Pco Driver Software Engineering manual

Softwarwe location
https://subversion.xray.aps.anl.gov/detpool/corecoAreaDetectorSupport/trunk/ADEpics/synApps_5_5/support/ADIOCs
uses Areadetector 1-9-1

uses asyn 4-21

Building the software

1 cd to cameraLinkSrc2 and run make.

2. cd to pluginSrc and make

3. cd to camLinkSerialSrc and make

4. cd to PCO2Src and make

The software will build for Windows 32, Windows 64 or Linux 64. It is not tested on 32 bit linux.

There are several #defines to set in the make files.

USE_SAP, USE_SISW

Define one or the other when building the software but not both. USE_SAP builds the software using the coreco/dalsa frame grabber. USE_SISW builds the software to use the Silicon Software frame grabber.

USE_LOGFILE

When building the pluginSrc directory, we can define USELOGFILE to add logging ability the to HDF5 plugin. The class logfile.h is defined in cameraLinkSrc2 and provides a logfile, that suppluies dates etc.

If building the plugins without depending on cameraLinkSrc2 then do not define USELOGFILE. If no logfile is used, then messages will be just print to the screen, and not to a file.

HDF5 support. The HDF5 plugin is written to work with HDF 1.8.7. The API changes from version to version, so be sure to use 1.8.7 from the HDF Group. When building HDF5 plugin, we do NOT use the HDF5 included w/ AreaDetector, because there is no assurance what version is included. When we build AreaDetector, we be sure to remove the references to HDF5 library by not building the hdf5Support in AreaDetector. This is done by ediging commonmakefile in AreaDetector/ADApp directoruy.
The makefile in ADIOCs/pluginSrc has a reference to the installed HDF5 lib such as:

USR_INCLUDES += -I C:/"Program Files"/HDF5-1.8.7_win_x64/include
For the serial port, the serial access is done either in the PCO Driver or in a separate asynDriver. Define USEASYNSERIAL in the PCO2Src makefile to use the separate asyn serial port driver, that must be initialzed in the st.cmd file. Otherwise, the pco driver talks to the serial port directly.
We add this line:

PROD_LDFLAGS_WIN32 = /NODEFAULTLIB:LIBCMT.lib
Because we are building in debug mode, and need not look at the non-debug version of LIBCMT library.

The HDF5XML plugin needs a lot of stack space, so we define a large stack space at compile time in the pco makefile

PROD_LDFLAGS_WIN32 += /STACK:12000000,12000000
In the PCo makefile, we must link atgainst the coreco/dalsa library if we are defining Use_SAP. If we define USE_SISW we must link against an installed silicon software libarauy. We must also link against the HDF5 library if we are including the HDF5XML plugin.

The software resides in ADIOCs in the support directory as in a synApps distro. Edit the ADIOCs/configure/RELEASE file to point to synApps modules, including Base and AreaDetector. The PCO driver depends on asyn 4-21, and not earlier, so the Option interface is available. Also it is built against AD1-9 or later. The Windows RELEASE file is shown:

#RELEASE Location of external products

Run "gnumake clean uninstall install" in the application

top directory each time this file is changed.

TEMPLATE_TOP=$(EPICS_BASE)/templates/makeBaseApp/top

SUPPORT=D:/EPICS/ADepics/SynApps_5_5/support

AREA_DETECTOR=$(SUPPORT)/areaDetectorR1-9-1

ASYN=$(SUPPORT)/asyn4-21

AUTOSAVE=$(SUPPORT)/autosave-4-7

BUSY=$(SUPPORT)/busy-1-3

CALC=$(SUPPORT)/calc-2-8

IPAC=$(SUPPORT)/ipac-2-11

MCA=$(SUPPORT)/mca-7-0

SNCSEQ=$(SUPPORT)/seq-2-0-12

SSCAN=$(SUPPORT)/sscan-2-6-6

STD=$(SUPPORT)/std-2-8

STREAM=$(SUPPORT)/stream-2-4-1

XXX=$(SUPPORT)/xxx-5-5

EPICS_BASE=D:/EPICS/ADepics/baseR12.1

How cameralink works

Camearlink is a camera hardwarwe standard that involves a special frame grabber card installed into a PC with a one or two LVDS copper cables connecting to a camera. One cable is for “Base” cameralink and two cables are use for “Full” cameralink for higher speed transfer. There is also a special Cameralink mode called “10-tap”, using two cables and utilized by the PCO Edge camera. Several manufacturers make Camera link grabbers. The POC software works with Silicon Sopftware or Dalsa.
There are two parts to the Cameralink standard:

1. image transfer over a set of high speed LVDS pairs.

2. RS232 protocol, serial port, that is transferred over the camera link cable over LVDS.

The software exists in two parts as well:

1. Thread that only grabs images and sends them to area detector plugins.

2. Thread that deals with the serial port to control camera.

From one cameralink camera to another, the image grabbing process is identical, therefore this image grabbing code can be reused. The serial protocol sent over the RS232 port, built into the cameralink grabber is camera-specific. An engineer must write fresh code for the serial protocol to control a new camera. In the PCO software, the loop that grabs images is defined in ADCameraLink::getImageTask(). This is a base class for specific cameras like PCO, whose class is derived from ADCameralink. For camera-specicig image tasks, ADCameraLink::getImageTask() calls child class pco::processNewImage() whenever a new image is grabbed. This allows the PCO driver to do specific operations on images.
The other part of Cameralink standard, the serial port, is all defined in the class pco. The serial port functions are called by the pco::writeInt32, pco::writeFloat64 and pco::writeOctet functions. In this awy, when the user sets a PV, or parameter, the camera is immediately programmed over the serial port. Also, there is a thread that polls the camera over the serial port defined in pco:: pcoTask().

Cameralink grabbers have 4 trigger wires, sent over the LVDS. They are specific to cameras, but can be used to trigger exposires etc. in a better way then using serial port.
On PCO Serial port commands

All of the PCO commands are defined in PCO documentation, in the file pco_camera_control_1_19.pdf. Because there are so many commands, the commands were split into separate functions, to avoid having a huge writeInt32 function. See the functions:
Pco:: updateParameters(), which calls pco:: doSerialTransactions(). The function and value from the AD parameter library is passed to these functions. writeInt32 etc. call updateParameters()

pco:: doSerialTransactions is called by Pco:: updateParameters().pco:: doSerialTransactions() makes sure the com port is open, then calls sfunctions to program the camera. These functiosn are based on the PCO serial command spec in the pdf doc mentioned above.
The functiosn are

· setPcoBaudrate(function);
· doHighLevelParams(function);

· setPcoGeneralParams(function);

· setPcoSensorParams(function);

· setPcoTimingParams(function);

· setPcoStorageParams();

· setPcoRecordingParams(function);

· setPcoImageReadParams(function);

· setPcoCameraLinkParams(function);
There are “get” versions fo the funcsiont as well. The param value is set in the param library, then the param itself is passed to each function. Each function is a set of if/thens to set the proper parameter. IN this way we do not need an extreme,ly long writeInt32 function.
The serial port is run at 9600 baud by default, but can be changed. There is a complex function to do actual serial transactions with the pco cameras. This function has time delays specific to the cameras, frame grabbers being used, and can tolerate errors from the camera. This fuinction was rather hand crafted and should not be messed with. The function is pco::doSerialCommand()

The command structure sent to and from the pco camera on the serial port is defined in the class pco_command and pco_response in pco_structures.h. These class allow to build up the commands by adding different tups of data to them such as chars or ints. The pco command spec defines what these data structures should be. When a command is sent to the camera, there is an expected response for success and for error. The returned responses can be parsed so AD parameters/PVs can be updated based on the camera state.
The general idea is that we declare a pco_command, pco_response object, fill in fields, then call pco::doSerioalCommand()

pco_command cmd;

pco_response rsp;
if (function ==pco_do_read_imgs|| function==pco_setallparams)

