itk = -Hx[0]+Hx[1]+Hx[2] |
---|
| 1365 | if itk%3 != 0: |
---|
| 1366 | return 0 #error - not rhombohedral reflection |
---|
| 1367 | else: |
---|
[3136] | 1368 | Rh[1] = itk//3 |
---|
[939] | 1369 | Rh[0] = Rh[1]+Hx[0] |
---|
| 1370 | Rh[2] = Rh[1]-Hx[1] |
---|
| 1371 | if Rh[0] < 0: |
---|
| 1372 | for i in range(3): |
---|
| 1373 | Rh[i] = -Rh[i] |
---|
| 1374 | return Rh |
---|
[762] | 1375 | |
---|
| 1376 | def CentCheck(Cent,H): |
---|
[939] | 1377 | 'needs doc string' |
---|
[762] | 1378 | h,k,l = H |
---|
| 1379 | if Cent == 'A' and (k+l)%2: |
---|
| 1380 | return False |
---|
| 1381 | elif Cent == 'B' and (h+l)%2: |
---|
| 1382 | return False |
---|
| 1383 | elif Cent == 'C' and (h+k)%2: |
---|
| 1384 | return False |
---|
| 1385 | elif Cent == 'I' and (h+k+l)%2: |
---|
| 1386 | return False |
---|
| 1387 | elif Cent == 'F' and ((h+k)%2 or (h+l)%2 or (k+l)%2): |
---|
| 1388 | return False |
---|
| 1389 | elif Cent == 'R' and (-h+k+l)%3: |
---|
| 1390 | return False |
---|
| 1391 | else: |
---|
| 1392 | return True |
---|
[4818] | 1393 | |
---|
| 1394 | def RBsymCheck(Atoms,ct,cx,cs,AtLookUp,Amat,RBObjIds,SGData): |
---|
| 1395 | """ Checks members of a rigid body to see if one is a symmetry equivalent of another. |
---|
| 1396 | If so the atom site frac is set to zero. |
---|
[5082] | 1397 | |
---|
| 1398 | :param Atoms: atom array as defined in GSAS-II; modified here |
---|
| 1399 | :param ct: int location of atom type in Atoms item |
---|
| 1400 | :param cx: int location of x,y,z,frac in Atoms item |
---|
| 1401 | :param dict AtLookUp: atom lookup by Id table |
---|
| 1402 | :param np.array Amat: crystal-to-Cartesian transformation matrix |
---|
| 1403 | :param list RBObjIds: atom Id belonging to rigid body being tested |
---|
| 1404 | :param dict SGData: GSAS-II space group info. |
---|
| 1405 | :returns: Atoms with modified atom frac entries |
---|
[4818] | 1406 | |
---|
| 1407 | """ |
---|
| 1408 | for i,Id in enumerate(RBObjIds): |
---|
| 1409 | XYZo = np.array(Atoms[AtLookUp[Id]][cx:cx+3])%1. |
---|
| 1410 | typo = Atoms[AtLookUp[Id]][ct] |
---|
| 1411 | for Jd in RBObjIds[i+1:]: |
---|
| 1412 | if Atoms[AtLookUp[Jd]][ct] == typo: |
---|
| 1413 | XYZt = Atoms[AtLookUp[Jd]][cx:cx+3] |
---|
| 1414 | Xeqv = list(G2spc.GenAtom(np.array(XYZt)%1.,SGData,True)) |
---|
| 1415 | close = [np.allclose(np.inner(Amat,XYZo),np.inner(Amat,eqv[0]),atol=0.01) for eqv in Xeqv] |
---|
| 1416 | if True in close: |
---|
| 1417 | Atoms[AtLookUp[Jd]][cx+3] = 0.0 |
---|
| 1418 | Sytsym,Mult = G2spc.SytSym(Atoms[AtLookUp[Id]][cx:cx+3],SGData)[:2] |
---|
| 1419 | Atoms[AtLookUp[Id]][cs] = Sytsym |
---|
| 1420 | Atoms[AtLookUp[Id]][cs+1] = Mult |
---|
| 1421 | return Atoms |
---|
[762] | 1422 | |
---|
| 1423 | def GetBraviasNum(center,system): |
---|
| 1424 | """Determine the Bravais lattice number, as used in GenHBravais |
---|
| 1425 | |
---|
| 1426 | :param center: one of: 'P', 'C', 'I', 'F', 'R' (see SGLatt from GSASIIspc.SpcGroup) |
---|
| 1427 | :param system: one of 'cubic', 'hexagonal', 'tetragonal', 'orthorhombic', 'trigonal' (for R) |
---|
[939] | 1428 | 'monoclinic', 'triclinic' (see SGSys from GSASIIspc.SpcGroup) |
---|
[762] | 1429 | :return: a number between 0 and 13 |
---|
[939] | 1430 | or throws a ValueError exception if the combination of center, system is not found (i.e. non-standard) |
---|
| 1431 | |
---|
[762] | 1432 | """ |
---|
| 1433 | if center.upper() == 'F' and system.lower() == 'cubic': |
---|
| 1434 | return 0 |
---|
| 1435 | elif center.upper() == 'I' and system.lower() == 'cubic': |
---|
| 1436 | return 1 |
---|
| 1437 | elif center.upper() == 'P' and system.lower() == 'cubic': |
---|
| 1438 | return 2 |
---|
| 1439 | elif center.upper() == 'R' and system.lower() == 'trigonal': |
---|
| 1440 | return 3 |
---|
| 1441 | elif center.upper() == 'P' and system.lower() == 'hexagonal': |
---|
| 1442 | return 4 |
---|
| 1443 | elif center.upper() == 'I' and system.lower() == 'tetragonal': |
---|
| 1444 | return 5 |
---|
| 1445 | elif center.upper() == 'P' and system.lower() == 'tetragonal': |
---|
| 1446 | return 6 |
---|
| 1447 | elif center.upper() == 'F' and system.lower() == 'orthorhombic': |
---|
| 1448 | return 7 |
---|
| 1449 | elif center.upper() == 'I' and system.lower() == 'orthorhombic': |
---|
| 1450 | return 8 |
---|
[3633] | 1451 | elif center.upper() == 'A' and system.lower() == 'orthorhombic': |
---|
| 1452 | return 9 |
---|
| 1453 | elif center.upper() == 'B' and system.lower() == 'orthorhombic': |
---|
| 1454 | return 10 |
---|
[762] | 1455 | elif center.upper() == 'C' and system.lower() == 'orthorhombic': |
---|
[3633] | 1456 | return 11 |
---|
[762] | 1457 | elif center.upper() == 'P' and system.lower() == 'orthorhombic': |
---|
[3633] | 1458 | return 12 |
---|
[762] | 1459 | elif center.upper() == 'C' and system.lower() == 'monoclinic': |
---|
[3633] | 1460 | return 13 |
---|
[762] | 1461 | elif center.upper() == 'P' and system.lower() == 'monoclinic': |
---|
[3633] | 1462 | return 14 |
---|
[762] | 1463 | elif center.upper() == 'P' and system.lower() == 'triclinic': |
---|
[3633] | 1464 | return 15 |
---|
[3136] | 1465 | raise ValueError('non-standard Bravais lattice center=%s, cell=%s' % (center,system)) |
---|
[762] | 1466 | |
---|
[4792] | 1467 | def _GenHBravais_cctbx(dmin, Bravais, A, sg_type, uctbx_unit_cell, miller_index_generator): |
---|
| 1468 | '''Alternate form of :func:`GenHBravais` that uses CCTBX internals |
---|
| 1469 | ''' |
---|
| 1470 | g_inv = np.array([[A[0], A[3]/2, A[4]/2], |
---|
| 1471 | [A[3]/2, A[1], A[5]/2], |
---|
| 1472 | [A[4]/2, A[5]/2, A[2]]]) |
---|
| 1473 | g = np.linalg.inv(g_inv) |
---|
| 1474 | g_elems = (g[0][0], g[1][1], g[2][2], g[0][1], g[0][2], g[1][2]) |
---|
| 1475 | try: |
---|
| 1476 | uc = uctbx_unit_cell(metrical_matrix=g_elems) |
---|
| 1477 | except ValueError: # this function sometimes receives an A matrix that gives |
---|
| 1478 | # numbers <0 in the diagonal elems of g. Not sure why. |
---|
| 1479 | return [] |
---|
| 1480 | #if sg_type is None: |
---|
| 1481 | # sg_type = make_sgtype(Bravais) |
---|
| 1482 | mig = miller_index_generator(uc, sg_type, 0, dmin) |
---|
| 1483 | result = [] |
---|
| 1484 | for h,k,l in mig: |
---|
| 1485 | d = uc.d((h,k,l)) |
---|
| 1486 | result.append([h, k, l, d, -1]) |
---|
| 1487 | result.sort(key=lambda l: l[3], reverse=True) |
---|
| 1488 | return result |
---|
| 1489 | |
---|
| 1490 | def GenHBravais(dmin, Bravais, A, cctbx_args=None): |
---|
[762] | 1491 | """Generate the positionally unique powder diffraction reflections |
---|
| 1492 | |
---|
| 1493 | :param dmin: minimum d-spacing in A |
---|
[2802] | 1494 | :param Bravais: lattice type (see GetBraviasNum). Bravais is one of: |
---|
[2764] | 1495 | |
---|
[2802] | 1496 | * 0 F cubic |
---|
| 1497 | * 1 I cubic |
---|
| 1498 | * 2 P cubic |
---|
| 1499 | * 3 R hexagonal (trigonal not rhombohedral) |
---|
| 1500 | * 4 P hexagonal |
---|
| 1501 | * 5 I tetragonal |
---|
| 1502 | * 6 P tetragonal |
---|
| 1503 | * 7 F orthorhombic |
---|
| 1504 | * 8 I orthorhombic |
---|
[3633] | 1505 | * 9 A orthorhombic |
---|
| 1506 | * 10 B orthorhombic |
---|
| 1507 | * 11 C orthorhombic |
---|
| 1508 | * 12 P orthorhombic |
---|
[3783] | 1509 | * 13 I monoclinic |
---|
[4880] | 1510 | * 14 A monoclinic |
---|
[4862] | 1511 | * 15 C monoclinic |
---|
| 1512 | * 16 P monoclinic |
---|
| 1513 | * 17 P triclinic |
---|
[939] | 1514 | |
---|
[762] | 1515 | :param A: reciprocal metric tensor elements as [G11,G22,G33,2*G12,2*G13,2*G23] |
---|
[4792] | 1516 | :param dict cctbx_args: items defined in CCTBX: |
---|
| 1517 | |
---|
| 1518 | * 'sg_type': value from cctbx.sgtbx.space_group_type(symmorphic_sgs[ibrav]) |
---|
| 1519 | * 'uctbx_unit_cell': pointer to :meth:`cctbx.uctbx.unit_cell` |
---|
| 1520 | * 'miller_index_generator': pointer to :meth:`cctbx.miller.index_generator` |
---|
| 1521 | |
---|
| 1522 | :returns: HKL unique d list of [h,k,l,d,-1] sorted with largest d first |
---|
[762] | 1523 | |
---|
| 1524 | """ |
---|
[4792] | 1525 | if cctbx_args: |
---|
| 1526 | return _GenHBravais_cctbx(dmin, Bravais, A, |
---|
| 1527 | cctbx_args['sg_type'], cctbx_args['uctbx_unit_cell'], cctbx_args['miller_index_generator']) |
---|
| 1528 | |
---|
[4862] | 1529 | if Bravais in [9,14]: |
---|
[3633] | 1530 | Cent = 'A' |
---|
| 1531 | elif Bravais in [10,]: |
---|
| 1532 | Cent = 'B' |
---|
[4862] | 1533 | elif Bravais in [11,15]: |
---|
[762] | 1534 | Cent = 'C' |
---|
[3783] | 1535 | elif Bravais in [1,5,8,13]: |
---|
[762] | 1536 | Cent = 'I' |
---|
| 1537 | elif Bravais in [0,7]: |
---|
| 1538 | Cent = 'F' |
---|
| 1539 | elif Bravais in [3]: |
---|
| 1540 | Cent = 'R' |
---|
| 1541 | else: |
---|
| 1542 | Cent = 'P' |
---|
| 1543 | Hmax = MaxIndex(dmin,A) |
---|
| 1544 | dminsq = 1./(dmin**2) |
---|
| 1545 | HKL = [] |
---|
[4862] | 1546 | if Bravais == 17: #triclinic |
---|
[762] | 1547 | for l in range(-Hmax[2],Hmax[2]+1): |
---|
| 1548 | for k in range(-Hmax[1],Hmax[1]+1): |
---|
| 1549 | hmin = 0 |
---|
| 1550 | if (k < 0): hmin = 1 |
---|
| 1551 | if (k ==0 and l < 0): hmin = 1 |
---|
| 1552 | for h in range(hmin,Hmax[0]+1): |
---|
| 1553 | H=[h,k,l] |
---|
| 1554 | rdsq = calc_rDsq(H,A) |
---|
| 1555 | if 0 < rdsq <= dminsq: |
---|
| 1556 | HKL.append([h,k,l,rdsq2d(rdsq,6),-1]) |
---|
[4862] | 1557 | elif Bravais in [13,14,15,16]: #monoclinic - b unique |
---|
[762] | 1558 | Hmax = SwapIndx(2,Hmax) |
---|
| 1559 | for h in range(Hmax[0]+1): |
---|
| 1560 | for k in range(-Hmax[1],Hmax[1]+1): |
---|
| 1561 | lmin = 0 |
---|
| 1562 | if k < 0:lmin = 1 |
---|
| 1563 | for l in range(lmin,Hmax[2]+1): |
---|
| 1564 | [h,k,l] = SwapIndx(-2,[h,k,l]) |
---|
| 1565 | H = [] |
---|
| 1566 | if CentCheck(Cent,[h,k,l]): H=[h,k,l] |
---|
| 1567 | if H: |
---|
| 1568 | rdsq = calc_rDsq(H,A) |
---|
| 1569 | if 0 < rdsq <= dminsq: |
---|
| 1570 | HKL.append([h,k,l,rdsq2d(rdsq,6),-1]) |
---|
| 1571 | [h,k,l] = SwapIndx(2,[h,k,l]) |
---|
[3633] | 1572 | elif Bravais in [7,8,9,10,11,12]: #orthorhombic |
---|
[762] | 1573 | for h in range(Hmax[0]+1): |
---|
| 1574 | for k in range(Hmax[1]+1): |
---|
| 1575 | for l in range(Hmax[2]+1): |
---|
| 1576 | H = [] |
---|
| 1577 | if CentCheck(Cent,[h,k,l]): H=[h,k,l] |
---|
| 1578 | if H: |
---|
| 1579 | rdsq = calc_rDsq(H,A) |
---|
| 1580 | if 0 < rdsq <= dminsq: |
---|
| 1581 | HKL.append([h,k,l,rdsq2d(rdsq,6),-1]) |
---|
| 1582 | elif Bravais in [5,6]: #tetragonal |
---|
| 1583 | for l in range(Hmax[2]+1): |
---|
| 1584 | for k in range(Hmax[1]+1): |
---|
| 1585 | for h in range(k,Hmax[0]+1): |
---|
| 1586 | H = [] |
---|
| 1587 | if CentCheck(Cent,[h,k,l]): H=[h,k,l] |
---|
| 1588 | if H: |
---|
| 1589 | rdsq = calc_rDsq(H,A) |
---|
| 1590 | if 0 < rdsq <= dminsq: |
---|
| 1591 | HKL.append([h,k,l,rdsq2d(rdsq,6),-1]) |
---|
| 1592 | elif Bravais in [3,4]: |
---|
| 1593 | lmin = 0 |
---|
| 1594 | if Bravais == 3: lmin = -Hmax[2] #hexagonal/trigonal |
