1 | # -*- coding: utf-8 -*- |
---|
2 | """ |
---|
3 | *GSASIIElem: functions for element types* |
---|
4 | ----------------------------------------- |
---|
5 | |
---|
6 | """ |
---|
7 | # Copyright: 2008, Robert B. Von Dreele & Brian H. Toby (Argonne National Laboratory) |
---|
8 | ########### SVN repository information ################### |
---|
9 | # $Date: 2016-12-07 17:53:18 +0000 (Wed, 07 Dec 2016) $ |
---|
10 | # $Author: vondreele $ |
---|
11 | # $Revision: 2563 $ |
---|
12 | # $URL: trunk/GSASIIElem.py $ |
---|
13 | # $Id: GSASIIElem.py 2563 2016-12-07 17:53:18Z vondreele $ |
---|
14 | ########### SVN repository information ################### |
---|
15 | |
---|
16 | import math |
---|
17 | import sys |
---|
18 | import os.path |
---|
19 | import GSASIIpath |
---|
20 | GSASIIpath.SetVersionNumber("$Revision: 2563 $") |
---|
21 | import numpy as np |
---|
22 | import atmdata |
---|
23 | import GSASIImath as G2mth |
---|
24 | |
---|
25 | getElSym = lambda sym: sym.split('+')[0].split('-')[0].capitalize() |
---|
26 | def GetFormFactorCoeff(El): |
---|
27 | """Read X-ray form factor coefficients from `atomdata.py` file |
---|
28 | |
---|
29 | :param str El: element 1-2 character symbol, case irrevelant |
---|
30 | :return: `FormFactors`: list of form factor dictionaries |
---|
31 | |
---|
32 | Each X-ray form factor dictionary is: |
---|
33 | |
---|
34 | * `Symbol`: 4 character element symbol with valence (e.g. 'NI+2') |
---|
35 | * `Z`: atomic number |
---|
36 | * `fa`: 4 A coefficients |
---|
37 | * `fb`: 4 B coefficients |
---|
38 | * `fc`: C coefficient |
---|
39 | |
---|
40 | """ |
---|
41 | |
---|
42 | Els = El.capitalize().strip() |
---|
43 | valences = [ky for ky in atmdata.XrayFF.keys() if Els == getElSym(ky)] |
---|
44 | FormFactors = [atmdata.XrayFF[val] for val in valences] |
---|
45 | for Sy,FF in zip(valences,FormFactors): |
---|
46 | FF.update({'Symbol':Sy.upper()}) |
---|
47 | return FormFactors |
---|
48 | |
---|
49 | def GetFFtable(atomTypes): |
---|
50 | ''' returns a dictionary of form factor data for atom types found in atomTypes |
---|
51 | |
---|
52 | :param list atomTypes: list of atom types |
---|
53 | :return: FFtable, dictionary of form factor data; key is atom type |
---|
54 | |
---|
55 | ''' |
---|
56 | FFtable = {} |
---|
57 | for El in atomTypes: |
---|
58 | FFs = GetFormFactorCoeff(getElSym(El)) |
---|
59 | for item in FFs: |
---|
60 | if item['Symbol'] == El.upper(): |
---|
61 | FFtable[El] = item |
---|
62 | return FFtable |
---|
63 | |
---|
64 | def GetMFtable(atomTypes,Landeg): |
---|
65 | ''' returns a dictionary of magnetic form factor data for atom types found in atomTypes |
---|
66 | |
---|
67 | :param list atomTypes: list of atom types |
---|
68 | :param list Landeg: Lande g factors for atomTypes |
---|
69 | :return: FFtable, dictionary of form factor data; key is atom type |
