1 | # -*- coding: utf-8 -*- |
---|
2 | #GSASII cell indexing program: variation on that of A. Coehlo |
---|
3 | # includes cell refinement from peak positions (not zero as yet) |
---|
4 | ########### SVN repository information ################### |
---|
5 | # $Date: 2018-09-30 20:47:12 +0000 (Sun, 30 Sep 2018) $ |
---|
6 | # $Author: vondreele $ |
---|
7 | # $Revision: 3633 $ |
---|
8 | # $URL: trunk/GSASIIindex.py $ |
---|
9 | # $Id: GSASIIindex.py 3633 2018-09-30 20:47:12Z vondreele $ |
---|
10 | ########### SVN repository information ################### |
---|
11 | ''' |
---|
12 | *GSASIIindex: Cell Indexing Module* |
---|
13 | =================================== |
---|
14 | |
---|
15 | Cell indexing program: variation on that of A. Coehlo |
---|
16 | includes cell refinement from peak positions |
---|
17 | ''' |
---|
18 | |
---|
19 | from __future__ import division, print_function |
---|
20 | import math |
---|
21 | import time |
---|
22 | import numpy as np |
---|
23 | import GSASIIpath |
---|
24 | GSASIIpath.SetVersionNumber("$Revision: 3633 $") |
---|
25 | import GSASIIlattice as G2lat |
---|
26 | import GSASIIpwd as G2pwd |
---|
27 | import GSASIIspc as G2spc |
---|
28 | import GSASIImath as G2mth |
---|
29 | import scipy.optimize as so |
---|
30 | |
---|
31 | # trig functions in degrees |
---|
32 | sind = lambda x: math.sin(x*math.pi/180.) |
---|
33 | asind = lambda x: 180.*math.asin(x)/math.pi |
---|
34 | tand = lambda x: math.tan(x*math.pi/180.) |
---|
35 | atand = lambda x: 180.*math.atan(x)/math.pi |
---|
36 | atan2d = lambda y,x: 180.*math.atan2(y,x)/math.pi |
---|
37 | cosd = lambda x: math.cos(x*math.pi/180.) |
---|
38 | acosd = lambda x: 180.*math.acos(x)/math.pi |
---|
39 | rdsq2d = lambda x,p: round(1.0/math.sqrt(x),p) |
---|
40 | #numpy versions |
---|
41 | npsind = lambda x: np.sin(x*np.pi/180.) |
---|
42 | npasind = lambda x: 180.*np.arcsin(x)/math.pi |
---|
43 | npcosd = lambda x: np.cos(x*math.pi/180.) |
---|
44 | nptand = lambda x: np.tan(x*math.pi/180.) |
---|
45 | npatand = lambda x: 180.*np.arctan(x)/np.pi |
---|
46 | npatan2d = lambda y,x: 180.*np.arctan2(y,x)/np.pi |
---|
47 | rpd = np.pi/180. |
---|
48 | |
---|
49 | def scaleAbyV(A,V): |
---|
50 | 'needs a doc string' |
---|
51 | v = G2lat.calc_V(A) |
---|
52 | scale = math.exp(math.log(v/V)/3.)**2 |
---|
53 | for i in range(6): |
---|
54 | A[i] *= scale |
---|
55 | |
---|
56 | def ranaxis(dmin,dmax): |
---|
57 | 'needs a doc string' |
---|
58 | import random as rand |
---|
59 | return rand.random()*(dmax-dmin)+dmin |
---|
60 | |
---|
61 | def ran2axis(k,N): |
---|
62 | 'needs a doc string' |
---|
63 | import random as rand |
---|
64 | T = 1.5+0.49*k/N |
---|
65 | # B = 0.99-0.49*k/N |
---|
66 | # B = 0.99-0.049*k/N |
---|
67 | B = 0.99-0.149*k/N |
---|
68 | R = (T-B)*rand.random()+B |
---|
69 | return R |
---|
70 | |
---|
71 | #def ranNaxis(k,N): |
---|
72 | # import random as rand |
---|
73 | # T = 1.0+1.0*k/N |
---|
74 | # B = 1.0-1.0*k/N |
---|
75 | # R = (T-B)*rand.random()+B |
---|
76 | # return R |
---|
77 | |
---|
78 | def ranAbyV(Bravais,dmin,dmax,V): |
---|
79 | 'needs a doc string' |
---|
80 | cell = [0,0,0,0,0,0] |
---|
81 | bad = True |
---|
82 | while bad: |
---|
83 | bad = False |
---|
84 | cell = rancell(Bravais,dmin,dmax) |
---|
85 | G,g = G2lat.cell2Gmat(cell) |
---|
86 | A = G2lat.Gmat2A(G) |
---|
87 | if G2lat.calc_rVsq(A) < 1: |
---|
88 | scaleAbyV(A,V) |
---|
89 | cell = G2lat.A2cell(A) |
---|
90 | for i in range(3): |
---|
91 | bad |= cell[i] < dmin |
---|
92 | return A |
---|
93 | |
---|
94 | def ranAbyR(Bravais,A,k,N,ranFunc): |
---|
95 | 'needs a doc string' |
---|
96 | R = ranFunc(k,N) |
---|
97 | if Bravais in [0,1,2]: #cubic - not used |
---|
98 | A[0] = A[1] = A[2] = A[0]*R |
---|
99 | A[3] = A[4] = A[5] = 0. |
---|
100 | elif Bravais in [3,4]: #hexagonal/trigonal |
---|
101 | A[0] = A[1] = A[3] = A[0]*R |
---|
102 | A[2] *= R |
---|
103 | A[4] = A[5] = 0. |
---|
104 | elif Bravais in [5,6]: #tetragonal |
---|
105 | A[0] = A[1] = A[0]*R |
---|
106 | A[2] *= R |
---|
107 | A[3] = A[4] = A[5] = 0. |
---|
108 | elif Bravais in [7,8,9,10,11,12]: #orthorhombic |
---|
109 | A[0] *= R |
---|
110 | A[1] *= R |
---|
111 | A[2] *= R |
---|
112 | A[3] = A[4] = A[5] = 0. |
---|
113 | elif Bravais in [13,14]: #monoclinic |
---|
114 | A[0] *= R |
---|
115 | A[1] *= R |
---|
116 | A[2] *= R |
---|
117 | A[4] *= R |
---|
118 | A[3] = A[5] = 0. |
---|
119 | else: #triclinic |
---|
120 | A[0] *= R |
---|
121 | A[1] *= R |
---|
122 | A[2] *= R |
---|
123 | A[3] *= R |
---|
124 | A[4] *= R |
---|
125 | A[5] *= R |
---|
126 | return A |
---|
127 | |
---|
128 | def rancell(Bravais,dmin,dmax): |
---|
129 | 'needs a doc string' |
---|
130 | if Bravais in [0,1,2]: #cubic |
---|
131 | a = b = c = ranaxis(dmin,dmax) |
---|
132 | alp = bet = gam = 90 |
---|
133 | elif Bravais in [3,4]: #hexagonal/trigonal |
---|
134 | a = b = ranaxis(dmin,dmax) |
---|
135 | c = ranaxis(dmin,dmax) |
---|
136 | alp = bet = 90 |
---|
137 | gam = 120 |
---|
138 | elif Bravais in [5,6]: #tetragonal |
---|
139 | a = b = ranaxis(dmin,dmax) |
---|
140 | c = ranaxis(dmin,dmax) |
---|
141 | alp = bet = gam = 90 |
---|
142 | elif Bravais in [7,8,9,10,11,12]: #orthorhombic - F,I,P - a<b<c convention |
---|
143 | abc = [ranaxis(dmin,dmax),ranaxis(dmin,dmax),ranaxis(dmin,dmax)] |
---|
144 | if Bravais in [7,8,12]: |
---|
145 | abc.sort() |
---|
146 | a = abc[0] |
---|
147 | b = abc[1] |
---|
148 | c = abc[2] |
---|
149 | alp = bet = gam = 90 |
---|
150 | elif Bravais in [13,14]: #monoclinic - C,P - a<c convention |
---|
151 | ac = [ranaxis(dmin,dmax),ranaxis(dmin,dmax)] |
---|
152 | if Bravais == 13: |
---|
153 | ac.sort() |
---|
154 | a = ac[0] |
---|
155 | b = ranaxis(dmin,dmax) |
---|
156 | c = ac[1] |
---|
157 | alp = gam = 90 |
---|
158 | bet = ranaxis(90.,140.) |
---|
159 | else: #triclinic - a<b<c convention |
---|
160 | abc = [ranaxis(dmin,dmax),ranaxis(dmin,dmax),ranaxis(dmin,dmax)] |
---|
161 | abc.sort() |
---|
162 | a = abc[0] |
---|
163 | b = abc[1] |
---|
164 | c = abc[2] |
---|
165 | r = 0.5*b/c |
---|