---|
| 1595 | for l in range(lmin,Hmax[2]+1): |
---|
| 1596 | for k in range(Hmax[1]+1): |
---|
| 1597 | hmin = k |
---|
| 1598 | if l < 0: hmin += 1 |
---|
| 1599 | for h in range(hmin,Hmax[0]+1): |
---|
| 1600 | H = [] |
---|
| 1601 | if CentCheck(Cent,[h,k,l]): H=[h,k,l] |
---|
| 1602 | if H: |
---|
| 1603 | rdsq = calc_rDsq(H,A) |
---|
| 1604 | if 0 < rdsq <= dminsq: |
---|
| 1605 | HKL.append([h,k,l,rdsq2d(rdsq,6),-1]) |
---|
| 1606 | |
---|
| 1607 | else: #cubic |
---|
| 1608 | for l in range(Hmax[2]+1): |
---|
| 1609 | for k in range(l,Hmax[1]+1): |
---|
| 1610 | for h in range(k,Hmax[0]+1): |
---|
| 1611 | H = [] |
---|
| 1612 | if CentCheck(Cent,[h,k,l]): H=[h,k,l] |
---|
| 1613 | if H: |
---|
| 1614 | rdsq = calc_rDsq(H,A) |
---|
| 1615 | if 0 < rdsq <= dminsq: |
---|
| 1616 | HKL.append([h,k,l,rdsq2d(rdsq,6),-1]) |
---|
| 1617 | return sortHKLd(HKL,True,False) |
---|
| 1618 | |
---|
| 1619 | def getHKLmax(dmin,SGData,A): |
---|
[939] | 1620 | 'finds maximum allowed hkl for given A within dmin' |
---|
[762] | 1621 | SGLaue = SGData['SGLaue'] |
---|
| 1622 | if SGLaue in ['3R','3mR']: #Rhombohedral axes |
---|
| 1623 | Hmax = [0,0,0] |
---|
| 1624 | cell = A2cell(A) |
---|
| 1625 | aHx = cell[0]*math.sqrt(2.0*(1.0-cosd(cell[3]))) |
---|
| 1626 | cHx = cell[0]*math.sqrt(3.0*(1.0+2.0*cosd(cell[3]))) |
---|
| 1627 | Hmax[0] = Hmax[1] = int(round(aHx/dmin)) |
---|
| 1628 | Hmax[2] = int(round(cHx/dmin)) |
---|
| 1629 | #print Hmax,aHx,cHx |
---|
| 1630 | else: # all others |
---|
| 1631 | Hmax = MaxIndex(dmin,A) |
---|
| 1632 | return Hmax |
---|
| 1633 | |
---|
| 1634 | def GenHLaue(dmin,SGData,A): |
---|
| 1635 | """Generate the crystallographically unique powder diffraction reflections |
---|
| 1636 | for a lattice and Bravais type |
---|
| 1637 | |
---|
| 1638 | :param dmin: minimum d-spacing |
---|
[939] | 1639 | :param SGData: space group dictionary with at least |
---|
[762] | 1640 | |
---|
[939] | 1641 | * 'SGLaue': Laue group symbol: one of '-1','2/m','mmm','4/m','6/m','4/mmm','6/mmm', '3m1', '31m', '3', '3R', '3mR', 'm3', 'm3m' |
---|
| 1642 | * 'SGLatt': lattice centering: one of 'P','A','B','C','I','F' |
---|
| 1643 | * 'SGUniq': code for unique monoclinic axis one of 'a','b','c' (only if 'SGLaue' is '2/m') otherwise an empty string |
---|
[762] | 1644 | |
---|
| 1645 | :param A: reciprocal metric tensor elements as [G11,G22,G33,2*G12,2*G13,2*G23] |
---|
| 1646 | :return: HKL = list of [h,k,l,d] sorted with largest d first and is unique |
---|
| 1647 | part of reciprocal space ignoring anomalous dispersion |
---|
| 1648 | |
---|
| 1649 | """ |
---|
| 1650 | import math |
---|
| 1651 | SGLaue = SGData['SGLaue'] |
---|
| 1652 | SGLatt = SGData['SGLatt'] |
---|
| 1653 | SGUniq = SGData['SGUniq'] |
---|
| 1654 | #finds maximum allowed hkl for given A within dmin |
---|
| 1655 | Hmax = getHKLmax(dmin,SGData,A) |
---|
| 1656 | |
---|
| 1657 | dminsq = 1./(dmin**2) |
---|
| 1658 | HKL = [] |
---|
| 1659 | if SGLaue == '-1': #triclinic |
---|
| 1660 | for l in range(-Hmax[2],Hmax[2]+1): |
---|
| 1661 | for k in range(-Hmax[1],Hmax[1]+1): |
---|
| 1662 | hmin = 0 |
---|
| 1663 | if (k < 0) or (k ==0 and l < 0): hmin = 1 |
---|
| 1664 | for h in range(hmin,Hmax[0]+1): |
---|
| 1665 | H = [] |
---|
| 1666 | if CentCheck(SGLatt,[h,k,l]): H=[h,k,l] |
---|
[812] | 1667 | if H: |
---|
| 1668 | rdsq = calc_rDsq(H,A) |
---|
| 1669 | if 0 < rdsq <= dminsq: |
---|
[3136] | 1670 | HKL.append([h,k,l,1./math.sqrt(rdsq)]) |
---|
[762] | 1671 | elif SGLaue == '2/m': #monoclinic |
---|
| 1672 | axisnum = 1 + ['a','b','c'].index(SGUniq) |
---|
| 1673 | Hmax = SwapIndx(axisnum,Hmax) |
---|
| 1674 | for h in range(Hmax[0]+1): |
---|
| 1675 | for k in range(-Hmax[1],Hmax[1]+1): |
---|
| 1676 | lmin = 0 |
---|
| 1677 | if k < 0:lmin = 1 |
---|
| 1678 | for l in range(lmin,Hmax[2]+1): |
---|
| 1679 | [h,k,l] = SwapIndx(-axisnum,[h,k,l]) |
---|
| 1680 | H = [] |
---|
| 1681 | if CentCheck(SGLatt,[h,k,l]): H=[h,k,l] |
---|
| 1682 | if H: |
---|
| 1683 | rdsq = calc_rDsq(H,A) |
---|
| 1684 | if 0 < rdsq <= dminsq: |
---|
[3136] | 1685 | HKL.append([h,k,l,1./math.sqrt(rdsq)]) |
---|
[762] | 1686 | [h,k,l] = SwapIndx(axisnum,[h,k,l]) |
---|
| 1687 | elif SGLaue in ['mmm','4/m','6/m']: #orthorhombic |
---|
| 1688 | for l in range(Hmax[2]+1): |
---|
| 1689 | for h in range(Hmax[0]+1): |
---|
| 1690 | kmin = 1 |
---|
| 1691 | if SGLaue == 'mmm' or h ==0: kmin = 0 |
---|
| 1692 | for k in range(kmin,Hmax[1]+1): |
---|
| 1693 | H = [] |
---|
| 1694 | if CentCheck(SGLatt,[h,k,l]): H=[h,k,l] |
---|
| 1695 | if H: |
---|
| 1696 | rdsq = calc_rDsq(H,A) |
---|
| 1697 | if 0 < rdsq <= dminsq: |
---|
[3136] | 1698 | HKL.append([h,k,l,1./math.sqrt(rdsq)]) |
---|
[762] | 1699 | elif SGLaue in ['4/mmm','6/mmm']: #tetragonal & hexagonal |
---|
| 1700 | for l in range(Hmax[2]+1): |
---|
| 1701 | for h in range(Hmax[0]+1): |
---|
| 1702 | for k in range(h+1): |
---|
| 1703 | H = [] |
---|
| 1704 | if CentCheck(SGLatt,[h,k,l]): H=[h,k,l] |
---|
| 1705 | if H: |
---|
| 1706 | rdsq = calc_rDsq(H,A) |
---|
| 1707 | if 0 < rdsq <= dminsq: |
---|
[3136] | 1708 | HKL.append([h,k,l,1./math.sqrt(rdsq)]) |
---|
[762] | 1709 | elif SGLaue in ['3m1','31m','3','3R','3mR']: #trigonals |
---|
| 1710 | for l in range(-Hmax[2],Hmax[2]+1): |
---|
| 1711 | hmin = 0 |
---|
| 1712 | if l < 0: hmin = 1 |
---|
| 1713 | for h in range(hmin,Hmax[0]+1): |
---|
| 1714 | if SGLaue in ['3R','3']: |
---|
| 1715 | kmax = h |
---|
| 1716 | kmin = -int((h-1.)/2.) |
---|
| 1717 | else: |
---|
| 1718 | kmin = 0 |
---|
| 1719 | kmax = h |
---|
| 1720 | if SGLaue in ['3m1','3mR'] and l < 0: kmax = h-1 |
---|
| 1721 | if SGLaue == '31m' and l < 0: kmin = 1 |
---|
| 1722 | for k in range(kmin,kmax+1): |
---|
| 1723 | H = [] |
---|
| 1724 | if CentCheck(SGLatt,[h,k,l]): H=[h,k,l] |
---|
| 1725 | if SGLaue in ['3R','3mR']: |
---|
| 1726 | H = Hx2Rh(H) |
---|
| 1727 | if H: |
---|
| 1728 | rdsq = calc_rDsq(H,A) |
---|
| 1729 | if 0 < rdsq <= dminsq: |
---|
[3136] | 1730 | HKL.append([H[0],H[1],H[2],1./math.sqrt(rdsq)]) |
---|
[762] | 1731 | else: #cubic |
---|
| 1732 | for h in range(Hmax[0]+1): |
---|
| 1733 | for k in range(h+1): |
---|
| 1734 | lmin = 0 |
---|
| 1735 | lmax = k |
---|
| 1736 | if SGLaue =='m3': |
---|
| 1737 | lmax = h-1 |
---|
| 1738 | if h == k: lmax += 1 |
---|
| 1739 | for l in range(lmin,lmax+1): |
---|
| 1740 | H = [] |
---|
| 1741 | if CentCheck(SGLatt,[h,k,l]): H=[h,k,l] |
---|
| 1742 | if H: |
---|
| 1743 | rdsq = calc_rDsq(H,A) |
---|
| 1744 | if 0 < rdsq <= dminsq: |
---|
[3136] | 1745 | HKL.append([h,k,l,1./math.sqrt(rdsq)]) |
---|
[762] | 1746 | return sortHKLd(HKL,True,True) |
---|
[1773] | 1747 | |
---|
| 1748 | def GenPfHKLs(nMax,SGData,A): |
---|
| 1749 | """Generate the unique pole figure reflections for a lattice and Bravais type. |
---|
| 1750 | Min d-spacing=1.0A & no more than nMax returned |
---|
| 1751 | |
---|
| 1752 | :param nMax: maximum number of hkls returned |
---|
| 1753 | :param SGData: space group dictionary with at least |
---|
| 1754 | |
---|
| 1755 | * 'SGLaue': Laue group symbol: one of '-1','2/m','mmm','4/m','6/m','4/mmm','6/mmm', '3m1', '31m', '3', '3R', '3mR', 'm3', 'm3m' |
---|
| 1756 | * 'SGLatt': lattice centering: one of 'P','A','B','C','I','F' |
---|
| 1757 | * 'SGUniq': code for unique monoclinic axis one of 'a','b','c' (only if 'SGLaue' is '2/m') otherwise an empty string |
---|
| 1758 | |
---|
| 1759 | :param A: reciprocal metric tensor elements as [G11,G22,G33,2*G12,2*G13,2*G23] |
---|
| 1760 | :return: HKL = list of 'h k l' strings sorted with largest d first; no duplicate zones |
---|
| 1761 | |
---|
| 1762 | """ |
---|
| 1763 | HKL = np.array(GenHLaue(1.0,SGData,A)).T[:3].T #strip d-spacings |
---|
| 1764 | N = min(nMax,len(HKL)) |
---|
| 1765 | return ['%d %d %d'%(h[0],h[1],h[2]) for h in HKL[:N]] |
---|
[762] | 1766 | |
---|
[1594] | 1767 | def GenSSHLaue(dmin,SGData,SSGData,Vec,maxH,A): |
---|
| 1768 | 'needs a doc string' |
---|
[3774] | 1769 | ifMag = False |
---|
| 1770 | if 'MagSpGrp' in SGData: |
---|
| 1771 | ifMag = True |
---|
[1594] | 1772 | HKLs = [] |
---|
| 1773 | vec = np.array(Vec) |
---|
| 1774 | vstar = np.sqrt(calc_rDsq(vec,A)) #find extra needed for -n SS reflections |
---|
| 1775 | dvec = 1./(maxH*vstar+1./dmin) |
---|
| 1776 | HKL = GenHLaue(dvec,SGData,A) |
---|
| 1777 | SSdH = [vec*h for h in range(-maxH,maxH+1)] |
---|
| 1778 | SSdH = dict(zip(range(-maxH,maxH+1),SSdH)) |
---|
| 1779 | for h,k,l,d in HKL: |
---|
[1598] | 1780 | ext = G2spc.GenHKLf([h,k,l],SGData)[0] #h,k,l must be integral values here |
---|
[1594] | 1781 | if not ext and d >= dmin: |
---|
| 1782 | HKLs.append([h,k,l,0,d]) |
---|
| 1783 | for dH in SSdH: |
---|
| 1784 | if dH: |
---|
| 1785 | DH = SSdH[dH] |
---|
| 1786 | H = [h+DH[0],k+DH[1],l+DH[2]] |
---|
[3136] | 1787 | d = 1./np.sqrt(calc_rDsq(H,A)) |
---|
[1594] | 1788 | if d >= dmin: |
---|
| 1789 | HKLM = np.array([h,k,l,dH]) |
---|
[3774] | 1790 | if (G2spc.checkSSLaue([h,k,l,dH],SGData,SSGData) and G2spc.checkSSextc(HKLM,SSGData)) or ifMag: |
---|
[1594] | 1791 | HKLs.append([h,k,l,dH,d]) |
---|
[1596] | 1792 | return HKLs |
---|
[2126] | 1793 | |
---|
[2136] | 1794 | def LaueUnique2(SGData,refList): |
---|
| 1795 | ''' Impose Laue symmetry on hkl |
---|
[2764] | 1796 | |
---|
[2136] | 1797 | :param SGData: space group data from 'P '+Laue |
---|
| 1798 | :param HKLF: np.array([[h,k,l,...]]) reflection set to be converted |
---|
| 1799 | |
---|
| 1800 | :return: HKLF new reflection array with imposed Laue symmetry |
---|
| 1801 | ''' |
---|
| 1802 | for ref in refList: |
---|
| 1803 | H = ref[:3] |
---|
| 1804 | Uniq = G2spc.GenHKLf(H,SGData)[2] |
---|
| 1805 | Uniq = G2mth.sortArray(G2mth.sortArray(G2mth.sortArray(Uniq,2),1),0) |
---|
| 1806 | ref[:3] = Uniq[-1] |
---|
| 1807 | return refList |
---|
| 1808 | |
---|
[2126] | 1809 | def LaueUnique(Laue,HKLF): |
---|
| 1810 | ''' Impose Laue symmetry on hkl |
---|
[2764] | 1811 | |
---|
[2775] | 1812 | :param str Laue: Laue symbol, as below |
---|
| 1813 | |
---|
[3000] | 1814 | centrosymmetric Laue groups:: |
---|
[2764] | 1815 | |
---|
[4974] | 1816 | ['-1','2/m','112/m','2/m11','mmm','-42m','-4m2','4/mmm','-3','-3m', |
---|
[2802] | 1817 | '-31m','-3m1','6/m','6/mmm','m3','m3m'] |
---|
[2764] | 1818 | |
---|
[3000] | 1819 | noncentrosymmetric Laue groups:: |
---|
[2764] | 1820 | |
---|
[2802] | 1821 | ['1','2','211','112','m','m11','11m','222','mm2','m2m','2mm', |
---|
[4974] | 1822 | '4','-4','422','4mm','3','312','321','3m','31m','3m1','6','-6', |
---|
[2802] | 1823 | '622','6mm','-62m','-6m2','23','432','-43m'] |
---|
[2764] | 1824 | |
---|
[2126] | 1825 | :param HKLF: np.array([[h,k,l,...]]) reflection set to be converted |
---|
| 1826 | |
---|
[2802] | 1827 | :returns: HKLF new reflection array with imposed Laue symmetry |
---|
[2126] | 1828 | ''' |
---|
[2136] | 1829 | |
---|
[2126] | 1830 | HKLFT = HKLF.T |
---|
