Coreco Software Interface for Area Detector

Software written by Tim Madden, APS

The camera link interface is stored in the corecoSupport directory. To build, run make in that directory. Makefile builds the code.

There are two versions of corecoSupport: Area Detector 1-5, and 1-6. Version 1-5 supports Dalsa Coreco grabbers. 1-6 supports both Dalsa and SiliconSoftware grabbers. Work is needed to load the clser.dll file (serial port interface dll, see Camera link standard) for the Silicon Software grabber. It is not working yet. Dalsa works well and has been used at APS for a few years.

To get started:

1. Create an empty camera link detector directory and source.

a. Use the tcl script makeCamlinkDir in the ADApp directory, in version 1-5. For 1-6, it is in ADEpics/iocs, see AD1-6 instructions below.
b. In a cygwin window, to makeCamlinkDir [return] for help. Type makeCamlinkDir COR myname to make a new directory. Files are copied into the new directory, new st.cmd is made ina new iocBoot. This new driver can be built and run.

2. Fill in the the cpp and h files to write your driver.

3. You will need to edit the xxxSerCam.h, cpp to write your serial port code. Put the code in oneLoop(). This is 99% of the work, as the grabbing code is already done. If you need to process images when they are grabbed from grabber, edit processImage() function in the xxxxImgCam.cpp.

4. There is no need to edit any other cpp or h files. Do not mess with xxx.cpp, as this is your IOC. All the work happens in the xxxCam.cpp and h.

To add epics PVs,

1. Add an enum in the param list in the xxxSerCam.h file.

2. Increase the num_params enum in the xxxSerCam.h file.

3. Add same enum in the int-string list at top of the xxxSerCam.cpp file.

4. Add the PV to the xxx.template file, so it loads as a PV. The string in the cpp file is used to connect to the epics PV in the template file.

5. In the xxxserCam.cpp constructor, putIntParam(myparam,0), or whatever type it is…. Setting the param to a value in the constructor will call CreateParam in the ADDriver.

6. For parameters in the xxxImgCam.h, the procedure is the same.

How the xxxCam.cpp works:

The IOC makes xxxCam (genCamController) objects, queries all the objects for their parameters. The params are created by ADDRiver and connected to asyn PVs. The param values are stored in ADDriver. Calling putIntParam, or setIntegerParam, in a genCamController object, inturn calls ADDriver setIntegerParam. In AD1-6, parameters are of unknown values assigned by asyn. They are not enums. In the genCamController, the enum is converted into the asyn param number behind the scenes using a stdlib map. In this way, enums can be used for parameters in AD1-6.

Why use genCamController objects rather than directly using ADDriver?

1. Cameralink needs two threads running: one for image grabbing, one for serial port. Thread synchronization is provided by genCamController.

2. The serial port is slow, and must run on its own thread for constant com with the camera.

3. genCamController provides an ischanged flag to tell if a parameter or PV has changed. In this way the thread can respond to param changes. This is more useful than filling in writeInt32 as the thread can run on its own.

4. genCamController allows for separate parameter lists for grabber operations and serial operations. Also, inheriting from the genCamController allows adding parameters from parent classes. This means that programmers need not worry about the grabber parameters when they only need to write the serial download code.

5. A small change in the build allows genCamController to compile as a separate DLL to load at runtime. We have detectors at APS that run this way, as it allows detector driver development to be separate from EPICS development. Also it allows the driver to run outside of EPICS, say in a tcl shell. This allows for simultaneous detector hardware development and software development without the complexity of EPICS. corecoSupport is configured for a static EPICS build, but we have another version configured for a DLL build.

Parameter helper functions:

To get a parameter in ADDriver we call getIntegerParam(param,&val). This is clunky. genCamController adds val = getIntParam(param) for convenience. Pointer params are added as well.char * getStringParam, double getDoubleParam are added as well.