166 | alp = ranaxis(acosd(r),acosd(-r)) |
---|
167 | r = 0.5*a/c |
---|
168 | bet = ranaxis(acosd(r),acosd(-r)) |
---|
169 | r = 0.5*a/b |
---|
170 | gam = ranaxis(acosd(r),acosd(-r)) |
---|
171 | return [a,b,c,alp,bet,gam] |
---|
172 | |
---|
173 | def calc_M20(peaks,HKL,ifX20=True): |
---|
174 | 'needs a doc string' |
---|
175 | diff = 0 |
---|
176 | X20 = 0 |
---|
177 | for Nobs20,peak in enumerate(peaks): |
---|
178 | if peak[3]: |
---|
179 | Qobs = 1.0/peak[7]**2 |
---|
180 | Qcalc = 1.0/peak[8]**2 |
---|
181 | diff += abs(Qobs-Qcalc) |
---|
182 | elif peak[2]: |
---|
183 | X20 += 1 |
---|
184 | if Nobs20 == 19: |
---|
185 | d20 = peak[7] |
---|
186 | break |
---|
187 | else: |
---|
188 | d20 = peak[7] |
---|
189 | Nobs20 = len(peaks) |
---|
190 | for N20,hkl in enumerate(HKL): |
---|
191 | if hkl[3] < d20: |
---|
192 | break |
---|
193 | Q20 = 1.0/d20**2 |
---|
194 | if diff: |
---|
195 | M20 = Q20/(2.0*diff) |
---|
196 | else: |
---|
197 | M20 = 0 |
---|
198 | if ifX20: |
---|
199 | M20 /= (1.+X20) |
---|
200 | return M20,X20 |
---|
201 | |
---|
202 | def calc_M20SS(peaks,HKL): |
---|
203 | 'needs a doc string' |
---|
204 | diff = 0 |
---|
205 | X20 = 0 |
---|
206 | for Nobs20,peak in enumerate(peaks): |
---|
207 | if peak[3]: |
---|
208 | Qobs = 1.0/peak[8]**2 |
---|
209 | Qcalc = 1.0/peak[9]**2 |
---|
210 | diff += abs(Qobs-Qcalc) |
---|
211 | elif peak[2]: |
---|
212 | X20 += 1 |
---|
213 | if Nobs20 == 19: |
---|
214 | d20 = peak[8] |
---|
215 | break |
---|
216 | else: |
---|
217 | d20 = peak[8] |
---|
218 | Nobs20 = len(peaks) |
---|
219 | for N20,hkl in enumerate(HKL): |
---|
220 | if hkl[4] < d20: |
---|
221 | break |
---|
222 | Q20 = 1.0/d20**2 |
---|
223 | if diff: |
---|
224 | M20 = Q20/(2.0*diff) |
---|
225 | else: |
---|
226 | M20 = 0 |
---|
227 | M20 /= (1.+X20) |
---|
228 | return M20,X20 |
---|
229 | |
---|
230 | def sortM20(cells): |
---|
231 | 'needs a doc string' |
---|
232 | #cells is M20,X20,Bravais,a,b,c,alp,bet,gam |
---|
233 | #sort highest M20 1st |
---|
234 | T = [] |
---|
235 | for i,M in enumerate(cells): |
---|
236 | T.append((M[0],i)) |
---|
237 | D = dict(zip(T,cells)) |
---|
238 | T.sort() |
---|
239 | T.reverse() |
---|
240 | X = [] |
---|
241 | for key in T: |
---|
242 | X.append(D[key]) |
---|
243 | return X |
---|
244 | |
---|
245 | def sortCells(cells,col): |
---|
246 | #cells is M20,X20,Bravais,a,b,c,alp,bet,gam,volume |
---|
247 | #sort smallest a,b,c,alpha,beta,gamma or volume 1st |
---|
248 | T = [] |
---|
249 | for i,M in enumerate(cells): |
---|
250 | T.append((M[col],i)) |
---|
251 | D = dict(zip(T,cells)) |
---|
252 | T.sort() |
---|
253 | X = [] |
---|
254 | for key in T: |
---|
255 | X.append(D[key]) |
---|
256 | return X |
---|
257 | |
---|
258 | def findMV(peaks,controls,ssopt,Inst,dlg): |
---|
259 | |
---|
260 | def Val2Vec(vec,Vref,values): |
---|
261 | Vec = [] |
---|
262 | i = 0 |
---|
263 | for j,r in enumerate(Vref): |
---|
264 | if r: |
---|
265 | if values.size > 1: |
---|
266 | Vec.append(max(-1.,min(1.0,values[i]))) |
---|
267 | else: |
---|
268 | Vec.append(max(0.0,min(1.0,values))) |
---|
269 | i += 1 |
---|
270 | else: |
---|
271 | Vec.append(vec[j]) |
---|
272 | return np.array(Vec) |
---|
273 | |
---|
274 | def ZSSfunc(values,peaks,dmin,Inst,SGData,SSGData,vec,Vref,maxH,A,wave,Z,dlg=None): |
---|
275 | Vec = Val2Vec(vec,Vref,values) |
---|
276 | HKL = G2pwd.getHKLMpeak(dmin,Inst,SGData,SSGData,Vec,maxH,A) |
---|
277 | Peaks = np.array(IndexSSPeaks(peaks,HKL)[1]).T |
---|
278 | Qo = 1./Peaks[-2]**2 |
---|
279 | Qc = G2lat.calc_rDsqZSS(Peaks[4:8],A,Vec,Z,Peaks[0],wave) |
---|
280 | chi = np.sum((Qo-Qc)**2) |
---|
281 | if dlg: |
---|
282 | dlg.Pulse() |
---|
283 | return chi |
---|
284 | |
---|
285 | def TSSfunc(values,peaks,dmin,Inst,SGData,SSGData,vec,Vref,maxH,A,difC,Z,dlg=None): |
---|
286 | Vec = Val2Vec(vec,Vref,values) |
---|
287 | HKL = G2pwd.getHKLMpeak(dmin,Inst,SGData,SSGData,Vec,maxH,A) |
---|
288 | Peaks = np.array(IndexSSPeaks(peaks,HKL)[1]).T |
---|
289 | Qo = 1./Peaks[-2]**2 |
---|
290 | Qc = G2lat.calc_rDsqTSS(Peaks[4:8],A,Vec,Z,Peaks[0],difC) |
---|
291 | chi = np.sum((Qo-Qc)**2) |
---|
292 | if dlg: |
---|
293 | dlg.Pulse() |
---|
294 | return chi |
---|
295 | |
---|
296 | if 'T' in Inst['Type'][0]: |
---|
297 | difC = Inst['difC'][1] |
---|
298 | else: |
---|
299 | wave = G2mth.getWave(Inst) |
---|
300 | SGData = G2spc.SpcGroup(controls[13])[1] |
---|
301 | SSGData = G2spc.SSpcGroup(SGData,ssopt['ssSymb'])[1] |
---|
302 | A = G2lat.cell2A(controls[6:12]) |
---|
303 | Z = controls[1] |
---|
304 | Vref = [True if x in ssopt['ssSymb'] else False for x in ['a','b','g']] |
---|
305 | values = [] |
---|
306 | ranges = [] |
---|
307 | dT = 0.01 #seems to be a good choice |
---|
308 | for v,r in zip(ssopt['ModVec'],Vref): |
---|
309 | if r: |
---|
310 | ranges += [slice(dT,1.-dT,dT),] #NB: unique part for (00g) & (a0g); (abg)? |
---|
311 | values += [v,] |
---|
312 | dmin = getDmin(peaks)-0.005 |
---|
313 | if 'T' in Inst['Type'][0]: |
---|
314 | result = so.brute(TSSfunc,ranges,finish=so.fmin_cg,full_output=True, |
---|
315 | args=(peaks,dmin,Inst,SGData,SSGData,ssopt['ModVec'],Vref,1,A,difC,Z,dlg)) |
---|
316 | else: |
---|
317 | result = so.brute(ZSSfunc,ranges,finish=so.fmin_cg,full_output=True, |
---|
318 | args=(peaks,dmin,Inst,SGData,SSGData,ssopt['ModVec'],Vref,1,A,wave,Z,dlg)) |
---|
319 | return Val2Vec(ssopt['ModVec'],Vref,result[0]),result |
---|
320 | |
---|
321 | def IndexPeaks(peaks,HKL): |
---|
322 | 'needs a doc string' |
---|
323 | import bisect |
---|
324 | N = len(HKL) |
---|
325 | if N == 0: return False,peaks |
---|
326 | hklds = list(np.array(HKL).T[3])+[1000.0,0.0,] |
---|
327 | hklds.sort() # ascending sort - upper bound at end |
---|
328 | hklmax = [0,0,0] |
---|
329 | for ipk,peak in enumerate(peaks): |
---|
330 | peak[4:7] = [0,0,0] #clear old indexing |
---|
331 | peak[8] = 0. |
---|
332 | if peak[2]: |
---|
333 | i = bisect.bisect_right(hklds,peak[7]) # find peak position in hkl list |
---|
334 | dm = peak[-2]-hklds[i-1] # peak to neighbor hkls in list |
---|
335 | dp = hklds[i]-peak[-2] |