---|
70 | |
---|
71 | ''' |
---|
72 | MFtable = {} |
---|
73 | for El,gfac in zip(atomTypes,Landeg): |
---|
74 | MFs = GetMagFormFacCoeff(getElSym(El)) |
---|
75 | for item in MFs: |
---|
76 | if item['Symbol'] == El.upper(): |
---|
77 | item['gfac'] = gfac |
---|
78 | MFtable[El] = item |
---|
79 | return MFtable |
---|
80 | |
---|
81 | def GetBLtable(General): |
---|
82 | ''' returns a dictionary of neutron scattering length data for atom types & isotopes found in General |
---|
83 | |
---|
84 | :param dict General: dictionary of phase info.; includes AtomTypes & Isotopes |
---|
85 | :return: BLtable, dictionary of scattering length data; key is atom type |
---|
86 | ''' |
---|
87 | atomTypes = General['AtomTypes'] |
---|
88 | BLtable = {} |
---|
89 | isotope = General['Isotope'] |
---|
90 | for El in atomTypes: |
---|
91 | ElS = getElSym(El) |
---|
92 | if 'Nat' in isotope[El]: |
---|
93 | BLtable[El] = [isotope[El],atmdata.AtmBlens[ElS+'_']] |
---|
94 | else: |
---|
95 | BLtable[El] = [isotope[El],atmdata.AtmBlens[ElS+'_'+isotope[El]]] |
---|
96 | return BLtable |
---|
97 | |
---|
98 | def getFFvalues(FFtables,SQ,ifList=False): |
---|
99 | 'Needs a doc string' |
---|
100 | if ifList: |
---|
101 | FFvals = [] |
---|
102 | for El in FFtables: |
---|
103 | FFvals.append(ScatFac(FFtables[El],SQ)[0]) |
---|
104 | else: |
---|
105 | FFvals = {} |
---|
106 | for El in FFtables: |
---|
107 | FFvals[El] = ScatFac(FFtables[El],SQ)[0] |
---|
108 | return FFvals |
---|
109 | |
---|
110 | def getBLvalues(BLtables,ifList=False): |
---|
111 | 'Needs a doc string' |
---|
112 | if ifList: |
---|
113 | BLvals = [] |
---|
114 | for El in BLtables: |
---|
115 | if 'BW-LS' in El: |
---|
116 | BLvals.append(BLtables[El][1]['BW-LS'][0]) |
---|
117 | else: |
---|
118 | BLvals.append(BLtables[El][1]['SL'][0]) |
---|
119 | else: |
---|
120 | BLvals = {} |
---|
121 | for El in BLtables: |
---|
122 | if 'BW-LS' in El: |
---|
123 | BLvals[El] = BLtables[El][1]['BW-LS'][0] |
---|
124 | else: |
---|
125 | BLvals[El] = BLtables[El][1]['SL'][0] |
---|
126 | return BLvals |
---|
127 | |
---|
128 | def getMFvalues(MFtables,SQ,ifList=False): |
---|
129 | 'Needs a doc string' |
---|
130 | if ifList: |
---|
131 | MFvals = [] |
---|
132 | for El in MFtables: |
---|
133 | MFvals.append(MagScatFac(MFtables[El],SQ)[0]) |
---|
134 | else: |
---|
135 | MFvals = {} |
---|
136 | for El in MFtables: |
---|
137 | MFvals[El] = MagScatFac(MFtables[El],SQ)[0] |
---|
138 | return MFvals |
---|
139 | |
---|
140 | def GetFFC5(ElSym): |
---|
141 | '''Get 5 term form factor and Compton scattering data |
---|
142 | |
---|
143 | :param ElSym: str(1-2 character element symbol with proper case); |
---|
144 | :return El: dictionary with 5 term form factor & compton coefficients |
---|
145 | ''' |
---|
146 | import FormFactors as FF |