These are defined in putGetParams.h

Thread Synchronization

The xxxSerCam object (that controls serial port) has a pointer to the xxxImgCam object (that grabs images). Example coreco_card->putIntParam(myCorecoCard::param, val) can be called by the serial port thread to setup the grabber card. If the serial port thread must reconfigure the grabber card, the port must be closed, the grabber shut down and reconfigured. The Serial port thread must wait while the grabber is reconfigured. Here is example code. The idea is to call preWait on some parameter, that sets some timer. Then later we call waitDone(timeoutms), to wait until that parameter change completes, or times out. The other thread calls notifyWAiters to let waitDone() return before timeout.
serial_port->close();

coreco=(genCamController*)getPtrParam(coreco_control_ptr);

if (coreco->getIntParam(corecoCam::is_grab) == 1)

grabber=true;

if (grabber)

{

coreco->preWait(corecoCam::is_grab);

coreco->putIntParam(corecoCam::is_grab,0);

coreco->waitDone(5000);

}

lf.log("set ccf file, loaad");

coreco->putStringParam(corecoCam::ccf_filename,filename);

coreco->preWait(corecoCam::is_loadccf);

coreco->putIntParam(corecoCam::is_loadccf,1);

coreco->waitDone(20000);

lf.log("open Comport");

serial_port->open();

serial_port->clearPipe();
Log file.

The genCamController provides a log_file object for logging detector activity to a file, with date and time.

lf.log(“put in the log file”);

The log file can also printf to the console. See log_file.h in corecoSupport.
Serial Port

cl_com_port2.h has calls to the com port. See that file in corecoSupport.

The USE_SAP flag

This #define USE_SAP allows the coreco.cpp to build using the Sapara libraries. Sapara must be installed on the PC. corecoSupport/Makefile must include from the Sapara install location. Also, your IOC Makefile must link from the Sapera location. USE_SAP must be defined.

Coreco versus SiliconSoftware- AD1-6 only
Coreco.cpp and siliconSoftware.cpp contain the code for each grabber. See Makefile in corecoSupport. USE_SAP and USE_SISW will determine which grabber is used at compile time. There is still a problem with the serial port on siliconSoftware. The clser dll must be loaded properly. Just needs some more development. corecoSupport/corecoCam.cpp is the genCamController that uses EITHER the coreco grabber or silicon software grabber. #ifdef determine which grabber is used at compile time. The IOC Makefile must have USE_SAP or USE_SISW defined as well. Also the linking must point to the correct location.

AD1-6

The AD1-6 is grouped ina directory called ADEpics. ADEpics was created by Jeff Gephart at APS to be a simple epics for Area Detector applications. Only needed synapps modules are included, and proper patched EPICS base is included. In a windows shell, cd to ADEPICS, and call con[tab]. To build base type build b. Next build synapps with build s. Build extensions with build e. To create a new ioc, type build i myIOC myIOC. To build the already created ioc, type build I myIOC myIOC.
To create an ioc for camera link:

1. In ADEpics directory create and ioc with build I myIOC myIOC

2. Cd to iocs directory

3. makeCamLinkDir COR myIOC, to convert the blank IOC into a camera link ready IOC.

The rest of the docs are older, and may have typos….

The following section was shamelessly copied from Mark River’s website documentation the Area Detector (AD) design. It is found at http://cars9.uchicago.edu/software/epics/areaDetectorDoc.html#Installation
Area Detector Architecture

The architecture of the areaDetector module is shown below.

[image: image1.png]
From the bottom to the top this architecture consists of the following:

· Layer 1. This is the layer that allows user written code to communicate with the hardware. It is usually provided by the detector vendor. It may consist of a library or DLL, of a socket protocol to a driver, a Microsoft COM interface, etc.

· Layer 2. This is the driver that is written for the areaDetector application to control a particular detector. It is written in C++ and inherits from the ADDriver class. It uses the standard asyn interfaces for control and status information. Each time it receives a new data array it can pass it as an NDArray object to all Layer 3 clients that have registered for callbacks. This is the only code that needs to be written to implement a new detector. Existing drivers range from 800 to 1800 lines of code.

· Layer 3. Code running at this level is called a "plug-in". This code registers with a driver for a callback whenever there is a new data array. The existing plugins implement file saving (NDPluginFile), region-of-interest (ROI) calculations (NDPluginROI), color mode conversion (NDPluginColorConvert), and conversion of detector data to standard EPICS array types for use by Channel Access clients (NDPluginStdArrays). Plugins are normally written in C++ and inherit from NDPluginDriver. Existing plugins range from 300 to 800 lines of code.

· Layer 4. This is standard asyn device support that comes with the EPICS asyn module.

· Layer 5. These are standard EPICS records, and EPICS database (template) files that define records to communicate with drivers at Layer 2 and plugins at Layer 3.