[2136] | 1831 | mat41 = np.array([[0,1,0],[-1,0,0],[0,0,1]]) #hkl -> k,-h,l |
---|
| 1832 | mat43 = np.array([[0,-1,0],[1,0,0],[0,0,1]]) #hkl -> -k,h,l |
---|
[2140] | 1833 | mat4bar = np.array([[0,-1,0],[1,0,0],[0,0,-1]]) #hkl -> k,-h,-l |
---|
| 1834 | mat31 = np.array([[-1,-1,0],[1,0,0],[0,0,1]]) #hkl -> ihl = -h-k,h,l |
---|
| 1835 | mat32 = np.array([[0,1,0],[-1,-1,0],[0,0,1]]) #hkl -> kil = k,-h-k,l |
---|
| 1836 | matd3 = np.array([[0,1,0],[0,0,1],[1,0,0]]) #hkl -> k,l,h |
---|
[2143] | 1837 | matd3q = np.array([[0,0,-1],[-1,0,0],[0,1,0]]) #hkl -> -l,-h,k |
---|
| 1838 | matd3t = np.array([[0,0,-1],[1,0,0],[0,-1,0]]) #hkl -> -l,h,-k |
---|
[2140] | 1839 | mat6 = np.array([[1,1,0],[-1,0,0],[0,0,1]]) #hkl -> h+k,-h,l really 65 |
---|
[2136] | 1840 | matdm = np.array([[0,1,0],[1,0,0],[0,0,1]]) #hkl -> k,h,l |
---|
[2140] | 1841 | matdmp = np.array([[-1,-1,0],[0,1,0],[0,0,1]]) #hkl -> -h-k,k,l |
---|
| 1842 | matkm = np.array([[-1,0,0],[1,1,0],[0,0,1]]) #hkl -> -h,h+k,l |
---|
[2136] | 1843 | matd2 = np.array([[0,1,0],[1,0,0],[0,0,-1]]) #hkl -> k,h,-l |
---|
[2143] | 1844 | matdm3 = np.array([[1,0,0],[0,0,1],[0,1,0]]) #hkl -> h,l,k |
---|
| 1845 | mat2d43 = np.array([[0,1,0],[1,0,0],[0,0,1]]) #hkl -> k,-h,l |
---|
[2140] | 1846 | matk2 = np.array([[-1,0,0],[1,1,0],[0,0,-1]]) #hkl -> -h,-i,-l |
---|
[2126] | 1847 | #triclinic |
---|
[2129] | 1848 | if Laue == '1': #ok |
---|
[2126] | 1849 | pass |
---|
[2129] | 1850 | elif Laue == '-1': #ok |
---|
[2126] | 1851 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,-1,-1])[:,nxs],HKLFT[:3]) |
---|
[2139] | 1852 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[1]<0),HKLFT[:3]*np.array([-1,-1,-1])[:,nxs],HKLFT[:3]) |
---|
[2143] | 1853 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([-1,-1,-1])[:,nxs],HKLFT[:3]) |
---|
[2136] | 1854 | #monoclinic |
---|
[2143] | 1855 | #noncentrosymmetric - all ok |
---|
[2136] | 1856 | elif Laue == '2': |
---|
[2143] | 1857 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,1,-1])[:,nxs],HKLFT[:3]) |
---|
| 1858 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([-1,1,-1])[:,nxs],HKLFT[:3]) |
---|
[2136] | 1859 | elif Laue == '1 1 2': |
---|
[2143] | 1860 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
| 1861 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[1]<0),HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
[2136] | 1862 | elif Laue == '2 1 1': |
---|
[2143] | 1863 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([1,-1,-1])[:,nxs],HKLFT[:3]) |
---|
| 1864 | HKLFT[:3] = np.where((HKLFT[1]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([1,-1,-1])[:,nxs],HKLFT[:3]) |
---|
[2136] | 1865 | elif Laue == 'm': |
---|
[2129] | 1866 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([1,-1,1])[:,nxs],HKLFT[:3]) |
---|
[2143] | 1867 | elif Laue == 'm 1 1': |
---|
| 1868 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,1,1])[:,nxs],HKLFT[:3]) |
---|
| 1869 | elif Laue == '1 1 m': |
---|
[2129] | 1870 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
[2143] | 1871 | #centrosymmetric - all ok |
---|
[2136] | 1872 | elif Laue == '2/m 1 1': |
---|
[2143] | 1873 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,-1,-1])[:,nxs],HKLFT[:3]) |
---|
[2129] | 1874 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,1,1])[:,nxs],HKLFT[:3]) |
---|
[2143] | 1875 | HKLFT[:3] = np.where((HKLFT[2]*HKLFT[0]==0)&(HKLFT[1]<0),HKLFT[:3]*np.array([1,-1,1])[:,nxs],HKLFT[:3]) |
---|
[2136] | 1876 | elif Laue == '2/m': |
---|
[2126] | 1877 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,1,-1])[:,nxs],HKLFT[:3]) |
---|
[2129] | 1878 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([1,-1,1])[:,nxs],HKLFT[:3]) |
---|
[2143] | 1879 | HKLFT[:3] = np.where((HKLFT[0]*HKLFT[1]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
[2136] | 1880 | elif Laue == '1 1 2/m': |
---|
[2129] | 1881 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
| 1882 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
[2143] | 1883 | HKLFT[:3] = np.where((HKLFT[1]*HKLFT[2]==0)&(HKLFT[0]<0),HKLFT[:3]*np.array([-1,1,1])[:,nxs],HKLFT[:3]) |
---|
[2136] | 1884 | #orthorhombic |
---|
| 1885 | #noncentrosymmetric - all OK |
---|
| 1886 | elif Laue == '2 2 2': |
---|
[2126] | 1887 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
| 1888 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([1,-1,-1])[:,nxs],HKLFT[:3]) |
---|
[2139] | 1889 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
| 1890 | HKLFT[:3] = np.where((HKLFT[1]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
[2143] | 1891 | elif Laue == 'm m 2': |
---|
| 1892 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,1,1])[:,nxs],HKLFT[:3]) |
---|
| 1893 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([1,-1,1])[:,nxs],HKLFT[:3]) |
---|
[2136] | 1894 | elif Laue == '2 m m': |
---|
[2129] | 1895 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([1,-1,1])[:,nxs],HKLFT[:3]) |
---|
| 1896 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
[2136] | 1897 | elif Laue == 'm 2 m': |
---|
[2126] | 1898 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,1,1])[:,nxs],HKLFT[:3]) |
---|
[2129] | 1899 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
[2136] | 1900 | #centrosymmetric - all ok |
---|
| 1901 | elif Laue == 'm m m': |
---|
[2126] | 1902 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,1,1])[:,nxs],HKLFT[:3]) |
---|
| 1903 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([1,-1,1])[:,nxs],HKLFT[:3]) |
---|
| 1904 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
[2135] | 1905 | #tetragonal |
---|
[2143] | 1906 | #noncentrosymmetric - all ok |
---|
[2136] | 1907 | elif Laue == '4': |
---|
[2126] | 1908 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
[2135] | 1909 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat43[nxs,:,:])).T,HKLFT[:3]) |
---|
[2139] | 1910 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[1]>0),np.squeeze(np.inner(HKLF[:,:3],mat41[nxs,:,:])).T,HKLFT[:3]) |
---|
[2143] | 1911 | elif Laue == '-4': |
---|
| 1912 | HKLFT[:3] = np.where(HKLFT[0]<=0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
| 1913 | HKLFT[:3] = np.where(HKLFT[0]<=0,np.squeeze(np.inner(HKLF[:,:3],mat4bar[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1914 | HKLFT[:3] = np.where(HKLFT[0]<=0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
| 1915 | HKLFT[:3] = np.where(HKLFT[1]<=0,np.squeeze(np.inner(HKLF[:,:3],mat4bar[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1916 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[1]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
[2136] | 1917 | elif Laue == '4 2 2': |
---|
[2139] | 1918 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,-1,-1])[:,nxs],HKLFT[:3]) |
---|
[2136] | 1919 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
[2135] | 1920 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat43[nxs,:,:])).T,HKLFT[:3]) |
---|
[2139] | 1921 | HKLFT[:3] = np.where((HKLFT[2]==0)&(HKLFT[1]<HKLFT[0]),np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T,HKLFT[:3]) |
---|
[2143] | 1922 | HKLFT[:3] = np.where(HKLFT[0]==0,np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) #in lieu od 2-fold |
---|
[2136] | 1923 | elif Laue == '4 m m': |
---|
[2131] | 1924 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
[2136] | 1925 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
[2135] | 1926 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat43[nxs,:,:])).T,HKLFT[:3]) |
---|
[2136] | 1927 | HKLFT[:3] = np.where(HKLFT[0]<HKLFT[1],np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1928 | elif Laue == '-4 2 m': |
---|
[2143] | 1929 | HKLFT[:3] = np.where(HKLFT[0]<=0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
| 1930 | HKLFT[:3] = np.where(HKLFT[0]<=0,np.squeeze(np.inner(HKLF[:,:3],mat4bar[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1931 | HKLFT[:3] = np.where(HKLFT[0]<=0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
| 1932 | HKLFT[:3] = np.where(HKLFT[1]<=0,np.squeeze(np.inner(HKLF[:,:3],mat4bar[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1933 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[1]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
| 1934 | HKLFT[:3] = np.where(HKLFT[1]<HKLFT[0],np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1935 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
| 1936 | elif Laue == '-4 m 2': |
---|
| 1937 | HKLFT[:3] = np.where(HKLFT[2]<0,np.squeeze(np.inner(HKLF[:,:3],mat4bar[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1938 | HKLFT[:3] = np.where(HKLFT[0]<=0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
| 1939 | HKLFT[:3] = np.where((HKLFT[2]==0)&(HKLFT[1]<=0),np.squeeze(np.inner(HKLF[:,:3],mat4bar[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1940 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[1]<0),HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
[2139] | 1941 | HKLFT[:3] = np.where((HKLFT[2]==0)&(HKLFT[1]==0),np.squeeze(np.inner(HKLF[:,:3],mat4bar[nxs,:,:])).T,HKLFT[:3]) |
---|
[2143] | 1942 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([1,-1,1])[:,nxs],HKLFT[:3]) |
---|
| 1943 | HKLFT[:3] = np.where((HKLFT[2]==0)&(HKLFT[0]>HKLFT[1]),np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) |
---|
[2136] | 1944 | #centrosymmetric - all ok |
---|
[2135] | 1945 | elif Laue == '4/m': |
---|
[2136] | 1946 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
[2135] | 1947 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
[2136] | 1948 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat43[nxs,:,:])).T,HKLFT[:3]) |
---|
[2139] | 1949 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[1]>0),np.squeeze(np.inner(HKLF[:,:3],mat41[nxs,:,:])).T,HKLFT[:3]) |
---|
[2136] | 1950 | elif Laue == '4/m m m': |
---|
| 1951 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
| 1952 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
| 1953 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat43[nxs,:,:])).T,HKLFT[:3]) |
---|
[2135] | 1954 | HKLFT[:3] = np.where(HKLFT[1]<HKLFT[0],np.squeeze(np.inner(HKLF[:,:3],mat41[nxs,:,:])).T,HKLFT[:3]) |
---|
[2136] | 1955 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([1,-1,1])[:,nxs],HKLFT[:3]) |
---|
[2138] | 1956 | #trigonal - all hex cell |
---|
[2143] | 1957 | #noncentrosymmetric - all ok |
---|
[2139] | 1958 | elif Laue == '3': |
---|
[2140] | 1959 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1960 | HKLFT[:3] = np.where((HKLFT[0]+HKLFT[1])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1961 | HKLFT[:3] = np.where(HKLFT[1]==0,np.squeeze(np.inner(HKLF[:,:3],mat31[nxs,:,:])).T,HKLFT[:3]) |
---|
[2143] | 1962 | elif Laue == '3 1 2': |
---|
[2140] | 1963 | HKLFT[:3] = np.where(HKLFT[2]<0,np.squeeze(np.inner(HKLF[:,:3],matk2[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1964 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1965 | HKLFT[:3] = np.where((HKLFT[0]+HKLFT[1])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1966 | HKLFT[:3] = np.where(HKLFT[1]==0,np.squeeze(np.inner(HKLF[:,:3],mat31[nxs,:,:])).T,HKLFT[:3]) |
