pco.

document pco.convert / SDK-Description

PCO.CONnvert

SDK-Description

This document describes the API interface to the
pco.convert sdk.

File: Version: as of: Author: Page 1 of 27
MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pco.

document pco.convert / SDK-Description

Copyright © 2004-2012 pco AG (called pcoO in the following text), Kelheim, Germany. All
rights reserved. pPCO assumes no responsibility for errors or omissions in these materials. These
materials are provided "as is" without warranty of any kind, either expressed or implied, including
but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or
non-infringement. pPCO further does not warrant the accuracy or completeness of the
information, text, graphics, links or other items contained within these materials. pCoO shall not
be liable for any special, indirect, incidental, or consequential damages, including without
limitation, lost revenues or lost profits, which may result from the use of these materials. The
information is subject to change without notice and does not represent a commitment on the part
of pco in the future. pCcO hereby authorizes you to copy documents for non-commercial use
within your organization only. In consideration of this authorization, you agree that any copy of
these documents that you make shall retain all copyright and other proprietary notices contained
herein. Each individual document published by pCO may contain other proprietary notices and
copyright information relating to that individual document. Nothing contained herein shall be
construed as conferring by implication or otherwise any license or right under any patent or
trademark of pCO or any third party. Except as expressly provided above nothing contained
herein shall be construed as conferring any license or right under any pCO copyright. Note that
any product, process, or technology in this document may be the subject of other intellectual
property rights reserved by pCO, and may not be licensed hereunder.

File: Version: as of: Author: Page 2 of 27
MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pco.

document pco.convert / SDK-Description

Table of contents:

0 T GENERAL ...ttt e e e e e e e e e e e et e e e e e e aaaaaaaaaeeaaaaes 5
1.1 B/W And Pseudo Color CONVerSiON:......ccuiicieecsseesssecsnnsssesssnssssesssnssssesssssnesssssassssssenes 6
1.2 Color Conversion: 7
o 2 CONVERT APIDESCRIPTION:o 8
2.1 PCO_CoNVErtCreate... . eeiesseeessssecsssecsssencssssscssssecsssasssassssssssans 8
2.2 PCO_ConvertDelete......ueiiecisseiecssssnnicsssssssessssssscsss 10
2.3 PCO_ConvertGet .10
2.4 PCO_ConvertG(S)etDIsSPlay......ccueinsecsensseensensssecssnnssansssessssessssssssesssassssesssssssssssssssns 11
2.5 PCO_ConVeErtSetBayer......cueicrviiercricssnicsssnncsssricsssnecssssssssssessssssssssssssssssssssssssssssssssns 12
2.6 PCO_ConvertSetSensSorInfo.........cceeennsercsseicssnicsssnicssanecsssnesssssessssnessssssssssssssssssssssens 13
2.7 PCO_L0adPSeUAOLUL......uuuereiuriiinriisnrinsnnecssnnisssnnesssnnessssncssssecssssssssssssssessssssssssssssssnns 15
2.8 PCO_ConvertlOTOu...uueccueiieiineisninnenssinssnssssnssseesssnssssssssssssessssssssssssssessasssssssssssssses 16
2.9 PCO_GetWhiteBalance .18
2.10 PCO_GetMaxXLimit....cccceeervercsssrrcssnrcssnncsssnscsssns 19
* 3 CONVERT DIALOG API DESCRIPTION:......uuiiiiiiiiiee e 20
3.1 PCO_OpenConvertDIalo@.......ccocvueiecsssnrecssessnnecsssssnosses 20
3.2 PCO_CloseConvertDialog......ccccceerercssnrcssanscssanssssanssssasssns 22
3.3 PCO_GetStatusConvertDIialog.........coceierveicssnicssnnisssnncsssnsssssssssssssssssssssssssssssssssssssses 23
3.4 PCO_G(S)etConvertDialog .24
File: Version: as of: Author: Page 3 of 27

MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pco.

pco.convert / SDK-Description

document

3.5 PCO_SetDataToConvertDialog........ccceereercssnicssanicssanssssanssssansssassssssssassssssssssssssssssssns 25
e 4 TYPICAL IMPLEMENTATION. ...t 26
File: Version: as of: Author: Page 4 of 27

MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pco.

document pco.convert / SDK-Description

1 General:

This convert SDK description can be used to implement the PCO convert routines in proprietary
applications, which are used to control PCO cameras. It is not possible and prohibited to use the
convert routines with third party cameras.