---|
336 | pos = N-i # reverse the order |
---|
337 | if dp > dm: pos += 1 # closer to upper than lower |
---|
338 | if pos >= N: |
---|
339 | break |
---|
340 | hkl = HKL[pos] # put in hkl |
---|
341 | if hkl[-1] >= 0: # peak already assigned - test if this one better |
---|
342 | opeak = peaks[int(hkl[-1])] #hkl[-1] needs to be int here |
---|
343 | dold = abs(opeak[-2]-hkl[3]) |
---|
344 | dnew = min(dm,dp) |
---|
345 | if dold > dnew: # new better - zero out old |
---|
346 | opeak[4:7] = [0,0,0] |
---|
347 | opeak[8] = 0. |
---|
348 | else: # old better - do nothing |
---|
349 | continue |
---|
350 | hkl[-1] = ipk |
---|
351 | peak[4:7] = hkl[:3] |
---|
352 | peak[8] = hkl[3] # fill in d-calc |
---|
353 | for peak in peaks: |
---|
354 | peak[3] = False |
---|
355 | if peak[2]: |
---|
356 | if peak[-1] > 0.: |
---|
357 | for j in range(3): |
---|
358 | if abs(peak[j+4]) > hklmax[j]: hklmax[j] = abs(peak[j+4]) |
---|
359 | peak[3] = True |
---|
360 | if hklmax[0]*hklmax[1]*hklmax[2] > 0: |
---|
361 | return True,peaks |
---|
362 | else: |
---|
363 | return False,peaks #nothing indexed! |
---|
364 | |
---|
365 | def IndexSSPeaks(peaks,HKL): |
---|
366 | 'needs a doc string' |
---|
367 | import bisect |
---|
368 | N = len(HKL) |
---|
369 | Peaks = np.copy(peaks) |
---|
370 | if N == 0: return False,Peaks |
---|
371 | if len(peaks[0]) == 9: #add m column if missing |
---|
372 | Peaks = np.insert(Peaks,7,np.zeros_like(Peaks.T[0]),axis=1) |
---|
373 | # for peak in Peaks: |
---|
374 | # peak.insert(7,0) |
---|
375 | hklds = list(np.array(HKL).T[4])+[1000.0,0.0,] |
---|
376 | hklds.sort() # ascending sort - upper bound at end |
---|
377 | hklmax = [0,0,0,0] |
---|
378 | for ipk,peak in enumerate(Peaks): |
---|
379 | peak[4:8] = [0,0,0,0] #clear old indexing |
---|
380 | peak[9] = 0. |
---|
381 | if peak[2]: #Use |
---|
382 | i = bisect.bisect_right(hklds,peak[8]) # find peak position in hkl list |
---|
383 | dm = peak[8]-hklds[i-1] # peak to neighbor hkls in list |
---|
384 | dp = hklds[i]-peak[8] |
---|
385 | pos = N-i # reverse the order |
---|
386 | if dp > dm: pos += 1 # closer to upper than lower |
---|
387 | if pos >= N: |
---|
388 | # print ('%.4f %d'%(pos,N)) |
---|
389 | break |
---|
390 | hkl = HKL[pos] # put in hkl |
---|
391 | if hkl[-1] >= 0: # peak already assigned - test if this one better |
---|
392 | opeak = Peaks[int(hkl[-1])] |
---|
393 | dold = abs(opeak[-2]-hkl[4]) |
---|
394 | dnew = min(dm,dp) |
---|
395 | if dold > dnew: # new better - zero out old |
---|
396 | opeak[4:8] = [0,0,0,0] |
---|
397 | opeak[9] = 0. |
---|
398 | else: # old better - do nothing |
---|
399 | continue |
---|
400 | hkl[-1] = ipk |
---|
401 | peak[4:8] = hkl[:4] |
---|
402 | peak[9] = hkl[4] # fill in d-calc |
---|
403 | for peak in Peaks: |
---|
404 | peak[3] = False |
---|
405 | if peak[2]: |
---|
406 | if peak[-1] > 0.: |
---|
407 | for j in range(4): |
---|
408 | if abs(peak[j+4]) > hklmax[j]: hklmax[j] = abs(peak[j+4]) |
---|
409 | peak[3] = True |
---|
410 | if hklmax[0]*hklmax[1]*hklmax[2]*hklmax[3] > 0: |
---|
411 | return True,Peaks |
---|
412 | else: |
---|
413 | return False,Peaks #nothing indexed! |
---|
414 | |
---|
415 | def Values2A(ibrav,values): |
---|
416 | 'needs a doc string' |
---|
417 | if ibrav in [0,1,2]: |
---|
418 | return [values[0],values[0],values[0],0,0,0] |
---|
419 | elif ibrav in [3,4]: |
---|
420 | return [values[0],values[0],values[1],values[0],0,0] |
---|
421 | elif ibrav in [5,6]: |
---|
422 | return [values[0],values[0],values[1],0,0,0] |
---|
423 | elif ibrav in [7,8,9,10,11,12]: |
---|
424 | return [values[0],values[1],values[2],0,0,0] |
---|
425 | elif ibrav in [13,14]: |
---|
426 | return [values[0],values[1],values[2],0,values[3],0] |
---|
427 | else: |
---|
428 | return list(values[:6]) |
---|
429 | |
---|
430 | def A2values(ibrav,A): |
---|
431 | 'needs a doc string' |
---|
432 | if ibrav in [0,1,2]: |
---|
433 | return [A[0],] |
---|
434 | elif ibrav in [3,4,5,6]: |
---|
435 | return [A[0],A[2]] |
---|
436 | elif ibrav in [7,8,9,10,11,12]: |
---|
437 | return [A[0],A[1],A[2]] |
---|
438 | elif ibrav in [13,14]: |
---|
439 | return [A[0],A[1],A[2],A[4]] |
---|
440 | else: |
---|
441 | return A |
---|
442 | |
---|
443 | def Values2Vec(ibrav,vec,Vref,val): |
---|
444 | if ibrav in [3,4,5,6]: |
---|
445 | Nskip = 2 |
---|
446 | elif ibrav in [7,8,9,10,11,12]: |
---|
447 | Nskip = 3 |
---|
448 | elif ibrav in [13,14]: |
---|
449 | Nskip = 4 |
---|
450 | else: |
---|
451 | Nskip = 6 |
---|
452 | Vec = [] |
---|
453 | i = 0 |
---|
454 | for j,r in enumerate(Vref): |
---|
455 | if r: |
---|
456 | Vec.append(val[i+Nskip]) |
---|
457 | i += 1 |
---|
458 | else: |
---|
459 | Vec.append(vec[j]) |
---|
460 | return np.array(Vec) |
---|
461 | |
---|
462 | def FitHKL(ibrav,peaks,A,Pwr): |
---|
463 | 'needs a doc string' |
---|
464 | |
---|
465 | def errFit(values,ibrav,d,H,Pwr): |
---|
466 | A = Values2A(ibrav,values) |
---|
467 | Qo = 1./d**2 |
---|
468 | Qc = G2lat.calc_rDsq(H,A) |
---|
469 | return (Qo-Qc)*d**Pwr |
---|
470 | |
---|
471 | def dervFit(values,ibrav,d,H,Pwr): |
---|
472 | if ibrav in [0,1,2]: |
---|
473 | derv = [H[0]*H[0]+H[1]*H[1]+H[2]*H[2],] |
---|
474 | elif ibrav in [3,4,]: |
---|
475 | derv = [H[0]*H[0]+H[1]*H[1]+H[0]*H[1],H[2]*H[2]] |
---|
476 | elif ibrav in [5,6]: |
---|
477 | derv = [H[0]*H[0]+H[1]*H[1],H[2]*H[2]] |
---|
478 | elif ibrav in [7,8,9,10,11,12]: |
---|
479 | derv = [H[0]*H[0],H[1]*H[1],H[2]*H[2]] |
---|
480 | elif ibrav in [13,14]: |
---|
481 | derv = [H[0]*H[0],H[1]*H[1],H[2]*H[2],H[0]*H[2]] |
---|
482 | else: |
---|
483 | derv = [H[0]*H[0],H[1]*H[1],H[2]*H[2],H[0]*H[1],H[0]*H[2],H[1]*H[2]] |
---|
484 | derv = -np.array(derv) |
---|
485 | return (derv*d**Pwr).T |
---|
486 | |
---|
487 | Peaks = np.array(peaks).T |
---|
488 | values = A2values(ibrav,A) |
---|
489 | result = so.leastsq(errFit,values,Dfun=dervFit,full_output=True,ftol=0.000001, |
---|
490 | args=(ibrav,Peaks[7],Peaks[4:7],Pwr)) |
---|
491 | A = Values2A(ibrav,result[0]) |
---|
492 | return True,np.sum(errFit(result[0],ibrav,Peaks[7],Peaks[4:7],Pwr)**2),A,result |