---|
147 | El = {} |
---|
148 | FF5 = FF.FFac5term[ElSym] |
---|
149 | El['fa'] = FF5[:5] |
---|
150 | El['fc'] = FF5[5] |
---|
151 | El['fb'] = FF5[6:] |
---|
152 | Cmp5 = FF.Compton[ElSym] |
---|
153 | El['cmpz'] = Cmp5[0] |
---|
154 | El['cmpa'] = Cmp5[1:6] |
---|
155 | El['cmpb'] = Cmp5[6:] |
---|
156 | return El |
---|
157 | |
---|
158 | def CheckElement(El): |
---|
159 | '''Check if element El is in the periodic table |
---|
160 | |
---|
161 | :param str El: One or two letter element symbol, capitaliztion ignored |
---|
162 | :returns: True if the element is found |
---|
163 | |
---|
164 | ''' |
---|
165 | import ElementTable as ET |
---|
166 | Elements = [] |
---|
167 | for elem in ET.ElTable: |
---|
168 | Elements.append(elem[0][0]) |
---|
169 | if El.capitalize() in Elements: |
---|
170 | return True |
---|
171 | else: |
---|
172 | return False |
---|
173 | |
---|
174 | def FixValence(El): |
---|
175 | 'Returns the element symbol, even when a valence is present' |
---|
176 | if '+' in El[-1]: #converts An+/- to A+/-n |
---|
177 | num = El[-2] |
---|
178 | El = El.split(num)[0]+'+'+num |
---|
179 | if '+0' in El: |
---|
180 | El = El.split('+0')[0] |
---|
181 | if '-' in El[-1]: |
---|
182 | num = El[-2] |
---|
183 | El = El.split(num)[0]+'-'+num |
---|
184 | if '-0' in El: |
---|
185 | El = El.split('-0')[0] |
---|
186 | return El |
---|
187 | |
---|
188 | def GetAtomInfo(El,ifMag=False): |
---|
189 | 'reads element information from atmdata.py' |
---|
190 | import ElementTable as ET |
---|
191 | Elem = ET.ElTable |
---|
192 | if ifMag: |
---|
193 | Elem = ET.MagElTable |
---|
194 | Elements = [elem[0][0] for elem in Elem] |
---|
195 | AtomInfo = {} |
---|
196 | ElS = getElSym(El) |
---|
197 | if El not in atmdata.XrayFF and El not in atmdata.MagFF: |
---|
198 | if ElS not in atmdata.XrayFF: |
---|
199 | print('Atom type '+El+' not found, using UNK') |
---|
200 | return # not sure what this element should be! |
---|
201 | print('Atom type '+El+' not found, using '+ElS) |
---|
202 | El = ElS |
---|
203 | AtomInfo.update(dict(zip(['Drad','Arad','Vdrad','Hbrad'],atmdata.AtmSize[ElS]))) |
---|
204 | AtomInfo['Symbol'] = El |
---|
205 | AtomInfo['Color'] = ET.ElTable[Elements.index(ElS)][6] |
---|
206 | AtomInfo['Z'] = atmdata.XrayFF[ElS]['Z'] |
---|
207 | isotopes = [ky for ky in atmdata.AtmBlens.keys() if ElS == ky.split('_')[0]] |
---|
208 | isotopes.sort() |
---|
209 | AtomInfo['Mass'] = atmdata.AtmBlens[isotopes[0]]['Mass'] #default to nat. abund. |
---|
210 | AtomInfo['Isotopes'] = {} |
---|
211 | for isotope in isotopes: |
---|
212 | data = atmdata.AtmBlens[isotope] |
---|
213 | if isotope == ElS+'_': |
---|
214 | AtomInfo['Isotopes']['Nat. Abund.'] = data |
---|
215 | else: |
---|
216 | AtomInfo['Isotopes'][isotope.split('_')[1]] = data |
---|
217 | AtomInfo['Lande g'] = 2.0 |
---|
