
State Notation Language
and Sequencer Users Guide

Version 2.0
(for EPICS release 3.13 and later)
Manual Revision 1.9 (DRAFT)

February 18, 1998

Written by Andy Kozubal

Instrumentation and Control Group

Dynamic Experimentation Division

Mail Stop P942

Los Alamos National Laboratory

Los Alamos, New Mexico 87545

Phone: (505) 667-6508

EMAIL: AKozubal@LANL.Gov

Manual Revision 2.0 (DRAFT 3)

February15, 2000

Updated by William Lupton

(with some material by Greg White)

W. M. Keck Observatory

65-1120 Mamalahoa Highway

Kamuela, Hawaii 96743

Phone: (808) 885 7887

EMAIL: WLupton@Keck.Hawaii.Edu
EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 1

1. Introduction

zubal,
.0, for
Greg

rtable
rsion 2.0
ent on

t from

ential
cepts,
dling,

n-time
rfaces to

encer
hannels

dustrial
olkit)
ontrol
lectron

ch is
nal
cility of

cations.
nsition
nguage
1. Introduction

Note on Versions

Version 1.9 of this manual described version 1.9 of the sequencer and was written by Andy Ko
the original author of this software. This version of the manual describes versions 1.9.5 and 2
which the changes have been implemented by William Lupton of W. M. Keck Observatory and
White of Stanford Linear Accelerator Center (SLAC).

Version 2.0 differs from version 1.9.5 mainly in that sequencer run-time code is once again po
between VxWorks and Unix, and message systems other than channel access can be used. Ve
differences are always noted. Version 2.0 can not be used with EPICS R3.13; it is depend
libraries which will be generally available only with EPICS R3.14.

Version 1.9.5 is being made available to the EPICS community but all new developments apar
major bug fixes will be based on version 2.0.

Overview

The state notation language (SNL) provides a simple yet powerful tool for programming sequ
operations in a real-time control system. Based on the familiar state-transition diagram con
programs can be written without the usual complexity involved with task scheduling, event han
and input/output programming.

Programs produced by the state notation language are executed within the framework of the ru
sequencer. The sequencer drives the program to states based on events, and establishes inte
the program that enable it to perform real-time control in a multi-tasking environment. The sequ
also provides services to the program such as establishing connections to run-time database c
and handling asynchronous events.

The state notation language and sequencer are components of the Experimental Physics and In
Controls System (EPICS). EPICS is a system of interactive applications development tools (to
and a common run-time environment (CORE) that allows users to build and execute real-time c
and data acquisition systems for experimental facilities, such as particle accelerators and free e
lasers. EPICS is a product of the Accelerator Automation and Controls Group (AOT-8), whi
within the Accelerator Operations and Technology (AOT) Division at the Los Alamos Natio
Laboratory. The sequencer interfaces to the run-time database through the channel access fa
EPICS.

Content of this Manual

This users manual describes how to use the state notation language to program real-time appli
The user is first introduced to the state notation language concepts through the state-tra
diagram. Through a series of examples, the user gains an understanding of most of the SNL la
2 State Notation Language and Sequencer Users Guide Document Revision: 2.0

1. Introduction

at are
sent a

ry and
ity of
ithout

ection

13 and
er. State
e new

once
elements. Next, the manual explains procedures for compiling and executing programs th
generated by the SNL. Testing and debugging techniques are presented. Finally, we pre
complete description of the SNL syntax and the sequencer options.

Omissions from this manual

This manual should contain more information on the following subjects:

• future plans

• the PV (process variable) API

• real-life annotated examples ofassign , sync , syncQ

Copyright and Restrictions

This software was produced under U.S. Government contract at Los Alamos National Laborato
at Argonne National Laboratory. The EPICS software is copyright by the Regents of the Univers
California and the University of Chicago. This document may be reproduced and distributed w
restrictions, provided it is reproduced in its entirety, including the cover page.

Notes on This Release

New version 1.9 features have been moved to “New features in Version 1.9” on page 41. This s
gives brief notes on new version 1.9.5 and version 2.0 changes.

Version 1.9.5 of the sequencer and state notation compiler is available for EPICS release 3.
later. We have added several enhancements to the language and to the run-time sequenc
programs must be compiled under the new state notation compiler to execute properly with th
sequencer. However, no source-level changes to existing programs are required.

Version 1.9.5 differs from version 1.9.4 only in that sequencer deletion from the VxWorks shell
again works.

New Language Features

Entry and exit blocks

The entry{} block of a state is executed each time the state is entered; theexit{} block is
executed each time the state is left.

State options

-t , -e and-x are now recognized options within the scope of a state.-t inhibits the “timer reset”
on re-entry to a state from itself;-e (for “entry”) is used with the newentry{} block, and forces
theentry{} statements to be executed on all entries to a state, even if from the same state;-x (for
“exit”) is complimentary to-e , but for the newexit{} block.
EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 3

1. Introduction

ages are

e

dent)
Queueable monitors

Monitor messages can be queued and then dequeued at leisure. This means that monitor mess
not lost, even when posted rapidly in succession. This feature is supported by newsyncQ , pvGetQ
andpvFreeQ language elements, and a newseqQueueShow routine.

efClear can wake up state sets

Clearing an event flag can now wake up state sets which reference the event flag inwhen tests.

More C syntax is supported

Compound expressions such asi=1,j=2 (often used in for loops) are now permitted.

Variables can now be initialized in declarations such asint i=2; .

Pre-processor “#” lines are now permitted between state sets and states.

“~” (complement) and “̂” (exclusive or) operators are permitted.

ANSI string concatenation, e.g.“xxx” “yyy” is the same as“xxxyyy” , is supported.

Full exponential representation is supported for numbers (previously couldn’t use “E” format).

Bugs fixed

Avoidance of segmentation violations
• SEGV no longer occurs if an undeclared variable or event flag is referenced

• SEGV no longer occurs if the last bit of an event mask is used

Avoidance of race condition which prevented monitors from being enabled

If a connection handler was called beforeseq_pvMonitor , a race condition meant that th
ca_add_array_event routine might never get called.

Miscellaneous

Compilation warnings have been avoided wherever possible.

A 60Hz system clock frequency is no longer assumed.

Version 2.0 changes

Replaced VxWorks dependencies with OSI routines

All VxWorks routines have been replaced with the appropriate OSI (Operating System Indepen
routines.

Some VxWorks routines do not yet have OSI equivalents and have been commented out (taskwd ,
log file support,taskIdFigure , task delete hooks and sequencer deletion).
4 State Notation Language and Sequencer Users Guide Document Revision: 2.0

1. Introduction

can

acro

r de-
Unused (and undocumented)VX_OPT option has been removed.

Replaced direct channel access calls with new PV API

All CA calls have been replaced with equivalent calls to a new PV (process variable) API which
be layered on top of not just CA but also other message systems.

Added optional generation of main program

The new+m(main) option generates a Unix main program whose single argument is a list of m
assignments.

Under Unix, the main thread reads from standard input and can executeseqShow, seqChanShow
etc. on demand. EOF causes the sequencer to exit.

Fixed more bugs

Several minor (and long-standing) bugs were found while testing with Purify, e.g. a NULL pointe
reference and reading outside the bounds of a macro value string.