The pco.convert.sdk consists of two parts: The LUT conversion functions (PCO_Conv.DLL) and
the dialog functions (PCO_CDIg.DLL).

The conversion functions are used to convert data areas, b/w and color, with a resolution of more
than 8 bit per pixel to either b/w data areas with a resolution of 8 bit per pixel or color data areas
with a resolution of 24 (32) bit per pixel. The DLL also includes functions to create and fill the
various convert objects.

The second part of the API contains the dialog functions. The dialogs are simple GUI dialogs
which enable the user to set the parameters of the convert objects. The dialog functions are
included in the PCO_CDIg.DLL and are based on some functions of the PCO_Conv.DLL.

In the pco.sdk for pco cameras there exist two samples, which make use of the convert sdk. One is
the Test_cvDlg sample and the other is the sc2_demo. Please take a look at those samples in order
to 'see' the convert sdk functions in action.

ATTENTION: It is not possible to use the pco_conv.dll without a connected camera
from pco. Using this conversion software is restricted to PCO cameras only!

File: Version: as of: Author: Page 5 of 27
MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pco.

document pco.convert / SDK-Description

1.1 B/W And Pseudo Color Conversion:

The conversion algorithm used in the b/w function is based on the following simple routine:

dataout [pos] = lutbw[datain[pos]];

where:

- pos is the counter variable
- dataout is the output data area
- dataint is the input data area

- lutbw is a data area of size 2" containing the LUT, where n = resolution of the input area in
bits per pixel

In the pseudocolor function the basic routine to convert to a RGB data area is:

val = lutbw[datain[pos]];
dataout [pout + 0] = lutred[vall;
dataout [pout + 1] lutgreen(vall];
dataout [pout + 2] lutblue([vall;

where:
- pos is the input counter variable
- pout is the output counter variable
- dataout is the output data area
- datain is the input data area

- lutbw is a data area of size 2", where n = resolution of the input area in bit per pixel

lutred, lutgreen, lutblue are data areas of size 2" containing the LUT, where n = resolution of the
output area in bit per pixel.

File: Version: as of: Author: Page 6 of 27
MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pco.

document pco.convert / SDK-Description

1.2 Color Conversion:

CCD color sensors used in PCO color cameras have filters for the colors red, green, and blue.
Each pixel has one type of filter, thus originally you do not get full color information for each
pixel. Rather each pixel delivers a value with a dynamic range of 12 bits for the color which
passes the filter.

All color cameras at PCO work with the Bayer-filter demosaicking. The color filter pattern of
those color image sensors can be reduced to a 2x2 matrix. The image sensor itself can be seen as a
matrix of those 2x2 matrixes. Suppose this color pattern:

The color itself is only an interpretation of the matrix. This interpretation will be done by a so
called demosaicking algorithm. The pco_conv.dll works with a special proprietary method.

File: Version: as of: Author: Page 7 of 27
MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pco.

document pco.convert / SDK-Description

2 Convert API description:

2.1 PCO_ConvertCreate

Creates a new convert object based on the PCO_SensorInfo structure. The created convert handle
will be used during the conversion. Please call PCO_ConvertDelete before the application exits
and unloads the convert dll.

a.) Prototype:

int PCO_CONVERT API PCO_ConvertCreate(HANDLE* ph, PCO_SensorInfo *strSensor, int iConvertType) I

b.) Input parameter:

* HANDLE *ph: Pointer to a handle which will receive the created convert object.

* PCO_SensorInfo*strSensor: Pointer to a sensor information structure. Please do not forget
to set the wSize parameter.

* int iConvertType: Variable to determine the conversion type, either b/w, color, pseudo
color or color 16.

The input data should be filled with the following parameter:

e *ph=NULL
* strSensorInfo: Structure to hold the sensor information. The following structure members
are available:
- WORD wSize = Size of the sensor info structure.
- WORD wDummy = 0; reserved for future use.
- int iConversionFactor = 0. Not used.

- int iDataBits = Bit resolution of the sensor. Set to 12 for SensiCam and PixelFly. Actual
camera types have the information within the camera descriptor (see
PCO_GetCameraDescription in pco.sdk).