218 | return AtomInfo |
---|
219 | |
---|
220 | def GetElInfo(El,inst): |
---|
221 | ElemSym = El.strip().capitalize() |
---|
222 | if 'X' in inst['Type'][0]: |
---|
223 | keV = 12.397639/G2mth.getWave(inst) |
---|
224 | FpMu = FPcalc(GetXsectionCoeff(ElemSym), keV) |
---|
225 | ElData = GetFormFactorCoeff(ElemSym)[0] |
---|
226 | ElData['FormulaNo'] = 0.0 |
---|
227 | ElData.update(GetAtomInfo(ElemSym)) |
---|
228 | ElData.update(dict(zip(['fp','fpp','mu'],FpMu))) |
---|
229 | ElData.update(GetFFC5(El)) |
---|
230 | else: #'N'eutron |
---|
231 | ElData = {} |
---|
232 | ElData.update(GetAtomInfo(ElemSym)) |
---|
233 | ElData['FormulaNo'] = 0.0 |
---|
234 | ElData.update({'mu':0.0,'fp':0.0,'fpp':0.0}) |
---|
235 | return ElData |
---|
236 | |
---|
237 | def GetXsectionCoeff(El): |
---|
238 | """Read atom orbital scattering cross sections for fprime calculations via Cromer-Lieberman algorithm |
---|
239 | |
---|
240 | :param El: 2 character element symbol |
---|
241 | :return: Orbs: list of orbitals each a dictionary with detailed orbital information used by FPcalc |
---|
242 | |
---|
243 | each dictionary is: |
---|
244 | |
---|
245 | * 'OrbName': Orbital name read from file |
---|
246 | * 'IfBe' 0/2 depending on orbital |
---|
247 | * 'BindEn': binding energy |
---|
248 | * 'BB': BindEn/0.02721 |
---|
249 | * 'XSectIP': 5 cross section inflection points |
---|
250 | * 'ElEterm': energy correction term |
---|
251 | * 'SEdge': absorption edge for orbital |
---|
252 | * 'Nval': 10/11 depending on IfBe |
---|
253 | * 'LEner': 10/11 values of log(energy) |
---|
254 | * 'LXSect': 10/11 values of log(cross section) |
---|
255 | |
---|
256 | """ |
---|
257 | AU = 2.80022e+7 |
---|
258 | C1 = 0.02721 |
---|
259 | ElS = El.upper() |
---|
260 | ElS = ElS.ljust(2) |
---|
261 | filename = os.path.join(os.path.split(__file__)[0],'Xsect.dat') |
---|
262 | try: |
---|
263 | xsec = open(filename,'Ur') |
---|
264 | except: |
---|
265 | print '**** ERROR - File Xsect.dat not found in directory %s' % os.path.split(filename)[0] |
---|
266 | sys.exit() |
---|
267 | S = '1' |
---|
268 | Orbs = [] |
---|
269 | while S: |
---|
270 | S = xsec.readline() |
---|
271 | if S[:2] == ElS: |
---|
272 | S = S[:-1]+xsec.readline()[:-1]+xsec.readline() |
---|
273 | OrbName = S[9:14] |
---|
274 | S = S[14:] |
---|
275 | IfBe = int(S[0]) |
---|
276 | S = S[1:] |
---|
277 | val = S.split() |
---|
278 | BindEn = float(val[0]) |
---|
279 | BB = BindEn/C1 |
---|
280 | Orb = {'OrbName':OrbName,'IfBe':IfBe,'BindEn':BindEn,'BB':BB} |
---|
281 | Energy = [] |
---|
282 | XSect = [] |
---|
283 | for i in range(11): |
---|
284 | Energy.append(float(val[2*i+1])) |
---|
285 | XSect.append(float(val[2*i+2])) |
---|
286 | XSecIP = [] |
---|
287 | for i in range(5): XSecIP.append(XSect[i+5]/AU) |
---|
288 | Orb['XSecIP'] = XSecIP |
---|
289 | if IfBe == 0: |
---|