{

setIntegerParam(pco_do_read_imgs,0);

//Read Images from Segment (Recorder Mode only)

cmd.setCode(0x0515);

cmd.addUShort(getIntParam(pco_read_which_seg));

cmd.addULong(getIntParam(pco_read_st_img));

cmd.addULong(getIntParam(pco_read_end_img));

rsp.setExpCode(0x0595);

rsp.setErrCode(0x05D5);

if (doSerialCommand(cmd,rsp,0,0)==0)

{

setIntegerParam(pco_read_which_seg,rsp.getUShort(2));

setIntegerParam(pco_read_st_img,rsp.getULong(4));

setIntegerParam(pco_read_end_img,rsp.getULong(8));

// notify IOC to update the PVs to reflect in epics DB

//my_addriver->callback(general, this);

}

}
Multiple Frame Grabber support

The frame grabber is a commercial card with a commercial software API. To make the driver compatible with different grabbers, we fill in a class that inherits from an interface called:
Class grabberInterface
defined in grabberinterface.h. We have two supported grabbers, Silicon Software and Coreco (Dalsa), defined in coreco.h, and siliconSoftware.h. Note that the software APIs for the grabbers *ONLY DEAL WITH IMAGE GRABBING*.

So the serial interface of these grabbers must be handled with different classes. Another interface class the must be inherited is comportInterface. Each grabber has a class to inherit for comportInterface to allow use of the serial port. The coreco grabber maps its serial interface to a COM port. The commercial software does this for you. Cl_com_port.h defines serial commands for talking to the coreco grabber serial port, a regular COM port. The silicon software grabber uses a dll, loaded at runtime, to control its serial interface. This is defined in the file siswSerialPort.h

To support a new frame grabber, make two classes: One to inherit from grabberinterface and another to inherit from comportInterface.

Serial Port as asynDriver
The pco driver can be compiled in two ways:

1. Serial port controlled from within the PCO driver.

2. Serial port controlled from a separate driver, based on an asynDriver. This is the preferred method, and is set w/ #defines in the makefile in the PCOSrc dir.

IN the directory ADIOCs/camlinkSerialSrc, we find a driver to support serial commands for both the coreco(dalsa) and siliconsoftware grabbers, depending on the makefile #defines. This driver operates in a manner similar to the drvAsynSerialPort that comes in asynDriver. Asun4-21 or later is needed because the octet interface is needed. The octet interface is used as key value pairs, and is dpcumented in the as
drvAsynSerialPort docs. The PCO serial driver uses the same convention, but adds a few key value pairs to set baud rate and close/open the port.
In the st.cmd file you first define the serial driver, then pass its asyn PORT when starting the pco driver. For Dalsa card we tell it which COM port it uses. If using the SISW (silicon software) card, the comport name is a dummy variable.

drvCamlinkSerialConfigure("SERIAL","COM2");

PCOConfig("PCOIOC", "SERIAL",$(QSIZE), -1,50,100)
Defined key/value pairs in drvCamlinkSerialConfigure
Parameters for ADCameralink
These parameters apply to any camerlink camera.
	
	

	cor_is_running
	1 if the image grabber thread is running.set to 0 to kill grabber thread.

	 cor_is_log
	Log file turned on

	is_new_image
	1 if new image came in. deprecated

	cor_run_counter
	Counts each time grabber loop runs.

	cor_sleep_ms
	Sleep time for grabber loop each run in ms

	cor_is_sleep
	1 to sleep each time, 0 to use a thread wake (wake does not workl, so use sleep)

	is_grab
	1 to turn on grabbing of iamges

	is_abort
	Set to 1 to abort grabbing

	is_snap
	Set to 1 to grab one image (broken unused)

	
	

	is_freeze
	Freeze grabber- broken, unused

	is_acquire
	?

	is_acquire_num_frames
	?

	cor_ccf_filename
	Mcf (sisw), ccf (dalsa) filename for configuration of grabber.

	is_loadccf
	1 to config grabber

	is_buffer_mode
	?