- int iSensorInfoBits = bit0 — 0: b/w sensor; bit0 — 1: color sensor

bitl — 0: Data is lower bit aligned; bitl — 1: Data is upper bit
aligned.

- idarkOffset = Dark offset of the camera. PixelFly = 30. SensiCam = 32. pco.1200,
pco.dimax = 32. All other types = 100.

- dwzzDummyO = 0; reserved for future use.
- strColorCoeff = color coefficient matrix.
Set to 1.0 for PixelFly, SensiCam, and all other cameras not covered below:
dall =1.0;dal2=0.0; dal3 =0.0;
da21 =0.0; da22 = 1.0; da23 = 0.0;
da31 =0.0; da32 =0.0; da33 =1.0;

File: Version: as of: Author: Page 8 of 27
MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pco.

document pco.convert / SDK-Description

Set to the following for pco.1200:
dall =2.238938052; dal2 =-.008849559; dal3 =-.699115043;
da21 =-.504424779; da22 =2.061946901; da23 = -1.088495573;
dal3 =-.557522121; da32 =-.32743363; da33 = 1.88495575;
Set to the following for pco.1600, pco.2000 and pco.4000:
dall =0.9543; dal2 = 0.0608; dal3 =-0.0149;
da21 =-0.2081; da22 = 1.3253; da23 =-0.1050;
da31 =0.0592; da32 = -0.3834; da33 = 1.3459;
For pco.dimax camera call PCO_GetColorCorrectionMatrix.
- int iCamNum = 0, 1, ...; Current number of your camera, usually 0.
- HANDLE hCamera = NULL, reserved for future use.
- dwzzDummy1 = 0; reserved for future use.
* iConvertType = Predefined value, see PCO_ConvStructures.h.
- PCO BW_CONVERT = Conversion will produce 8bit b/w output.
- PCO _COLOR CONVERT = Conversion will produce 24(32)bit RGB output.
- PCO PSEUDO_CONVERT = Conversion will produce 24(32)bit pseudo RGB output
- PCO _COLOR16 CONVERT = Conversion will produce 48bit RGB output.

¢.) Return value:

* int: Error message, 0 in case of success else less than 0: see pco err.h for more
information.

File: Version: as of: Author: Page 9 of 27
MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pco.

document pco.convert / SDK-Description

2.2 PCO_ConvertDelete

Deletes a previously created convert object. It is mandatory to call this function before closing the
application

a.) Prototype:

int PCOCONVERT API PCO_ConvertDelete (HANDLE ph) I

b.) Input parameter:

 HANDLE ph: Handle to a previously created convert object.

The input data should be filled with the following parameter:

* ph = previously created convert object.

¢.) Return value:

* int: Error message, 0 in case of success else less than 0: see pco err.h for more
information.

2.3 PCO_ConvertGet

Gets all the values of a previously created convert object.

a.) Prototype:

int PCOCONVERT API PCO ConvertGet (HANDLE ph, PCO_Convert* pstrConvert) I

b.) Input parameter:

* HANDLE ph: Handle to a previously created convert object.
* PCO_Convert* pstrConvert: Pointer to a pco convert structure

The input data should be filled with the following parameter:

* ph = previously created convert object.
* pstrConvert.wSize = size of the pco convert structure

The structure will be filled with the actual convert parameters.

¢.) Return value:

* int: Error message, 0 in case of success else less than 0: see pco err.h for more
information.

File: Version: as of: Author: Page 10 of 27
MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pco.

document pco.convert / SDK-Description

2.4 PCO_ConvertG(S)etDisplay

Gets / sets the display structure values of a previously created convert object. Use this functions to
change the conversion parameters. Usually do a get call, change values, and than do a set call.

a.) Prototype:

int PCOCONVERT_API PCO_ConvertG(S)etDisplay (HANDLE ph, PCO_Display* pstrDisplay) I

b.) Input parameter:

 HANDLE ph: Handle to a previously created convert object.
* PCO_Display* pstrDisplay: Pointer to a pco display structure

The input data should be filled with the following parameter for the get command:

* ph = previously created convert object.

* pstrDisplay.wSize = size of the pco display structure

The structure will be filled with the actual convert parameters for the get call.
The structure should be filled with the following parameters for the set command:

* pstrDisplay.wSize = size of the pco display structure

* pstrDisplay.wDummy = 0; reserved for future use.