Improved error reporting

Error reporting is now more consistent. It is currently just usingepicsPrintf .
EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 5

2. State Notation Language Concepts

em in
action
vent or
a.

light
han 3
urrent
t, but
2. State Notation Language Concepts

The State Transition Diagram

The state transition diagram is a graphical notation for specifying the behavior of a control syst
terms of control transformations. The state transition diagram or STD serves to represent the
taken by the control system in response to both the present internal state and some external e
condition. To understand the state notation language one must first understand the STD schem

A simple STD is shown in figure 1. In this example the level of an input voltage is sensed, and a
is turned on if the voltage is greater than 5 volts and turned off if the voltage becomes less t
volts. Note that the output or action depends not only on the input or condition, but also by the c
memory or state. For instance, specifying an input of 4.2 volts does not directly specify the outpu
depends on the current state.

Elements of the State Notation Language

The following SNL code segment expresses the state transition diagram in figure 1:

state light_off {
when (v > 5.0){

light = TRUE;
pvPut(light);

} state light_on
}

state light_on {
when (v < 3.0){

light = FALSE;
pvPut(light);

} state light_off
}

Light is Off

Light is On

V < 3V > 5

Turn light offTurn light on

Figure 1: A simple state transition diagram
6 State Notation Language and Sequencer Users Guide Document Revision: 2.0

2. State Notation Language Concepts

uage.
ements,

<

ext

s

You will notice that the SNL appears to have a structure and syntax that is similar to the C lang
In fact the SNL uses its own syntax plus a subset of C, such as expressions, assignment stat
and function calls. This example contains two code blocks that define states:light_off and
light_on . Within these blocks arewhen statements that define the events (“v > 5.0” and “v
3.0”). Following these statements are blocks containing actions (C statements). ThepvPut function
writes or puts the value in the variablelight to the appropriate database channels. Finally, the n
states are specified following the action blocks.

For the previous example to execute properly the variablesv and light must be declared and
associated with database channels using the following declarations:

float v;
short light;
assign v to “Input_voltage”;
assign light to “Indicator_light”;

The aboveassign statements associate the variablesv and light with the database channel
“Input_voltage” and “Indicator_light” respectively. We want the value ofv to be updated from the
database whenever it changes. This is accomplished with the following declaration:

monitor v;

Whenever the value of the database changes the value ofv will likewise change (within the time
constraints of the underlying system).
EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 7

2. State Notation Language Concepts

s done

gram.
ed

hanging
used
A Complete State Program

Here is what the complete state program for our example looks like:

program level_check
float v;
assign v to “Input_voltage”;
monitor v;
short light;
assign light to “Indicator_light”;

ss volt_check {
state light_off
{

when (v > 5.0) {
/* turn light on */
light = TRUE;
pvPut(light);

} state light_on
}

state light_on
{

when (v < 5.0) {
/* turn light off */
light = FALSE;
pvPut(light);

} state light_off
}

}

To distinguish a state program from other state programs it must be assigned a name. This wa
in the above example with the statement:

program level_check

As we’ll see in the next example, we can have multiple state transition diagrams in one state pro
In SNL terms these are referred to asstate sets.Each state program may have one or more nam
state sets. This was denoted by the statement block:

ss volt_check { ... }

Adding a Second State Set

We will now add a second state set to the previous example. This new state set generates a c
value as its output (a triangle function with amplitude 11). This output is the same channel that is
as input by thevolt_check state set.
8 State Notation Language and Sequencer Users Guide Document Revision: 2.0

2. State Notation Language Concepts

ecause
be a
a
figure
First, we add the following lines to the declaration:

float vout;
float delta;
assign vout to “ts1:ai1”;

Next we add the following lines after the first state set:

ss generate_voltage {
state init {

when () {
vout = 0.0;
pvPut(vout);
delta = 0.2;

} state ramp
}
state ramp {

when (delay(0.1) {
if ((delta > 0.0 && vout >= 11.0) ||
 (delta < 0.0 && vout <= -11.0))

delta = -delta; /* change direction */
vout += delta;

} state ramp;
}

}

The above example exhibits several concepts. First, note that thewhen statement in stateinit
contains an empty event expression. This means unconditional execution of the transition. B
init is the first state in the state set, it is assumed to be the initial state. You will find this to
convenient method for initialization. Also, notice that theramp state always returns to itself. This is
permissible and often useful construction. The structure of this state set is shown in the STD in
2.

Figure 2: Structure of generate_voltage State

START

init

ramp
EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 9

2. State Notation Language Concepts

read
rather

tabase
ample

time
abase
nnel
ntire

e as the
The final concept introduced in the last example is thedelay function. This function returns a TRUE
value after a specified time interval from when the state was entered. The parameter todelay
specifies the number of seconds, and must be a floating point value (constant or expression).

At this point, you may wish to try an example with the two state sets. You can jump ahead and
parts of Sections 3-5. You probably want to pick a unique name for your database channels,
than the ones used above. You may also wish to replace thepvPut statements withprintf
statements to display “High” and “Low” on your console.

Database Names Using Macros

One of the features of the SNL and run-time sequencer is the ability to specify the names of da
channels at run-time. This is done by using macro substitution in the database name. In our ex
we could replace theassign statements with the following:

assign Vin to “{unit}:ai1”;
assign Vout to “{unit}:ao1”;

The string within the curly brackets is a macro which has a name (“unit” in this case). At run-
you give the macro a value, which is substituted in the above string to form a complete dat
name. For example, if the macro “unit” is given a name “DTL_6:CM_2”, then the run-time cha
name is “DTL_6:CM_2:ai1”. More than one macro may be specified within a string, and the e
string may be a macro. See Section 4. on page 19 for more on macros.

Data Types

The allowable variable declaration types correspond to the C types:char , unsigned char, short ,
unsigned short, int , unsigned int, long , unsigned long , float , anddouble . In addition
there is the typestring , which is a fixed array size of typechar . Variables having any of these
types may be assigned to a database channel. The type declared does not have to be the sam
native database value type. The conversion between types is performed at run-time.

You may specify array variables as follows:

long arc_wf[1000];

When assigned to a database channel the database operations, such aspvPut , are performed for the
entire array.
10 State Notation Language and Sequencer Users Guide Document Revision: 2.0

2. State Notation Language Concepts

element
wing

ing as
Arrays of Channels

Often it is necessary to have several associated database channels. The ability to assign each
of an array to a separate channel can significantly reduce the code complexity. The follo
illustrates this point:

float Vin[4];
assign Vin[0] to “{unit}1”;
assign Vin[1] to “{unit}2”;
assign Vin[2] to “{unit}3”;
assign Vin[3] to “{unit}4”;

We can then take advantage of theVin array to reduce code size as in the following example:

for (i = 0; i < 4; i++) {
Vin[i] = 0.0;
pvPut (Vin[i]);

}

We also have a shorthand method for assigning channels to array elements:

assignVin to { “{unit}1”, “{unit}2”, “{unit}3”, “{unit}4” };

Similarly, the monitor declaration may be either by individual element:

monitor Vin[0];
monitor Vin[1];
monitor Vin[2];
monitor Vin[3];

Alternatively, we can do this for the entire array:

monitor Vin;

Double subscripts offer additional options.

double X[100][2];
assign X to {“apple”, “orange”};

The declaration creates an array with 200 elements. The first 100 elements ofX are assigned to
apple , and the second 100 elements are assigned toorange .