---|
[2143] | 1967 | HKLFT[:3] = np.where(HKLFT[0]<0,np.squeeze(np.inner(HKLF[:,:3],matk2[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1968 | elif Laue == '3 2 1': |
---|
| 1969 | HKLFT[:3] = np.where(HKLFT[0]<=-2*HKLFT[1],np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1970 | HKLFT[:3] = np.where(HKLFT[1]<-2*HKLFT[0],np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1971 | HKLFT[:3] = np.where(HKLFT[1]<HKLFT[0],np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1972 | HKLFT[:3] = np.where((HKLFT[2]>0)&(HKLFT[1]==HKLFT[0]),np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1973 | HKLFT[:3] = np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T |
---|
[2144] | 1974 | HKLFT[:3] = np.where((HKLFT[0]!=0)&(HKLFT[2]>0)&(HKLFT[0]==-2*HKLFT[1]),HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
[2143] | 1975 | elif Laue == '3 1 m': |
---|
[2140] | 1976 | HKLFT[:3] = np.where(HKLFT[0]>=HKLFT[1],np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1977 | HKLFT[:3] = np.where(2*HKLFT[1]<-HKLFT[0],np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1978 | HKLFT[:3] = np.where(HKLFT[1]>-2*HKLFT[0],np.squeeze(np.inner(HKLF[:,:3],matdmp[nxs,:,:])).T,HKLFT[:3]) |
---|
[2143] | 1979 | HKLFT[:3] = np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T |
---|
[4974] | 1980 | elif (Laue == '3 m 1' or Laue == '3 m'): |
---|
[2140] | 1981 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1982 | HKLFT[:3] = np.where((HKLFT[1]+HKLFT[0])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1983 | HKLFT[:3] = np.where(HKLFT[0]<0,np.squeeze(np.inner(HKLF[:,:3],matkm[nxs,:,:])).T,HKLFT[:3]) |
---|
[2138] | 1984 | #centrosymmetric |
---|
[2140] | 1985 | elif Laue == '-3': #ok |
---|
[2138] | 1986 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([-1,-1,-1])[:,nxs],HKLFT[:3]) |
---|
[2140] | 1987 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1988 | HKLFT[:3] = np.where((HKLFT[0]+HKLFT[1])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1989 | HKLFT[:3] = np.where(HKLFT[1]==0,np.squeeze(np.inner(HKLF[:,:3],mat31[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1990 | HKLFT[:3] = np.where((HKLFT[2]==0)&(HKLFT[0]<0),-np.squeeze(np.inner(HKLF[:,:3],mat31[nxs,:,:])).T,HKLFT[:3]) |
---|
[2143] | 1991 | HKLFT[:3] = np.where(HKLFT[0]<0,np.squeeze(np.inner(HKLF[:,:3],-mat31[nxs,:,:])).T,HKLFT[:3]) |
---|
[4974] | 1992 | elif (Laue == '-3 m 1' or Laue == '-3 m'): #ok |
---|
[2143] | 1993 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1994 | HKLFT[:3] = np.where((HKLFT[1]+HKLFT[0])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 1995 | HKLFT[:3] = np.where(HKLFT[0]<0,np.squeeze(np.inner(HKLF[:,:3],matkm[nxs,:,:])).T,HKLFT[:3]) |
---|
[2140] | 1996 | HKLFT[:3] = np.where(HKLFT[2]<0,np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T,HKLFT[:3]) |
---|
[2143] | 1997 | HKLFT[:3] = np.where((HKLFT[2]==0)&(HKLFT[1]<HKLFT[0]),np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T,HKLFT[:3]) |
---|
[2140] | 1998 | elif Laue == '-3 1 m': #ok |
---|
[2143] | 1999 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([-1,-1,-1])[:,nxs],HKLFT[:3]) |
---|
[2140] | 2000 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2001 | HKLFT[:3] = np.where((HKLFT[0]+HKLFT[1])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
[2143] | 2002 | HKLFT[:3] = np.where(HKLFT[1]==0,np.squeeze(np.inner(HKLF[:,:3],mat31[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2003 | HKLFT[:3] = np.where(HKLFT[0]<=0,np.squeeze(np.inner(HKLF[:,:3],-mat31[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2004 | HKLFT[:3] = np.where(HKLFT[1]<HKLFT[0],np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) |
---|
[2135] | 2005 | #hexagonal |
---|
| 2006 | #noncentrosymmetric |
---|
[2139] | 2007 | elif Laue == '6': #ok |
---|
[2140] | 2008 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2009 | HKLFT[:3] = np.where((HKLFT[0]+HKLFT[1])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2010 | HKLFT[:3] = np.where(HKLFT[0]<0,np.squeeze(np.inner(HKLF[:,:3],mat6[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2011 | HKLFT[:3] = np.where(HKLFT[0]==0,np.squeeze(np.inner(HKLF[:,:3],mat6[nxs,:,:])).T,HKLFT[:3]) |
---|
[2139] | 2012 | elif Laue == '-6': #ok |
---|
| 2013 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
[2140] | 2014 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2015 | HKLFT[:3] = np.where((HKLFT[0]+HKLFT[1])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2016 | HKLFT[:3] = np.where(HKLFT[1]==0,np.squeeze(np.inner(HKLF[:,:3],mat31[nxs,:,:])).T,HKLFT[:3]) |
---|
[2139] | 2017 | elif Laue == '6 2 2': #ok |
---|
| 2018 | HKLFT[:3] = np.where(HKLFT[2]<0,np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T,HKLFT[:3]) |
---|
[2140] | 2019 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2020 | HKLFT[:3] = np.where((HKLFT[0]+HKLFT[1])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2021 | HKLFT[:3] = np.where(HKLFT[0]<0,np.squeeze(np.inner(HKLF[:,:3],mat6[nxs,:,:])).T,HKLFT[:3]) |
---|
[2139] | 2022 | HKLFT[:3] = np.where(HKLFT[1]==0,np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) |
---|
[2143] | 2023 | HKLFT[:3] = np.where((HKLFT[2]==0)&(HKLFT[0]>HKLFT[1]),np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) |
---|
[2139] | 2024 | elif Laue == '6 m m': #ok |
---|
[2140] | 2025 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2026 | HKLFT[:3] = np.where((HKLFT[0]+HKLFT[1])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2027 | HKLFT[:3] = np.where(HKLFT[0]<0,np.squeeze(np.inner(HKLF[:,:3],mat6[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2028 | HKLFT[:3] = np.where(HKLFT[0]==0,np.squeeze(np.inner(HKLF[:,:3],mat6[nxs,:,:])).T,HKLFT[:3]) |
---|
[2139] | 2029 | HKLFT[:3] = np.where(HKLFT[0]>HKLFT[1],np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) |
---|
[2143] | 2030 | elif Laue == '-6 m 2': #ok |
---|
| 2031 | HKLFT[:3] = np.where(HKLFT[2]<0,np.squeeze(np.inner(HKLF[:,:3],matk2[nxs,:,:])).T,HKLFT[:3]) |
---|
[2140] | 2032 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2033 | HKLFT[:3] = np.where((HKLFT[0]+HKLFT[1])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2034 | HKLFT[:3] = np.where(HKLFT[1]==0,np.squeeze(np.inner(HKLF[:,:3],mat31[nxs,:,:])).T,HKLFT[:3]) |
---|
[2143] | 2035 | HKLFT[:3] = np.where(HKLFT[0]<0,np.squeeze(np.inner(HKLF[:,:3],matk2[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2036 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
[2144] | 2037 | elif Laue == '-6 2 m': #ok |
---|
[2143] | 2038 | HKLFT[:3] = np.where(HKLFT[2]<0,np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2039 | HKLFT[:3] = np.where(HKLFT[0]<=-2*HKLFT[1],np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2040 | HKLFT[:3] = np.where(HKLFT[1]<-2*HKLFT[0],np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2041 | HKLFT[:3] = np.where(HKLFT[1]<HKLFT[0],np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2042 | HKLFT[:3] = np.where((HKLFT[2]>0)&(HKLFT[1]==HKLFT[0]),np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2043 | HKLFT[:3] = np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T |
---|
[2144] | 2044 | HKLFT[:3] = np.where(HKLFT[2]<0,np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2045 | HKLFT[:3] = np.where(HKLFT[0]>HKLFT[1],np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) |
---|
[2135] | 2046 | #centrosymmetric |
---|
[2139] | 2047 | elif Laue == '6/m': #ok |
---|
| 2048 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
[2140] | 2049 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2050 | HKLFT[:3] = np.where((HKLFT[0]+HKLFT[1])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2051 | HKLFT[:3] = np.where(HKLFT[0]<0,np.squeeze(np.inner(HKLF[:,:3],mat6[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2052 | HKLFT[:3] = np.where(HKLFT[0]==0,np.squeeze(np.inner(HKLF[:,:3],mat6[nxs,:,:])).T,HKLFT[:3]) |
---|
[2139] | 2053 | elif Laue == '6/m m m': #ok |
---|
| 2054 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
[2140] | 2055 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2056 | HKLFT[:3] = np.where((HKLFT[0]+HKLFT[1])<0,np.squeeze(np.inner(HKLF[:,:3],mat32[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2057 | HKLFT[:3] = np.where(HKLFT[0]<0,np.squeeze(np.inner(HKLF[:,:3],mat6[nxs,:,:])).T,HKLFT[:3]) |
---|
[2139] | 2058 | HKLFT[:3] = np.where(HKLFT[0]>HKLFT[1],np.squeeze(np.inner(HKLF[:,:3],matdm.T[nxs,:,:])).T,HKLFT[:3]) |
---|
[2143] | 2059 | #cubic - all ok |
---|
| 2060 | #noncentrosymmetric - |
---|
| 2061 | elif Laue == '2 3': |
---|
[2139] | 2062 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
| 2063 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([1,-1,-1])[:,nxs],HKLFT[:3]) |
---|
[2143] | 2064 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
| 2065 | HKLFT[:3] = np.where((HKLFT[1]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
| 2066 | HKLFT[:3] = np.where((HKLFT[2]>=0)&((HKLFT[0]>=HKLFT[2])|(HKLFT[1]>HKLFT[2])),np.squeeze(np.inner(HKLF[:,:3],matd3[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2067 | HKLFT[:3] = np.where((HKLFT[2]>=0)&((HKLFT[0]>=HKLFT[2])|(HKLFT[1]>HKLFT[2])),np.squeeze(np.inner(HKLF[:,:3],matd3[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2068 | HKLFT[:3] = np.where((HKLFT[2]<0)&((HKLFT[0]>-HKLFT[2])|(HKLFT[1]>-HKLFT[2])),np.squeeze(np.inner(HKLF[:,:3],matd3t[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2069 | HKLFT[:3] = np.where((HKLFT[2]<0)&((HKLFT[0]>-HKLFT[2])|(HKLFT[1]>=-HKLFT[2])),np.squeeze(np.inner(HKLF[:,:3],matd3t[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2070 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([-1,1,-1])[:,nxs],HKLFT[:3]) |
---|
| 2071 | elif Laue == '4 3 2': |
---|
| 2072 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,-1,-1])[:,nxs],HKLFT[:3]) |
---|
[2139] | 2073 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
[2143] | 2074 | HKLFT[:3] = np.where(HKLFT[1]<0,np.squeeze(np.inner(HKLF[:,:3],mat43[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2075 | HKLFT[:3] = np.where((HKLFT[2]==0)&(HKLFT[1]<HKLFT[0]),np.squeeze(np.inner(HKLF[:,:3],matd2[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2076 | HKLFT[:3] = np.where(HKLFT[0]==0,np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) #in lieu od 2-fold |
---|
| 2077 | HKLFT[:3] = np.where((HKLFT[0]>=HKLFT[2])|(HKLFT[1]>HKLFT[2]),np.squeeze(np.inner(HKLF[:,:3],matd3[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2078 | HKLFT[:3] = np.where((HKLFT[0]>=HKLFT[2])|(HKLFT[1]>HKLFT[2]),np.squeeze(np.inner(HKLF[:,:3],matd3[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2079 | HKLFT[:3] = np.where(HKLFT[1]==0,np.squeeze(np.inner(HKLF[:,:3],mat2d43[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2080 | elif Laue == '-4 3 m': |