	is_dbg_viewer
	On dalsa grabber open debug img viewer (deprecated)

	is_trigpin0
	Turn on cameralink trig pin 0

	is_trigpin1
	Pin 1

	is_trigpin2
	Pin 2

	
	

	is_trigpin3
	Pin 3

	copy_memory
	?

	collect_status
	?

	size_x
	Size of image x, grabber setting mirror ADSizeX

	size_y
	Size iof image y

	operation_count
	Deprecated

	total_missed_frames
	Counts all frames missed

	recent_missed_frames
	Counts missed frames, but reset periodiocally

	num_coreco_buffers
	//number of buffers to request

	is_force_img_size
	Forces grabber to change image size regardless of config file settings. Usually set to 1.

	
	

	is_mult_width2
	//used for 8bit data. On SISW grabber, all data is counted as bytes, so the line width is twice the number of pixels, assuming 16bit data. Flag set if we must mult width by 2.

	cor_check_timestamps
	//causes check of time stamp if 1. Catches error if missed timestamps based on time.

	cor_num_free_buffers
	//number of free buffers in grabber

	cor_num_buffers
	//number of buffers we actially have in grabber

	cor_cant_get_ndarray
	//counts num of times we cant get nd array. Driver retrys of it can’t alloc() a new NDArray, counts retries

	cor_max_ndbuffers
	// limit on buffers in ND array pool

	cor_max_ndmemory
	// limit on memory for array pool

	cor_free_ndbuffers
	//allocated but free nd arrays in pool

	cor_num_ndbuffers
	//alloc nd arrays in array pool, currently being used.

	cor_alloc_ndmemory
	//alloc mem in bytes in array pool, being used.

	
	

	cor_est_buffers_left
	// number of buffers we could alloc before we run out of memory.

	cor_nd_datasize
	//size in bytes of nd array

	cor_num_repeat_timestamp
	//counters for missed and repeated time stamps from corecoticks, or timestamp from grabber. Flags repeated images that have same timestamp.

	cor_num_missed_timestamp
	// counts number of times images are too far apart in time, within a limit (for when we turn off Acquire). This flags missed images.

	cor_missed_ts_wait
	// time between shots where we dont count as missed shot- say if we stop and start acq. If two iamges have timestamps that differ more than ts_wait, then we do not flag as missed image and assume acq was turned off.

	cor_use_image_mode
	If we are in multi-mode, where we capture N images only, use_iamge_mode =1 will trigger the turning off of Acquire and the camera over serial port.

	cor_reset_buff_index
	// reset buffer index to clear untransfered frames...

	cor_grabber_type
	Index for which grabber we have. 0=no grabber, 1 for coreco, 2 for sisw.

	
	

	
	

	 cor_frame_to_null
	In multi-mode, to avoid messing up grabber buffers by not clearing them, if we have already grabbed N images, camera could still be generating shotsThe extra shots are grabbed and discarded. This param counts the number of times this happens.

	
	

PCO parameters

These parameters apply to PCO, and concern the serial setup commands specific to PCO.

	
	

	
	

	pco_is_running
	1 to allow pco serial thread to run. 0 to kill thread.

	
	

	serial_callback
	Deprecated. Some callback function…

	pco_run_counter
	Counts times serial poll thread runs

	pco_sleep_ms
	Sleep time for thread

	pco_is_sleep
	1 to allow sleep, 0 to use wakes, which does not work.set to 1.

	 pco_is_log
	1 to use log file.

	com_port_name
	String like “COM1” deprecated?

	open_com
	Poke 1 to open com port

	
	

	close_com
	Poke 1 to close com port

	is_com_open
	1 if the comport is open

	pco_health_warning
	Pco camera return warning

	pco_health_error
	Pco returned error

	pco_health_status
	Pco camera status

	pco_reset_default_settings//!!
	Resets pco to factory settings

	pco_init_selftest//!!
	Ints pco camera self test.