Dynamic Assignment

You may declare a variable and defer its assignment until later by assigning it to an empty str
follows:

float Xmotor;
assign Xmotor to “”; /* not assigned yet */
...

/* dynamic assignment */
pvAssign(Xmotor, “bpm04:motor_x”);
EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 11

2. State Notation Language Concepts

ou can

rity are

lly, one

is being
at this

uable
n must

n
onitors
el may
These
Unassigned Channels

You may also de-assign a variable from a channel as follows:

pvAssign(Xmotor, “”);

The total number of assigned channels is returned by the functionpvAssignCount :

NumAssigned = pvAssignCount();

Status of Database Channels

Most database record types have associated with them an alarm status and alarm severity. Y
obtain the alarm status and severity with thepvStatus andpvSeverity functions. For example:

when (pvStatus(x_motor) != NO_ALARM) {
printStatus(“X motor”,

pvStatus(x_motor), pvSeverity(x_motor));
...

These routines are described in Section 5. on page 23. The values for alarm status and seve
defined in the EPICS include filealarm.h .

You can obtain the time stamp with thepvTimeStamp function. For example:

time = pvTimeStamp(x_motor);

Version 2.0:EPICS-specific types are no longer used.pvStatus will return an enumeration of type
pvStat , pvSeverity will return an enumeration of typepvSevr , and pvTimeStamp will
return a structure of typepvStamp . All of these are defined in the include filepv.h and are listed in
xxx.

Synchronizing State Sets with Event Flags

State sets within a state program may be synchronized through the use of event flags. Typica
state set will set an event flag, and another state set will test that event flag within awhen clause. The
sync statement may also be used to associate an event flag with a database channel that
monitored. In that case whenever a monitor returns, the corresponding event flag is set. Note th
provides an alternative to testing the value of the monitored channel. This is particularly val
when the channel being tested is an array or when it can have multiple values and an actio
occur for any change. See Section 6. on page 34 for an example using event flags.

Queuing Monitors

Neither testing the value of a monitored channel in awhen clause nor associating the channel with a
event flag and then testing the event flag can guarantee that the sequence is aware of all m
posted on the channel. Often this doesn’t matter, but sometimes it does. For example, a chann
transition to 1 and then back to 0 to indicate that a command is active and has completed.
12 State Notation Language and Sequencer Users Guide Document Revision: 2.0

2. State Notation Language Concepts

grity.

urrent
se the

nterface.
ith the

an test

s during

tances
xecuted

lared
re all
transitions may occur in rapid succession. This problem can be avoided by using the newsyncQ
statement to associate a channel with a queue and an event flag. The newpvGetQ function retrieves
and removes the head of queue. See xxx for an example using queued monitors.

Asynchronous Use of pvGet()

Normally thepvGet operation completes before the function returns, thus ensuring data inte
However, it is possible to use these functions asynchronously by specifying the+a compile flag (see
Section 3. on page 15). The operation may not be initiated until the action statements in the c
transition have been completed and it could complete at any later time. To test for completion u
functionpvGetComplete , which is described in Section 5. on page 23.

Connection Management

All database channel connections are handled by the sequencer through the channel access i
Normally the state programs are not run until all database channels are connected. However, w
-c compile flag execution begins while the connections are being established. The program c
for each channel’s connection status with thepvConnected routine, or it can test for all channels
connected with the following comparison:

pvChannelCount() == pvConnectCount()

These routines are described in Section 5. on page 23. If a channel disconnects or re-connect
execution of a state program the sequencer updates the connection status appropriately.

Multiple Instances and Reentrant Object Code

Occasionally you will create a state program that can be used in multiple instances. If these ins
are on separate processors, there is no problem. However, if more than one instance must be e
simultaneously on a single processor, then the objects must be made reentrant using the+r compile
flag. With this flag all variables are allocated dynamically at run time, otherwise they are dec
static. With the+r flag all variables become elements of a common data structure, and therefo
accesses to variables is slightly less efficient.
EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 13

2. State Notation Language Concepts

element
mber is

ecution
Database Variable Element Count

All database requests for database variables that are arrays assume the array size for the
count. However, if the database channel has a smaller count than the array size the smaller nu
used for all requests. This count is available with thepvCount function. The following example
illustrates this:

float wf[2000];
assign wf to “{unit}:CavField.FVAL”;
int LthWF;
...

LthWF = pvCount(wf);
for (i = 0; i < LthWF; i++) {

...
}
pvPut(wf);
...

Dynamic Assignment

You may dynamically assign or re-assign variable to database channels during the program ex
as follows:

float Xmotor;
assign Xmotor to “Motor_A_2”;
...

sprintf (pvName, “Motor_%s _%d”, snum, mnum)
pvAssign (Xmotor[i], pvName);

An empty string in the assign declaration implies no initial assignment:

assign Xmotor to “”;

Likewise, an empty string can de-assign a variable:

pvAssign(Xmotor, “”);

The current assignment status of a variable is returned by thepvAssigned function as follows:

isAssigned = pvAssigned(Xmotor);

The number of assigned variables is returned by thepvAssignCount function as follows:

numAssigned = pvAssignCount();

The following inequality will always hold:

pvConnectCount() <= pvAssignCount() <= pvChannelCount()
14 State Notation Language and Sequencer Users Guide Document Revision: 2.0

3. Compiling a State Program

-time

ich is
rior to
to the

re
3. Compiling a State Program

This section describes how to compile a state program in preparation for execution by the run
sequencer. You should first consult the user manual “EPICS: Setting Up Your Environment”.

The State Notation Compiler

The state notation compiler (SNC) converts the state notation language (SNL) into C code, wh
then compiled to produce a run-time object module. The C pre-processor (cpp) may be used p
the SNC. If we have a state program file named “test.st” then the steps to compile are similar
following:

snc test.st
gcc -c test.c -O ...additional compile options

Alternatively, using the C pre-processor:

cpp test.st test.i
snc test.i
gcc -c test.c -O ...

Using the C pre-processor allows you to include SNL files (#include directive), to use#define
directives, and to perform conditional compiling (e.g.#ifdef).

Name of output file

The output file name will that of the input file with the extension replaced with.c . The-o option can
be used to override the output file name.

Actually the rules are a little more complex that the above:.st and single-character extensions a
replaced with.c ; otherwise.c is appended to the full file name. In all cases,-o overrides.

SNC CC

CPP SNC CC

test.st test.c test.o

test.otest.ctest.itest.st

Figure 3: Two Methods of Compiling a State Program
EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 15

3. Compiling a State Program

d by a
ns are:

IOC.

. We
Compiler Options

SNC provides 8 compiler options. You specify the option by specifying a key character precede
plus or minus sign. A plus sign turns the option on, and a minus turns the option off. The optio

+a AsynchronouspvGet , i.e. the program will proceed before the operation is completed.

-a pvGet returns after the operation is completed. This is the default if an option is not specified.

+c Wait for all database connections before allowing the state program to begin execution. This is the default.

-c Allow the state program to begin execution before connections are established to all channel.