* pstrDisplay.iScale_maxmax = 2”bit resolution - 1; e.g. 12bit — 4095

* pstrDisplay.iScale_max = max value for conversion; iScale min ... 2"bit res. - 1
* pstrDisplay.iScale min = min value for conversion; 0 ... iScale_max

* pstrDisplay.iColor temp = color temperature; 1000 ... 20000 in K

* pstrDisplay.iColor_tint =-100 ... 100; correction value for green in %
* pstrDisplay.iColor saturation = -100 ... 100; color saturation in %

* pstrDisplay.iColor vibrance =-100 ... 100; color vibrance in %

* pstrDisplay.iContrast = -100 ... 100; contrast in %

* pstrDisplay.iGamma = -100 ... 100; gamma value in %

* pstrDisplay.iSRGB = 0; not used, set to zero

* pstrDisplay.pucLut = NULL; not used; set to NULL

* pstrDisplay.dwzzDummy1 = 0; for future use; set all parameters to zero

Usually only min, max, contrast, and gamma will be changed by the application. For color
cameras additionally temp, tint, saturation, and vibrance will be changed.

¢.) Return value:

* int: Error message, 0 in case of success else less than 0: see pco err.h for more
information.

File: Version: as of: Author: Page 11 of 27
MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pco.

document pco.convert / SDK-Description

2.5 PCO_ConvertSetBayer

Sets the bayer structure values of a previously created convert object. Use this functions to change
the bayer pattern parameters.

a.) Prototype:

int PCOCONVERT_API PCO_ConvertSetBayer (HANDLE ph, PCO_Bayer* pstrBayer) I

b.) Input parameter:

 HANDLE ph: Handle to a previously created convert object.
* PCO_Bayer* pstrBayer: Pointer to a PCO bayer structure

The structure should be filled with the following parameters for the set command:

* pstrBayer.wSize = size of the pco bayer structure
* pstrBayer.wDummy = 0; reserved for future use.

* pstrBayer.iKernel = 0 — upper left is red; 1 — upper left is green (red line); 2 — upper left
is green (blue line); 3 — upper left is blue; For SensiCam and PixelFly the upper left is
always red. For all other cameras, see the camera description. Additionally it depends on the
ROI setting of the camera.

* pstrBayer.iColorMode = 0 — bayer pattern.
* pstrBayer.dwzzDummyl = 0; for future use; set all parameters to zero

For a SensiCam and a PixelFly it is sufficient to call this function once, with iKernel set to 0. For
all pco.sdk dependent cameras it is mandatory to call this function with the correct value after
changing the ROI, since ROI determines the color of the upper left pixel.

¢.) Return value:

* int: Error message, 0 in case of success else less than 0: see pco err.h for more
information.

File: Version: as of: Author: Page 12 of 27
MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pco.

document pco.convert / SDK-Description

2.6 PCO_ConvertSetSensorInfo

Sets the PCO_SensorInfo structure for a previously created convert object.

a.) Prototype:

int PCO_CONVERT API PCO_ConvertSetSensorInfo(HANDLE ph, PCO_SensorInfo *strSensor) I

b.) Input parameter:

* HANDLE ph: Handle to a previously created convert object.
* PCO_SensorInfo*strSensor: Pointer to a sensor information structure. Please do not forget
to set the wSize parameter.

The input data should be filled with the following parameter:

* ph = previously created convert object.

* strSensorInfo: Structure to hold the sensor information. The following structure members
are available:

- WORD wSize = Size of the sensor info structure.
- WORD wDummy = 0; reserved for future use.
- int iConversionFactor = 0. Not used.

- int iDataBits = Bit resolution of the sensor. Set to 12 for SensiCam and PixelFly. Actual
camera types have got the information within the camera descriptor (see
PCO_GetCameraDescription in pco.sdk).

- int iSensorInfoBits = bit0 — 0: b/w sensor; bit0 — 1: color sensor

bitl — 0: Data is lower bit aligned; bitl — 1: Data is upper bit
aligned.

- idarkOffset = Dark offset of the camera. PixelFly = 30. SensiCam = 32. pco.1200,
pco.dimax = 32. All other types = 100.