· Layer 6. These are EPICS channel access clients, such as MEDM that communicate with the records at Layer 5. areaDetector includes two client applications that can display images using EPICS waveform and other records communicating with the NDPluginStdArrays plugin at Layer 3. One of these clients is an ImageJ plugin, and the other is a freely runnable IDL application.

Coreco AD Design Goals

Herein we present a software design to allow the quick interface of a detector to the Area Detector interface. This software was designed specifically to easily interface Coreco-based detectors to Area Detector. Here are design objectives:

1. Enable the Coreco Frame grabbing functions, all calls to the Coreco Sapara server exist in one module.

2. All serial download functions exist in a separate module.

3. Easy interface to Area Detector

4. Detector module can exist stand-alone. That is, it is not required to have EPICS present, and EPICS make system is not need to build detector module. This is useful for users who don’t want an IOC (such as BESSRC), but a text based program. It is also useful for detector hardware development where it is desirable to focus on the hardware rather than EPICS. IN general, the point of AD is to modularize the software system so software can be plugged into an IOC.
5. The use of inheritance to extend functions of modules.

6. Easy creation of parameter lists, or knobs that EPICS client can set and read back.

7. Parameter lists in derived classes automatically are added to the parameter lists of base classes. Example, to add some function to a coreco frame grabber module, one can derive the class, and add a few parameters. The coreco parameters, as well as base AD parameters will still be present.

8. Parameters compatible with Area Detector base parameters.

9. Hide complex epics callbacks, functions etc, in a base class, so programmer can develop a new detector interface without being a great EPICS programmer.

10. Only 1 file needs to be written to add a serial download scheme for a new detector.

11. Any number of modules can be instantiated for odd applications.

Design Overview
The class layout of the coreco AD driver is shown below.

[image: image2]
Firstly, though the Coreco grabber has a Vendor API for grabber functions, it has no API for detector serial setup functions. The Coreco AD implementation creates a Vendor API layer shown in the Rivers documentation above.
The basic design of AD is that we make our own special ADDriver derived class, call it madSim. AD is designed to call some Vendor API from within madSim. The Coreco card has an API for only the grabber functions, but none for the serial functions. For this reason, the class genCAmController was created: to create a Vendor API for a Coreco based detector. genCamController was designed to be compatible with AD, and to look like AD, so the programmer need not learn a whole new set of functions. When a new detector is programmed to work with Cpreco ad Area Detector, the programmer will not touch madSim:ADDriver. Instead, the programmer will create a class such as
Class mySerial: public genCamController. The programmer will fill in a function mySerial::main() to check parameter changes, send and receive from the serial port, and send changed parameters up to EPICS.

This design is different from other AD drivers because Coreco has no real Vendor API layer. There is a Vendor API for grabber functions, but not for serial functions. Therefore the programmer is filling in the Vendor API rather then ADDriver. To allow a programmer who is used to ADDriver make a Coreco based driver, the class genCamController, the parent class of mySerial, has functiosn that look nearly identical to those in ADDriver. In this way, a programmer familiar with ADDriver can easily write the driver for the Coreco based detector. Also, parameters in ADDriver such as ADExposePeriod etc are identical in genCamController derived classes, so the programmer need not learn new parameter enumerations.

Comparison of writing ADDriver to write genCamController

Writing ADDriver

Generally when making a new AD detector, one fills in functions in a class derived from ADDriver. There are two programming structures.

1. Filling in writeInt32, etc. Example: marCCD::writeInt32
2. Filling in a task function. Example: marCCD::marCCDTask()
The main difference is that when filling in writeInt32, or double, or string etc, the function sets the parameter then has a case structure. The function should return quickly. Example:

asynStatus marCCD::writeInt32(asynUser *pasynUser, epicsInt32 value)

{

 int function = pasynUser->reason;

// set the parameter in the param list

 status = setIntegerParam(function, value);

 switch (function) {

 case ADAcquire:

// tell the mar detector to acquire…
 case ADBinX:

// tell mar to set the bin rate…

…

When the detector requires a separate thread, such as the mar 165, the programming structure is exemplified in marCCD::marCCDTask(). IN this structure, the task is an infinite loop that checks parameters and acts upon them. Example:

void marCCD::marCCDTask()

{

 int acquire;

 /* Loop forever */

 while (1) {

 /* Is acquisition active? */

 getIntegerParam(ADAcquire, &acquire);