+d Turn on run-time debug messages.

-d Turn off run-time debug messages. This is the default.

+e Use the new event flag mode. This is the default.

-e Use the old event flag mode (clear flags after executing a when statement).

+l Produce C compiler error messages with references to source (.st) lines. This is the default.

-l Produce C compiler error messages with references to .c file lines.

+m Generate a Unix C main program (a wrapper around a call to theseq function).

-m Do not produce a Unix C main program. This is the default.

+r Make the run-time code reentrant, thus allowing more than one instance of the state program to run on an

-r Run-time code is not reentrant, thus saving start-up time and memory. This is the default.

+w Display SNC warning messages. This is the default.

-w Suppress SNC warnings.

Options may also be included within the declaration section of a state program:

option +r;
option -c;

Cross Compilers and Makefiles

When the target architecture is different from the host’s, a cross compiler must be used
recommend setting up aMakefile to compile state programs.

The C file produced by SNC must be compiled with the include fileseqCom.h , which contains
many necessary definitions and declarations and which includes the EPICStsDefs.h file. The
Makefile should reference the director(ies) where these files are located.

Version 2.0:seqCom.h is no longer dependent ontsDefs.h .
16 State Notation Language and Sequencer Users Guide Document Revision: 2.0

3. Compiling a State Program

further
isplay
you
liar

ld be a
ay be

gram
g

raries

umed
Compiler Errors

The SNC detects most errors, displays an error message with the line number, and aborts
compilation. Some errors may not be detected until the C compilation phase. Such errors will d
the line number of the SNL source file. If you wish to see the line number of the C file then
should use the-l (“ell”) compiler option. However, this is not recommended unless you are fami
with the C file format and its relation to the SNL file.

Warnings from SNC

Certain inconsistencies detected by the SNC are flagged with error messages. An example wou
variable that is used in the SNL context, but declared in escaped C code. These warnings m
suppressed with the-w compiler option.

Compiling and linking a state program under Unix

Under Unix, the+mcompiler option should be used to create a C main program. The state pro
should then be compiled with the_REENTRANTmacro defined, and linked against the followin
libraries:Seq, Osi , ca (if using channel access),Com. It may be necessary to searchOsi again after
Com. It is also necessary to search the Operating System’s thread library and possibly other lib
in order to resolve missing references.

For example, here is a full build of a simple state program from source under Solaris. It is ass
that the appropriate EPICS version is in/usr/local/epics .

cpp demo.st demo.i

snc +m demo.i

cc -D_REENTRANT \
-I. -I.. -I../../include -I../../include/os/solaris \
-I/usr/local/epics/base/include \
-I/usr/local/epics/base/include/os/solaris \
-c demo.c

CC -o demo demo.o \
-L/usr/local/epics/base/lib/solaris \
-L../../lib/solaris \
-lSeq -lOsi -lca -lCom -lOsi -lpthread -lthread \
-lsocket -lnsl -lposix4 -lm
EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 17

3. Compiling a State Program

tested,
The main program generated by the+m compiler option is very simple. Here it is:

int main(int argc,char *argv[]) {
 char *macro_def = (argc>1)?argv[1]:NULL;
return seq((void *)&demo, macro_def, 0);
}

The arguments are essentially the same as those taken by theseq routine. You can write your own if
you want, e.g. to link multiple state programs into the same Unix executable (this has not been
but it should work).
18 State Notation Language and Sequencer Users Guide Document Revision: 2.0

4. Using the Run Time Sequencer

In this
m. We

encer is
the
ode:

file
the

.

s
and:

will be

to be
4. Using the Run Time Sequencer

In the previous section you learned how to create and compile some simple state programs.
section you will be introduced the run-time sequencer so that you can execute your state progra
assume you are familiar with the VxWorks environment.

Loading the sequencer

The sequencer is unbundled from EPICS base and so must be loaded separately. The sequ
loaded into an IOC by the VxWorks loader from object files on the UNIX file system. Assuming
IOC’s working directory is set properly, the following command will load the sequencer object c

ld < seq

Loading a State Program

State programs are loaded into an IOC by the VxWorks loader from object files on the UNIX
system. Assuming the IOC’s working directory is set properly, the following command will load
object file “example.o”:

ld < example.o

This can be typed in from the console or put into a script file, such as the VxWorks start-up file

Executing the State Program

Let’s assume that the program name (from theprogram statement in the state program) i
“level_check”. Then to execute the program under VxWorks you would use the following comm

seq &level_check

This will create one task for each state set in the program. The task ID of the first state set task
displayed. You can find out which tasks are running by using the VxWorks “i ” command.

Under Unix, you execute the state program directly. You might type the following:

level_check

Deleting the State Program Tasks

Deleting any one of the state set tasks will cause all tasks associated with the state program
deleted. For example, under VxWorks:

td “level_check”
EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 19

4. Using the Run Time Sequencer

t at an

EOF

) macro
pecial
cluding

r, we

ncer:

e state
t under

rnative
A state program may delete itself. The suggested method is to place the following statemen
appropriate place within the program:

exit();

Under Unix, a state program may be killed by sending it a SIGTERM signal or entering an
character.

Specifying Run-Time Parameters

You can specify run-time parameters to the sequencer. Parameters serve three purposes: (1
substitution in process variable names, (2) for use by your state program, and (3) as s
parameters to the sequencer. You can pass parameters to your state program at run time by in
them in a string with the following format:

“param1 = value1, param2 = value2, ... “

For example, if we wish to specify the value of the macro “unit” in the example in the last chapte
would execute the program with the following command:

seq &level_check, “unit=DTL_6:CM_2”

This works just the same under Unix. The above example becomes:

level_check “unit=DTL_6:CM_2”

Parameters can be accessed by your program with the functionmacValueGet , which is described
in Section 5. on page 23. The following built-in parameters have special meaning to the seque

logfile = filename

This parameter specifies the name of the logging file for the run-time tasks associated with th
program. If none is specified then all log messages are written to the console (standard outpu
Unix).

name = task_name

Normally the task names are derived from the program name. This parameter specifies an alte
base name for the run-time tasks.

stack = stack_size

This parameter specifies the stack size in bytes (it’s ignored under Unix).

priority = task_priority

This parameter specifies the initial task priority when the tasks are created. The valuetask_priority
must be an integer between 1 and 255 (it’s ignored under Unix).

Examining the State Program

Under VxWorks, you can examine the state program by typing:

seqShow “level_check”
20 State Notation Language and Sequencer Users Guide Document Revision: 2.0

4. Using the Run Time Sequencer

state).
typing

name,

he

ogram.
gfile

d, the
rrence
This will display information about each state set (e.g. state set names, current state, previous
You can display information about the database channels associated with this state program by
either of:

seqChanShow “level_check”
seqChanShow “level_check”, “DTL_6:CM_2:ai1”
seqChanShow “level_check”, “-”

You can display information about monitor queues by typing:

seqQueueShow “level_check”

The first parameter toseqShow, seqChanShow andseqQueueShow is either the task identifier
(tid) or the task name of the state program task. If the state program has more than one tid or
then any one of these can be used. The second parameter is a valid channel name, or “- ” to show only
those channels which are disconnected, or “+” to show only those channels which are connected. T
seqChanShow andseqQueueShow utilities will prompt for input after showing the first or the
specified channel; enterRETURNor a signed number to view more channels or queues; enter “q” to
quit.