290 | Orb['SEdge'] = XSect[10]/AU |
---|
291 | Nval = 11 |
---|
292 | else: |
---|
293 | Orb['ElEterm'] = XSect[10] |
---|
294 | del Energy[10] |
---|
295 | del XSect[10] |
---|
296 | Nval = 10 |
---|
297 | Orb['SEdge'] = 0.0 |
---|
298 | Orb['Nval'] = Nval |
---|
299 | D = dict(zip(Energy,XSect)) |
---|
300 | Energy.sort() |
---|
301 | X = [] |
---|
302 | for key in Energy: |
---|
303 | X.append(D[key]) |
---|
304 | XSect = X |
---|
305 | LEner = [] |
---|
306 | LXSect = [] |
---|
307 | for i in range(Nval): |
---|
308 | LEner.append(math.log(Energy[i])) |
---|
309 | if XSect[i] > 0.0: |
---|
310 | LXSect.append(math.log(XSect[i])) |
---|
311 | else: |
---|
312 | LXSect.append(0.0) |
---|
313 | Orb['LEner'] = LEner |
---|
314 | Orb['LXSect'] = LXSect |
---|
315 | Orbs.append(Orb) |
---|
316 | xsec.close() |
---|
317 | return Orbs |
---|
318 | |
---|
319 | def GetMagFormFacCoeff(El): |
---|
320 | """Read magnetic form factor data from atmdata.py |
---|
321 | |
---|
322 | :param El: 2 character element symbol |
---|
323 | :return: MagFormFactors: list of all magnetic form factors dictionaries for element El. |
---|
324 | |
---|
325 | each dictionary contains: |
---|
326 | |
---|
327 | * 'Symbol':Symbol |
---|
328 | * 'Z':Z |
---|
329 | * 'mfa': 4 MA coefficients |
---|
330 | * 'nfa': 4 NA coefficients |
---|
331 | * 'mfb': 4 MB coefficients |
---|
332 | * 'nfb': 4 NB coefficients |
---|
333 | * 'mfc': MC coefficient |
---|
334 | * 'nfc': NC coefficient |
---|
335 | |
---|
336 | """ |
---|
337 | Els = El.capitalize().strip() |
---|
338 | MagFormFactors = [] |
---|
339 | mags = [ky for ky in atmdata.MagFF.keys() if Els == getElSym(ky)] |
---|
340 | for mag in mags: |
---|
341 | magData = {} |
---|
342 | data = atmdata.MagFF[mag] |
---|
343 | magData['Symbol'] = mag.upper() |
---|
344 | magData['Z'] = atmdata.XrayFF[getElSym(mag)]['Z'] |
---|
345 | magData['mfa'] = [data['M'][i] for i in [0,2,4,6]] |
---|
346 | magData['mfb'] = [data['M'][i] for i in [1,3,5,7]] |
---|
347 | magData['mfc'] = data['M'][8] |
---|
348 | magData['nfa'] = [data['N'][i] for i in [0,2,4,6]] |
---|
349 | magData['nfb'] = [data['N'][i] for i in [1,3,5,7]] |
---|
350 | magData['nfc'] = data['N'][8] |
---|
351 | MagFormFactors.append(magData) |
---|
352 | return MagFormFactors |
---|
353 | |
---|
354 | def ScatFac(El, SQ): |
---|
355 | """compute value of form factor |
---|
356 | |
---|
357 | :param El: element dictionary defined in GetFormFactorCoeff |
---|
358 | :param SQ: (sin-theta/lambda)**2 |
---|
359 | :return: real part of form factor |
---|
360 | """ |
---|
361 | fa = np.array(El['fa']) |
---|
362 | fb = np.array(El['fb']) |
---|
363 | t = -fb[:,np.newaxis]*SQ |
---|
364 | return np.sum(fa[:,np.newaxis]*np.exp(t)[:],axis=0)+El['fc'] |
---|
365 | |
---|
366 | def MagScatFac(El, SQ): |
---|
367 | """compute value of form factor |