 /* If we are not acquiring then wait for a semaphore that is given when acquisition is started */

 if (!acquire) {

 //if not acquigin do this…

}

else

{

}

setIntegerParam(ADAcquire,0);

// tell epics that we updated params in the loop..

 callParamCallbacks();

…

Note that in the infinite loop, we check a parameter and act upon it. If the loop changes the parameter it must call callParamCallbacks() to reflect the change in the EPIUCS PV.
The list of functions for using parameters is defined in asyn/miscelsnous/asynPortDriver.h. The functions are listed below:

 virtual asynStatus setIntegerParam(int index, int value);

 virtual asynStatus setIntegerParam(int list, int index, int value);

 virtual asynStatus setDoubleParam(int index, double value);

 virtual asynStatus setDoubleParam(int list, int index, double value);

 virtual asynStatus setStringParam(int index, const char *value);

 virtual asynStatus setStringParam(int list, int index, const char *value);

 virtual asynStatus getIntegerParam(int index, int * value);

 virtual asynStatus getIntegerParam(int list, int index, int * value);

 virtual asynStatus getDoubleParam(int index, double * value);

 virtual asynStatus getDoubleParam(int list, int index, double * value);

 virtual asynStatus getStringParam(int index, int maxChars, char *value);

 virtual asynStatus getStringParam(int list, int index, int maxChars, char *value);

 virtual asynStatus callParamCallbacks();

Writing genCamController

When using the coreco software, to allow for the creation of separate objects for serial and grabbing, and to allow for a Vendor API layer, needed especially for custom detectors, the functions of ADDriver are abstracted to a lower layer of code. Therefore instead of filling in ADDriver, an object derived from genCamController is filled in. Again there are two ways of filling in genCAmController:

1. Filling in writeInt32 etc…

2. Filling in a task function.

genCamController has functions :

genCamController::writeInt32(), String, Double(). The same code can be filled in as in ADDriver development.

// NOT WORKING YET..

The second method, filling in a task, is preferred because the serial download, and grabbing of images require a separate thread. For this readon, only this method should be used. The structure is similar to ADDriver, the mar CCD driver. There are added helper functions.

The is_changed flag.

Specifically, a flag is added to signify a parameter is changed. The reason for this can be shown by example. Say the user sets ADAcquire to 1. The detector driver will then download something to the detector to start acquision. The problem is how to prevent download the same data over an over as long as ADAcquire =1. To solve this problem, when ADACquire is set to 1, a is_changed flag is set. In this way, the driver can sense when ADAcquire is FIRST changed to 1, and only download to the detector once.
When a param is set, a flag signifying that the param was changed is also set.

getIsChanged(int index)

clearChanges(int index)

clearChanges() // clears changes of all params

Example:
int dalsa1M60Serial::main(int arg)

{

......
......

// Infinite loop here- it can be stopped by setting param

//is_running

while (getIntParam(is_running))

{

// genCamController style calls

if (getIsChanged(ADAcquire))

if (getIntParam(ADAcquire)==1)

{

clearChanges(ADAcquire);

// tell detector to do someting

.....

// use asyn style calls work too…

int acquire;

getIntegerParam(ADAcquire,&acquire) ;

if (acquire ==1)

{

}

setDoubleParam(ADGain,0.0);

// tell EPICS that param changed. It calls

//genCamController::callbackFunction, that calls back the IOC.

callParamCallbacks();
// this is another way to tell epics param changed

callbackFunction(general, this);
The list of functions for dealing with parameters in genCamController is defined in putGetParameters.h

// Download serial stream to camera.

// versions that look like asynPortDriver- asyn/misc/asynPortDriver.h

virtual int setIntegerParam(int index, int value);

virtual int getIntegerParam(int index, int * value);

virtual int putIntParam(const int index, const int value);

virtual int getIntParam(const int index, int &value);

virtual int getIntParam(const int index);

virtual int putBoolParam(const int index, const bool value);

virtual int getBoolParam(const int index, bool &value);

virtual bool getBoolParam(const int index);

virtual int putFloatParam(const int index, const float value);

virtual int getFloatParam(const int index, float &value);

virtual float getFloatParam(const int index);

// asynPortDriver version...

 virtual int setDoubleParam(int index, double value);

virtual int getDoubleParam(int index, double * value);

// newer functions...