If you wish to see the task names, state set names, and task identifiers forall state programs type:

seqShow

Similar but shorter commands can be issued under Unix. Valid commands areshow, chan and
queue . They are abbreviable.

Sequencer Logging

The sequencer logs various information that could help a user determine the health of a state pr
Logging goes to the console by default, but may be directed to any file by specifying the lo
parameter as described above.

What Triggers an Event?

The run-time sequencer uses four methods to test an event:

• a database value returns from database (monitor orpvGet)

• a time delay has elapsed

• an event flag is set or cleared

• any channels connect or disconnect

When one of these events occur, the sequencer executes the appropriatewhen statements based on
the current states and the particular event or events. Whenever a new state is entere
correspondingwhen statements for that state are executed immediately, regardless of the occu
of any of the above events.
EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 21

4. Using the Run Time Sequencer

ecuted.
Prior to Version 1.8 of the sequencer the event flags were cleared after a when statement ex
Currently, event flags must be cleared with eitherefTestAndClear or efClear , unless the-e
option was chosen.
22 State Notation Language and Sequencer Users Guide Document Revision: 2.0

5. State Notation Language Syntax

-Naur
some

here

is

is
zero or

tor will

, no

lso be
5. State Notation Language Syntax

This section formalizes the state notation language syntax using a variant of BNF (Backus
Form). The idea is that the meaning will be clear without explanation. However, here are
explanatory notes.

• words inteletype font are to be taken literally (“terminals”)

• words inbold italicsare syntactic terms which will be defined below (“nonterminals”), except in a few cases w
the meaning is obvious

• where the name of a nonterminal begins with the wordoptional and it is enclosed in square brackets, that term
optional

• where a term is followed by an ellipsis (...), it may optionally be repeated (so if the term was not optional th
means that there can be one or more instances of it; if the term was optional this means that there can be
more instances of it)

• where a term is followed by a separator (e.g. a comma) and an ellipsis, it is to be understood that the separa
separate each repeated instance of the term

State Program

A state program has the following structure:

program program_name;
declarations
[state_set] ...

The program name may be followed by a parameter list:

program program_name(“ parameter_list”);

Declarations

Variable declarations are similar to C except that the types are limited to the following
initialization is permitted, and only one variable may be declared per declaration statement.

char variable_name;
short variable_name;
int variable_name;
long variable_name;
float variable_name;
double variable_name;
string variable_name;

Type string produces an array of char with length equal to the constantMAX_STRING_SIZE,
which is defined in one of the included header files. Unsigned types and pointer types may a
specified. For example:

unsigned short * variable_name;
EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 23

5. State Notation Language Syntax

is used

e native
initial

les are
d to a
Variable may also be declared as arrays.

char variable_name[array_length];
short variable_name[array_length];
int variable_name[array_length];
long variable_name[array_length];
float variable_name[array_length];
double variable_name[array_length];
char variable_name[array_length][array_length];
short variable_name[array_length][array_length];
int variable_name[array_length][array_length];
long variable_name[array_length][array_length];
float variable_name[array_length][array_length];
double variable_name[array_length][array_length];

Note that we have not yet implemented arrays of strings.

Assignment of a Variable to a Database Channel

Once a variable is declared, it may be assigned to a database channel. Thereafter, that variable
to perform database operations. All of the following are variations on assignment:

assign variable_name to “ database_name” ;
assign variable_name[index] to “ database_name” ;
assign variable_name to { “ database_name”, ... } ;

A database name may contain one or more macro names enclosed in brackets: “{ ... } ”. Macros
are named following the same rules as C language variables.

For database variable declared as arrays, the requested count is the length of the array or th
count for the database channel, whichever is smaller. The native count is determined when the
connection is established. Pointer types may not be assigned to a database channel.

Monitoring a Database Channel

To make the state program event-driven the input variables can be monitored. Monitored variab
automatically updated with the current database value. The variable must first be assigne
database channel.

monitor db_variable_name;
monitor db_variable_name[index];

Declaring Event Flags

Event flags are declared as follows:

evflag event_flag_name;
24 State Notation Language and Sequencer Users Guide Document Revision: 2.0

5. State Notation Language Syntax

nnel the

100 but
ed value
dy full,
nnel is
Associating an Event Flag with a Database Channel

An event flag may be associated with a database channel. When a monitor returns on that cha
corresponding event flag is set.

sync variable_name event_flag_name;

Associating an Event Flag with a Queued Database Channel

An event flag may be associated with a queued database channel. The queue size defaults to
can be overridden on a per-channel basis. When a monitor returns on that channel the associat
is written to the end of the queue and the corresponding event flag is set. If the queue is alrea
the last entry is overwritten. Only scalar items can be accommodated in the queue (if the cha
array-valued, only the first item will be written). ThepvGetQ function reads items from the queue.

syncQ variable_name event_flag_name [optional_queue_size];

Specifying Compiler Options

A compiler option is specified as follows:

option option_name;

Possible options are given in Section 3. on page 15, and must include the “+” or “ - ” sign. Example:

option +r; /* make code reentrant */

Structure of a State Set

State_set is defined as:

ss state_set_name { state_def... }

State_def is defined as:

state state_name { [optional_option_def] ... event_actions }

Optional_option_def is defined as:

option state_option_name;

Event_actions is defined as:

[optional_entry_action] ...
event_action...
[optional_exit_action] ...

Optional_entry_action is defined as:

entry { statement... }
EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 25

5. State Notation Language Syntax

e
te

is used
t state

s
re

, and
Event_action is defined as:

when (expression) { statement... } state new_state

Optional_exit_action is defined as:

exit { statement... }

Any entry{} blocks are executed when the state is entered.exit{} blocks are executed when th
state is left. See the options-e and -x below for more details about controlling this behavior. No
that the statements in all entry blocks of a state are executed before any of the expressions inwhen()
conditions are evaluated.

Specifying State Options

Some options may be specified for a state using theoption keyword. Currently there are three
allowable options,t , e and x . The option string must be preceded by a “+” or “ - ”, for instance
option -te .

The options are:

-t Don’t reset the time specifying when the state was entered if coming from the same state. When this option
the delay() built-in function will return whether the given time delay has elapsed from the moment the curren
was entered from a different state, rather than from when it was entered for the current iteration.

-e Executeentry{} blocks even if the previous state was the same as the current state.

-x Executeexit {} blocks even if the next state is the same as the current state.

+t , +e and+x are also permitted, though “+” is interpreted as “perform the default action for thi
option”. For instanceoption +tx would have the same effect as if no option specification we
given fort andx , so its use is only documentary. Note that more than one option line is allowed
that syntax must be used to specify both “+” and “- ” options, for instance:

state low
{

option -e; /* Do entry{} every time ... */
option +x; /* but only do exit{} when really leaving */
entry { ... }
...
exit { ... }

}

Statements

A statement may be an assignment statement or anif , else , for , or while statement. These may
contain expressions as follows:

• brackets: { ... }

• variables (may have subscript)

• binary operators: + - * / & | && << ...
26 State Notation Language and Sequencer Users Guide Document Revision: 2.0

5. State Notation Language Syntax

rators

piler
e either
les. The
using
of the
• assignment operators: = += *= ...