---|
368 | |
---|
369 | :param El: element dictionary defined in GetFormFactorCoeff |
---|
370 | :param SQ: (sin-theta/lambda)**2 |
---|
371 | :param gfac: Lande g factor (normally = 2.0) |
---|
372 | :return: real part of form factor |
---|
373 | """ |
---|
374 | mfa = np.array(El['mfa']) |
---|
375 | mfb = np.array(El['mfb']) |
---|
376 | nfa = np.array(El['nfa']) |
---|
377 | nfb = np.array(El['nfb']) |
---|
378 | mt = -mfb[:,np.newaxis]*SQ |
---|
379 | nt = -nfb[:,np.newaxis]*SQ |
---|
380 | MMF = np.sum(mfa[:,np.newaxis]*np.exp(mt)[:],axis=0)+El['mfc'] |
---|
381 | NMF = np.sum(nfa[:,np.newaxis]*np.exp(nt)[:],axis=0)+El['nfc'] |
---|
382 | return MMF+(2.0/El['gfac']-1.0)*NMF |
---|
383 | |
---|
384 | def BlenResCW(Els,BLtables,wave): |
---|
385 | FP = np.zeros(len(Els)) |
---|
386 | FPP = np.zeros(len(Els)) |
---|
387 | for i,El in enumerate(Els): |
---|
388 | BL = BLtables[El][1] |
---|
389 | if 'BW-LS' in BL: |
---|
390 | Re,Im,E0,gam,A,E1,B,E2 = BL['BW-LS'][1:] |
---|
391 | Emev = 81.80703/wave**2 |
---|
392 | T0 = Emev-E0 |
---|
393 | T1 = Emev-E1 |
---|
394 | T2 = Emev-E2 |
---|
395 | D0 = T0**2+gam**2 |
---|
396 | D1 = T1**2+gam**2 |
---|
397 | D2 = T2**2+gam**2 |
---|
398 | FP[i] = Re*(T0/D0+A*T1/D1+B*T2/D2) |
---|
399 | FPP[i] = Im*(1/D0+A/D1+B/D2) |
---|
400 | else: |
---|
401 | FPP[i] = BL['SL'][1] #for Li, B, etc. |
---|
402 | return FP,FPP |
---|
403 | |
---|
404 | def BlenResTOF(Els,BLtables,wave): |
---|
405 | FP = np.zeros((len(Els),len(wave))) |
---|
406 | FPP = np.zeros((len(Els),len(wave))) |
---|
407 | BL = [BLtables[el][1] for el in Els] |
---|
408 | for i,El in enumerate(Els): |
---|
409 | if 'BW-LS' in BL[i]: |
---|
410 | Re,Im,E0,gam,A,E1,B,E2 = BL[i]['BW-LS'][1:] |
---|
411 | Emev = 81.80703/wave**2 |
---|
412 | T0 = Emev-E0 |
---|
413 | T1 = Emev-E1 |
---|
414 | T2 = Emev-E2 |
---|
415 | D0 = T0**2+gam**2 |
---|
416 | D1 = T1**2+gam**2 |
---|
417 | D2 = T2**2+gam**2 |
---|
418 | FP[i] = Re*(T0/D0+A*T1/D1+B*T2/D2) |
---|
419 | FPP[i] = Im*(1/D0+A/D1+B/D2) |
---|
420 | else: |
---|
421 | FPP[i] = np.ones(len(wave))*BL[i]['SL'][1] #for Li, B, etc. |
---|
422 | return FP,FPP |
---|
423 | |
---|
424 | def ComptonFac(El,SQ): |
---|
425 | """compute Compton scattering factor |
---|
426 | |
---|
427 | :param El: element dictionary |
---|
428 | :param SQ: (sin-theta/lambda)**2 |
---|
429 | :return: compton scattering factor |
---|
430 | """ |
---|
431 | ca = np.array(El['cmpa']) |
---|
432 | cb = np.array(El['cmpb']) |
---|
433 | t = -cb[:,np.newaxis]*SQ |
---|
434 | return El['cmpz']-np.sum(ca[:,np.newaxis]*np.exp(t),axis=0) |
---|
435 | |
---|
436 | def FPcalc(Orbs, KEv): |
---|
437 | """Compute real & imaginary resonant X-ray scattering factors |
---|
438 | |
---|
439 | :param Orbs: list of orbital dictionaries as defined in GetXsectionCoeff |
---|
440 | :param KEv: x-ray energy in keV |