---|
493 | |
---|
494 | def errFitZ(values,ibrav,d,H,tth,wave,Z,Zref): |
---|
495 | Zero = Z |
---|
496 | if Zref: |
---|
497 | Zero = values[-1] |
---|
498 | A = Values2A(ibrav,values) |
---|
499 | Qo = 1./d**2 |
---|
500 | Qc = G2lat.calc_rDsqZ(H,A,Zero,tth,wave) |
---|
501 | return (Qo-Qc) |
---|
502 | |
---|
503 | def dervFitZ(values,ibrav,d,H,tth,wave,Z,Zref): |
---|
504 | if ibrav in [0,1,2]: |
---|
505 | derv = [H[0]*H[0]+H[1]*H[1]+H[2]*H[2],] |
---|
506 | elif ibrav in [3,4,]: |
---|
507 | derv = [H[0]*H[0]+H[1]*H[1]+H[0]*H[1],H[2]*H[2]] |
---|
508 | elif ibrav in [5,6]: |
---|
509 | derv = [H[0]*H[0]+H[1]*H[1],H[2]*H[2]] |
---|
510 | elif ibrav in [7,8,9,10,11,12]: |
---|
511 | derv = [H[0]*H[0],H[1]*H[1],H[2]*H[2]] |
---|
512 | elif ibrav in [13,14]: |
---|
513 | derv = [H[0]*H[0],H[1]*H[1],H[2]*H[2],H[0]*H[2]] |
---|
514 | else: |
---|
515 | derv = [H[0]*H[0],H[1]*H[1],H[2]*H[2],H[0]*H[1],H[0]*H[2],H[1]*H[2]] |
---|
516 | if Zref: |
---|
517 | derv.append(npsind(tth)*2.0*rpd/wave**2) |
---|
518 | derv = -np.array(derv) |
---|
519 | return derv.T |
---|
520 | |
---|
521 | def FitHKLZ(wave,ibrav,peaks,A,Z,Zref): |
---|
522 | 'needs a doc string' |
---|
523 | |
---|
524 | Peaks = np.array(peaks).T |
---|
525 | values = A2values(ibrav,A) |
---|
526 | if Zref: |
---|
527 | values.append(Z) |
---|
528 | #TODO: try Hessian refinement here - might improve things |
---|
529 | # result = G2mth.HessianLSQ(errFitZ,values,Hess=peakHess, #would need "peakHess" routine; returns vec & Hess |
---|
530 | # args=(ibrav,Peaks[7],Peaks[4:7],Peaks[0],wave,Z,Zref]),ftol=.01,maxcyc=10) |
---|
531 | result = so.leastsq(errFitZ,values,Dfun=dervFitZ,full_output=True,ftol=0.0001, |
---|
532 | args=(ibrav,Peaks[7],Peaks[4:7],Peaks[0],wave,Z,Zref)) |
---|
533 | A = Values2A(ibrav,result[0][:6]) |
---|
534 | if Zref: |
---|
535 | Z = result[0][-1] |
---|
536 | chisq = np.sum(errFitZ(result[0],ibrav,Peaks[7],Peaks[4:7],Peaks[0],wave,Z,Zref)**2) |
---|
537 | return True,chisq,A,Z,result |
---|
538 | |
---|
539 | def errFitZSS(values,ibrav,d,H,tth,wave,vec,Vref,Z,Zref): |
---|
540 | Zero = Z |
---|
541 | if Zref: |
---|
542 | Zero = values[-1] |
---|
543 | A = Values2A(ibrav,values) |
---|
544 | Vec = Values2Vec(ibrav,vec,Vref,values) |
---|
545 | Qo = 1./d**2 |
---|
546 | Qc = G2lat.calc_rDsqZSS(H,A,Vec,Zero,tth,wave) |
---|
547 | return (Qo-Qc) |
---|
548 | |
---|
549 | def dervFitZSS(values,ibrav,d,H,tth,wave,vec,Vref,Z,Zref): |
---|
550 | A = Values2A(ibrav,values) |
---|
551 | Vec = Values2Vec(ibrav,vec,Vref,values) |
---|
552 | HM = H[:3]+(H[3][:,np.newaxis]*Vec).T |
---|
553 | if ibrav in [3,4,]: |
---|
554 | derv = [HM[0]*HM[0]+HM[1]*HM[1]+HM[0]*HM[1],HM[2]*HM[2]] |
---|
555 | elif ibrav in [5,6]: |
---|
556 | derv = [HM[0]*HM[0]+HM[1]*HM[1],HM[2]*HM[2]] |
---|
557 | elif ibrav in [7,8,9,10,11,12]: |
---|
558 | derv = [HM[0]*HM[0],HM[1]*HM[1],HM[2]*HM[2]] |
---|
559 | elif ibrav in [13,14]: |
---|
560 | derv = [HM[0]*HM[0],HM[1]*HM[1],HM[2]*HM[2],HM[0]*HM[2]] |
---|
561 | else: |
---|
562 | derv = [HM[0]*HM[0],HM[1]*HM[1],HM[2]*HM[2],HM[0]*HM[1],HM[0]*HM[2],HM[1]*HM[2]] |
---|
563 | if Vref[0]: |
---|
564 | derv.append(2.*A[0]*HM[0]*H[3]+A[3]*HM[1]*H[3]+A[4]*HM[2]*H[3]) |
---|
565 | if Vref[1]: |
---|
566 | derv.append(2.*A[1]*HM[1]*H[3]+A[3]*HM[0]*H[3]+A[5]*HM[2]*H[3]) |
---|
567 | if Vref[2]: |
---|
568 | derv.append(2.*A[2]*HM[2]*H[3]+A[4]*HM[1]*H[3]+A[5]*HM[0]*H[3]) |
---|
569 | if Zref: |
---|
570 | derv.append(npsind(tth)*2.0*rpd/wave**2) |
---|
571 | derv = -np.array(derv) |
---|
572 | return derv.T |
---|
573 | |
---|
574 | def FitHKLZSS(wave,ibrav,peaks,A,V,Vref,Z,Zref): |
---|
575 | 'needs a doc string' |
---|
576 | |
---|
577 | Peaks = np.array(peaks).T |
---|
578 | values = A2values(ibrav,A) |
---|
579 | for v,r in zip(V,Vref): |
---|
580 | if r: |
---|
581 | values.append(v) |
---|
582 | if Zref: |
---|
583 | values.append(Z) |
---|
584 | result = so.leastsq(errFitZSS,values,Dfun=dervFitZSS,full_output=True,ftol=1.e-6, |
---|
585 | args=(ibrav,Peaks[8],Peaks[4:8],Peaks[0],wave,V,Vref,Z,Zref)) |
---|
586 | print(result) |
---|
587 | A = Values2A(ibrav,result[0]) |
---|
588 | Vec = Values2Vec(ibrav,V,Vref,result[0]) |
---|
589 | if Zref: |
---|
590 | Z = result[0][-1] |
---|
591 | chisq = np.sum(errFitZSS(result[0],ibrav,Peaks[8],Peaks[4:8],Peaks[0],wave,Vec,Vref,Z,Zref)**2) |
---|
592 | return True,chisq,A,Vec,Z,result |
---|
593 | |
---|
594 | def errFitT(values,ibrav,d,H,tof,difC,Z,Zref): |
---|
595 | Zero = Z |
---|
596 | if Zref: |
---|
597 | Zero = values[-1] |
---|
598 | A = Values2A(ibrav,values) |
---|
599 | Qo = 1./d**2 |
---|
600 | Qc = G2lat.calc_rDsqT(H,A,Zero,tof,difC) |
---|
601 | return (Qo-Qc) |
---|
602 | |
---|
603 | def dervFitT(values,ibrav,d,H,tof,difC,Z,Zref): |
---|
604 | if ibrav in [0,1,2]: |
---|
605 | derv = [H[0]*H[0]+H[1]*H[1]+H[2]*H[2],] |
---|
606 | elif ibrav in [3,4,]: |
---|
607 | derv = [H[0]*H[0]+H[1]*H[1]+H[0]*H[1],H[2]*H[2]] |
---|
608 | elif ibrav in [5,6]: |
---|
609 | derv = [H[0]*H[0]+H[1]*H[1],H[2]*H[2]] |
---|
610 | elif ibrav in [7,8,9,10,11,12]: |
---|
611 | derv = [H[0]*H[0],H[1]*H[1],H[2]*H[2]] |
---|
612 | elif ibrav in [13,14]: |
---|
613 | derv = [H[0]*H[0],H[1]*H[1],H[2]*H[2],H[0]*H[2]] |
---|
614 | else: |
---|
615 | derv = [H[0]*H[0],H[1]*H[1],H[2]*H[2],H[0]*H[1],H[0]*H[2],H[1]*H[2]] |
---|
616 | if Zref: |
---|
617 | derv.append(np.ones_like(d)/difC) |
---|
618 | derv = np.array(derv) |
---|
619 | return derv.T |
---|
620 | |
---|
621 | def FitHKLT(difC,ibrav,peaks,A,Z,Zref): |
---|
622 | 'needs a doc string' |
---|
623 | |
---|
624 | Peaks = np.array(peaks).T |
---|
625 | values = A2values(ibrav,A) |
---|
626 | if Zref: |
---|
627 | values.append(Z) |
---|
628 | result = so.leastsq(errFitT,values,Dfun=dervFitT,full_output=True,ftol=0.0001, |
---|
629 | args=(ibrav,Peaks[7],Peaks[4:7],Peaks[0],difC,Z,Zref)) |
---|
630 | A = Values2A(ibrav,result[0]) |
---|
631 | if Zref: |
---|
632 | Z = result[0][-1] |
---|
633 | chisq = np.sum(errFitT(result[0],ibrav,Peaks[7],Peaks[4:7],Peaks[0],difC,Z,Zref)**2) |