• auto increment and auto decrement operators: ++ --

• parenthesis

• pointer and address operators: *

• structure operators:. ->

• functions

Although structure definitions and declarations are not recognized by the SNL, the structure ope
are permitted.

Examples of statements in SNL:

pres3 = smooth (&p3[20], i+2);
for (j = 0; j < 10; j++)
{

x[j] = 4.0*(y[j]/3.0 + sin(2.*pi*j));
}

Example of a state definition in SNL:

state low
{

option -te;

entry
{

printf(“Will do this on each entry”);
}

when(v>5.0)
{

printf(“now changing to high\n”);
} state high

when(delay(.1))
{

/* Pause of .1 on every iteration */
} state low

}

Built-in Functions

The following special functions are built into the SNL. In most cases the state notation com
performs some special interpretation of the parameters to these functions. Therefore, some ar
not available through escaped C code or there use in escaped C code is subject to special ru
term db_variable_namerefers to any variable that is assigned to a database channel. When
such a variable, the function provides the association of the value or other characteristics
channel to the variable.
EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 27

5. State Notation Language Syntax

d be

om the
rite

s from
e

l should
e
er to

ld have

e is
delay

int delay(float delay_in_seconds)

The delay function returnsTRUEif the specified time has elapsed from entering the state. It shoul
used only within awhen expression.

pvPut

int pvPut(db_variable_name)

This function puts or writes the value to the database channel. The function returns the status fr
channel access layer (e.g.ECA_NORMALfor success). It does not wait for the database channel w
to be complete. Completion must be inferred by other means.

pvGet

int pvGet(db_variable_name)

This function gets or reads the value from the database channel. The function returns the statu
the channel access layer (e.g.ECA_NORMALfor success). By default, the state set will block until th
read operation is complete. The asynchronous (+a) compile option should be used to prevent this.

pvGetQ

int pvGetQ(db_variable_name)

This function removes the oldest value from a database channel’s queue (the database channe
have been associated with a queue and an event flag via thesyncQ statement) and updates th
corresponding local sequencer variable. Despite its name, this function is really clos
efTestAndClear than it is topvGet . It returnsTRUE if the queue was not empty.

pvGetQ should only be called from within awhen clause.

pvFreeQ

int pvFreeQ(db_variable_name)

This function deletes all entries from a database channel’s queue (the database channel shou
been associated with a queue and an event flag via thesyncQ statement).

pvGetComplete

int pvGetComplete(db_variable_name)

This function returnsTRUEif the last get for this channel is completed, i.e. the value in the variabl
current. This call is appropriate only if the asynchronous (+a) compile option is specified.

pvMonitor

int pvMonitor(db_variable_name)

This function initiates a monitor on the database channel.
28 State Notation Language and Sequencer Users Guide Document Revision: 2.0

5. State Notation Language Syntax

nly if

code.

d

pvStopMonitor

int pvStopMonitor(db_variable_name)

This function terminates a monitor on the database channel.

pvFlush

int pvFlush()

This function causes channel access to flush the input-output buffer. This call is appropriate o
the asynchronous (+a) compile option is specified.

pvCount

int pvCount(db_variable_name)

This function returns the element count associated with the database channel.

pvStatus

int pvStatus(db_variable_name)

This function returns the current alarm status for the database channel (e.g.HIHI_ALARM). The
status and severity are only valid after apvGet call or when a monitor returns.

Version 2.0:The value returned is one of thepvStat enumerations.

pvSeverity

int pvSeverity(db_variable_name)

This function returns the current alarm severity (e.g.MINOR_ALARM).

Version 2.0:The value returned is one of thepvSevr enumerations.

pvTimeStamp

TS_STAMP pvTimeStamp(db_variable_name)

This function returns the time stamp for the lastpvGet or monitor of this variable.The compiler does
recognize type TS_STAMP. Therefore, variable declarations for this type should be in escaped C
This will generate a compiler warning, which can be ignored.

Version 2.0:The value returned is of typepvStamp .

pvAssign

char* pvAssign(db_variable_name, database_name)

This function assigns or re-assigned the variabledb_variable_nameto database_name. If
database_nameis an empty string orNULL thendb_variable_nameis de-assigned (not associate
with any process variable).
EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 29

5. State Notation Language Syntax

nctions

tabase

tabase

t

pvAssigned

int pvAssigned(db_variable_name)

This function returnsTRUE if the channel is currently assigned.

pvConnected

int pvConnected(db_variable_name)

This function returnsTRUE if the channel is currently connected.

pvIndex

int pvIndex(db_variable_name)

This function returns the channel index associated with a database channel. See “User Fu
within the State Program” on page 32.

pvChannelCount

int pvChannelCount()

This function returns the total number of channels associated with the state program.

pvAssignCount

int pvAssignCount()

This function returns the total number of channels in this program that are assigned to da
channels. Note: if all channels are assigned then the following expression isTRUE:

pvAssignCount() == pvChannelCount()

pvConnectCount

int pvConnectCount()

This function returns the total number of channels in this program that are connected with da
channels. Note: if all channels are connected then the following expression isTRUE:

pvConnectCount() == pvChannelCount()

efSet

void efSet(event_flag_name)

This function sets the event flag and causes the execution of thewhen statements for all state sets tha
are pending on this event flag.

efTest

int efTest(event_flag_name)

This function returns TRUE if the event flag was set.
30 State Notation Language and Sequencer Users Guide Document Revision: 2.0

5. State Notation Language Syntax

s

acro

rogram.
scape

rning
efClear

int efClear(event_flag_name)

This function clears the event flag and causes the execution of thewhen statements for all state set
that are pending on this event flag.

efTestAndClear

int efTestAndClear(event_flag_name)

This function clears the event flag and returnsTRUE if the event flag was set.

efTestAndClear should only be called from within awhen clause.

macValueGet

char* macValueGet(char * macro_name_string)

This function returns a pointer to a string that is the value for the specified macro name. If the m
does not exist, it returns aNULL.

Comments

C-type comments may be placed anywhere in the program.

Escape to C Code

Because the SNL does not support the full C code standard, C code may be escaped in the p
The escaped code is not compiled by SNC, but is passed the “cc” compiler. There are two e
methods allowed:

1. Any code between%% and the next newline character is escaped. Example:

%% for (i=0; i < NVAL; i++) {

2. Any code between%{ and}% is escaped. Example:

%{
extern float smooth();
extern LOGICAL accelerator_mode;
}%

If you are using the C preprocessor prior to compiling withsnc , and you wish to defer interpretation
of a preprocessor directive (# statement), then you should use the form:

%%#include <ioLib.h>
%%#include <abcLib.h>

Any variable declared in escaped C code and used in SNL code will be flagged with a wa
message by the SNC. However, it will be passed on to the C compiler correctly.
EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 31

5. State Notation Language Syntax

he state

unctions

, but is

ctions.

s.
refix
the

ent as
the
and

re not
Exit Procedure

When a state set task is deleted, all state set tasks within the state program are also deleted. T
program may specify a procedure to run prior to task deletion. This is specified as follows:

exit { exit_code }

The exit code may be one or more statements as described above. However, no database f
may be called within the exit code.