- dwzzDummyO = 0; reserved for future use.
- strColorCoeff = color coefficient matrix.
Set to 1.0 for PixelFly, SensiCam, and all other cameras not covered below:
dall =1.0;dal2=0.0; dal3 =0.0;
da21 =0.0; da22 =1.0; da23 = 0.0;
da31=0.0; da32 =0.0; da33 = 1.0;

Set to the following for pco.1200:

dall =2.238938052; da12 =-.008849559; dal3 =-.699115043;
da21 =-.504424779; da22 =2.061946901; da23 = -1.088495573;
dal3 =-.557522121; da32 =-.32743363; da33 = 1.88495575;

Set to the following for pco.1600, pco.2000 and pco.4000:

dall =0.9543; dal2 = 0.0608; dal3 =-0.0149;

File: Version: as of: Author: Page 13 of 27
MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pco.

document pco.convert / SDK-Description

da21 =-0.2081; da22 = 1.3253; da23 =-0.1050;

da31=0.0592; da32 = -0.3834; da33 = 1.3459;

For pco.dimax camera call PCO_GetColorCorrectionMatrix.
- int iCamNum = 0, 1, ...; Current number of your camera, usually 0.
- HANDLE hCamera = NULL, reserved for future use.
- dwzzDummy1 = 0; reserved for future use.

¢.) Return value:

* int: Error message, 0 in case of success else less than 0: see pco err.h for more
information.

File: Version: as of: Author: Page 14 of 27
MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pco.

document pco.convert / SDK-Description

2.7 PCO_LoadPseudoLut

Loads a pseudo color lookup table to the convert object. This function can be used to load some of
the predefined or self created pseudo lookup tables.

a.) Prototype:

int PCOCONVERT_API PCO_LoadPseudoLut (HANDLE ph, int format, char* filename) I

b.) Input parameter:

 HANDLE ph: Handle to a previously created convert object.
e int format: 0 — 1t1, 1 — 1t2, 2 — 1t3, 3 — 1t4;
e char* filename: name of the file to load.

¢.) Return value:

* int: Error message, 0 in case of success else less than 0: see pco err.h for more
information.

File: Version: as of: Author: Page 15 of 27
MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pco.

document pco.convert / SDK-Description

2.8 PCO_Convertl6TO...

Converts the camera raw 16 bit data to the desired format. The convert can result in an 8bit b/w
format (PCO_Convert16TOS8), 24bit RGB b/w format (PCO_Convert16TO24), 24(32)bit RGB
color format (PCO_Convertl6TOCOL), 24(32)bit RGB pseudo color format
(PCO_Convertl6TOPSEUDOQ) or 48bit RGB color format (PCO_Convertl6TOCOL16). The
output buffer must be big enough to receive the resulting image. Take care that the type of the
destination buffer fits the function, which is called.

a.) Prototype:

int PCOCONVERT API PCO_Convert... (HANDLE ph, int imode, int icolormode, int width, int height, word
*bl6, ...)

b.) Input parameter:

* HANDLE ph: Handle to a previously created convert object.
* int imode: Mode parameter.

* int icolmode: Color mode parameter

* int width: Width of the image to convert

* int height: Height of the image to convert

* word *b16: Pointer to the raw image

* ...: Pointer to the resulting image; Either a byte* or a word*

File: Version: as of: Author: Page 16 of 27
MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pco.

document pco.convert / SDK-Description

The input parameter should be filled with the following values:

* imode = 0 — normal convert; the following flags are available:
CONVERT MODE OUT FLIPIMAGE — Flips the image horizontally;
CONVERT MODE OUT MIRRORIMAGE — Mirrors the image vertically;
CONVERT MODE OUT RGB32 — produce 32bit output (only for 16TOCOL).

* icolormode (16TOCOL, 16TOCOL16 only) = 0 — upper left is red; 1 — upper left is green
(red line); 2 — upper left is green (blue line); 3 — upper left is blue; For SensiCam and
PixelFly the upper left is always red. For all other cameras, see the camera description.
Additionally it depends on the ROI setting of the camera (only for 16TOCOL and
16TOCOLI16).

* width and height = width and height of the image.

* word *b16 = Raw data pointer of the image.

* ... =byte* with size width*height for PCO_Convert16TOS;
byte* with size width*height*3 for PCO_Convert1 6TO24,
PCO_Convertl6TOPSEUDO, PCO_Convertl6TOCOL 24bit
byte* with size width*height*4 for PCO_Convertl6TOCOL 32bit
word* with size width*height*2*3 for PCO Convertl6TOCOL16

¢.) Return value:

* int: Error message, 0 in case of success else less than 0: see pco err.h for more
information.

