VonDreele CCD Docs
FPGA Code

Where it is:
D:\MADDOG\VonDreele\CameraLinkPatternGenerator\Altera\Projects\CameraEval
Open the project, CameraEval

There is a NIOS processor, so there is source code in C



Camera Comm

Serial port

NIOS 

Tcl Script with all commands
Tck script called vondreele.tcl  controls the camera. Open wish shell. Type init 3 to start up. Then Open serial port. Hit Start to start monitoring camera.Now you can control camera. Not all controls are on gui.

EPICs interface based on tck script

Commands to NIOS 

We control camera by sending a byte to nios processor, whch is a command, then a series of read and writes depending on command. Some what disorganized…. This prototocopl was cobbled from 3 different FPGA projects…
	DEC
	HEX
	NAME
	NOTES

	52
	
	Port A
	For setting up CCD controller.

	53
	
	B
	camEvalSendPort {port value}

	54
	
	C
	

	55
	
	D
	

proc camEvalSendPort {port value} {
#port is A-F

	binary scan $port c ascii_port
	#A is 65 ascii. we send 52 for port a, 53 for port B etc
	set byte1 [expr $ascii_port-13]

	writeCom [binary format c $byte1] 
	writeCom [binary format c $value] 
	flushCom

	if {$port != "F"} {
	set answer [readCom2]

	flushCom
	puts $answer
	}
	
}

	61
	
	Noise
	Noise in test image., camEvalSendNoise {value}

	 63
	
	Delay
	Delay in camera link- time between test images in test image mode

	62
	
	WrAddrMOde
	For writing to register file. 
camEvalSendAddrMode {Addr Rd Wr Data}

	66
	
	Get DataIn
	camEvalGetDataIn

	
	44
	Halt
	Halt CCD cont

	
	45
	Unhalt
	Restart ccd controller 

	
	43
	CCD_StAddr
	CCD Program Start address, for wher to store new CCD program timing. In CCD prog memory

	
	46
	CCDProg
	CCD program data, instruction, arga, and argb. For writing new CCD timing.

	50
	
	Hsize
	Size of image returned by camlink, or size of test image

	writeCom [binary format c $byte1] 
	#MSB
	writeCom [binary format c [expr ($Hsize&(256*255))/256]] 
	#LSB
	writeCom [binary format c [expr ($Hsize&255)]] 
	
	flushCom

	set answer [readCom2]

	flushCom
	puts $answer

	51
	
	Vsize
		set byte1 51 

	writeCom [binary format c $byte1] 
	#MSB
	writeCom [binary format c [expr ($Vsize&(256*255))/256]] 
	#LSB
	writeCom [binary format c [expr ($Vsize&255)]] 
	
	flushCom

	set answer [readCom2]

	flushCom
	puts $answer

	96
	
	WeizTest
	Which Weizeorick Test image to send.

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	




Registers on Camera

There are to sets of registers. A register file on FPGA and a set of registers inNIOS. It is bit disorganized. The register file has a set of regs that are write only and some readoulyu. 

To wrote reg file, call in tcl, or C++,
camEvalSendRegister {address data}
to reg reg file call
camEvalGetRegister {address}


The data are 8 bit.


Register table- READ Registers
Address		Name		Notes
	0
	
	

	1
	Sample Count-MSB Rd
	32 but number counting number of puxels returned from detector. Msb 1st byte.

	2
	Sample count Rd
	

	3
	Sampe count Rd
	

	4
	Sample Cnt LSB Rd
	

	5
	Hot Temp, Rd
	set temp [expr floor($raw*330.0/255.0 - 273.0)]

	6
	Cold Temp, Rd
	set temp [expr floor($raw*330.0/255.0 - 273.0)]

	7
	Pressure, Rd
	set pressure [expr floor(10.0*$register/51.0)/10.0]

	8
	Tec Stat, Rd
	               puts "Press Hi [expr $raw&1]"
	puts "Press Low [expr $raw&2]"
	puts "Temp Hi [expr $raw&4]"
	puts "Press Low [expr $raw&8]"
	puts "TEC On [expr $raw&16]"

	9
	
	

	10
	
	

	11
	
	

	12
	
	

	13
	
	

	14
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	







Register table Wrote Registers
Address		Name		Notes
	0
	Motor frac LSB
	For 1 pulse frommotor, we get 1 line from CCD if this is set to 1.0000 or 2^32. In realoity we can only set to .9999999 or FFFFFFFF. We set to lower number, say .5, or 8FFFFFFF for two motor pulses for 1CCD line

	1
	Mtor frac
		set accumval [expr floor($fraction*pow(2.0,32.0))]
	set MSW [expr floor($accumval/65536.0)]
	set LSW [expr $accumval-($MSW*65536.0)]
	
	#lsb0
	
	camEvalSendRegister 0 [expr int($LSW)&255]
	camEvalSendRegister 1 [expr (int($LSW)&(256*255))/256]

	camEvalSendRegister 2 [expr int($MSW)&255]
	camEvalSendRegister 3 [expr (int($MSW)&(256*255))/256]

	2
	Motor frac
	

	3
	Motor Frac MSB
	

	4
	Motor sync reg
	Enable motor syunc???
camEvalSendRegister 4 [expr 16*4 + $is_run]

software motor sync pulse simulation
camEvalSendRegister 4 [expr 16*4 + 2]
camEvalSendRegister 4 [expr 16*4 + 0]



	5
	
	

	6
	Baseline-LSB
	camEvalSendRegister 6 [expr int($baseline&255)]

	7
	Baseline-MSB
	camEvalSendRegister 7 [expr (int($baseline&(256*255))/256)]

	8
	Polarity and Delay
	camEvalSendRegister 8 [expr ($polarity+ 16*$delay)]
Delay of ADC averaging and polarity inside double correlated sampler. Adds to cnv and baseline delay pulse.