---|
634 | return True,chisq,A,Z,result |
---|
635 | |
---|
636 | def errFitTSS(values,ibrav,d,H,tof,difC,vec,Vref,Z,Zref): |
---|
637 | Zero = Z |
---|
638 | if Zref: |
---|
639 | Zero = values[-1] |
---|
640 | A = Values2A(ibrav,values) |
---|
641 | Vec = Values2Vec(ibrav,vec,Vref,values) |
---|
642 | Qo = 1./d**2 |
---|
643 | Qc = G2lat.calc_rDsqTSS(H,A,Vec,Zero,tof,difC) |
---|
644 | return (Qo-Qc) |
---|
645 | |
---|
646 | def dervFitTSS(values,ibrav,d,H,tof,difC,vec,Vref,Z,Zref): |
---|
647 | A = Values2A(ibrav,values) |
---|
648 | Vec = Values2Vec(ibrav,vec,Vref,values) |
---|
649 | HM = H[:3]+(H[3][:,np.newaxis]*Vec).T |
---|
650 | if ibrav in [3,4,]: |
---|
651 | derv = [HM[0]*HM[0]+HM[1]*HM[1]+HM[0]*HM[1],HM[2]*HM[2]] |
---|
652 | elif ibrav in [5,6]: |
---|
653 | derv = [HM[0]*HM[0]+HM[1]*HM[1],HM[2]*HM[2]] |
---|
654 | elif ibrav in [7,8,9,10,11,12]: |
---|
655 | derv = [HM[0]*HM[0],HM[1]*HM[1],HM[2]*HM[2]] |
---|
656 | elif ibrav in [13,14]: |
---|
657 | derv = [HM[0]*HM[0],HM[1]*HM[1],HM[2]*HM[2],HM[0]*HM[2]] |
---|
658 | else: |
---|
659 | derv = [HM[0]*HM[0],HM[1]*HM[1],HM[2]*HM[2],HM[0]*HM[1],HM[0]*HM[2],HM[1]*HM[2]] |
---|
660 | if Vref[0]: |
---|
661 | derv.append(2.*A[0]*HM[0]*H[3]+A[3]*HM[1]*H[3]+A[4]*HM[2]*H[3]) |
---|
662 | if Vref[1]: |
---|
663 | derv.append(2.*A[1]*HM[1]*H[3]+A[3]*HM[0]*H[3]+A[5]*HM[2]*H[3]) |
---|
664 | if Vref[2]: |
---|
665 | derv.append(2.*A[2]*HM[2]*H[3]+A[4]*HM[1]*H[3]+A[5]*HM[0]*H[3]) |
---|
666 | if Zref: |
---|
667 | derv.append(np.ones_like(d)/difC) |
---|
668 | derv = np.array(derv) |
---|
669 | return derv.T |
---|
670 | |
---|
671 | def FitHKLTSS(difC,ibrav,peaks,A,V,Vref,Z,Zref): |
---|
672 | 'needs a doc string' |
---|
673 | |
---|
674 | Peaks = np.array(peaks).T |
---|
675 | values = A2values(ibrav,A) |
---|
676 | for v,r in zip(V,Vref): |
---|
677 | if r: |
---|
678 | values.append(v) |
---|
679 | if Zref: |
---|
680 | values.append(Z) |
---|
681 | print(values) |
---|
682 | result = so.leastsq(errFitTSS,values,Dfun=dervFitTSS,full_output=True,ftol=0.0001, |
---|
683 | args=(ibrav,Peaks[8],Peaks[4:8],Peaks[0],difC,V,Vref,Z,Zref)) |
---|
684 | print(result) |
---|
685 | A = Values2A(ibrav,result[0]) |
---|
686 | Vec = Values2Vec(ibrav,V,Vref,result[0]) |
---|
687 | if Zref: |
---|
688 | Z = result[0][-1] |
---|
689 | chisq = np.sum(errFitTSS(result[0],ibrav,Peaks[8],Peaks[4:8],Peaks[0],difC,V,Vref,Z,Zref)**2) |
---|
690 | return True,chisq,A,Vec,Z,result |
---|
691 | |
---|
692 | def rotOrthoA(A): |
---|
693 | 'needs a doc string' |
---|
694 | return [A[1],A[2],A[0],0,0,0] |
---|
695 | |
---|
696 | def swapMonoA(A): |
---|
697 | 'needs a doc string' |
---|
698 | return [A[2],A[1],A[0],0,A[4],0] |
---|
699 | |
---|
700 | def oddPeak(indx,peaks): |
---|
701 | 'needs a doc string' |
---|
702 | noOdd = True |
---|
703 | for peak in peaks: |
---|
704 | H = peak[4:7] |
---|
705 | if H[indx] % 2: |
---|
706 | noOdd = False |
---|
707 | return noOdd |
---|
708 | |
---|
709 | def halfCell(ibrav,A,peaks): |
---|
710 | 'needs a doc string' |
---|
711 | if ibrav in [0,1,2]: |
---|
712 | if oddPeak(0,peaks): |
---|
713 | A[0] *= 2 |
---|
714 | A[1] = A[2] = A[0] |
---|
715 | elif ibrav in [3,4,5,6]: |
---|
716 | if oddPeak(0,peaks): |
---|
717 | A[0] *= 2 |
---|
718 | A[1] = A[0] |
---|
719 | if oddPeak(2,peaks): |
---|
720 | A[2] *=2 |
---|
721 | else: |
---|
722 | if oddPeak(0,peaks): |
---|
723 | A[0] *=2 |
---|
724 | if oddPeak(1,peaks): |
---|
725 | A[1] *=2 |
---|
726 | if oddPeak(2,peaks): |
---|
727 | A[2] *=2 |
---|
728 | return A |
---|
729 | |
---|
730 | def getDmin(peaks): |
---|
731 | 'needs a doc string' |
---|
732 | return peaks[-1][-2] |
---|
733 | |
---|
734 | def getDmax(peaks): |
---|
735 | 'needs a doc string' |
---|
736 | return peaks[0][-2] |
---|
737 | |
---|
738 | def refinePeaksZ(peaks,wave,ibrav,A,Zero,ZeroRef): |
---|
739 | 'needs a doc string' |
---|
740 | dmin = getDmin(peaks) |
---|
741 | OK,smin,Aref,Z,result = FitHKLZ(wave,ibrav,peaks,A,Zero,ZeroRef) |
---|
742 | Peaks = np.array(peaks).T |
---|
743 | H = Peaks[4:7] |
---|
744 | Peaks[8] = 1./np.sqrt(G2lat.calc_rDsqZ(H,Aref,Z,Peaks[0],wave)) |
---|
745 | peaks = Peaks.T |
---|
746 | HKL = G2lat.GenHBravais(dmin,ibrav,A) |
---|
747 | M20,X20 = calc_M20(peaks,HKL) |
---|
748 | return len(HKL),M20,X20,Aref,Z |
---|
749 | |
---|
750 | def refinePeaksT(peaks,difC,ibrav,A,Zero,ZeroRef): |
---|
751 | 'needs a doc string' |
---|
752 | dmin = getDmin(peaks) |
---|
753 | OK,smin,Aref,Z,result = FitHKLT(difC,ibrav,peaks,A,Zero,ZeroRef) |
---|
754 | Peaks = np.array(peaks).T |
---|
755 | H = Peaks[4:7] |
---|
756 | Peaks[8] = 1./np.sqrt(G2lat.calc_rDsqT(H,Aref,Z,Peaks[0],difC)) |
---|
757 | peaks = Peaks.T |
---|
758 | HKL = G2lat.GenHBravais(dmin,ibrav,A) |
---|
759 | M20,X20 = calc_M20(peaks,HKL) |
---|
760 | return len(HKL),M20,X20,Aref,Z |
---|
761 | |
---|
762 | def refinePeaksZSS(peaks,wave,Inst,SGData,SSGData,maxH,ibrav,A,vec,vecRef,Zero,ZeroRef): |
---|
763 | 'needs a doc string' |
---|
764 | dmin = getDmin(peaks) |
---|
765 | OK,smin,Aref,Vref,Z,result = FitHKLZSS(wave,ibrav,peaks,A,vec,vecRef,Zero,ZeroRef) |
---|
766 | Peaks = np.array(peaks).T |
---|
767 | H = Peaks[4:8] |
---|
768 | Peaks[9] = 1./np.sqrt(G2lat.calc_rDsqZSS(H,Aref,Vref,Z,Peaks[0],wave)) #H,A,vec,Z,tth,lam |
---|
769 | peaks = Peaks.T |
---|
770 | HKL = G2pwd.getHKLMpeak(dmin,Inst,SGData,SSGData,Vref,maxH,Aref) |
---|
771 | M20,X20 = calc_M20SS(peaks,HKL) |
---|
772 | return len(HKL),M20,X20,Aref,Vref,Z |
---|
773 | |
---|
774 | def refinePeaksTSS(peaks,difC,Inst,SGData,SSGData,maxH,ibrav,A,vec,vecRef,Zero,ZeroRef): |
---|
775 | 'needs a doc string' |
---|
776 | dmin = getDmin(peaks) |
---|
777 | OK,smin,Aref,Vref,Z,result = FitHKLTSS(difC,ibrav,peaks,A,vec,vecRef,Zero,ZeroRef) |
---|
778 | Peaks = np.array(peaks).T |
---|
779 | H = Peaks[4:8] |
---|
780 | Peaks[9] = 1./np.sqrt(G2lat.calc_rDsqTSS(H,Aref,Vref,Z,Peaks[0],difC)) |
---|
781 | peaks = Peaks.T |
---|
782 | HKL = G2pwd.getHKLMpeak(dmin,Inst,SGData,SSGData,Vref,maxH,Aref) |
---|
783 | HKL = G2lat.GenHBravais(dmin,ibrav,A) |
---|