	pco_sensor_format//!! need to put o cpp-
	Index of pco sensor format. See docs

	pco_pixelrate
	Rate in MHz that sensor is readout

	pco_doub_img_mode//on or off
	Takes two images for noise reduction of 1

	
	

	pco_adc_mode
	Pco adc readout mode.

	pco_temp_setpt
	Sets camera temp setpt

	pco_offset_mode
	See docs. Mode of image offset

	pco_noise_filt_mode
	Pco noise filter mode

	pco_exp_timebase//!! need to put o cpp- double
	Time base- ns, ms, us, an index. See docs. For expose time. We use ms

	pco_dly_timebase//double
	Delay time base (index us, ns,ms). We use ms

	pco_fps_mode//
	1 for frames per sec mode. 0 for exp period mode

	pco_busy
	1 of camera is busy

	pco_exp_trig_stat
	

	pco_camera_tot_ram_size
	Dimax ram size total=npages*pagesize

	
	

	pco_camera_ram_npages
	Dimax num ram pages

	pco_camera_ram_page_size
	Dimax ram page size

	pco_camera_seg_size0
	We get 4 areas of ram called segments to store 4 measurements. Size of each segment 0…3

	pco_camera_seg_size1
	

	pco_camera_seg_size2
	

	pco_camera_seg_size3
	

	pco_clear_ram_seg
	Clear current segment

	pco_active_seg
	Current segment

	pco_storage_mode
	Sets fifo or ram record mode

	pco_rec_submode
	See pco docs for dimax

	
	

	pco_rec_status
	Idle or run, of camera is running

	pco_acq_mode
	

	pco_acqen_sig_stat
	

	pco_timestamp_mode
	Turns on/off added timestamps to images by camera. Various modes like a few char* in top right of image, or printed times in the iamges.

	pco_arm_camera
	1 to arm camera. Must arm before taking shots. Arming assures all settings are legal. If arm fails no shots taken.

	pco_rec_stop_event_mode
	?

	pco_rec_stop_event_nimgs
	?

	pco_stop_record
	?

	pco_read_which_seg
	Which segment in dimeax to read out

	pco_read_st_img
	1st image to read.

	
	

	pco_read_end_img
	Last image to read

	pco_do_read_imgs
	Should read string of iamges, but not work due to bug in dimax. Must read one iamgea at time. So we have serial transaction for each image.

	pco_req_img
	?

	pco_rpt_img
	Read same image again

	pco_cancel_img
	?

	pco_bit_alignment
	?

	pco_num_imgs_seg0
	Number of iamges in seg 0

	pco_max_imgs_seg0
	Max iamges we can store in seg 0

	pco_num_imgs_seg1
	

	pco_max_imgs_seg1
	

	
	

	pco_num_imgs_seg2
	

	pco_max_imgs_seg2
	

	pco_num_imgs_seg3
	

	pco_max_imgs_seg3
	

	pco_check_time
	Time to wait between polling camera settinghs

	pco_force_check
	Force checking camera settings

	pco_camlink_pixfreq
	Pixel freq in cameralink interface

	pco_cclines
	Trigger lines on camlink card

	pco_camlink_pixperclk
	Pixels per clock on camlink imterface

	pco_camlink_cont
	Pco camlink continuous mode, could add extra wait in the image transfer…

	
	

	pco_trigger_mode
	External, software expose trigger… 4 modes.

	pco_baudrate
	Serial port baudrate

	pco_reset_memory
	1 to reset all dimax ram

	pco_dump_camera_memory
	1 to cause dump of all images

	pco_imgs2dump
	Num imges to readout of dimax

	pco_memreq_cnt
	?

	pco_force_trigger
	?

	pco_cancel_dump
	Cancel dump

	pco_play_slow
	Broken

	pco_play_stop
	Broken

	
	

	pco_live_view
	Dimax live view- for focus mode

	pco_dump_counter
	1st image to dump, and counts dumped images.

	pco_dump_waitms
	Wait between img dumps

	pco_check_time2
	?