File: Version: as of: Author: Page 17 of 27
MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pcCo.
document

2.9 PCO_GetWhiteBalance

Calculates the color temperature and tint setting to get a white balanced image.

a.) Prototype:

pco.convert / SDK-Description

int PCOCONVERT API PCO GetWhiteBalance(HANDLE ph, int *color temp, int *tint, int imode, int width, int

height, word *b16, int x_min, int y min, int X_max, inty max)

b.) Input parameter:

 HANDLE ph: Handle to a previously created convert object.

* int *color temp: int pointer to receive the color temperature.

* int *tint: int pointer to receive the tint setting.

* int imode: Mode parameter.

* int width: Width of the image to convert

» int height: Height of the image to convert

* word *b16: Pointer to the raw image

* int x_min: x value of the upper left point of a recangle, where the calculation is done.
* inty min: y value of the upper left point of a recangle, where the calculation is done.
* int x_max: x value of the lower right point of a recangle, where the calculation is done.
* inty max: y value of the lower right point of a recangle, where the calculation is done.

The x, y settings for the rectangle are zero based. E.g. with a resolution of 1280*1024 the values

are x_min=0, y min=0, Xx_max = 1279, y max=1023.
The input parameter should be filled with the following values:

* imode = 0 — normal convert; the following flags are available:
CONVERT _MODE OUT_FLIPIMAGE — Flips the image horizontally;
CONVERT _MODE OUT MIRRORIMAGE — Mirrors the image vertically;
CONVERT MODE OUT _RGB32 — produce 32bit output (only for 16TOCOL).

* width and height = width and height of the image.

* word *b16 = Raw data pointer of the image.

* X_min, y min; Xx_max, y max: 0..x max-1, 0...y max-1; x_min+1...width-1,
y_min+1..height-1

¢.) Return value:

* int: Error message, 0 in case of success else less than 0: see pco err.h for more

information.

File: Version: as of: Author: Page 18 of 27

MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pco.

document pco.convert / SDK-Description

2.10 PCO_GetMaxLimit

Calculates the maximum possible value for the min/max setting. Based on a color temperature and
the tint a maximum value for min/max setting can be calculated. The max value must not exceed
the highest calculated value out of the three color max values (r_max, g max, b_max). Otherwise
you'll get wrong colors, since white R=G=B=255 (for 8bit) is impossible to reach.

a.) Prototype:

int PCOCONVERT_API PCO_GetMaxLimit(float *r max, float *g max, float *b_max, int color temp, int tint,
int output_bits)

b.) Input parameter:

* Float *r_max: Pointer to a float receiving the max red value.

* Float *g max: Pointer to a float receiving the max green value.

* Float *b_max: Pointer to a float receiving the max blue value.

e int color_temp: Color temperature.

* int tint: Tint setting.

* int output bits: Bit resolution of the converted image (usually 8).

The input parameter should be filled with the following values:

* color_temp = color temperature; 1000 ... 20000 in K
* tint =-100 ... 100; correction value for green in %
e output bits =8

¢.) Return value:

* int: Error message, 0 in case of success else less than 0: see pco err.h for more
information.

File: Version: as of: Author: Page 19 of 27
MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pcCo.
document

pco.convert / SDK-Description

3 Convert dialog API description:

3.1 PCO_OpenConvertDialog

Creates a convert dialog based on a convert object. Please call PCO_CloseConvertDialog before
the application exits and unloads the convert dialog dll.

a.) Prototype:

int PCO_CONVERT DIALOG EXPORTS PCO_OpenConvertDialog(HANDLE * hLutDialog, HWND parent,
char *title, int msg_id, HANDLE hlut, int xpos, int ypos)

b.) Input parameter:

HANDLE *hLutDialog: Pointer to a handle to receive the created dialog handle.

HWND parent: Handle of the parent window.

char *title: String to set the title of the dialog.

int msg_id: Message ID which will be sent in case of changes inside the dialog.

HANDLE hlut: Handle of a previously created convert object, which should be controlled
by the dialog.

int xpos, ypos: x and y position of the upper left corner of the dialog

The input parameter should be filled with the following values:

hLutDialog = NULL
parent = Handle of the parent window.
title = Caption bar title, e.g. “Color Convert Dialog”.

msg_id = 0 — no message is sent; WM_APP + ... — A message with this ID will be sent to
the parent in case dialog controls are changed.

hlut = Handle of the convert object to be controlled by the dialog.
Xpos, ypos = 0...Screen x,y max-100.