784 | M20,X20 = calc_M20SS(peaks,HKL) |
---|
785 | return len(HKL),M20,X20,Aref,Vref,Z |
---|
786 | |
---|
787 | def refinePeaks(peaks,ibrav,A,ifX20=True): |
---|
788 | 'needs a doc string' |
---|
789 | dmin = getDmin(peaks) |
---|
790 | smin = 1.0e10 |
---|
791 | pwr = 8 |
---|
792 | maxTries = 10 |
---|
793 | OK = False |
---|
794 | tries = 0 |
---|
795 | HKL = G2lat.GenHBravais(dmin,ibrav,A) |
---|
796 | while len(HKL) > 2 and IndexPeaks(peaks,HKL)[0]: |
---|
797 | Pwr = pwr - (tries % 2) |
---|
798 | HKL = [] |
---|
799 | tries += 1 |
---|
800 | osmin = smin |
---|
801 | oldA = A[:] |
---|
802 | Vold = G2lat.calc_V(oldA) |
---|
803 | OK,smin,A,result = FitHKL(ibrav,peaks,A,Pwr) |
---|
804 | Vnew = G2lat.calc_V(A) |
---|
805 | if Vnew > 2.0*Vold or Vnew < 2.: |
---|
806 | A = ranAbyR(ibrav,oldA,tries+1,maxTries,ran2axis) |
---|
807 | OK = False |
---|
808 | continue |
---|
809 | try: |
---|
810 | HKL = G2lat.GenHBravais(dmin,ibrav,A) |
---|
811 | except FloatingPointError: |
---|
812 | A = oldA |
---|
813 | OK = False |
---|
814 | break |
---|
815 | if len(HKL) == 0: break #absurd cell obtained! |
---|
816 | rat = (osmin-smin)/smin |
---|
817 | if abs(rat) < 1.0e-5 or not OK: break |
---|
818 | if tries > maxTries: break |
---|
819 | if OK: |
---|
820 | OK,smin,A,result = FitHKL(ibrav,peaks,A,2) |
---|
821 | Peaks = np.array(peaks).T |
---|
822 | H = Peaks[4:7] |
---|
823 | try: |
---|
824 | Peaks[8] = 1./np.sqrt(G2lat.calc_rDsq(H,A)) |
---|
825 | peaks = Peaks.T |
---|
826 | except FloatingPointError: |
---|
827 | A = oldA |
---|
828 | |
---|
829 | M20,X20 = calc_M20(peaks,HKL,ifX20) |
---|
830 | return len(HKL),M20,X20,A |
---|
831 | |
---|
832 | def findBestCell(dlg,ncMax,A,Ntries,ibrav,peaks,V1,ifX20=True): |
---|
833 | 'needs a doc string' |
---|
834 | # dlg & ncMax are used for wx progress bar |
---|
835 | # A != 0 find the best A near input A, |
---|
836 | # A = 0 for random cell, volume normalized to V1; |
---|
837 | # returns number of generated hkls, M20, X20 & A for best found |
---|
838 | mHKL = [3,3,3, 5,5, 5,5, 7,7,7,7, 9,9, 10] |
---|
839 | dmin = getDmin(peaks)-0.05 |
---|
840 | amin = 2.5 |
---|
841 | amax = 5.*getDmax(peaks) |
---|
842 | Asave = [] |
---|
843 | GoOn = True |
---|
844 | Skip = False |
---|
845 | if A: |
---|
846 | HKL = G2lat.GenHBravais(dmin,ibrav,A[:]) |
---|
847 | if len(HKL) > mHKL[ibrav]: |
---|
848 | peaks = IndexPeaks(peaks,HKL)[1] |
---|
849 | Asave.append([calc_M20(peaks,HKL,ifX20),A[:]]) |
---|
850 | tries = 0 |
---|
851 | while tries < Ntries and GoOn: |
---|
852 | if A: |
---|
853 | Abeg = ranAbyR(ibrav,A,tries+1,Ntries,ran2axis) |
---|
854 | if ibrav in [13,14,15]: #monoclinic & triclinic |
---|
855 | Abeg = ranAbyR(ibrav,A,tries/10+1,Ntries,ran2axis) |
---|
856 | else: |
---|
857 | Abeg = ranAbyV(ibrav,amin,amax,V1) |
---|
858 | HKL = G2lat.GenHBravais(dmin,ibrav,Abeg) |
---|
859 | Nc = len(HKL) |
---|
860 | if Nc >= ncMax: |
---|
861 | GoOn = False |
---|
862 | else: |
---|
863 | if dlg: |
---|
864 | # GoOn,Skip = dlg.Update(100*Nc/ncMax) #wx error doesn't work in 32 bit versions! |
---|
865 | GoOn = dlg.Update(100*Nc/ncMax)[0] |
---|
866 | if Skip or not GoOn: |
---|
867 | GoOn = False |
---|
868 | break |
---|
869 | |
---|
870 | if IndexPeaks(peaks,HKL)[0] and len(HKL) > mHKL[ibrav]: |
---|
871 | Lhkl,M20,X20,Aref = refinePeaks(peaks,ibrav,Abeg,ifX20) |
---|
872 | Asave.append([calc_M20(peaks,HKL,ifX20),Aref[:]]) |
---|
873 | if ibrav in [9,10,11]: #C-centered orthorhombic |
---|
874 | for i in range(2): |
---|
875 | Abeg = rotOrthoA(Abeg[:]) |
---|
876 | Lhkl,M20,X20,Aref = refinePeaks(peaks,ibrav,Abeg,ifX20) |
---|
877 | HKL = G2lat.GenHBravais(dmin,ibrav,Aref) |
---|
878 | peaks = IndexPeaks(peaks,HKL)[1] |
---|
879 | Asave.append([calc_M20(peaks,HKL,ifX20),Aref[:]]) |
---|
880 | elif ibrav == 13: #C-centered monoclinic |
---|
881 | Abeg = swapMonoA(Abeg[:]) |
---|
882 | Lhkl,M20,X20,Aref = refinePeaks(peaks,ibrav,Abeg,ifX20) |
---|
883 | HKL = G2lat.GenHBravais(dmin,ibrav,Aref) |
---|
884 | peaks = IndexPeaks(peaks,HKL)[1] |
---|
885 | Asave.append([calc_M20(peaks,HKL,ifX20),Aref[:]]) |
---|
886 | else: |
---|
887 | break |
---|
888 | Nc = len(HKL) |
---|
889 | tries += 1 |
---|
890 | X = sortM20(Asave) |
---|
891 | if X: |
---|
892 | Lhkl,M20,X20,A = refinePeaks(peaks,ibrav,X[0][1],ifX20) |
---|
893 | return GoOn,Skip,Lhkl,M20,X20,A |
---|
894 | else: |
---|
895 | return GoOn,Skip,0,0,0,0 |
---|
896 | |
---|
897 | def monoCellReduce(ibrav,A): |
---|
898 | 'needs a doc string' |
---|
899 | a,b,c,alp,bet,gam = G2lat.A2cell(A) |
---|
900 | G,g = G2lat.A2Gmat(A) |
---|
901 | if ibrav in [13]: |
---|
902 | u = [0,0,-1] |
---|
903 | v = [1,0,2] |
---|
904 | anew = math.sqrt(np.dot(np.dot(v,g),v)) |
---|
905 | if anew < a: |
---|
906 | cang = np.dot(np.dot(u,g),v)/(anew*c) |
---|
907 | beta = acosd(-abs(cang)) |
---|
908 | A = G2lat.cell2A([anew,b,c,90,beta,90]) |
---|
909 | else: |
---|
910 | u = [-1,0,0] |
---|
911 | v = [1,0,1] |
---|
912 | cnew = math.sqrt(np.dot(np.dot(v,g),v)) |
---|
913 | if cnew < c: |
---|
914 | cang = np.dot(np.dot(u,g),v)/(a*cnew) |
---|
915 | beta = acosd(-abs(cang)) |
---|
916 | A = G2lat.cell2A([a,b,cnew,90,beta,90]) |
---|
917 | return A |
---|
918 | |
---|
919 | def DoIndexPeaks(peaks,controls,bravais,dlg,ifX20=True): |
---|
920 | 'needs a doc string' |
---|
921 | |
---|
922 | delt = 0.005 #lowest d-spacing cushion - can be fixed? |
---|
923 | amin = 2.5 |
---|
924 | amax = 5.0*getDmax(peaks) |
---|
925 | dmin = getDmin(peaks)-delt |
---|
926 | bravaisNames = ['Cubic-F','Cubic-I','Cubic-P','Trigonal-R','Trigonal/Hexagonal-P', |
---|
927 | 'Tetragonal-I','Tetragonal-P','Orthorhombic-F','Orthorhombic-I','Orthorhombic-A', |
---|
928 | 'Orthorhombic-B','Orthorhombic-C', |
---|
929 | 'Orthorhombic-P','Monoclinic-C','Monoclinic-P','Triclinic'] |
---|
930 | tries = ['1st','2nd','3rd','4th','5th','6th','7th','8th','9th','10th'] |
---|
931 | N1s = [1,1,1, 5,5, 5,5, 50,50,50,50,50,50, 50,50, 200] |
---|
932 | N2s = [1,1,1, 2,2, 2,2, 2,2,2,2,2,2, 2,2, 4] |
---|
933 | Nm = [1,1,1, 1,1, 1,1, 1,1,1,1,1,1, 2,2, 4] |