	pco_frame_rate
	Frame rate read back for camera

	pco_cdi_mode
	Cdi mode

	pco_dnsu_mode
	Dnsu mode

	pco_dnsu_init_mode
	Init mode

	pco_reconfig_grabber
	Reconfigs the grabber, and camera

	pco_set_frame_rate
	Sets the frame ratge of pco camera

	
	

	pco_delay_time
	Tiem between exposures in delay mode

	pco_dump_maxdatarate
	?

	pco_favor_dlytime
	?

	pco_hotpix_corr
	Correct for hot pixels – untested

	pco_1612_lookup
	For 12 bit lookup table in edge, faster data xfer. Needed for fast mode.

	pco_edge_fastscan
	Fast adc mode in edge, needed for fast frame rates

	pco_comport_number
	Com port number like COM1, 2, etc. this us how we tell which comport to use.

	pco_is_frame_rate_mode
	Frame rate or exptime mode.

	
	

	pco_dbg_serwrite
	Debugging for serial port. decprecated.

	pco_dbg_serread
	Debugging for serial port. decprecated

	pco_dbg_serstr
	Debugging for serial port. decprecated

	pco_dbg_serpr//set to value of serial code to pco- then pring turns on for that code pnly
	Debugging for serial port. decprecated

	
	

	pco_ser_waitms
	//wait between read and write in serial transaction. coreco need none. sisw need a few ms

	pco_do_camcontrol
	//1 to run camera contol loop- so we can turn it off in debigg. Deprecated?

	pco_grab_waittime
	?

	
	

	pco_ready2acquire
	1 if pco is ready

	
	

	
	

	
	

	
	

	// pco grabber paramers
	

	
	

	pco_array_counter
	 Counts arraus from pco camera

	 pco_image_rate
	Iamge rate from pco cam

	 pco_test_pixels
	Tests pixels for noise, or repeated iamges.

	 pco_double_image_error
	1 if we found two identical images by testing a line of pixels and comparing images

	 pco_which_camera
	Index for dimax, edge etc

	 pco_descramble
	1 to turn on descrambling for edge

	 pco_setallparams// for setting a large group of settings in one pass
	Forces setting all parameters on camera

	
	

	 pco_com_err_max
	Num of serial port errors allowed before we give up and close serial port

	
	

	
	

	 pco_kill_ioc
	Set to 1 to shutdown ioc

	 pco_disable_descramble
	Set to 1 to disable descrambler. We set to 1 and do descrambling in a separate plugin. In this way iamges can be buffered. Set to 0 to not use pligin and descramble in driver.

	
	

	 pco_global_shutter
	1 for global shutter mode on edge. 0 for rolling shutter.

	
	

	 pco_rollshut_mcfname
	Name of grabber config file for rolling shutter, edge only

	 pco_globshut_mcfname
	Name of grabber config file for global shutter (edge only)

	 pco_conv_12to16
	Enables converting 12 bit data to 16 bit data. Edge fast readout mode. Software does the conversion in some modes.

	
	

	
	

	
	

	 pco_dimax_nimgs_fudge
	For calculating RAM size for dimax. There is some idiotic equation dimax uses for calc’ing ram size. Just set to 3 and ask no questions.

Software structure

[image: image1.png]
We have ADCameralink class derived from ADDriver. Pco class derived from ADCameralink.

See blocks above and source code.

Serial port is separate driver defined in class camLinkSerial. It implements the option and octet interface and works as anyn driver, and not ADDriver. You pass its asyn port to the pco driover so it can talk to serial port built into camera link card.

Startup scripts

Grayhound startup scripts

iocBoot/iocPCO2

STARTDIMAX.cmd

STARTEDGE.cmd

For akita, linux

STARTDIMAXL

STARTEDGEL

No medm on grayhound. It is on the luinux box next to it.