	9
	Baseline clamp  delay WR
	Time delay in clocks. An 8 but number. Need more info from fpga code…

	10
	Convert pulse time delay Wr
	

	11
	Tec On Off, Wr
	Bit 0 is TecOn for high.

	12
	Horz 1 De;Wr
	CCD H1 clock time delay. For fine tuning.

	13
	Horz2 delay, Wr
	

	14
	Reset delay, Wr
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	





Useful tcl commands that use register file
CCD controller 

CCD controller is based on lens detector and Platinum CCD controller. I will copy docs here.
We set it up over serial port by writing to “Ports” A,B ,C,D. These are basically registers that change their meaning based on Port A settings. I unclude a Map.  The tcl serial code for writing to the port, to control CCD controller, is


proc camEvalSendPort {port value} {
#port is A-F

	binary scan $port c ascii_port
	#A is 65 ascii. we send 52 for port a, 53 for port B etc
	set byte1 [expr $ascii_port-13]

	writeCom [binary format c $byte1] 
	writeCom [binary format c $value] 
	flushCom

	if {$port != "F"} {
	set answer [readCom2]

	flushCom
	puts $answer
	}
	
}


Tiing in RAM, but in FOPGA setup, so you never have to send it.

Gen with tcl script
Download a file…ascii text…
Motor Sync

Pulse in
Acc frac



DCS on FOPGA

Averaging


Pulse delayus for ccd clocks

How pic is taken
Idle mode
Expose mode
Readout mode
Readout thryu cam link
Motor sunc readout
	Gen several iamges
	Pulse triggers vertical shifts and ensuing line readout
	Acc to set ration of pilses to lines [0,1.0) a 32 bit reg.
	Pulses must be faster than lines… or same speed. 1.0 for same speed.
	.5 means 0,.5 lines for puilse. Or 2 pulses per ccd line.


Conns on camera
Lemos

Cabling on camera

Camera intewrlock anc cooluing

Camera power supplies

Fast and Slow timing in CCD Readout

When we change readout speed on camera, we rad a text file, parse and download a new CCD timing program to camera.  Here is the C Code

	if (getIsChanged(cor_ccd_prog_index))
	{
		if (getIntParam(cor_ccd_prog_index)==0)
		{
			putStringParam(cor_ccd_prog_name,"D:/corecofiles/minix_ccd_timing_slow.txt");
		}

		if (getIntParam(cor_ccd_prog_index)==1)
		{
			putStringParam(cor_ccd_prog_name,"D:/corecofiles/minix_ccd_timing_med.txt");

		}
		if (getIntParam(cor_ccd_prog_index)==2)
		{
			putStringParam(cor_ccd_prog_name,"D:/corecofiles/minix_ccd_timing_fast.txt");

		}

		camEvalSendCCDProg(getStringParam(cor_ccd_prog_name));
		doExpDownload();
		clearChanges(cor_ccd_prog_index);
	}	





How motor syunc works

Short pulses come into detector lemo and a circuit detects edge. The edge gets translated into a pulse of one FPGA clock cycle, regardless of the pulse was long or short. This 1clk pulse then enables an accumumator to advance. If acc overflows that meas we need to read out a line from CCD.  The overflow generates a pulse of 1 clock cycle and is stratched into 4 clock cycles, fed into CCD controller. CCd ocntroler runs the following assembly language:
:waitsyncpulse
JMPSYNCHIGH DoVertShift
JMPSYNC2HIGH waitsyncpulse

The function     is high if the acc overflowed. It overflows oneach motor pulse if it sycn frac is set to 1.0, or accum adds its max value, say 2^32-1 into a 32 but reg, for overflow. A second sync pulse is present. Every motor sync pulse also generates a 3sec long pulse, meaning we are in syunc mode. This is read as sync2high. If this is high we have had a pulse in the last 3 sec, and should wait for another. If 3sec elapses, then no more pulses are coming, and we should just readout the rest of the image and goto idla mode. 

[image: ]6
5
4
3
2
1


1. Sync pulse from motor come in, edge creates a 1clk pulse
2. Acc, clk enabled by 1 clk pulse from sync
3. CCD controller SM
4. Convert overflow bit into a single clock pulse, 1 clk cycle on overflow.
5. Convert uinput sync into 3 second long pulse, meaning we are in sync mode.
6. Convert overflow pulse into 4 clock pulse, input to CCD controller.


[image: ]

Set motor fraction to .1
Give 4096 pulses at 500Hz. The pulses readout 10% of the image, then sync goes away, and normal readout finishes the image. Of frac was set to 1.0 then 4096 pulses would read out one image.

camEvalSetAccumFrac .1
source VonDreeleAPSTimingMed1x1.tcl
Will compule new timeing, and send it to CCD camera.
[bookmark: _GoBack]

image1.png

image2.png