---|
| 2081 | HKLFT[:3] = np.where(HKLFT[0]<=0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
| 2082 | HKLFT[:3] = np.where(HKLFT[0]<=0,np.squeeze(np.inner(HKLF[:,:3],mat4bar[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2083 | HKLFT[:3] = np.where(HKLFT[0]<=0,HKLFT[:3]*np.array([-1,-1,1])[:,nxs],HKLFT[:3]) |
---|
| 2084 | HKLFT[:3] = np.where(HKLFT[1]<=0,np.squeeze(np.inner(HKLF[:,:3],mat4bar[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2085 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[1]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
| 2086 | HKLFT[:3] = np.where(HKLFT[1]<HKLFT[0],np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2087 | HKLFT[:3] = np.where((HKLFT[0]==0)&(HKLFT[2]<0),HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
| 2088 | HKLFT[:3] = np.where((HKLFT[2]>=0)&((HKLFT[0]>=HKLFT[2])|(HKLFT[1]>HKLFT[2])),np.squeeze(np.inner(HKLF[:,:3],matd3[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2089 | HKLFT[:3] = np.where((HKLFT[2]>=0)&((HKLFT[0]>=HKLFT[2])|(HKLFT[1]>HKLFT[2])),np.squeeze(np.inner(HKLF[:,:3],matd3[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2090 | HKLFT[:3] = np.where((HKLFT[2]>=0)&(HKLFT[1]<HKLFT[0]),np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2091 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([-1,1,-1])[:,nxs],HKLFT[:3]) |
---|
| 2092 | HKLFT[:3] = np.where((HKLFT[0]<0)&(HKLFT[2]<-HKLFT[0])&(HKLFT[1]>HKLFT[2]),np.squeeze(np.inner(HKLF[:,:3],matd3q[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2093 | HKLFT[:3] = np.where((HKLFT[0]<0)&(HKLFT[2]>=-HKLFT[0])&(HKLFT[1]>HKLFT[2]),np.squeeze(np.inner(HKLF[:,:3],matdm3[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2094 | #centrosymmetric |
---|
| 2095 | elif Laue == 'm 3': |
---|
| 2096 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,1,1])[:,nxs],HKLFT[:3]) |
---|
[2139] | 2097 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([1,-1,1])[:,nxs],HKLFT[:3]) |
---|
[2143] | 2098 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
| 2099 | HKLFT[:3] = np.where((HKLFT[2]>=0)&((HKLFT[0]>=HKLFT[2])|(HKLFT[1]>HKLFT[2])),np.squeeze(np.inner(HKLF[:,:3],matd3[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2100 | HKLFT[:3] = np.where((HKLFT[2]>=0)&((HKLFT[0]>=HKLFT[2])|(HKLFT[1]>HKLFT[2])),np.squeeze(np.inner(HKLF[:,:3],matd3[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2101 | elif Laue == 'm 3 m': |
---|
| 2102 | HKLFT[:3] = np.where(HKLFT[0]<0,HKLFT[:3]*np.array([-1,1,1])[:,nxs],HKLFT[:3]) |
---|
| 2103 | HKLFT[:3] = np.where(HKLFT[1]<0,HKLFT[:3]*np.array([1,-1,1])[:,nxs],HKLFT[:3]) |
---|
| 2104 | HKLFT[:3] = np.where(HKLFT[2]<0,HKLFT[:3]*np.array([1,1,-1])[:,nxs],HKLFT[:3]) |
---|
| 2105 | HKLFT[:3] = np.where((HKLFT[2]>=0)&((HKLFT[0]>=HKLFT[2])|(HKLFT[1]>HKLFT[2])),np.squeeze(np.inner(HKLF[:,:3],matd3[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2106 | HKLFT[:3] = np.where((HKLFT[2]>=0)&((HKLFT[0]>=HKLFT[2])|(HKLFT[1]>HKLFT[2])),np.squeeze(np.inner(HKLF[:,:3],matd3[nxs,:,:])).T,HKLFT[:3]) |
---|
| 2107 | HKLFT[:3] = np.where(HKLFT[0]>HKLFT[1],np.squeeze(np.inner(HKLF[:,:3],matdm[nxs,:,:])).T,HKLFT[:3]) |
---|
[2126] | 2108 | return HKLFT.T |
---|
| 2109 | |
---|
[1594] | 2110 | |
---|
[762] | 2111 | #Spherical harmonics routines |
---|
| 2112 | def OdfChk(SGLaue,L,M): |
---|
[939] | 2113 | 'needs doc string' |
---|
[762] | 2114 | if not L%2 and abs(M) <= L: |
---|
| 2115 | if SGLaue == '0': #cylindrical symmetry |
---|
| 2116 | if M == 0: return True |
---|
| 2117 | elif SGLaue == '-1': |
---|
| 2118 | return True |
---|
| 2119 | elif SGLaue == '2/m': |
---|
| 2120 | if not abs(M)%2: return True |
---|
| 2121 | elif SGLaue == 'mmm': |
---|
| 2122 | if not abs(M)%2 and M >= 0: return True |
---|
| 2123 | elif SGLaue == '4/m': |
---|
| 2124 | if not abs(M)%4: return True |
---|
| 2125 | elif SGLaue == '4/mmm': |
---|
| 2126 | if not abs(M)%4 and M >= 0: return True |
---|
| 2127 | elif SGLaue in ['3R','3']: |
---|
| 2128 | if not abs(M)%3: return True |
---|
| 2129 | elif SGLaue in ['3mR','3m1','31m']: |
---|
| 2130 | if not abs(M)%3 and M >= 0: return True |
---|
| 2131 | elif SGLaue == '6/m': |
---|
| 2132 | if not abs(M)%6: return True |
---|
| 2133 | elif SGLaue == '6/mmm': |
---|
| 2134 | if not abs(M)%6 and M >= 0: return True |
---|
| 2135 | elif SGLaue == 'm3': |
---|
| 2136 | if M > 0: |
---|
| 2137 | if L%12 == 2: |
---|
[3136] | 2138 | if M <= L//12: return True |
---|
[762] | 2139 | else: |
---|
[3136] | 2140 | if M <= L//12+1: return True |
---|
[762] | 2141 | elif SGLaue == 'm3m': |
---|
| 2142 | if M > 0: |
---|
| 2143 | if L%12 == 2: |
---|
[3136] | 2144 | if M <= L//12: return True |
---|
[762] | 2145 | else: |
---|
[3136] | 2146 | if M <= L//12+1: return True |
---|
[762] | 2147 | return False |
---|
| 2148 | |
---|
| 2149 | def GenSHCoeff(SGLaue,SamSym,L,IfLMN=True): |
---|
[939] | 2150 | 'needs doc string' |
---|
[762] | 2151 | coeffNames = [] |
---|
[3136] | 2152 | for iord in [2*i+2 for i in range(L//2)]: |
---|
[762] | 2153 | for m in [i-iord for i in range(2*iord+1)]: |
---|
| 2154 | if OdfChk(SamSym,iord,m): |
---|
| 2155 | for n in [i-iord for i in range(2*iord+1)]: |
---|
| 2156 | if OdfChk(SGLaue,iord,n): |
---|
| 2157 | if IfLMN: |
---|
| 2158 | coeffNames.append('C(%d,%d,%d)'%(iord,m,n)) |
---|
| 2159 | else: |
---|
| 2160 | coeffNames.append('C(%d,%d)'%(iord,n)) |
---|
| 2161 | return coeffNames |
---|
[825] | 2162 | |
---|
[762] | 2163 | def CrsAng(H,cell,SGData): |
---|
[939] | 2164 | 'needs doc string' |
---|
[762] | 2165 | a,b,c,al,be,ga = cell |
---|
| 2166 | SQ3 = 1.732050807569 |
---|
| 2167 | H1 = np.array([1,0,0]) |
---|
| 2168 | H2 = np.array([0,1,0]) |
---|
| 2169 | H3 = np.array([0,0,1]) |
---|
| 2170 | H4 = np.array([1,1,1]) |
---|
| 2171 | G,g = cell2Gmat(cell) |
---|
| 2172 | Laue = SGData['SGLaue'] |
---|
| 2173 | Naxis = SGData['SGUniq'] |
---|
[1792] | 2174 | if len(H.shape) == 1: |
---|
| 2175 | DH = np.inner(H,np.inner(G,H)) |
---|
| 2176 | else: |
---|
| 2177 | DH = np.array([np.inner(h,np.inner(G,h)) for h in H]) |
---|
[762] | 2178 | if Laue == '2/m': |
---|
| 2179 | if Naxis == 'a': |
---|
| 2180 | DR = np.inner(H1,np.inner(G,H1)) |
---|
| 2181 | DHR = np.inner(H,np.inner(G,H1)) |
---|
| 2182 | elif Naxis == 'b': |
---|
| 2183 | DR = np.inner(H2,np.inner(G,H2)) |
---|
| 2184 | DHR = np.inner(H,np.inner(G,H2)) |
---|
| 2185 | else: |
---|
| 2186 | DR = np.inner(H3,np.inner(G,H3)) |
---|
| 2187 | DHR = np.inner(H,np.inner(G,H3)) |
---|
| 2188 | elif Laue in ['R3','R3m']: |
---|
| 2189 | DR = np.inner(H4,np.inner(G,H4)) |
---|
| 2190 | DHR = np.inner(H,np.inner(G,H4)) |
---|
| 2191 | else: |
---|
| 2192 | DR = np.inner(H3,np.inner(G,H3)) |
---|
| 2193 | DHR = np.inner(H,np.inner(G,H3)) |
---|
| 2194 | DHR /= np.sqrt(DR*DH) |
---|
[780] | 2195 | phi = np.where(DHR <= 1.0,acosd(DHR),0.0) |
---|
[762] | 2196 | if Laue == '-1': |
---|
[1792] | 2197 | BA = H.T[1]*a/(b-H.T[0]*cosd(ga)) |
---|
| 2198 | BB = H.T[0]*sind(ga)**2 |
---|
[762] | 2199 | elif Laue == '2/m': |
---|
| 2200 | if Naxis == 'a': |
---|
[1792] | 2201 | BA = H.T[2]*b/(c-H.T[1]*cosd(al)) |
---|
| 2202 | BB = H.T[1]*sind(al)**2 |
---|
[762] | 2203 | elif Naxis == 'b': |
---|
[1792] | 2204 | BA = H.T[0]*c/(a-H.T[2]*cosd(be)) |
---|
| 2205 | BB = H.T[2]*sind(be)**2 |
---|
[762] | 2206 | else: |
---|
[1792] | 2207 | BA = H.T[1]*a/(b-H.T[0]*cosd(ga)) |
---|
| 2208 | BB = H.T[0]*sind(ga)**2 |
---|
[762] | 2209 | elif Laue in ['mmm','4/m','4/mmm']: |
---|
[1792] | 2210 | BA = H.T[1]*a |
---|
| 2211 | BB = H.T[0]*b |
---|
[762] | 2212 | elif Laue in ['3R','3mR']: |
---|
[1792] | 2213 | BA = H.T[0]+H.T[1]-2.0*H.T[2] |
---|
| 2214 | BB = SQ3*(H.T[0]-H.T[1]) |
---|
[762] | 2215 | elif Laue in ['m3','m3m']: |
---|
[1792] | 2216 | BA = H.T[1] |
---|
| 2217 | BB = H.T[0] |
---|
[762] | 2218 | else: |
---|
[1792] | 2219 | BA = H.T[0]+2.0*H.T[1] |
---|
| 2220 | BB = SQ3*H.T[0] |
---|
[762] | 2221 | beta = atan2d(BA,BB) |
---|
| 2222 | return phi,beta |
---|
| 2223 | |
---|
| 2224 | def SamAng(Tth,Gangls,Sangl,IFCoup): |
---|
| 2225 | """Compute sample orientation angles vs laboratory coord. system |
---|
[939] | 2226 | |
---|
| 2227 | :param Tth: Signed theta |
---|
| 2228 | :param Gangls: Sample goniometer angles phi,chi,omega,azmuth |
---|
| 2229 | :param Sangl: Sample angle zeros om-0, chi-0, phi-0 |
---|
| 2230 | :param IFCoup: True if omega & 2-theta coupled in CW scan |
---|
| 2231 | :returns: |
---|
[762] | 2232 | psi,gam: Sample odf angles |
---|
| 2233 | dPSdA,dGMdA: Angle zero derivatives |
---|
| 2234 | """ |
---|
| 2235 | |
---|
| 2236 | if IFCoup: |
---|
| 2237 | GSomeg = sind(Gangls[2]+Tth) |
---|
| 2238 | GComeg = cosd(Gangls[2]+Tth) |
---|
| 2239 | else: |
---|
| 2240 | GSomeg = sind(Gangls[2]) |
---|
| 2241 | GComeg = cosd(Gangls[2]) |
---|
| 2242 | GSTth = sind(Tth) |
---|
| 2243 | GCTth = cosd(Tth) |
---|
| 2244 | GSazm = sind(Gangls[3]) |
---|
| 2245 | GCazm = cosd(Gangls[3]) |
---|
| 2246 | GSchi = sind(Gangls[1]) |
---|
| 2247 | GCchi = cosd(Gangls[1]) |
---|
| 2248 | GSphi = sind(Gangls[0]+Sangl[2]) |
---|
| 2249 | GCphi = cosd(Gangls[0]+Sangl[2]) |
---|
| 2250 | SSomeg = sind(Sangl[0]) |
---|
| 2251 | SComeg = cosd(Sangl[0]) |
---|
| 2252 | SSchi = sind(Sangl[1]) |
---|
| 2253 | SCchi = cosd(Sangl[1]) |
---|
| 2254 | AT = -GSTth*GComeg+GCTth*GCazm*GSomeg |
---|
| 2255 | BT = GSTth*GSomeg+GCTth*GCazm*GComeg |
---|
| 2256 | CT = -GCTth*GSazm*GSchi |
---|
| 2257 | DT = -GCTth*GSazm*GCchi |
---|
| 2258 | |
---|
| 2259 | BC1 = -AT*GSphi+(CT+BT*GCchi)*GCphi |
---|
| 2260 | BC2 = DT-BT*GSchi |
---|
| 2261 | BC3 = AT*GCphi+(CT+BT*GCchi)*GSphi |
---|
| 2262 | |
---|
| 2263 | BC = BC1*SComeg*SCchi+BC2*SComeg*SSchi-BC3*SSomeg |
---|
| 2264 | psi = acosd(BC) |
---|
| 2265 | |
---|
| 2266 | BD = 1.0-BC**2 |
---|
[1792] | 2267 | C = np.where(BD>1.e-6,rpd/np.sqrt(BD),0.) |
---|
[762] | 2268 | dPSdA = [-C*(-BC1*SSomeg*SCchi-BC2*SSomeg*SSchi-BC3*SComeg), |
---|
| 2269 | -C*(-BC1*SComeg*SSchi+BC2*SComeg*SCchi), |
---|
| 2270 | -C*(-BC1*SSomeg-BC3*SComeg*SCchi)] |
---|
| 2271 | |
---|
| 2272 | BA = -BC1*SSchi+BC2*SCchi |
---|
| 2273 | BB = BC1*SSomeg*SCchi+BC2*SSomeg*SSchi+BC3*SComeg |
---|
| 2274 | gam = atan2d(BB,BA) |
---|
| 2275 | |
---|
| 2276 | BD = (BA**2+BB**2)/rpd |
---|
| 2277 | |
---|
| 2278 | dBAdO = 0 |
---|
| 2279 | dBAdC = -BC1*SCchi-BC2*SSchi |
---|
| 2280 | dBAdF = BC3*SSchi |
---|
| 2281 | |
---|
| 2282 | dBBdO = BC1*SComeg*SCchi+BC2*SComeg*SSchi-BC3*SSomeg |
---|
| 2283 | dBBdC = -BC1*SSomeg*SSchi+BC2*SSomeg*SCchi |
---|
| 2284 | dBBdF = BC1*SComeg-BC3*SSomeg*SCchi |
---|
| 2285 | |
---|
[1792] | 2286 | dGMdA = np.where(BD > 1.e-6,[(BA*dBBdO-BB*dBAdO)/BD,(BA*dBBdC-BB*dBAdC)/BD, \ |
---|
| 2287 | (BA*dBBdF-BB*dBAdF)/BD],[np.zeros_like(BD),np.zeros_like(BD),np.zeros_like(BD)]) |
---|
[762] | 2288 | |
---|
| 2289 | return psi,gam,dPSdA,dGMdA |
---|
| 2290 | |
---|
| 2291 | BOH = { |
---|
| 2292 | 'L=2':[[],[],[]], |
---|