virtual int putDoubleParam(const int index, const double value);

virtual int getDoubleParam(const int index, double &value);

virtual double getDoubleParam(const int index);

virtual int putPtrParam(const int index, const void* value);

virtual int getPtrParam(const int index, void* &value);

virtual void* getPtrParam(const int index);

virtual int setStringParam(int index, const char *value);

virtual int getStringParam(int index, int maxChars, char *value);

virtual int putStringParam(const int index, const char* value);

virtual int getStringParam(const int index, const char* value);

virtual char* getStringParam(const int index);

virtual int getParamType(const int index);

virtual int getNumParameters(void) {return 0;};

/*

 * The idea here is that if we set a parameter, say, detector_gain, then some software

 * must know that it must iupdate the gain on the detector. So it looks in the flags for

 * any parameters that were put. After iuopdateding the detector, the software calls

 * clearChanges.

 */

// if we put a param, it flags that that param is changed.

virtual void putIsChanged(const int index);

// return true of param X is changed.

virtual bool getIsChanged(const int index);

// clears all flags that params changed.

virtual int clearChanges(void);

virtual int clearChanges(const int index);

// if any params changed, return true

virtual bool getIsAnyChanges(void);

Note that there exist functions corresponding to the asyn calls, as well as added functions.

Features of the Coreco Vendor API:

The grabber and serial features are in separate classes. This ensures that when a new detector is added to the coreco card driver, the grabber functions need not be touched. Only a new Serial class need be made. When a programmer adds a new detector, he or she will fill in functions in the Serial class, not the ADDriver class. This is a result of a compromise:
1. We wish to separate serial from grabber functions, so grabber functions remain static when new serial code is added.
2. We wish to make a detector with two separate interfaces, serial, and grabber, fit into Area Detector which is designed for a single Vendor API. We effectively invent a Vendor API layer to fit into the design pattern set forth by Area Detector.
Because Coreco detectors really have no Vendor API (no “takePicture” function”) genCamComtroller provides this. In this way, the Coreco can fit into the model of Area Detector.

Because the coreco detector drivers in Area Detector are different in design structure, the programmer is required to lean the function calls in genCamController. As a compromise, all of the function calls in genCamController look like those in ADDriver. All parameter names and their associated values match those in ADDriver. In this way, the programmer need not learn a whole new set of function calls. The downside is that it may get confusing.

To make a Coreco driver the programmer must:

1. Make and fill in a Serial class.

2. Build the Coreco DLL, with genCamController and grabber code separate from Area Detector, EPICS. It builds as a DLL in Visual C++. No EPICs , asyn or AD libraries necessary. It is pure C++.

3. Make the st.cmd file for the IOC.

The IOC, ADDriver class, Madsim need not be touched or compiled. To make ADDriver load in your compiled DLL, write in your st.cmd file:

setDLLName myNewDetector.dll

madSimConfig(…)

In this way, the UIOC will start up the ADDriver and load in your library.

What is in MadSim

When adding a new detector you need not read this. This is just background information. Skip down to Adding a new CorecoDetector

MAdSum Constructor

The Madsim constructor does the following:

1. loads in correct DLL for coreco area detector.

2. creates grabber and serial objects, and stores pointers in an array.

3. passes pointer of callback to the coreco objects, so they can return images and parameters to EPICS.

MadSim parameter changes

Madsim overrides get/set String, Int, and Double param. These function stake params from the param list in ADDriver, and copy them to the param list in the coreco (genCamController) objects. When params change in the detector, the madSim callback will copy the changed params from the detector (ganCamComtroller) to the ADDriver param list, then callback epics to set the PVs.

MadSim param list

The genCamControllers have a singleton param list. This list is separate from the MadSim Param list. When MadSim starts up, it asks the genCamController fir its list, then makes its param list in ADDriver from the contents from GenCamContgrooller. IN this way, the programmer can haver a separate list in the grabber code, a separate list in ghe serial code. The ADDriver Madsim will make its own list from the lists in the coreco objects.

MadSim callback

The callback provides all services that IOCs need to provide such as:

1. Creating an EPICSThread.

2. Sleepiong, Suspending, Resumiong EPICSThread

3. callback to setParameters in Asyn chain.

4. copies changed params from genCamCointroller objects into the ADDriuver param list.

5. callback for new Image- to send it oup to epics.