This procedure should not be confused with the exit block of a state, which has the same syntax
executed at each transition from a state to the next state.

User Functions within the State Program

The last state set may be followed by C code, usually containing one or more user-supplied fun
Example:

program example { ... }
/* last SNL statement */
%{
LOCAL float smooth (pArray, numElem)
 { ... }
}%

The built-in SNL functions such aspvGet cannot be directly used in user-supplied function
However, most of the built-in functions have a C language equivalent, which begin with the p
seq_ (e.g. pvGet becomesseq_pvGet). These C functions must pass a parameter identifying
calling state program, and if a database variable name is required, thechannel indexof that variable
must be supplied. This channel index is obtained from thepvIndex function. Furthermore, if the code
if complied with the+r option the database variables must be referenced as a structure elem
described in “Variable Modification for Reentrant Option” on page 33. Examination of
intermediate C code that the compiler produces will indicate how to use the built-in functions
database variables.

Variable Extent

All variables declared in a state program are made static (non-global) in the C file, and thus a
accessible outside the state program module.
32 State Notation Language and Sequencer Users Guide Document Revision: 2.0

5. State Notation Language Syntax

ure.

into the

ve to

s.
Variable Modification for Reentrant Option

If the reentrant option (+r) is specified to SNC then all variables are made part of a struct
Suppose we have the following declarations in the SNL:

int sw1;
float v5;
short wf2[1024];

The C file will contain the following declaration:

struct UserVar {
int sw1;
float v5;
short wf2[1025];

};

The sequencer allocates the structure area at run time and passes a pointer to this structure
state program. This structure has the following type:

struct UserVar *pVar;

Reference to variablesw1 is made as:

pVar->sw1

This conversion is automatically performed by the SNC for all SNL statements, but you will ha
handle escaped C code yourself.

Default Run-time Parameters

Parameters to the state program may be supplied after theprogram statement within the SNL and as
the second argument to the run-time sequencer. The format for parameters is:

“ macro_name = macro_value, ... ”

Examples:

program example (“logfile = example.log”)
int Vxy;
assign Vxy to “HV{unit}:VXY”;

At run-time the default forlogfile can be over-ridden as follows:

seq &example, “logfile=ex1.log, unit=1”

The parameters specified at run time supersede those specified after theprogram statement. These
parameters may also be used to specify the values for the macros used in the database name
EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 33

6. Examples of State Programs
6. Examples of State Programs

Entry and exit action example

The following state program illustrates entry and exit actions.

program snctest
float v;
assign v to “grw:xxxExample”;
monitor v;

ss ss1
{

state low
{

entry
{

printf(“Will do this on entry”);
}
entry
{

printf(“Another thing to do on entry”);
}
when(v>5.0)
{

printf(“now changing to high\n”);
} state high
when(delay(.1)) { } state low
exit
{

printf(“Something to do on exit”);
}

}

state high
{

when(v<=5.0)
{

printf(“changing to low\n”);
} state low
when(delay(.1)) { } state high

}
}

34 State Notation Language and Sequencer Users Guide Document Revision: 2.0

6. Examples of State Programs

bles to
Dynamic assignment example

The following segment of a state program illustrates dynamic assignment of database varia
database channels. We have left out error checking for simplicity.

program dynamic
option -c; /* don’t wait for db connections */
string sysName;
assign sysName to “”;

long setpoint[5];
assign setpoint to {}; /* don’t need all five strings */

int i;
char str[30];

ss dyn {
state init {

when () {
sprintf (str, “MySys:%s”, “name”);
pvAssign (sysName, str);
for (i = 0; i < 5; i++) {

sprintf (str, “MySys:SP%d\n”, i);
pvAssign (setpoint[i], str);
pvMonitor (setpoint[i]);

}
} state process

}

state process {
...

}
}

EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 35

6. Examples of State Programs

ons. It

It
ts detect

stitution
Complex example

The following state program contains most of the concepts presented in the previous secti
consists of four state sets: (1)level_det , (2) generate_voltage , (3) test_status , and (4)
periodic_read . The state setlevel_det is similar to the example in Section 2. on page 6.
generates a triangle waveform in one state set and detects the level in another. Other state se
and print alarm status and demonstrate asynchronouspvGet and pvPut operation. The program
demonstrates several other concepts, including access to run-time parameters with macro sub
andmacValueGet , use of arrays, escaped C code, and VxWorks input-output.

Preamble

/* File example.st: State program example. */
program example (“unit=ajk, stack=11000”)

/*=================== declarations =========================*/
float ao1;
assign ao1 to “{unit}:ao1”;
monitor ao1;

float ao2;
assign ao2 to “{unit}:ao1”;

float wf1[2000];
assign wf1 to “{unit}:wf1.FVAL”;

short bi1;
assign bi1 to “{unit}:bi1”;

float delta;
short prev_status;
short ch_status;

evflag ef1;
evflag ef2;

option +r;

char *pmac; /* used to access program macros */
36 State Notation Language and Sequencer Users Guide Document Revision: 2.0

6. Examples of State Programs
level_det state set

/*=================== State Sets ===========================*/
/* State set level_det detects level > 5v & < 3v */
ss level_det {

state start {
when() {

fd = -1;
/* Use parameter to define logging file */
pmac = macValueGet(“output”);
if (pmac == 0 || pmac[0] == 0)
{

printf(“No macro defined for \"output\”\n");
/* Use global console fd */
fd = ioGlobalStdGet(1);

}
else
{

fd = open(pmac, (O_CREAT | O_WRONLY), 0664);
if (fd == ERROR)
{

printf(“Can’t open %s\n”, pmac);
exit (-1);

}
}
fdprintf(fd, “Starting state program\n”);

} state init
}

state init {
/* Initialize */
when (pvConnectCount() == pvChannelCount()) {

fdprintf(fd, “All channels connectedly”);
bi1 = FALSE;
ao2 = -1.0;
pvPut(bi1);
pvPut(ao2);
efClear(ef2);
efSet(ef1);

} state low

when (delay(5.0)) {
fdprintf(fd, “...waiting\n”);

} state init
}

EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 37

6. Examples of State Programs
state low {
when (ao1 > 5.0) {

fdprintf(fd, “High\n”);
bi1 = TRUE;
pvPut(bi1);

} state high

when (pvConnectCount() < pvChannelCount()) {
fdprintf(fd, “Connection lost\n”);
efClear(ef1);
efSet(ef2);

} state init
}

state high {
when (ao1 < 3.0) {

fdprintf(fd, “Low\n”);
bi1 = FALSE;
pvPut(bi1);

} state low

when (pvConnectCount() < pvChannelCount()) {
efSet(ef2);

} state init
}

}

38 State Notation Language and Sequencer Users Guide Document Revision: 2.0

6. Examples of State Programs
generate_voltage state set

/* Generate a ramp up/down */
ss generate_voltage {

state init {
when (efTestAndClear(ef1)) {

printf(“start ramp\n”);
fdprintf(fd, “start ramp\n”);
delta = 0.2;