| 2293 | 'L=4':[[0.30469720,0.36418281],[],[]], |
---|
| 2294 | 'L=6':[[-0.14104740,0.52775103],[],[]], |
---|
| 2295 | 'L=8':[[0.28646862,0.21545346,0.32826995],[],[]], |
---|
| 2296 | 'L=10':[[-0.16413497,0.33078546,0.39371345],[],[]], |
---|
| 2297 | 'L=12':[[0.26141975,0.27266871,0.03277460,0.32589402], |
---|
| 2298 | [0.09298802,-0.23773812,0.49446631,0.0],[]], |
---|
| 2299 | 'L=14':[[-0.17557309,0.25821932,0.27709173,0.33645360],[],[]], |
---|
| 2300 | 'L=16':[[0.24370673,0.29873515,0.06447688,0.00377,0.32574495], |
---|
| 2301 | [0.12039646,-0.25330128,0.23950998,0.40962508,0.0],[]], |
---|
| 2302 | 'L=18':[[-0.16914245,0.17017340,0.34598142,0.07433932,0.32696037], |
---|
| 2303 | [-0.06901768,0.16006562,-0.24743528,0.47110273,0.0],[]], |
---|
| 2304 | 'L=20':[[0.23067026,0.31151832,0.09287682,0.01089683,0.00037564,0.32573563], |
---|
| 2305 | [0.13615420,-0.25048007,0.12882081,0.28642879,0.34620433,0.0],[]], |
---|
| 2306 | 'L=22':[[-0.16109560,0.10244188,0.36285175,0.13377513,0.01314399,0.32585583], |
---|
| 2307 | [-0.09620055,0.20244115,-0.22389483,0.17928946,0.42017231,0.0],[]], |
---|
| 2308 | 'L=24':[[0.22050742,0.31770654,0.11661736,0.02049853,0.00150861,0.00003426,0.32573505], |
---|
| 2309 | [0.13651722,-0.21386648,0.00522051,0.33939435,0.10837396,0.32914497,0.0], |
---|
| 2310 | [0.05378596,-0.11945819,0.16272298,-0.26449730,0.44923956,0.0,0.0]], |
---|
| 2311 | 'L=26':[[-0.15435003,0.05261630,0.35524646,0.18578869,0.03259103,0.00186197,0.32574594], |
---|
| 2312 | [-0.11306511,0.22072681,-0.18706142,0.05439948,0.28122966,0.35634355,0.0],[]], |
---|
| 2313 | 'L=28':[[0.21225019,0.32031716,0.13604702,0.03132468,0.00362703,0.00018294,0.00000294,0.32573501], |
---|
| 2314 | [0.13219496,-0.17206256,-0.08742608,0.32671661,0.17973107,0.02567515,0.32619598,0.0], |
---|
| 2315 | [0.07989184,-0.16735346,0.18839770,-0.20705337,0.12926808,0.42715602,0.0,0.0]], |
---|
| 2316 | 'L=30':[[-0.14878368,0.01524973,0.33628434,0.22632587,0.05790047,0.00609812,0.00022898,0.32573594], |
---|
| 2317 | [-0.11721726,0.20915005,-0.11723436,-0.07815329,0.31318947,0.13655742,0.33241385,0.0], |
---|
| 2318 | [-0.04297703,0.09317876,-0.11831248,0.17355132,-0.28164031,0.42719361,0.0,0.0]], |
---|
| 2319 | 'L=32':[[0.20533892,0.32087437,0.15187897,0.04249238,0.00670516,0.00054977,0.00002018,0.00000024,0.32573501], |
---|
| 2320 | [0.12775091,-0.13523423,-0.14935701,0.28227378,0.23670434,0.05661270,0.00469819,0.32578978,0.0], |
---|
| 2321 | [0.09703829,-0.19373733,0.18610682,-0.14407046,0.00220535,0.26897090,0.36633402,0.0,0.0]], |
---|
| 2322 | 'L=34':[[-0.14409234,-0.01343681,0.31248977,0.25557722,0.08571889,0.01351208,0.00095792,0.00002550,0.32573508], |
---|
| 2323 | [-0.11527834,0.18472133,-0.04403280,-0.16908618,0.27227021,0.21086614,0.04041752,0.32688152,0.0], |
---|
| 2324 | [-0.06773139,0.14120811,-0.15835721,0.18357456,-0.19364673,0.08377174,0.43116318,0.0,0.0]] |
---|
| 2325 | } |
---|
| 2326 | |
---|
| 2327 | Lnorm = lambda L: 4.*np.pi/(2.0*L+1.) |
---|
| 2328 | |
---|
| 2329 | def GetKcl(L,N,SGLaue,phi,beta): |
---|
[939] | 2330 | 'needs doc string' |
---|
[762] | 2331 | import pytexture as ptx |
---|
| 2332 | if SGLaue in ['m3','m3m']: |
---|
[1947] | 2333 | if 'array' in str(type(phi)) and np.any(phi.shape): |
---|
[1792] | 2334 | Kcl = np.zeros_like(phi) |
---|
| 2335 | else: |
---|
| 2336 | Kcl = 0. |
---|
[762] | 2337 | for j in range(0,L+1,4): |
---|
[3136] | 2338 | im = j//4 |
---|
[1947] | 2339 | if 'array' in str(type(phi)) and np.any(phi.shape): |
---|
[1945] | 2340 | pcrs = ptx.pyplmpsi(L,j,len(phi),phi)[0] |
---|
[1792] | 2341 | else: |
---|
[1947] | 2342 | pcrs = ptx.pyplmpsi(L,j,1,phi)[0] |
---|
| 2343 | Kcl += BOH['L=%d'%(L)][N-1][im]*pcrs*cosd(j*beta) |
---|
[762] | 2344 | else: |
---|
[1947] | 2345 | if 'array' in str(type(phi)) and np.any(phi.shape): |
---|
[1945] | 2346 | pcrs = ptx.pyplmpsi(L,N,len(phi),phi)[0] |
---|
[1792] | 2347 | else: |
---|
[1947] | 2348 | pcrs = ptx.pyplmpsi(L,N,1,phi)[0] |
---|
[762] | 2349 | pcrs *= RSQ2PI |
---|
| 2350 | if N: |
---|
| 2351 | pcrs *= SQ2 |
---|
| 2352 | if SGLaue in ['mmm','4/mmm','6/mmm','R3mR','3m1','31m']: |
---|
| 2353 | if SGLaue in ['3mR','3m1','31m']: |
---|
| 2354 | if N%6 == 3: |
---|
| 2355 | Kcl = pcrs*sind(N*beta) |
---|
| 2356 | else: |
---|
| 2357 | Kcl = pcrs*cosd(N*beta) |
---|
| 2358 | else: |
---|
| 2359 | Kcl = pcrs*cosd(N*beta) |
---|
| 2360 | else: |
---|
| 2361 | Kcl = pcrs*(cosd(N*beta)+sind(N*beta)) |
---|
| 2362 | return Kcl |
---|
| 2363 | |
---|
| 2364 | def GetKsl(L,M,SamSym,psi,gam): |
---|
[939] | 2365 | 'needs doc string' |
---|
[762] | 2366 | import pytexture as ptx |
---|
[1947] | 2367 | if 'array' in str(type(psi)) and np.any(psi.shape): |
---|
| 2368 | psrs,dpdps = ptx.pyplmpsi(L,M,len(psi),psi) |
---|
| 2369 | else: |
---|
[1793] | 2370 | psrs,dpdps = ptx.pyplmpsi(L,M,1,psi) |
---|
[1766] | 2371 | psrs *= RSQ2PI |
---|
| 2372 | dpdps *= RSQ2PI |
---|
| 2373 | if M: |
---|
| 2374 | psrs *= SQ2 |
---|
| 2375 | dpdps *= SQ2 |
---|
[762] | 2376 | if SamSym in ['mmm',]: |
---|
| 2377 | dum = cosd(M*gam) |
---|
| 2378 | Ksl = psrs*dum |
---|
| 2379 | dKsdp = dpdps*dum |
---|
| 2380 | dKsdg = -psrs*M*sind(M*gam) |
---|
| 2381 | else: |
---|
| 2382 | dum = cosd(M*gam)+sind(M*gam) |
---|
| 2383 | Ksl = psrs*dum |
---|
| 2384 | dKsdp = dpdps*dum |
---|
| 2385 | dKsdg = psrs*M*(-sind(M*gam)+cosd(M*gam)) |
---|
| 2386 | return Ksl,dKsdp,dKsdg |
---|
| 2387 | |
---|
| 2388 | def GetKclKsl(L,N,SGLaue,psi,phi,beta): |
---|
| 2389 | """ |
---|
| 2390 | This is used for spherical harmonics description of preferred orientation; |
---|
| 2391 | cylindrical symmetry only (M=0) and no sample angle derivatives returned |
---|
| 2392 | """ |
---|
| 2393 | import pytexture as ptx |
---|
| 2394 | Ksl,x = ptx.pyplmpsi(L,0,1,psi) |
---|
| 2395 | Ksl *= RSQ2PI |
---|
| 2396 | if SGLaue in ['m3','m3m']: |
---|
| 2397 | Kcl = 0.0 |
---|
| 2398 | for j in range(0,L+1,4): |
---|
[3136] | 2399 | im = j//4 |
---|
[762] | 2400 | pcrs,dum = ptx.pyplmpsi(L,j,1,phi) |
---|
[1947] | 2401 | Kcl += BOH['L=%d'%(L)][N-1][im]*pcrs*cosd(j*beta) |
---|
[762] | 2402 | else: |
---|
| 2403 | pcrs,dum = ptx.pyplmpsi(L,N,1,phi) |
---|
| 2404 | pcrs *= RSQ2PI |
---|
| 2405 | if N: |
---|
| 2406 | pcrs *= SQ2 |
---|
| 2407 | if SGLaue in ['mmm','4/mmm','6/mmm','R3mR','3m1','31m']: |
---|
| 2408 | if SGLaue in ['3mR','3m1','31m']: |
---|
| 2409 | if N%6 == 3: |
---|
| 2410 | Kcl = pcrs*sind(N*beta) |
---|
| 2411 | else: |
---|
| 2412 | Kcl = pcrs*cosd(N*beta) |
---|
| 2413 | else: |
---|
| 2414 | Kcl = pcrs*cosd(N*beta) |
---|
| 2415 | else: |
---|
| 2416 | Kcl = pcrs*(cosd(N*beta)+sind(N*beta)) |
---|
| 2417 | return Kcl*Ksl,Lnorm(L) |
---|
| 2418 | |
---|
| 2419 | def Glnh(Start,SHCoef,psi,gam,SamSym): |
---|
[939] | 2420 | 'needs doc string' |
---|
[762] | 2421 | import pytexture as ptx |
---|
| 2422 | |
---|
| 2423 | if Start: |
---|
| 2424 | ptx.pyqlmninit() |
---|
| 2425 | Start = False |
---|
| 2426 | Fln = np.zeros(len(SHCoef)) |
---|
| 2427 | for i,term in enumerate(SHCoef): |
---|
| 2428 | l,m,n = eval(term.strip('C')) |
---|
| 2429 | pcrs,dum = ptx.pyplmpsi(l,m,1,psi) |
---|
| 2430 | pcrs *= RSQPI |
---|
| 2431 | if m == 0: |
---|
| 2432 | pcrs /= SQ2 |
---|
| 2433 | if SamSym in ['mmm',]: |
---|
| 2434 | Ksl = pcrs*cosd(m*gam) |
---|
| 2435 | else: |
---|
| 2436 | Ksl = pcrs*(cosd(m*gam)+sind(m*gam)) |
---|
| 2437 | Fln[i] = SHCoef[term]*Ksl*Lnorm(l) |
---|
| 2438 | ODFln = dict(zip(SHCoef.keys(),list(zip(SHCoef.values(),Fln)))) |
---|
| 2439 | return ODFln |
---|
| 2440 | |
---|
| 2441 | def Flnh(Start,SHCoef,phi,beta,SGData): |
---|
[939] | 2442 | 'needs doc string' |
---|
[762] | 2443 | import pytexture as ptx |
---|
| 2444 | |
---|
| 2445 | if Start: |
---|
| 2446 | ptx.pyqlmninit() |
---|
| 2447 | Start = False |
---|
| 2448 | Fln = np.zeros(len(SHCoef)) |
---|
| 2449 | for i,term in enumerate(SHCoef): |
---|
| 2450 | l,m,n = eval(term.strip('C')) |
---|
| 2451 | if SGData['SGLaue'] in ['m3','m3m']: |
---|
| 2452 | Kcl = 0.0 |
---|
| 2453 | for j in range(0,l+1,4): |
---|
[3136] | 2454 | im = j//4 |
---|
[762] | 2455 | pcrs,dum = ptx.pyplmpsi(l,j,1,phi) |
---|
[1947] | 2456 | Kcl += BOH['L='+str(l)][n-1][im]*pcrs*cosd(j*beta) |
---|
[762] | 2457 | else: #all but cubic |
---|
| 2458 | pcrs,dum = ptx.pyplmpsi(l,n,1,phi) |
---|
| 2459 | pcrs *= RSQPI |
---|
| 2460 | if n == 0: |
---|
| 2461 | pcrs /= SQ2 |
---|
| 2462 | if SGData['SGLaue'] in ['mmm','4/mmm','6/mmm','R3mR','3m1','31m']: |
---|
| 2463 | if SGData['SGLaue'] in ['3mR','3m1','31m']: |
---|
| 2464 | if n%6 == 3: |
---|
| 2465 | Kcl = pcrs*sind(n*beta) |
---|
| 2466 | else: |
---|
| 2467 | Kcl = pcrs*cosd(n*beta) |
---|
| 2468 | else: |
---|
| 2469 | Kcl = pcrs*cosd(n*beta) |
---|
| 2470 | else: |
---|
| 2471 | Kcl = pcrs*(cosd(n*beta)+sind(n*beta)) |
---|
| 2472 | Fln[i] = SHCoef[term]*Kcl*Lnorm(l) |
---|
| 2473 | ODFln = dict(zip(SHCoef.keys(),list(zip(SHCoef.values(),Fln)))) |
---|
| 2474 | return ODFln |
---|
| 2475 | |
---|
| 2476 | def polfcal(ODFln,SamSym,psi,gam): |
---|
[1452] | 2477 | '''Perform a pole figure computation. |
---|
| 2478 | Note that the the number of gam values must either be 1 or must |
---|
| 2479 | match psi. Updated for numpy 1.8.0 |
---|
| 2480 | ''' |
---|
[762] | 2481 | import pytexture as ptx |
---|
[1452] | 2482 | PolVal = np.ones_like(psi) |
---|
[762] | 2483 | for term in ODFln: |
---|
| 2484 | if abs(ODFln[term][1]) > 1.e-3: |
---|
| 2485 | l,m,n = eval(term.strip('C')) |
---|
| 2486 | psrs,dum = ptx.pyplmpsi(l,m,len(psi),psi) |
---|
| 2487 | if SamSym in ['-1','2/m']: |
---|
[1766] | 2488 | if m: |
---|
[762] | 2489 | Ksl = RSQPI*psrs*(cosd(m*gam)+sind(m*gam)) |
---|
| 2490 | else: |
---|
| 2491 | Ksl = RSQPI*psrs/SQ2 |
---|
| 2492 | else: |
---|
[1766] | 2493 | if m: |
---|
[762] | 2494 | Ksl = RSQPI*psrs*cosd(m*gam) |
---|
| 2495 | else: |
---|
| 2496 | Ksl = RSQPI*psrs/SQ2 |
---|
[1452] | 2497 | PolVal += ODFln[term][1]*Ksl |
---|
[762] | 2498 | return PolVal |
---|
| 2499 | |
---|
| 2500 | def invpolfcal(ODFln,SGData,phi,beta): |
---|
[939] | 2501 | 'needs doc string' |
---|
[762] | 2502 | import pytexture as ptx |
---|
| 2503 | |
---|
| 2504 | invPolVal = np.ones_like(beta) |
---|
| 2505 | for term in ODFln: |
---|
| 2506 | if abs(ODFln[term][1]) > 1.e-3: |
---|
| 2507 | l,m,n = eval(term.strip('C')) |
---|
| 2508 | if SGData['SGLaue'] in ['m3','m3m']: |
---|
| 2509 | Kcl = 0.0 |
---|
| 2510 | for j in range(0,l+1,4): |
---|
[3136] | 2511 | im = j//4 |
---|
[762] | 2512 | pcrs,dum = ptx.pyplmpsi(l,j,len(beta),phi) |
---|
[1947] | 2513 | Kcl += BOH['L=%d'%(l)][n-1][im]*pcrs*cosd(j*beta) |
---|
[762] | 2514 | else: #all but cubic |
---|
| 2515 | pcrs,dum = ptx.pyplmpsi(l,n,len(beta),phi) |
---|
| 2516 | pcrs *= RSQPI |
---|
| 2517 | if n == 0: |
---|
| 2518 | pcrs /= SQ2 |
---|
| 2519 | if SGData['SGLaue'] in ['mmm','4/mmm','6/mmm','R3mR','3m1','31m']: |
---|