---|
934 | notUse = 0 |
---|
935 | for peak in peaks: |
---|
936 | if not peak[2]: |
---|
937 | notUse += 1 |
---|
938 | Nobs = len(peaks)-notUse |
---|
939 | zero,ncno = controls[1:3] |
---|
940 | ncMax = Nobs*ncno |
---|
941 | print ("%s %8.3f %8.3f" % ('lattice parameter range = ',amin,amax)) |
---|
942 | print ("%s %.4f %s %d %s %d" % ('Zero =',zero,'Nc/No max =',ncno,' Max Nc =',ncno*Nobs)) |
---|
943 | cells = [] |
---|
944 | lastcell = np.zeros(7) |
---|
945 | for ibrav in range(16): |
---|
946 | begin = time.time() |
---|
947 | if bravais[ibrav]: |
---|
948 | print ('cell search for ',bravaisNames[ibrav]) |
---|
949 | print (' M20 X20 Nc a b c alpha beta gamma volume V-test') |
---|
950 | V1 = controls[3] |
---|
951 | bestM20 = 0 |
---|
952 | topM20 = 0 |
---|
953 | cycle = 0 |
---|
954 | while cycle < 5: |
---|
955 | if dlg: |
---|
956 | dlg.Update(0,newmsg=tries[cycle]+" cell search for "+bravaisNames[ibrav]) |
---|
957 | try: |
---|
958 | GoOn = True |
---|
959 | while GoOn: #Loop over increment of volume |
---|
960 | N2 = 0 |
---|
961 | while N2 < N2s[ibrav]: #Table 2 step (iii) |
---|
962 | if ibrav > 2: |
---|
963 | if not N2: |
---|
964 | A = [] |
---|
965 | GoOn,Skip,Nc,M20,X20,A = findBestCell(dlg,ncMax,A,Nm[ibrav]*N1s[ibrav],ibrav,peaks,V1,ifX20) |
---|
966 | if Skip: |
---|
967 | break |
---|
968 | if A: |
---|
969 | GoOn,Skip,Nc,M20,X20,A = findBestCell(dlg,ncMax,A[:],N1s[ibrav],ibrav,peaks,0,ifX20) |
---|
970 | else: |
---|
971 | GoOn,Skip,Nc,M20,X20,A = findBestCell(dlg,ncMax,0,Nm[ibrav]*N1s[ibrav],ibrav,peaks,V1,ifX20) |
---|
972 | if Skip: |
---|
973 | break |
---|
974 | elif Nc >= ncMax: |
---|
975 | GoOn = False |
---|
976 | break |
---|
977 | elif 3*Nc < Nobs: |
---|
978 | N2 = 10 |
---|
979 | break |
---|
980 | else: |
---|
981 | if not GoOn: |
---|
982 | break |
---|
983 | if 1.e6 > M20 > 1.0: #exclude nonsense |
---|
984 | bestM20 = max(bestM20,M20) |
---|
985 | A = halfCell(ibrav,A[:],peaks) |
---|
986 | if ibrav in [14,]: |
---|
987 | A = monoCellReduce(ibrav,A[:]) |
---|
988 | HKL = G2lat.GenHBravais(dmin,ibrav,A) |
---|
989 | peaks = IndexPeaks(peaks,HKL)[1] |
---|
990 | a,b,c,alp,bet,gam = G2lat.A2cell(A) |
---|
991 | V = G2lat.calc_V(A) |
---|
992 | if M20 >= 2.0: |
---|
993 | cell = [M20,X20,ibrav,a,b,c,alp,bet,gam,V,False,False] |
---|
994 | newcell = np.array(cell[3:10]) |
---|
995 | if not np.allclose(newcell,lastcell): |
---|
996 | print ("%10.3f %3d %3d %10.5f %10.5f %10.5f %10.3f %10.3f %10.3f %10.2f %10.2f" \ |
---|
997 | %(M20,X20,Nc,a,b,c,alp,bet,gam,V,V1)) |
---|
998 | cells.append(cell) |
---|
999 | lastcell = np.array(cell[3:10]) |
---|
1000 | if not GoOn: |
---|
1001 | break |
---|
1002 | N2 += 1 |
---|
1003 | if Skip: |
---|
1004 | cycle = 10 |
---|
1005 | GoOn = False |
---|
1006 | break |
---|
1007 | if ibrav < 11: |
---|
1008 | V1 *= 1.1 |
---|
1009 | elif ibrav in range(11,14): |
---|
1010 | V1 *= 1.05 |
---|
1011 | if not GoOn: |
---|
1012 | if bestM20 > topM20: |
---|
1013 | topM20 = bestM20 |
---|
1014 | if cells: |
---|
1015 | V1 = cells[0][9] |
---|
1016 | else: |
---|
1017 | V1 = 25 |
---|
1018 | ncMax += Nobs |
---|
1019 | cycle += 1 |
---|
1020 | print ('Restart search, new Max Nc = %d'%ncMax) |
---|
1021 | else: |
---|
1022 | cycle = 10 |
---|
1023 | finally: |
---|
1024 | pass |
---|
1025 | # dlg.Destroy() |
---|
1026 | print ('%s%s%s%s'%('finished cell search for ',bravaisNames[ibrav], \ |
---|
1027 | ', elapsed time = ',G2lat.sec2HMS(time.time()-begin))) |
---|
1028 | |
---|
1029 | if cells: |
---|
1030 | return True,dmin,cells |
---|
1031 | else: |
---|
1032 | return False,0,[] |
---|
1033 | |
---|
1034 | |
---|
1035 | NeedTestData = True |
---|
1036 | def TestData(): |
---|
1037 | 'needs a doc string' |
---|
1038 | global NeedTestData |
---|
1039 | NeedTestData = False |
---|
1040 | global TestData |
---|
1041 | TestData = [12, [7.,8.70,10.86,90.,102.95,90.], [7.76006,8.706215,10.865679,90.,102.947,90.],3, |
---|
1042 | [[2.176562137832974, 761.60902227696033, True, True, 0, 0, 1, 10.591300714328161, 10.589436], |
---|
1043 | [3.0477561489789498, 4087.2956049071572, True, True, 1, 0, 0, 7.564238997554908, 7.562777], |
---|
1044 | [3.3254921120068524, 1707.0253890991009, True, True, 1, 0, -1, 6.932650301411212, 6.932718], |
---|
1045 | [3.428121546163426, 2777.5082170150563, True, True, 0, 1, 1, 6.725163158013632, 6.725106], |
---|
1046 | [4.0379791325512118, 1598.4321673135987, True, True, 1, 1, 0, 5.709789097440156, 5.70946], |
---|
1047 | [4.2511182350743937, 473.10955149057577, True, True, 1, 1, -1, 5.423637972781876, 5.42333], |
---|
1048 | [4.354684330373451, 569.88528280256071, True, True, 0, 0, 2, 5.2947091882172534, 5.294718], |
---|
1049 | [4.723324574319177, 342.73882372499997, True, True, 1, 0, -2, 4.881681587039431, 4.881592], |
---|
1050 | [4.9014773581253994, 5886.3516356615492, True, True, 1, 1, 1, 4.704350709093183, 4.70413], |
---|
1051 | [5.0970774474587275, 3459.7541692903033, True, True, 0, 1, 2, 4.523933797797693, 4.523829], |
---|
1052 | [5.2971997607389518, 1290.0229964239879, True, True, 0, 2, 0, 4.353139557169142, 4.353108], |
---|
1053 | [5.4161306205553847, 1472.5726977257755, True, True, 1, 1, -2, 4.257619398422479, 4.257944], |
---|
1054 | [5.7277364698554161, 1577.8791668322888, True, True, 0, 2, 1, 4.026169751907777, 4.026193], |
---|
1055 | [5.8500213058834163, 420.74210142657131, True, True, 1, 0, 2, 3.9420803081518443, 3.942219], |
---|
1056 | [6.0986764166731708, 163.02160537058708, True, True, 2, 0, 0, 3.7814965150452537, 3.781389], |
---|
1057 | [6.1126665157702753, 943.25461245706833, True, True, 1, 2, 0, 3.772849962062199, 3.772764], |
---|
1058 | [6.2559260555056957, 250.55355015505376, True, True, 1, 2, -1, 3.6865353266375283, 3.686602], |
---|
1059 | [6.4226243128279892, 5388.5560141098349, True, True, 1, 1, 2, 3.5909481979190283, 3.591214], |
---|
1060 | [6.5346132446561134, 1951.6070344509026, True, True, 0, 0, 3, 3.5294722429440584, 3.529812], |
---|
1061 | [6.5586952135236443, 259.65938178131034, True, True, 2, 1, -1, 3.516526936765838, 3.516784], |
---|