6. get new NDArray memory for new image.
When genCamController, (your serial or grabber obect) needs anything from epics, like epicsSleep, or image or param callbeck, it has a pointer to the madSium callback function. It calls it, guves an enumeration for what it wants (ie. New ghread, sleep , param change).

What is in genCamController

genCamController defines the Vendor API laywer of the Coreco card abd serial port. It looks like ADDriver, and uses the same enum names.

1. Object Maker Function

2. Param Lists defined in objects derived from genCamController. List is singleton so all objhects share the list.

3. String List, to associate string with each param.

4. Pointers to all lists in the obhects created.

5. Function s to allow madSim ADDriver get the param lists and controct the ADDriver PAram lists.

6. Functions to allow inheritance from genCamContgroller objects. If you wish to add new grabber functions, lioke calibration or filesaving, yhou inherit from coreco.h. Then you add new params to the list for yiour new functions. These params are added to those already in coreco.h. No need to redefine all params.

7. put/ get param functions.

8. Functions to sunchronize serial objhect with grabber obhect. The serial object always has a poiunter top the grabber object.

9. main()- wach genCamCiontrlleer runs on its own thread. gemCamController::main() is the engry point.

10. constructor()

11. redefinition of all Area Detector parameters (genCamControllerEnums.h). This allows a sepetare non-epics detecotor to use params compatible with EPICS Area Detectgor. Why- the detector may run with or without AD with no code rewrite. When AD is upgraded, genCamControllerEnums must be updated.

12. Pointers back to the calling client- madSim ADDriver. genCamController muyst run callbacks to tell epics of new images, pass altered params to EPICS.

Why make it a separate list?

We have two versions of the Coreco Area Detecotor driver:

1. Full API, and seoperate DLL version for custom detectors. Use the MadSim to load the DLL and run the detector. Allows detector to run non-epics, or with Area Detector with no rewrite of code, or rebuilding of anything. New detector development does not require revuild of MAdSim IOC.

2. Static buid: genCamController uses the list in ADDriver. The list is defined in coreco.h,m and the user seriual port code. The data is stored in the ADDriver list, so there is no copying of params from Vendor API layer to ADDriver layer. NOT WORKNG YET!!!

How a parameter is sent from EPICS to detector

1. PV is changed in EPICS land

2. IOC calls ADDriver::putXXXParam(myParam)

3. MADSim::PutXXXParm(myParam) calls *myGenCamController->putXXXParam(myParam) and copues the param value from ADDriver list to Serial object list.

The serial object has its own thread running serialObject::main(). In that loop, there is code such as:

If (getChanged(myParam))

{

// download something to detector on serial port

serialDownLoad(getIntparam(myParam));

clearChanges(myParam)

}

How a parameter is sent from detector to EPICS

In serial->main() we have a structuire such as

 putIntParam(myParam,1);

main() shoud call

callbackFunction(general,this) at end of its loop. See source code.

In madSim::callback() we have a structure

Case reason:

Etc.etc

General:

// we rad p[arams in serial->getXXXParam (), then put into ADDriver param list.

copyParamsFromSerialToADDriverList()

Break

How it works- simple version:

A detector module runs on its own thread in a function called my-module->main(). The programmer will fill in the main() function to implement a detector. A set of parameters, defined by enumerations are tweaked by EPICS. The main() function will read these parameters to see if anything was tweaked by EPICS, and take any action necessary, such as downloading serial data to the detector. The main() function will then tweak parameters and EPICS will respond to any changes.
The steps for addinga new detector are as follows:

1. Make a parameter list. This is necessary of the base parameters of AD are not sufficient. For example, CCD cameras have a bias level to set, and AD has no parameter for that.

2. Fill in the main() function. For Coreco based detectors, generally one will implement serial download functions.

3. Fill in a global function, makeControllerObjects() to instantiate the objects. EPICS will call this global function.

4. Make a dbd file so EPICS PVs will be present to point to any new parameters you add.

5. Make any medm screens you want to make

6. Make and Go.

What the files do:
genCamController.h

This code is the parent class of the coreco frame grabber and your serial code. It handles getting and setting parameters, callbacks to epics. It initializes the parameters the Area Detector needs to operate. It serves as the primary API for the detector. The main functions in the API are setXXX() and getXXX() where XXX stands for Int, String, Double, or whatever type parameter is needed.