| 2520 | if SGData['SGLaue'] in ['3mR','3m1','31m']: |
---|
| 2521 | if n%6 == 3: |
---|
| 2522 | Kcl = pcrs*sind(n*beta) |
---|
| 2523 | else: |
---|
| 2524 | Kcl = pcrs*cosd(n*beta) |
---|
| 2525 | else: |
---|
| 2526 | Kcl = pcrs*cosd(n*beta) |
---|
| 2527 | else: |
---|
| 2528 | Kcl = pcrs*(cosd(n*beta)+sind(n*beta)) |
---|
| 2529 | invPolVal += ODFln[term][1]*Kcl |
---|
| 2530 | return invPolVal |
---|
| 2531 | |
---|
| 2532 | |
---|
| 2533 | def textureIndex(SHCoef): |
---|
[939] | 2534 | 'needs doc string' |
---|
[762] | 2535 | Tindx = 1.0 |
---|
| 2536 | for term in SHCoef: |
---|
| 2537 | l = eval(term.strip('C'))[0] |
---|
| 2538 | Tindx += SHCoef[term]**2/(2.0*l+1.) |
---|
| 2539 | return Tindx |
---|
[5042] | 2540 | |
---|
| 2541 | UniqueCellByLaue = [ |
---|
| 2542 | [['m3','m3m'],(0,)], |
---|
| 2543 | [['3R','3mR'],(0,3)], |
---|
| 2544 | [['3','3m1','31m','6/m','6/mmm','4/m','4/mmm'],(0,2)], |
---|
| 2545 | [['mmm'],(0,1,2)], |
---|
| 2546 | [['2/m'+'a'],(0,1,2,3)], |
---|
| 2547 | [['2/m'+'b'],(0,1,2,4)], |
---|
| 2548 | [['2/m'+'c'],(0,1,2,5)], |
---|
| 2549 | [['-1'],(0,1,2,3,4,5)], |
---|
| 2550 | ] |
---|
| 2551 | '''List the unique cell terms by index for each Laue class''' |
---|
| 2552 | |
---|
| 2553 | cellAlbl = ('a','b','c', 'alpha', 'beta', 'gamma') |
---|
| 2554 | 'ASCII labels for a, b, c, alpha, beta, gamma' |
---|
| 2555 | |
---|
| 2556 | cellUlbl = ('a','b','c',u'\u03B1',u'\u03B2',u'\u03B3') |
---|
| 2557 | 'unicode labels for a, b, c, alpha, beta, gamma' |
---|
| 2558 | |
---|
[939] | 2559 | # self-test materials follow. |
---|
| 2560 | selftestlist = [] |
---|
| 2561 | '''Defines a list of self-tests''' |
---|
| 2562 | selftestquiet = True |
---|
| 2563 | def _ReportTest(): |
---|
| 2564 | 'Report name and doc string of current routine when ``selftestquiet`` is False' |
---|
| 2565 | if not selftestquiet: |
---|
| 2566 | import inspect |
---|
| 2567 | caller = inspect.stack()[1][3] |
---|
| 2568 | doc = eval(caller).__doc__ |
---|
| 2569 | if doc is not None: |
---|
| 2570 | print('testing '+__file__+' with '+caller+' ('+doc+')') |
---|
| 2571 | else: |
---|
| 2572 | print('testing '+__file__()+" with "+caller) |
---|
[762] | 2573 | NeedTestData = True |
---|
| 2574 | def TestData(): |
---|
| 2575 | array = np.array |
---|
| 2576 | global NeedTestData |
---|
| 2577 | NeedTestData = False |
---|
| 2578 | global CellTestData |
---|
[939] | 2579 | # output from uctbx computed on platform darwin on 2010-05-28 |
---|
[762] | 2580 | CellTestData = [ |
---|
| 2581 | # cell, g, G, cell*, V, V* |
---|
| 2582 | [(4, 4, 4, 90, 90, 90), |
---|
| 2583 | array([[ 1.60000000e+01, 9.79717439e-16, 9.79717439e-16], |
---|
| 2584 | [ 9.79717439e-16, 1.60000000e+01, 9.79717439e-16], |
---|
| 2585 | [ 9.79717439e-16, 9.79717439e-16, 1.60000000e+01]]), array([[ 6.25000000e-02, 3.82702125e-18, 3.82702125e-18], |
---|
| 2586 | [ 3.82702125e-18, 6.25000000e-02, 3.82702125e-18], |
---|
| 2587 | [ 3.82702125e-18, 3.82702125e-18, 6.25000000e-02]]), (0.25, 0.25, 0.25, 90.0, 90.0, 90.0), 64.0, 0.015625], |
---|
| 2588 | # cell, g, G, cell*, V, V* |
---|
| 2589 | [(4.0999999999999996, 5.2000000000000002, 6.2999999999999998, 100, 80, 130), |
---|
| 2590 | array([[ 16.81 , -13.70423184, 4.48533243], |
---|
| 2591 | [-13.70423184, 27.04 , -5.6887143 ], |
---|
| 2592 | [ 4.48533243, -5.6887143 , 39.69 ]]), array([[ 0.10206349, 0.05083339, -0.00424823], |
---|
| 2593 | [ 0.05083339, 0.06344997, 0.00334956], |
---|
| 2594 | [-0.00424823, 0.00334956, 0.02615544]]), (0.31947376387537696, 0.25189277536327803, 0.16172643497798223, 85.283666420376008, 94.716333579624006, 50.825714168082683), 100.98576357983838, 0.0099023858863968445], |
---|
| 2595 | # cell, g, G, cell*, V, V* |
---|
| 2596 | [(3.5, 3.5, 6, 90, 90, 120), |
---|
| 2597 | array([[ 1.22500000e+01, -6.12500000e+00, 1.28587914e-15], |
---|
| 2598 | [ -6.12500000e+00, 1.22500000e+01, 1.28587914e-15], |
---|
| 2599 | [ 1.28587914e-15, 1.28587914e-15, 3.60000000e+01]]), array([[ 1.08843537e-01, 5.44217687e-02, 3.36690552e-18], |
---|
| 2600 | [ 5.44217687e-02, 1.08843537e-01, 3.36690552e-18], |
---|
| 2601 | [ 3.36690552e-18, 3.36690552e-18, 2.77777778e-02]]), (0.32991443953692895, 0.32991443953692895, 0.16666666666666669, 90.0, 90.0, 60.000000000000021), 63.652867178156257, 0.015710211406520427], |
---|
| 2602 | ] |
---|
| 2603 | global CoordTestData |
---|
| 2604 | CoordTestData = [ |
---|
| 2605 | # cell, ((frac, ortho),...) |
---|
| 2606 | ((4,4,4,90,90,90,), [ |
---|
| 2607 | ((0.10000000000000001, 0.0, 0.0),(0.40000000000000002, 0.0, 0.0)), |
---|
| 2608 | ((0.0, 0.10000000000000001, 0.0),(2.4492935982947065e-17, 0.40000000000000002, 0.0)), |
---|
| 2609 | ((0.0, 0.0, 0.10000000000000001),(2.4492935982947065e-17, -2.4492935982947065e-17, 0.40000000000000002)), |
---|
| 2610 | ((0.10000000000000001, 0.20000000000000001, 0.29999999999999999),(0.40000000000000013, 0.79999999999999993, 1.2)), |
---|
| 2611 | ((0.20000000000000001, 0.29999999999999999, 0.10000000000000001),(0.80000000000000016, 1.2, 0.40000000000000002)), |
---|
| 2612 | ((0.29999999999999999, 0.20000000000000001, 0.10000000000000001),(1.2, 0.80000000000000004, 0.40000000000000002)), |
---|
| 2613 | ((0.5, 0.5, 0.5),(2.0, 1.9999999999999998, 2.0)), |
---|
| 2614 | ]), |
---|
| 2615 | # cell, ((frac, ortho),...) |
---|
| 2616 | ((4.1,5.2,6.3,100,80,130,), [ |
---|
| 2617 | ((0.10000000000000001, 0.0, 0.0),(0.40999999999999998, 0.0, 0.0)), |
---|
| 2618 | ((0.0, 0.10000000000000001, 0.0),(-0.33424955703700043, 0.39834311042186865, 0.0)), |
---|
| 2619 | ((0.0, 0.0, 0.10000000000000001),(0.10939835193016617, -0.051013289294572106, 0.6183281045774256)), |
---|
| 2620 | ((0.10000000000000001, 0.20000000000000001, 0.29999999999999999),(0.069695941716497567, 0.64364635296002093, 1.8549843137322766)), |
---|
| 2621 | ((0.20000000000000001, 0.29999999999999999, 0.10000000000000001),(-0.073350319180835066, 1.1440160419710339, 0.6183281045774256)), |
---|
| 2622 | ((0.29999999999999999, 0.20000000000000001, 0.10000000000000001),(0.67089923785616512, 0.74567293154916525, 0.6183281045774256)), |
---|
| 2623 | ((0.5, 0.5, 0.5),(0.92574397446582857, 1.7366491056364828, 3.0916405228871278)), |
---|
| 2624 | ]), |
---|
| 2625 | # cell, ((frac, ortho),...) |
---|
| 2626 | ((3.5,3.5,6,90,90,120,), [ |
---|
| 2627 | ((0.10000000000000001, 0.0, 0.0),(0.35000000000000003, 0.0, 0.0)), |
---|
| 2628 | ((0.0, 0.10000000000000001, 0.0),(-0.17499999999999993, 0.3031088913245536, 0.0)), |
---|
| 2629 | ((0.0, 0.0, 0.10000000000000001),(3.6739403974420595e-17, -3.6739403974420595e-17, 0.60000000000000009)), |
---|
| 2630 | ((0.10000000000000001, 0.20000000000000001, 0.29999999999999999),(2.7675166561703527e-16, 0.60621778264910708, 1.7999999999999998)), |
---|
| 2631 | ((0.20000000000000001, 0.29999999999999999, 0.10000000000000001),(0.17500000000000041, 0.90932667397366063, 0.60000000000000009)), |
---|
| 2632 | ((0.29999999999999999, 0.20000000000000001, 0.10000000000000001),(0.70000000000000018, 0.6062177826491072, 0.60000000000000009)), |
---|
| 2633 | ((0.5, 0.5, 0.5),(0.87500000000000067, 1.5155444566227676, 3.0)), |
---|
| 2634 | ]), |
---|
| 2635 | ] |
---|
| 2636 | global LaueTestData #generated by GSAS |
---|
| 2637 | LaueTestData = { |
---|
| 2638 | 'R 3 m':[(4.,4.,6.,90.,90.,120.),((1,0,1,6),(1,0,-2,6),(0,0,3,2),(1,1,0,6),(2,0,-1,6),(2,0,2,6), |
---|
| 2639 | (1,1,3,12),(1,0,4,6),(2,1,1,12),(2,1,-2,12),(3,0,0,6),(1,0,-5,6),(2,0,-4,6),(3,0,-3,6),(3,0,3,6), |
---|
| 2640 | (0,0,6,2),(2,2,0,6),(2,1,4,12),(2,0,5,6),(3,1,-1,12),(3,1,2,12),(1,1,6,12),(2,2,3,12),(2,1,-5,12))], |
---|
| 2641 | 'R 3':[(4.,4.,6.,90.,90.,120.),((1,0,1,6),(1,0,-2,6),(0,0,3,2),(1,1,0,6),(2,0,-1,6),(2,0,2,6),(1,1,3,6), |
---|
| 2642 | (1,1,-3,6),(1,0,4,6),(3,-1,1,6),(2,1,1,6),(3,-1,-2,6),(2,1,-2,6),(3,0,0,6),(1,0,-5,6),(2,0,-4,6), |
---|
| 2643 | (2,2,0,6),(3,0,3,6),(3,0,-3,6),(0,0,6,2),(3,-1,4,6),(2,0,5,6),(2,1,4,6),(4,-1,-1,6),(3,1,-1,6), |
---|
| 2644 | (3,1,2,6),(4,-1,2,6),(2,2,-3,6),(1,1,-6,6),(1,1,6,6),(2,2,3,6),(2,1,-5,6),(3,-1,-5,6))], |
---|
| 2645 | 'P 3':[(4.,4.,6.,90.,90.,120.),((0,0,1,2),(1,0,0,6),(1,0,1,6),(0,0,2,2),(1,0,-1,6),(1,0,2,6),(1,0,-2,6), |
---|
| 2646 | (1,1,0,6),(0,0,3,2),(1,1,1,6),(1,1,-1,6),(1,0,3,6),(1,0,-3,6),(2,0,0,6),(2,0,-1,6),(1,1,-2,6), |
---|
| 2647 | (1,1,2,6),(2,0,1,6),(2,0,-2,6),(2,0,2,6),(0,0,4,2),(1,1,-3,6),(1,1,3,6),(1,0,-4,6),(1,0,4,6), |
---|
| 2648 | (2,0,-3,6),(2,1,0,6),(2,0,3,6),(3,-1,0,6),(2,1,1,6),(3,-1,-1,6),(2,1,-1,6),(3,-1,1,6),(1,1,4,6), |
---|
| 2649 | (3,-1,2,6),(3,-1,-2,6),(1,1,-4,6),(0,0,5,2),(2,1,2,6),(2,1,-2,6),(3,0,0,6),(3,0,1,6),(2,0,4,6), |
---|
| 2650 | (2,0,-4,6),(3,0,-1,6),(1,0,-5,6),(1,0,5,6),(3,-1,-3,6),(2,1,-3,6),(2,1,3,6),(3,-1,3,6),(3,0,-2,6), |
---|
| 2651 | (3,0,2,6),(1,1,5,6),(1,1,-5,6),(2,2,0,6),(3,0,3,6),(3,0,-3,6),(0,0,6,2),(2,0,-5,6),(2,1,-4,6), |
---|
| 2652 | (2,2,-1,6),(3,-1,-4,6),(2,2,1,6),(3,-1,4,6),(2,1,4,6),(2,0,5,6),(1,0,-6,6),(1,0,6,6),(4,-1,0,6), |
---|
| 2653 | (3,1,0,6),(3,1,-1,6),(3,1,1,6),(4,-1,-1,6),(2,2,2,6),(4,-1,1,6),(2,2,-2,6),(3,1,2,6),(3,1,-2,6), |
---|
| 2654 | (3,0,4,6),(3,0,-4,6),(4,-1,-2,6),(4,-1,2,6),(2,2,-3,6),(1,1,6,6),(1,1,-6,6),(2,2,3,6),(3,-1,5,6), |
---|
| 2655 | (2,1,5,6),(2,1,-5,6),(3,-1,-5,6))], |
---|
| 2656 | 'P 3 m 1':[(4.,4.,6.,90.,90.,120.),((0,0,1,2),(1,0,0,6),(1,0,-1,6),(1,0,1,6),(0,0,2,2),(1,0,-2,6), |
---|
| 2657 | (1,0,2,6),(1,1,0,6),(0,0,3,2),(1,1,1,12),(1,0,-3,6),(1,0,3,6),(2,0,0,6),(1,1,2,12),(2,0,1,6), |
---|
| 2658 | (2,0,-1,6),(0,0,4,2),(2,0,-2,6),(2,0,2,6),(1,1,3,12),(1,0,-4,6),(1,0,4,6),(2,0,3,6),(2,1,0,12), |
---|
| 2659 | (2,0,-3,6),(2,1,1,12),(2,1,-1,12),(1,1,4,12),(2,1,2,12),(0,0,5,2),(2,1,-2,12),(3,0,0,6),(1,0,-5,6), |
---|
| 2660 | (3,0,1,6),(3,0,-1,6),(1,0,5,6),(2,0,4,6),(2,0,-4,6),(2,1,3,12),(2,1,-3,12),(3,0,-2,6),(3,0,2,6), |
---|
| 2661 | (1,1,5,12),(3,0,-3,6),(0,0,6,2),(2,2,0,6),(3,0,3,6),(2,1,4,12),(2,2,1,12),(2,0,5,6),(2,1,-4,12), |
---|
| 2662 | (2,0,-5,6),(1,0,-6,6),(1,0,6,6),(3,1,0,12),(3,1,-1,12),(3,1,1,12),(2,2,2,12),(3,1,2,12), |
---|
| 2663 | (3,0,4,6),(3,1,-2,12),(3,0,-4,6),(1,1,6,12),(2,2,3,12))], |
---|
| 2664 | 'P 3 1 m':[(4.,4.,6.,90.,90.,120.),((0,0,1,2),(1,0,0,6),(0,0,2,2),(1,0,1,12),(1,0,2,12),(1,1,0,6), |
---|
| 2665 | (0,0,3,2),(1,1,-1,6),(1,1,1,6),(1,0,3,12),(2,0,0,6),(2,0,1,12),(1,1,2,6),(1,1,-2,6),(2,0,2,12), |
---|
| 2666 | (0,0,4,2),(1,1,-3,6),(1,1,3,6),(1,0,4,12),(2,1,0,12),(2,0,3,12),(2,1,1,12),(2,1,-1,12),(1,1,-4,6), |
---|
| 2667 | (1,1,4,6),(0,0,5,2),(2,1,-2,12),(2,1,2,12),(3,0,0,6),(1,0,5,12),(2,0,4,12),(3,0,1,12),(2,1,-3,12), |
---|
| 2668 | (2,1,3,12),(3,0,2,12),(1,1,5,6),(1,1,-5,6),(3,0,3,12),(0,0,6,2),(2,2,0,6),(2,1,-4,12),(2,0,5,12), |
---|
| 2669 | (2,2,-1,6),(2,2,1,6),(2,1,4,12),(3,1,0,12),(1,0,6,12),(2,2,2,6),(3,1,-1,12),(2,2,-2,6),(3,1,1,12), |
---|
| 2670 | (3,1,-2,12),(3,0,4,12),(3,1,2,12),(1,1,-6,6),(2,2,3,6),(2,2,-3,6),(1,1,6,6))], |
---|
| 2671 | } |
---|
| 2672 | |
---|
| 2673 | global FLnhTestData |