1062 | [6.6509216222783722, 93.265376597376573, True, True, 2, 1, 0, 3.4678179073694952, 3.468369], |
---|
1063 | [6.7152737044107722, 289.39386813803162, True, True, 1, 2, 1, 3.4346235125812807, 3.434648], |
---|
1064 | [6.8594130457361899, 603.54959764648322, True, True, 0, 2, 2, 3.362534044860622, 3.362553], |
---|
1065 | [7.0511627728884454, 126.43246447656593, True, True, 0, 1, 3, 3.2712038721790675, 3.271181], |
---|
1066 | [7.077700845503319, 125.49742760019636, True, True, 1, 1, -3, 3.2589538988480626, 3.259037], |
---|
1067 | [7.099393757363675, 416.55444885434633, True, True, 1, 2, -2, 3.2490085228959193, 3.248951], |
---|
1068 | [7.1623933278642742, 369.27397110921817, True, True, 2, 1, -2, 3.2204673608202383, 3.220487], |
---|
1069 | [7.4121734953058924, 482.84120827021826, True, True, 2, 1, 1, 3.1120858221599876, 3.112308]] |
---|
1070 | ] |
---|
1071 | global TestData2 |
---|
1072 | TestData2 = [12, [0.15336547830008007, 0.017345499139401827, 0.008122368657493792, 0, 0.02893538955687591, 0], 3, |
---|
1073 | [[2.176562137832974, 761.6090222769603, True, True, 0, 0, 1, 10.591300714328161, 11.095801], |
---|
1074 | [3.0477561489789498, 4087.295604907157, True, True, 0, 1, 0, 7.564238997554908, 7.592881], |
---|
1075 | [3.3254921120068524, 1707.025389099101, True, False, 0, 0, 0, 6.932650301411212, 0.0], |
---|
1076 | [3.428121546163426, 2777.5082170150563, True, True, 0, 1, 1, 6.725163158013632, 6.266192], |
---|
1077 | [4.037979132551212, 1598.4321673135987, True, False, 0, 0, 0, 5.709789097440156, 0.0], |
---|
1078 | [4.251118235074394, 473.10955149057577, True, True, 0, 0, 2, 5.423637972781876, 5.5479], |
---|
1079 | [4.354684330373451, 569.8852828025607, True, True, 0, 0, 2, 5.2947091882172534, 5.199754], |
---|
1080 | [4.723324574319177, 342.738823725, True, False, 0, 0, 0, 4.881681587039431, 0.0], |
---|
1081 | [4.901477358125399, 5886.351635661549, True, False, 0, 0, 0, 4.704350709093183, 0.0], |
---|
1082 | [5.0970774474587275, 3459.7541692903033, True, True, 0, 1, 2, 4.523933797797693, 4.479534], |
---|
1083 | [5.297199760738952, 1290.022996423988, True, True, 0, 1, 0, 4.353139557169142, 4.345087], |
---|
1084 | [5.416130620555385, 1472.5726977257755, True, False, 0, 0, 0, 4.257619398422479, 0.0], |
---|
1085 | [5.727736469855416, 1577.8791668322888, True, False, 0, 0, 0, 4.026169751907777, 0.0], |
---|
1086 | [5.850021305883416, 420.7421014265713, True, False, 0, 0, 0, 3.9420803081518443, 0.0], |
---|
1087 | [6.098676416673171, 163.02160537058708, True, True, 0, 2, 0, 3.7814965150452537, 3.796441], |
---|
1088 | [6.112666515770275, 943.2546124570683, True, False, 0, 0, 0, 3.772849962062199, 0.0], |
---|
1089 | [6.255926055505696, 250.55355015505376, True, True, 0, 0, 3, 3.6865353266375283, 3.6986], |
---|
1090 | [6.422624312827989, 5388.556014109835, True, True, 0, 2, 1, 3.5909481979190283, 3.592005], |
---|
1091 | [6.534613244656113, 191.6070344509026, True, True, 1, 0, -1, 3.5294722429440584, 3.546166], |
---|
1092 | [6.558695213523644, 259.65938178131034, True, True, 0, 0, 3, 3.516526936765838, 3.495428], |
---|
1093 | [6.650921622278372, 93.26537659737657, True, True, 0, 0, 3, 3.4678179073694952, 3.466503], |
---|
1094 | [6.715273704410772, 289.3938681380316, True, False, 0, 0, 0, 3.4346235125812807, 0.0], |
---|
1095 | [6.85941304573619, 603.5495976464832, True, True, 0, 1, 3, 3.362534044860622, 3.32509], |
---|
1096 | [7.051162772888445, 126.43246447656593, True, True, 0, 1, 2, 3.2712038721790675, 3.352121], |
---|
1097 | [7.077700845503319, 125.49742760019636, True, False, 0, 0, 0, 3.2589538988480626, 0.0], |
---|
1098 | [7.099393757363675, 416.55444885434633, True, False, 0, 0, 0, 3.2490085228959193, 0.0], |
---|
1099 | [7.162393327864274, 369.27397110921817, True, False, 0, 0, 0, 3.2204673608202383, 0.0], |
---|
1100 | [7.412173495305892, 482.84120827021826, True, True, 0, 2, 2, 3.112085822159976, 3.133096]] |
---|
1101 | ] |
---|
1102 | # |
---|
1103 | def test0(): |
---|
1104 | if NeedTestData: TestData() |
---|
1105 | ibrav,cell,bestcell,Pwr,peaks = TestData |
---|
1106 | print ('best cell:',bestcell) |
---|
1107 | print ('old cell:',cell) |
---|
1108 | Peaks = np.array(peaks) |
---|
1109 | HKL = Peaks[4:7] |
---|
1110 | print (calc_M20(peaks,HKL)) |
---|
1111 | A = G2lat.cell2A(cell) |
---|
1112 | OK,smin,A,result = FitHKL(ibrav,peaks,A,Pwr) |
---|
1113 | print ('new cell:',G2lat.A2cell(A)) |
---|
1114 | print ('x:',result[0]) |
---|
1115 | print ('cov_x:',result[1]) |
---|
1116 | print ('infodict:') |
---|
1117 | for item in result[2]: |
---|
1118 | print (item,result[2][item]) |
---|
1119 | print ('msg:',result[3]) |
---|
1120 | print ('ier:',result[4]) |
---|
1121 | result = refinePeaks(peaks,ibrav,A) |
---|
1122 | N,M20,X20,A = result |
---|
1123 | print ('refinePeaks:',N,M20,X20,G2lat.A2cell(A)) |
---|
1124 | print ('compare bestcell:',bestcell) |
---|
1125 | # |
---|
1126 | def test1(): |
---|
1127 | if NeedTestData: TestData() |
---|
1128 | ibrav,A,Pwr,peaks = TestData2 |
---|
1129 | print ('bad cell:',G2lat.A2cell(A)) |
---|
1130 | print ('FitHKL') |
---|
1131 | OK,smin,A,result = FitHKL(ibrav,peaks,A,Pwr) |
---|
1132 | result = refinePeaks(peaks,ibrav,A) |
---|
1133 | N,M20,X20,A = result |
---|
1134 | print ('refinePeaks:',N,M20,X20,A) |
---|
1135 | # Peaks = np.array(peaks) |
---|
1136 | # HKL = Peaks[4:7] |
---|
1137 | # print calc_M20(peaks,HKL) |
---|
1138 | # OK,smin,A,result = FitHKL(ibrav,peaks,A,Pwr) |
---|
1139 | # print 'new cell:',G2lat.A2cell(A) |
---|
1140 | # print 'x:',result[0] |
---|
1141 | # print 'cov_x:',result[1] |
---|
1142 | # print 'infodict:' |
---|
1143 | # for item in result[2]: |
---|
1144 | # print item,result[2][item] |
---|
1145 | # print 'msg:',result[3] |
---|
1146 | # print 'ier:',result[4] |
---|
1147 | |
---|
1148 | # |
---|
1149 | if __name__ == '__main__': |
---|
1150 | test0() |
---|
1151 | test1() |
---|
1152 | # test2() |
---|
1153 | # test3() |
---|
1154 | # test4() |
---|
1155 | # test5() |
---|
1156 | # test6() |
---|
1157 | # test7() |
---|
1158 | # test8() |
---|
1159 | print ("OK") |
---|