On denali

iocBoot.iocPCODelani

STARTDIMAX.cmd

STARTEDGE.cmd

These scripts start everything

Install locations at beamlines

Grayhound:

D:\EPICS\ADEpics\synApps_5_5\support\ADIOCs\iocBoot
Denali

C:\EPICS\ADEpics\synApps_5_5\support\ADIOCs\iocBoot
camLinkSerialSrc

This SW is a separate asuynPortDriver that connects to serial port of the camera link card. It is called in st.cmd file as a separate line, and its asyn PORT is handed to the pcoDriver in the st.cmd file. It implemnts option and octet interface. It depends on camLinkSrc2 directory and asyn, and commercial SIOSW or Coreco libraries.

Set THROWS to not defined. This prevents throwing c++ exceptions, which confuise the pco driver.

Set USE_SAP or USE_SISW , and libraruy locatinos of coreco or sisw .

The dll for the serial port must exist in C:/Cameralink/Serial/*dll. This is the standard camera link dll location for serial port.
Get Coreco Dalsa or SiliconSoftware. We dist SISW software as part of AD.

Structure of PCO Software

The PCO cameras use a Cameralink Frame grabber.

Pco camera use camlink

Grabber written in ADCameralink

Class derive from ADDriver

Serial mutex

Grabber mutex

Parameters

Image getting thread.

Two grabbers

Grabber_interface.h

Corecl.h

Siliconsoftware.h

Corecobuffers—what they for…

Serial port

asunPortDriver

camLnikSerial dir

THROWS ifdef

Option interface

Open

Baud

List whole optino interface

Octet interface to send data.

Example in startuip[file

asynDeriaPort(port,,,

pcoConfig(pcoport, serialport

Pco driver

 inherit from ADCameralink

Polling thread

Use serial_port-> pointer or the asuynCAmlinkSerial() driver based on

USE_ASYNSERIAL???

Pco.cpp

Decl params

Process image

writeInt32 calls functions

pcoSet…

pcoGet….

Passes functino to these funtcions.

ADAcquire is in pcoSetHighlevelparams

ADAcquire works like this

 start camera w/ serial port

 set grabber into grab mode

For dimax, images are recorded to dimax arm

And nothing is grabbed. Poll thread checkes to see if

Recording is done to dimax mem. When done, poll thread

Turns off ADAcquire.

For Edge

We get iamges grabbed. When N images are grabed, the image get thread in ADCameralink sets ADAcuqirwe to off. Pco::processImage is called by poll thread on each new image. Process image will turn off pco edge via serial port commands.

Duimping images

pcoL:serial port poll thread.- serial therad takes control of grabberMuitex so grabber threead blocks. Serial port theread grabs serial muitex too. It will ask for one image at a time via serial commands. Then it runs ADCameralink::OneLoop to grab any iamge that came in from camera. It is possible there is time delauy for image to come in so it neesd a while loop.

Setting ADSizeX,Y require serial write to camera. Cameras only have certain legal sizes- so we calcuialte the ligal image sizes, progam camera, then read back camera for true size. Poll thread reads back the camrea up update rbv pv, because we are running on the asuynport thread. It will want to set pv at end of que to what ever user asked for… Grabber must be configured for correct image size as well, so grabberSetup in Adcameralink is called.

pcoHighLevel-- ADAcquirem, and stop

Kill_acquire var- for dimeax

Acq is killed for edge in differnet way- cor_use-mode??

Setting baud rate

Time delays in the serial transactions

On serial packets

Rsp, cmd, structure

Pco_structures

Threqad use

Serial Poll thread

Image poll thread

asynPortDriver thread

 most setup- grabs one or both mutexes

Acquire

Stopping edge camera

Clearing grabber buffer

Dimax record to mem

Dump memory

Using mutexes

Times when therd has both mutexes

Commercial software

Corco grabber- CamExpert to setup the grabber

Grabber must be flashed for 10-tap for edge. Diferne FW for 8 tap standard CL for dimax

Sapara software from Dalsa

Serial port mapped to COMx

Use cl_com_port class in the ADAcameralink

SiliconSW

Download SW.

No flahing necessary for various modes.

Serial port liaded as DLL from C:/Cameralinik./Serial

Use ???.cpp for serial port access

 How to Make