---|
| 2674 | FLnhTestData = [{ |
---|
| 2675 | 'C(4,0,0)': (0.965, 0.42760447), |
---|
| 2676 | 'C(2,0,0)': (1.0122, -0.80233610), |
---|
| 2677 | 'C(2,0,2)': (0.0061, 8.37491546E-03), |
---|
| 2678 | 'C(6,0,4)': (-0.0898, 4.37985696E-02), |
---|
| 2679 | 'C(6,0,6)': (-0.1369, -9.04081762E-02), |
---|
| 2680 | 'C(6,0,0)': (0.5935, -0.18234928), |
---|
| 2681 | 'C(4,0,4)': (0.1872, 0.16358127), |
---|
| 2682 | 'C(6,0,2)': (0.6193, 0.27573633), |
---|
| 2683 | 'C(4,0,2)': (-0.1897, 0.12530720)},[1,0,0]] |
---|
| 2684 | def test0(): |
---|
| 2685 | if NeedTestData: TestData() |
---|
| 2686 | msg = 'test cell2Gmat, fillgmat, Gmat2cell' |
---|
| 2687 | for (cell, tg, tG, trcell, tV, trV) in CellTestData: |
---|
| 2688 | G, g = cell2Gmat(cell) |
---|
| 2689 | assert np.allclose(G,tG),msg |
---|
| 2690 | assert np.allclose(g,tg),msg |
---|
| 2691 | tcell = Gmat2cell(g) |
---|
| 2692 | assert np.allclose(cell,tcell),msg |
---|
| 2693 | tcell = Gmat2cell(G) |
---|
| 2694 | assert np.allclose(tcell,trcell),msg |
---|
[2802] | 2695 | if __name__ == '__main__': selftestlist.append(test0) |
---|
[762] | 2696 | |
---|
| 2697 | def test1(): |
---|
[939] | 2698 | 'test cell2A and A2Gmat' |
---|
| 2699 | _ReportTest() |
---|
[762] | 2700 | if NeedTestData: TestData() |
---|
| 2701 | msg = 'test cell2A and A2Gmat' |
---|
| 2702 | for (cell, tg, tG, trcell, tV, trV) in CellTestData: |
---|
| 2703 | G, g = A2Gmat(cell2A(cell)) |
---|
| 2704 | assert np.allclose(G,tG),msg |
---|
| 2705 | assert np.allclose(g,tg),msg |
---|
[2802] | 2706 | if __name__ == '__main__': selftestlist.append(test1) |
---|
[762] | 2707 | |
---|
| 2708 | def test2(): |
---|
[939] | 2709 | 'test Gmat2A, A2cell, A2Gmat, Gmat2cell' |
---|
| 2710 | _ReportTest() |
---|
[762] | 2711 | if NeedTestData: TestData() |
---|
| 2712 | msg = 'test Gmat2A, A2cell, A2Gmat, Gmat2cell' |
---|
| 2713 | for (cell, tg, tG, trcell, tV, trV) in CellTestData: |
---|
| 2714 | G, g = cell2Gmat(cell) |
---|
| 2715 | tcell = A2cell(Gmat2A(G)) |
---|
| 2716 | assert np.allclose(cell,tcell),msg |
---|
[2802] | 2717 | if __name__ == '__main__': selftestlist.append(test2) |
---|
[762] | 2718 | |
---|
| 2719 | def test3(): |
---|
[939] | 2720 | 'test invcell2Gmat' |
---|
| 2721 | _ReportTest() |
---|
[762] | 2722 | if NeedTestData: TestData() |
---|
| 2723 | msg = 'test invcell2Gmat' |
---|
| 2724 | for (cell, tg, tG, trcell, tV, trV) in CellTestData: |
---|
| 2725 | G, g = invcell2Gmat(trcell) |
---|
| 2726 | assert np.allclose(G,tG),msg |
---|
| 2727 | assert np.allclose(g,tg),msg |
---|
[2802] | 2728 | if __name__ == '__main__': selftestlist.append(test3) |
---|
[762] | 2729 | |
---|
| 2730 | def test4(): |
---|
[939] | 2731 | 'test calc_rVsq, calc_rV, calc_V' |
---|
| 2732 | _ReportTest() |
---|
[762] | 2733 | if NeedTestData: TestData() |
---|
| 2734 | msg = 'test calc_rVsq, calc_rV, calc_V' |
---|
| 2735 | for (cell, tg, tG, trcell, tV, trV) in CellTestData: |
---|
| 2736 | assert np.allclose(calc_rV(cell2A(cell)),trV), msg |
---|
| 2737 | assert np.allclose(calc_V(cell2A(cell)),tV), msg |
---|
[2802] | 2738 | if __name__ == '__main__': selftestlist.append(test4) |
---|
[762] | 2739 | |
---|
| 2740 | def test5(): |
---|
[939] | 2741 | 'test A2invcell' |
---|
| 2742 | _ReportTest() |
---|
[762] | 2743 | if NeedTestData: TestData() |
---|
| 2744 | msg = 'test A2invcell' |
---|
| 2745 | for (cell, tg, tG, trcell, tV, trV) in CellTestData: |
---|
| 2746 | rcell = A2invcell(cell2A(cell)) |
---|
| 2747 | assert np.allclose(rcell,trcell),msg |
---|
[2802] | 2748 | if __name__ == '__main__': selftestlist.append(test5) |
---|
[762] | 2749 | |
---|
| 2750 | def test6(): |
---|
[939] | 2751 | 'test cell2AB' |
---|
| 2752 | _ReportTest() |
---|
[762] | 2753 | if NeedTestData: TestData() |
---|
| 2754 | msg = 'test cell2AB' |
---|
| 2755 | for (cell,coordlist) in CoordTestData: |
---|
| 2756 | A,B = cell2AB(cell) |
---|
| 2757 | for (frac,ortho) in coordlist: |
---|
| 2758 | to = np.inner(A,frac) |
---|
| 2759 | tf = np.inner(B,to) |
---|
| 2760 | assert np.allclose(ortho,to), msg |
---|
| 2761 | assert np.allclose(frac,tf), msg |
---|
| 2762 | to = np.sum(A*frac,axis=1) |
---|
| 2763 | tf = np.sum(B*to,axis=1) |
---|
| 2764 | assert np.allclose(ortho,to), msg |
---|
| 2765 | assert np.allclose(frac,tf), msg |
---|
[2802] | 2766 | if __name__ == '__main__': selftestlist.append(test6) |
---|
[762] | 2767 | |
---|
| 2768 | def test7(): |
---|
[939] | 2769 | 'test GetBraviasNum(...) and GenHBravais(...)' |
---|
| 2770 | _ReportTest() |
---|
[762] | 2771 | import os.path |
---|
| 2772 | import sys |
---|
| 2773 | import GSASIIspc as spc |
---|
| 2774 | testdir = os.path.join(os.path.split(os.path.abspath( __file__ ))[0],'testinp') |
---|
| 2775 | if os.path.exists(testdir): |
---|
| 2776 | if testdir not in sys.path: sys.path.insert(0,testdir) |
---|
| 2777 | import sgtbxlattinp |
---|
| 2778 | derror = 1e-4 |
---|
| 2779 | def indexmatch(hklin, hkllist, system): |
---|
| 2780 | for hklref in hkllist: |
---|
| 2781 | hklref = list(hklref) |
---|
| 2782 | # these permutations are far from complete, but are sufficient to |
---|
| 2783 | # allow the test to complete |
---|
| 2784 | if system == 'cubic': |
---|
| 2785 | permlist = [(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),] |
---|
| 2786 | elif system == 'monoclinic': |
---|
| 2787 | permlist = [(1,2,3),(-1,2,-3)] |
---|
| 2788 | else: |
---|
| 2789 | permlist = [(1,2,3)] |
---|
| 2790 | |
---|
| 2791 | for perm in permlist: |
---|
| 2792 | hkl = [abs(i) * hklin[abs(i)-1] / i for i in perm] |
---|
| 2793 | if hkl == hklref: return True |
---|
| 2794 | if [-i for i in hkl] == hklref: return True |
---|
| 2795 | else: |
---|
| 2796 | return False |
---|
| 2797 | |
---|
| 2798 | for key in sgtbxlattinp.sgtbx7: |
---|
| 2799 | spdict = spc.SpcGroup(key) |
---|
| 2800 | cell = sgtbxlattinp.sgtbx7[key][0] |
---|
| 2801 | system = spdict[1]['SGSys'] |
---|
| 2802 | center = spdict[1]['SGLatt'] |
---|
| 2803 | |
---|
| 2804 | bravcode = GetBraviasNum(center, system) |
---|
| 2805 | |
---|
| 2806 | g2list = GenHBravais(sgtbxlattinp.dmin, bravcode, cell2A(cell)) |
---|
| 2807 | |
---|
| 2808 | assert len(sgtbxlattinp.sgtbx7[key][1]) == len(g2list), 'Reflection lists differ for %s' % key |
---|
| 2809 | for h,k,l,d,num in g2list: |
---|
| 2810 | for hkllist,dref in sgtbxlattinp.sgtbx7[key][1]: |
---|
| 2811 | if abs(d-dref) < derror: |
---|
| 2812 | if indexmatch((h,k,l,), hkllist, system): |
---|
| 2813 | break |
---|
| 2814 | else: |
---|
| 2815 | assert 0,'No match for %s at %s (%s)' % ((h,k,l),d,key) |
---|
[2802] | 2816 | if __name__ == '__main__': selftestlist.append(test7) |
---|
[762] | 2817 | |
---|
| 2818 | def test8(): |
---|
[939] | 2819 | 'test GenHLaue' |
---|
| 2820 | _ReportTest() |
---|
[762] | 2821 | import GSASIIspc as spc |
---|
| 2822 | import sgtbxlattinp |
---|
| 2823 | derror = 1e-4 |
---|
| 2824 | dmin = sgtbxlattinp.dmin |
---|
| 2825 | |
---|
| 2826 | def indexmatch(hklin, hklref, system, axis): |
---|
| 2827 | # these permutations are far from complete, but are sufficient to |
---|
| 2828 | # allow the test to complete |
---|
| 2829 | if system == 'cubic': |
---|
| 2830 | permlist = [(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),] |
---|
| 2831 | elif system == 'monoclinic' and axis=='b': |
---|
| 2832 | permlist = [(1,2,3),(-1,2,-3)] |
---|
| 2833 | elif system == 'monoclinic' and axis=='a': |
---|
| 2834 | permlist = [(1,2,3),(1,-2,-3)] |
---|
| 2835 | elif system == 'monoclinic' and axis=='c': |
---|
| 2836 | permlist = [(1,2,3),(-1,-2,3)] |
---|
| 2837 | elif system == 'trigonal': |
---|
| 2838 | permlist = [(1,2,3),(2,1,3),(-1,-2,3),(-2,-1,3)] |
---|
| 2839 | elif system == 'rhombohedral': |
---|
| 2840 | permlist = [(1,2,3),(2,3,1),(3,1,2)] |
---|
| 2841 | else: |
---|
| 2842 | permlist = [(1,2,3)] |
---|
| 2843 | |
---|
| 2844 | hklref = list(hklref) |
---|
| 2845 | for perm in permlist: |
---|
| 2846 | hkl = [abs(i) * hklin[abs(i)-1] / i for i in perm] |
---|
| 2847 | if hkl == hklref: return True |
---|
| 2848 | if [-i for i in hkl] == hklref: return True |
---|
| 2849 | return False |
---|
| 2850 | |
---|
| 2851 | for key in sgtbxlattinp.sgtbx8: |
---|
| 2852 | spdict = spc.SpcGroup(key)[1] |
---|
| 2853 | cell = sgtbxlattinp.sgtbx8[key][0] |
---|
| 2854 | Axis = spdict['SGUniq'] |
---|
| 2855 | system = spdict['SGSys'] |
---|
| 2856 | |
---|
| 2857 | g2list = GenHLaue(dmin,spdict,cell2A(cell)) |
---|
| 2858 | #if len(g2list) != len(sgtbxlattinp.sgtbx8[key][1]): |
---|
| 2859 | # print 'failed',key,':' ,len(g2list),'vs',len(sgtbxlattinp.sgtbx8[key][1]) |
---|
| 2860 | # print 'GSAS-II:' |
---|
| 2861 | # for h,k,l,d in g2list: print ' ',(h,k,l),d |
---|
| 2862 | # print 'SGTBX:' |
---|
| 2863 | # for hkllist,dref in sgtbxlattinp.sgtbx8[key][1]: print ' ',hkllist,dref |
---|
| 2864 | assert len(g2list) == len(sgtbxlattinp.sgtbx8[key][1]), ( |
---|
| 2865 | 'Reflection lists differ for %s' % key |
---|
| 2866 | ) |
---|
| 2867 | #match = True |
---|
| 2868 | for h,k,l,d in g2list: |
---|
| 2869 | for hkllist,dref in sgtbxlattinp.sgtbx8[key][1]: |
---|
| 2870 | if abs(d-dref) < derror: |
---|
| 2871 | if indexmatch((h,k,l,), hkllist, system, Axis): break |
---|
| 2872 | else: |
---|
| 2873 | assert 0,'No match for %s at %s (%s)' % ((h,k,l),d,key) |
---|
| 2874 | #match = False |
---|
| 2875 | #if not match: |
---|
| 2876 | #for hkllist,dref in sgtbxlattinp.sgtbx8[key][1]: print ' ',hkllist,dref |
---|
| 2877 | #print center, Laue, Axis, system |
---|
[2802] | 2878 | if __name__ == '__main__': selftestlist.append(test8) |
---|
[762] | 2879 | |
---|
| 2880 | def test9(): |
---|
[939] | 2881 | 'test GenHLaue' |
---|
| 2882 | _ReportTest() |
---|
[762] | 2883 | import GSASIIspc as G2spc |
---|
| 2884 | if NeedTestData: TestData() |
---|
| 2885 | for spc in LaueTestData: |
---|
| 2886 | data = LaueTestData[spc] |
---|
| 2887 | cell = data[0] |
---|
| 2888 | hklm = np.array(data[1]) |
---|
| 2889 | H = hklm[-1][:3] |
---|
| 2890 | hklO = hklm.T[:3].T |
---|
| 2891 | A = cell2A(cell) |
---|
| 2892 | dmin = 1./np.sqrt(calc_rDsq(H,A)) |
---|
| 2893 | SGData = G2spc.SpcGroup(spc)[1] |
---|
| 2894 | hkls = np.array(GenHLaue(dmin,SGData,A)) |
---|
| 2895 | hklN = hkls.T[:3].T |
---|
[939] | 2896 | #print spc,hklO.shape,hklN.shape |
---|
| 2897 | err = True |
---|
[762] | 2898 | for H in hklO: |
---|
| 2899 | if H not in hklN: |
---|
[3136] | 2900 | print ('%d %s'%(H,' missing from hkl from GSASII')) |
---|
[939] | 2901 | err = False |
---|
| 2902 | assert(err) |
---|
[2802] | 2903 | if __name__ == '__main__': selftestlist.append(test9) |
---|
[762] | 2904 | |
---|
| 2905 | |
---|
| 2906 | |
---|
| 2907 | |
---|
| 2908 | if __name__ == '__main__': |
---|
[939] | 2909 | # run self-tests |
---|
| 2910 | selftestquiet = False |
---|
| 2911 | for test in selftestlist: |
---|
| 2912 | test() |
---|
[3136] | 2913 | print ("OK") |
---|