The dialog will send notification messages with a message type identifier in wCommand of a
PCO_ConvDIg Message structure. The pointer to the structure is transferred in LPARAM.

The following parameters are available in the structure:

WORD wCommand: Command type, which has occurred inside the dialog.

PCO_Convert *pstrConvert: Pointer to the controlled convert object.

int iXPos, 1YPos: Actual xy position of the upper left corner of the dialog. This values can
be used to preserve the position for future sessions.

File:

Version: as of: Author: Page 20 of 27

MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pco.

document pco.convert / SDK-Description

Parameter wCommand:

* PCO_CNV_DLG _CMD_CLOSING: The dialog has been closed by pressing the 'Close’
button in the caption bar. The dialog object will be deleted automatically. Please set the
dialog handle to zero. It is not necessary to call PCO_CloseConvertDialog.

* PCO CNV_DLG_CMD_WHITEBALANCE: The white balancing button has been
pressed. Please handle this message and do a whitebalance call and set the parameters to the

dialog.
¢.) Return value:

* int: Error message, 0 in case of success else less than 0: see pco err.h for more
information.

File: Version: as of: Author: Page 21 of 27
MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pco.

document pco.convert / SDK-Description

3.2 PCO_CloseConvertDialog

Closes a convert dialog.

a.) Prototype:

int PCO_CONVERT DIALOG_EXPORTS PCO_CloseConvertDialog(HANDLE hLutDialog) I

b.) Input parameter:

« HANDLE hLutDialog: Handle of a previously created dialog.

The input parameter should be filled with the following values:

* hLutDialog = Handle of a previously created convert dialog.

¢.) Return value:

* int: Error message, 0 in case of success else less than 0: see pco err.h for more
information.

File: Version: as of: Author: Page 22 of 27
MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pco.

document pco.convert / SDK-Description

3.3 PCO_GetStatusConvertDialog

Gets the status of a convert dialog.

a.) Prototype:

int PCO_CONVERT DIALOG _EXPORTS PCO_CloseConvertDialog(HANDLE hLutDialog, int *hwnd, int
*status)

b.) Input parameter:

 HANDLE hLutDialog: Handle of a previously created dialog.
* int *hwnd: Pointer to an integer to receive the window handle of the dialog
* int *status: Pointer to an integer to receive the status of the dialog.

The input parameter should be filled with the following values:

* hLutDialog = Handle of a previously created convert dialog.

The input pointer will be filled with the following values:

* hwnd = Window handle of a previously created convert dialog.

* status = 0 (reserved for future use)

¢.) Return value:

* int: Error message, 0 in case of success else less than 0: see pco err.h for more
information.

File: Version: as of: Author: Page 23 of 27
MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pco.

document pco.convert / SDK-Description

3.4 PCO_G(S)etConvertDialog

Gets / Sets the values of a convert dialog based on a previously created convert object.

a.) Prototype:

int PCO_CONVERT DIALOG _EXPORTS PCO_G(S)etConvertDialog(HANDLE hLutDialog, HANDLE hLut) I

b.) Input parameter:

« HANDLE hLutDialog: Handle of a previously created dialog.
* HANDLE hLut: Handle of a previously created convert object.

The input parameter should be filled with the following values:

* hLutDialog = Handle of a previously created convert dialog.

* Hlut = Handle of a previously created convert object — set new values based on the convert
object; NULL — Convert dialog reloads the settings from the convert object it controls.

¢.) Return value:

* int: Error message, 0 in case of success else less than 0: see pco err.h for more
information.

File: Version: as of: Author: Page 24 of 27
MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pco.

document pco.convert / SDK-Description

3.5 PCO_SetDataToConvertDialog

Sets the converted and raw image data to the convert dialog. This will update the histogram
diagrams shown in the dialog. It is not necessary to set the data for each converted image, since
the update rate would exceed the realizable display rate. Setting the data every 500 milliseconds is
enough.

a.) Prototype:

int PCO_CONVERT DIALOG EXPORTS PCO_G(S)etConvertDialog(HANDLE hLutDialog, int ixres, int
iyres, void *b16_image, void *rgb_image)

b.) Input parameter:

« HANDLE hLutDialog: Handle of a previously created dialog.
* intixres, iyres: Width and height of the image data transferred
* void *b16_image: Pointer to the raw data.