} state ramp
}

state ramp {
when (delay(0.1)) {

if ((delta > 0.0 && ao2 >= 11.0) ||
(delta < 0.0 && ao2 <= -11.0))

delta = -delta;
ao2 += delta;
pvPut(ao2);

} state ramp

when (efTestAndClear(ef2)) {
} state init

}
}

test_status state set

/* Check for channel status; print exceptions */
ss test_status {

state init {
when (efTestAndClear(ef1)) {

printf(“start test_status\n”);
fdprintf(fd, “start test_status\n”);
prev_status = pvStatus(ao1);

} state status_check
}

state status_check {
when ((ch_status = pvStatus(ao1)) != prev_status) {

print_status(fd, ao1, ch_status, pvSeverity(ao1));
prev_status = ch_status;

} state status_check
}

}

EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 39

6. Examples of State Programs
periodic_read state set

/* Periodically write/read a waveform channel. This uses
pvGetComplete() to allow asynchronous pvGet(). */

ss periodic_read {
state init {

when (efTestAndClear(ef1)) {
wf1[0] = 2.5;
wf1[1] = -2.5;
pvPut(wf1);

} state read_chan
}

state read_chan {
when (delay(5.)) {

wf1[0] += 2.5;
wf1[1] += -2.5;
pvPut(wf1);
pvGet(wf1);

} state wait_read
}

state wait_read {
when (pvGetComplete(wf1)) {

fdprintf(fd, “periodic read: ”);
print_status(fd, wf1[0], pvStatus(wf1), pvSeverity(wf1));

} state read_chan
}

}

exit procedure

/* Exit procedure - close the log file */
exit {

printf(“close fd=%d\n”, fd);
if ((fd > 0) && (fd != ioGlobalStdGet(1)))

close(fd);
fd = -1;

}

40 State Notation Language and Sequencer Users Guide Document Revision: 2.0

6. Examples of State Programs

f these
tabase
C functions

/*==================== End of state sets =====================*/

%{
/* This C function prints out the status, severity,

and value for a channel. Note: fd is passed as a
parameter to allow reentrant code to be generated */

print_status(int fd, float value, int status, int severity)
{

char *pstr;

switch (status)
{

case NO_ALARM: pstr = “no alarm”; break;
case HIHI_ALARM: pstr = “high-high alarm”; break;
case HIGH_ALARM: pstr = “high alarm”; break;
case LOLO_ALARM: pstr = “low-low alarm”; break;
case LOW_ALARM: pstr = “low alarm”; break;
case STATE_ALARM: pstr = “state alarm”; break;
case COS_ALARM: pstr = “cos alarm”; break;
case READ_ALARM: pstr = “read alarm”; break;
case WRITE_ALARM: pstr = “write alarm”; break;
default: pstr = “other alarm”; break;

}
fprintf (fd, “Alarm condition: \"%s\"“, pstr);
if (severity == MINOR_ALARM)

pstr = “minor”;
else if (severity == MAJOR_ALARM)

pstr = “major”;
else

pstr = “none”;
fdprintf (fd, “, severity: \"%s\", value=%g\n”, pstr, value);

}
}%

New features in Version 1.9

New Language Features

With this version we have incorporated many extensions to the state notation language. Some o
changes offer significant advantage for programs and systems with a large number of da
channels.
EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 41

6. Examples of State Programs

pplies.

s many
rays of

un time.

to be

to use

tate

me,
plays

at an
Number of Channels

The previous restriction on the number of database channels that could be defined no longer a
Only the amount of memory on the target processor limits the number of channels.

Array Assignments

Individual elements of an array may be assigned to database channels. This feature simplifie
codes that contain groups of similar channels. Furthermore, double-subscripted arrays allow ar
waveform channels.

Dynamic Assignments

Database channels may now be dynamically assigned or re-assigned within the language at r

Hex Constants

Hexadecimal numbers are now permitted within the language syntax. Previously, these had
defined in escaped C code.

Time Stamp

The programmer now has access to the time stamp associated with a database channel.

Pointers

Variables may now be declared as pointers.

Sequencer Changes

The diagnostics included with the previous versions of the run-time sequencer were awkward
and did not always provide relevant information. We corrected this shortcoming in this version.

seqShow

We enhanced theseqShow command to present more relevant information about the running s
programs.

seqChanShow

The seqChanShow command now allows specification of a search string on the channel na
permits forward and backward stepping or skipping through the channel list, and optionally dis
only channels that are not connected.

The syntax for displaying only channels that are not connected is
seqChanShow “<seq_program_name>”,”-”

ANSI Prototypes

SNC include files now use ANSI prototypes for all functions. To the programmer this means th
ANSI compiler must be used to compile the intermediate C code.
42 State Notation Language and Sequencer Users Guide Document Revision: 2.0

6. Examples of State Programs

lf. We
rsion
Fix for Task Deletion

Version 1.8 of the sequencer didn’t handle the task deletion properly if a task tried to delete itse
corrected this in version 1.9 (actually it was broken again at version 1.9.4 but was fixed at ve
1.9.5).
EPICS Release: 3.13 State Notation Language and Sequencer Users Guide 43

6. Examples of State Programs
44 State Notation Language and Sequencer Users Guide Document Revision: 2.0

	State Notation Language and Sequencer Users Guide
	1. Introduction
	Note on Versions
	Overview
	Content of this Manual
	Omissions from this manual

	Copyright and Restrictions
	Notes on This Release
	New Language Features
	Bugs fixed
	Miscellaneous
	Version 2.0 changes

	2. State Notation Language Concepts
	The State Transition Diagram
	Elements of the State Notation Language
	A Complete State Program
	Adding a Second State Set
	Database Names Using Macros
	Data Types
	Arrays of Channels
	Dynamic Assignment
	Unassigned Channels
	Status of Database Channels
	Synchronizing State Sets with Event Flags
	Queuing Monitors
	Asynchronous Use of pvGet()
	Connection Management
	Multiple Instances and Reentrant Object Code
	Database Variable Element Count
	Dynamic Assignment

	3. Compiling a State Program
	The State Notation Compiler
	Name of output file
	Compiler Options
	Cross Compilers and Makefiles
	Compiler Errors
	Warnings from SNC
	Compiling and linking a state program under Unix

	4. Using the Run Time Sequencer
	Loading the sequencer
	Loading a State Program
	Executing the State Program
	Deleting the State Program Tasks
	Specifying Run-Time Parameters
	Examining the State Program
	Sequencer Logging
	What Triggers an Event?

	5. State Notation Language Syntax
	State Program
	Declarations
	Assignment of a Variable to a Database Channel
	Monitoring a Database Channel
	Declaring Event Flags
	Associating an Event Flag with a Database Channel
	Associating an Event Flag with a Queued Database Channel
	Specifying Compiler Options
	Structure of a State Set
	Specifying State Options
	Statements
	Built-in Functions
	Comments
	Escape to C Code
	Exit Procedure
	User Functions within the State Program
	Variable Extent
	Variable Modification for Reentrant Option
	Default Run-time Parameters

	6. Examples of State Programs
	Entry and exit action example
	Dynamic assignment example
	Complex example
	Preamble
	level_det state set
	generate_voltage state set
	test_status state set
	periodic_read state set
	exit procedure
	C functions

	New features in Version 1.9
	New Language Features
	Sequencer Changes