---|
441 | :return: C: (f',f",mu): real, imaginary parts of resonant scattering & atomic absorption coeff. |
---|
442 | """ |
---|
443 | def Aitken(Orb, LKev): |
---|
444 | Nval = Orb['Nval'] |
---|
445 | j = Nval-1 |
---|
446 | LEner = Orb['LEner'] |
---|
447 | for i in range(Nval): |
---|
448 | if LEner[i] <= LKev: j = i |
---|
449 | if j > Nval-3: j= Nval-3 |
---|
450 | T = [0,0,0,0,0,0] |
---|
451 | LXSect = Orb['LXSect'] |
---|
452 | for i in range(3): |
---|
453 | T[i] = LXSect[i+j] |
---|
454 | T[i+3] = LEner[i+j]-LKev |
---|
455 | T[1] = (T[0]*T[4]-T[1]*T[3])/(LEner[j+1]-LEner[j]) |
---|
456 | T[2] = (T[0]*T[5]-T[2]*T[3])/(LEner[j+2]-LEner[j]) |
---|
457 | T[2] = (T[1]*T[5]-T[2]*T[4])/(LEner[j+2]-LEner[j+1]) |
---|
458 | C = T[2] |
---|
459 | return C |
---|
460 | |
---|
461 | def DGauss(Orb,CX,RX,ISig): |
---|
462 | ALG = (0.11846344252810,0.23931433524968,0.284444444444, |
---|
463 | 0.23931433524968,0.11846344252810) |
---|
464 | XLG = (0.04691007703067,0.23076534494716,0.5, |
---|
465 | 0.76923465505284,0.95308992296933) |
---|
466 | |
---|
467 | D = 0.0 |
---|
468 | B2 = Orb['BB']**2 |
---|
469 | R2 = RX**2 |
---|
470 | XSecIP = Orb['XSecIP'] |
---|
471 | for i in range(5): |
---|
472 | X = XLG[i] |
---|
473 | X2 = X**2 |
---|
474 | XS = XSecIP[i] |
---|
475 | if ISig == 0: |
---|
476 | S = BB*(XS*(B2/X2)-CX*R2)/(R2*X2-B2) |
---|
477 | elif ISig == 1: |
---|
478 | S = 0.5*BB*B2*XS/(math.sqrt(X)*(R2*X2-X*B2)) |
---|
479 | elif ISig == 2: |
---|
480 | T = X*X2*R2-B2/X |
---|
481 | S = 2.0*BB*(XS*B2/(T*X2**2)-(CX*R2/T)) |
---|
482 | else: |
---|
483 | S = BB*B2*(XS-Orb['SEdge']*X2)/(R2*X2**2-X2*B2) |
---|
484 | A = ALG[i] |
---|
485 | D += A*S |
---|
486 | return D |
---|
487 | |
---|
488 | AU = 2.80022e+7 |
---|
489 | C1 = 0.02721 |
---|
490 | C = 137.0367 |
---|
491 | FP = 0.0 |
---|
492 | FPP = 0.0 |
---|
493 | Mu = 0.0 |
---|
494 | LKev = math.log(KEv) |
---|
495 | RX = KEv/C1 |
---|
496 | if Orbs: |
---|
497 | for Orb in Orbs: |
---|
498 | CX = 0.0 |
---|
499 | BB = Orb['BB'] |
---|
500 | BindEn = Orb['BindEn'] |
---|
501 | if Orb['IfBe'] != 0: ElEterm = Orb['ElEterm'] |
---|
502 | if BindEn <= KEv: |
---|
503 | CX = math.exp(Aitken(Orb,LKev)) |
---|
504 | Mu += CX |
---|
505 | CX /= AU |
---|
506 | Corr = 0.0 |
---|
507 | if Orb['IfBe'] == 0 and BindEn >= KEv: |
---|
508 | CX = 0.0 |
---|
509 | FPI = DGauss(Orb,CX,RX,3) |
---|
510 | Corr = 0.5*Orb['SEdge']*BB**2*math.log((RX-BB)/(-RX-BB))/RX |
---|
511 | else: |
---|
512 | FPI = DGauss(Orb,CX,RX,Orb['IfBe']) |
---|
513 | if CX != 0.0: Corr = -0.5*CX*RX*math.log((RX+BB)/(RX-BB)) |
---|
514 | FPI = (FPI+Corr)*C/(2.0*math.pi**2) |
---|
515 | FPPI = C*CX*RX/(4.0*math.pi) |
---|
516 | FP += FPI |
---|
517 | FPP += FPPI |
---|
518 | FP -= ElEterm |
---|
519 | |
---|
520 | return (FP, FPP, Mu) |
---|
521 | |
---|
522 | |
---|