* void *rgb_image: Pointer to the converted data.

» HANDLE hLut: Handle of a previously created convert object.

The input parameter should be filled with the following values:

* hLutDialog = Handle of a previously created convert dialog.
* bl6 _image = Pointer of the raw data.

* rgb_image= Pointer of the converted image. Set this to the b/w image (8bit) pointer for b/w
control dialog and to the color image (24bit RGB) pointer in case of a color control dialog.

¢.) Return value:

* int: Error message, 0 in case of success else less than 0: see pco err.h for more
information.

File: Version: as of: Author: Page 25 of 27
MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pco.

document pco.convert / SDK-Description

4 Typical Implementation

This typical step by step implementation shows the basic handling:

1. Declarations:
PCO_SensorlInfo strsensorinf;
PCO Display strDisplay;

2. Set all buffer 'size' parameters to the expected values:
strsensorinf.wSize = sizeof(PCO_SensorInfo);
strDisplay.wSize = sizeof(PCO_Display);

3. Set the sensor info parameters and create the convert object:
PCO_ConvertCreate(&hConvert,(PCO_SensorInfo*)&strsensorinf.wSize,...)

4. Optionally open a convert dialog:
PCO_OpenConvertDialog(&m_hLutDialog, GetSafeHwnd(), "Convert Dialog", WM_APP+1011, m_hLut, 410, 252)

5. Set the min and max value to the desired range and set them to the convert object.
PCO_ConvertGetDisplay(hConvert, (PCO_Display*)&strDisplay.wSize,...)
strDisplay.iScale_min = 200;
strDisplay.iScale max = 2000;
PCO_ConvertSetDisplay(hConvert, (PCO_Display*)&strDisplay.wSize,...)

6. Do the convert and set the data to the dialog if dialog is open.
PCO_Convert16TOCOL(hConvert, 0, 0, 1280, 1024, b16, b8rgb);
PCO_SetDataToDialog(hLutDialog, 1280, 1024, b16, b8rgb);// in realistic intervalls

7. Close the optionally opened convert dialog:
PCO_CloseConvertDialog(hConvertDialog)

8. Close the convert object:
PCO_ConvertDelete(hLut);

See the Test cvDIg sample in the pco.sdk sample folder.
Starting with v1.20 the range of the negative tint value has been doubled.

ATTENTION: It is not possible to use the Pco_conv.dll without a connected
pco.camera. Using this conversion software is restricted to PCO cameras only!
Misuse and/or reverse engineering is prohibited and will be prosecuted to the
maximum extent of the law.

File: Version: as of: Author: Page 26 of 27
MA_SDKCNVWINE_120.odt 1.20 25/01/12 FRE

pcCo.
document

pco.convert / SDK-Description

pCoO.
maging

PCO AG

Donaupark 11

D-93309 Kelheim

fon +49 (0)9441 2005 0
fax +49 (0)9441 2005 20
eMail: info@pco.de
www.pco.de

The Cooke Corporation
6930 Metroplex Drive,
Romulus, Michigan 48174, USA
wWww.cookecorp.com

File:

MA_SDKCNVWINE_120.odt

Version: as of: Author:

25/01/12 FRE

Page 27 of 27

http://www.pco.de/

	1 General:
	1.1 B/W And Pseudo Color Conversion:
	1.2 Color Conversion:

	2 Convert API description:
	2.1 PCO_ConvertCreate
	2.2 PCO_ConvertDelete
	2.3 PCO_ConvertGet
	2.4 PCO_ConvertG(S)etDisplay
	2.5 PCO_ConvertSetBayer
	2.6 PCO_ConvertSetSensorInfo
	2.7 PCO_LoadPseudoLut
	2.8 PCO_Convert16TO...
	2.9 PCO_GetWhiteBalance
	2.10 PCO_GetMaxLimit

	3 Convert dialog API description:
	3.1 PCO_OpenConvertDialog
	3.2 PCO_CloseConvertDialog
	3.3 PCO_GetStatusConvertDialog
	3.4 PCO_G(S)etConvertDialog
	3.5 PCO_SetDataToConvertDialog

	4 Typical Implementation