Your code will run on its own thread, started up the the IOC. Your code will be an infinite loop, main() in yoru class. Put most of the code in oneLoop() and leave main() alone.

putGetParams.h

handles lists of parameters. All parameters are in one large list for coreco grabber and in serial code.
Coreco.h

Wrapper class for Sapera++ driver calls.

corecoCam

genCamController derived class. Runs on its own thread, has its own params, EPICS can get and set these params. Deals with grabbing images and sending them to IOC. Loads up CCF files to coreco.

Exe

Needed for gencamcontorller

Image_file, tifflib

Optional class for saving files. Can read and write tiff or raw binary

Used by corecoCam for debugging or for saving files direcly from driver.

Image_ram

Manages image in memory. Has many methods for operating on images. Eventually this will be replaced with NDArray from Area Detector

Ccd_exception

Simple class for handling errors. This is thrown on error condition. Has a string to store error message.

Log_file

Text file writer that addes time and date to messages. For logging detector operation.

Cl_com_port

Wrapper for serial port. Uses windows CreateFile API. Also has wait() function for wating for things.

starterSerial

derived from genCamController class. Class for dealing with serial transactions with detector. You will edit this for your specific detector.

genCamControllerEnums

AREA detector compatibliuty paoram definition.

On Parameters
Lists of params

String ass.

EPICS use string

IOC has own copuy, and copies genCam to its own list in AD asyn.

Important params- first_serial etc…
1024 paerams max

Main paerts of starterSerial.h
Main Parts of starterSerioal.cpp

//#include "stdafx.h"

#include "FCCDSerial.h"

#include "corecoCam.h"

#include <stdio.h>

using namespace genCamControllerEnum;

int_string FCCDSerial::paramStrs[] = {

{

is_running ,

"w_is_running"},

{

log_file_ptr,

"w_log_file_ptr"},

{

is_log,

"w_is_log"},

{

serial_callback,
"w_serial_callback"},
……..

Wach param enum gets a string associated with it. EPICS uses the string to find the param. When IOC boots it gets the list of strings and params from your oject. This is done in the IOC AD code and in genCamContgroller.cpp. In EPICSAPSYN we ass. The string with the PV. So we set a PV, the IOC knows the string, then it finds the asyn driver, then finds your object and sets the correct param.
The cpp will have def of the class

Also has 2 blobal functions:

void makeControllerObjects(

int *num_objects,

genCamController *objs[],

void *callback_func,

void **img_data_ptr);
{

objs[0]= new corecoCam();

objs[0]->putPtrParam(corecoCam::corecoCam_callback,callback_func);

objs[1] =new FCCDSerial();

// tell serial code where coreco stuff is..

objs[1] ->putPtrParam(FCCDSerial::coreco_control_ptr,(void *)objs[0]);

//set the callback, so we can get back to EPICS or whatever client is running..

objs[1]->putPtrParam(FCCDSerial::serial_callback,callback_func);

if (*img_data_ptr==0)

*img_data_ptr=objs[0]->getPtrParam(genCamControllerEnum::image_mem_ptr);

else

objs[0]->putPtrParam(genCamControllerEnum::image_mem_ptr,*img_data_ptr);

*num_objects = 2;

}

And

BOOL APIENTRY DllMain(HANDLE hModule,

 DWORD ul_reason_for_call,

 LPVOID lpReserved

)

{

switch (ul_reason_for_call)

{

case DLL_PROCESS_ATTACH:

case DLL_THREAD_ATTACH:

case DLL_THREAD_DETACH:

case DLL_PROCESS_DETACH:

break;

}

 return TRUE;

}
getIsChanged

clearChanges

general callback

When sync with coreco card:

coreco->preWait(corecoCam::is_loadccf);

coreco->putIntParam(corecoCam::is_loadccf,1);

coreco->waitDone(20000);
Confuguring the compiuler

Tell where lib and include are on your computer for coreco libraries

Define USE_SAP
enCamController

include these

genCamController

putGetParams

exe

corecoCam

coreco or corecoFPGA

image_ram

genCamContaollerEnums

Defines all params to interface with Area Detector

Optional

Image_file

Tifflib

Vendor API

Class coreco: public genCamController

Class Serial: public genCamController

Class madsim: public ADDriver

Vendor API

Class coreco: public genCamController

Class Serial: public genCamController

Class madsim: public ADDriver

