I'm studying Image Processing on the famous Gonzales "Digital Image Processing" and talking about image restoration a lot of examples are done with computergenerated noise (gaussian, salt and pepper, etc). In MATLAB there are some builtin functions to do it. What about OpenCV?
As far as I know there are no convenient built in functions like in Matlab. But with only a few lines of code you can create those images yourself.
For example additive gaussian noise:
Mat gaussian_noise = img.clone();
randn(gaussian_noise,128,30);
Salt and pepper noise:
Mat saltpepper_noise = Mat::zeros(img.rows, img.cols,CV_8U);
randu(saltpepper_noise,0,255);
Mat black = saltpepper_noise < 30;
Mat white = saltpepper_noise > 225;
Mat saltpepper_img = img.clone();
saltpepper_img.setTo(255,white);
saltpepper_img.setTo(0,black);
There is function random_noise()
from the scikitimage package. It has several builtin noise patterns, such as gaussian
, s&p
(for salt and pepper noise), possion
and speckle
.
Below I show an example of how to use this method
from PIL import Image
import numpy as np
from skimage.util import random_noise
im = Image.open("test.jpg")
# convert PIL Image to ndarray
im_arr = np.asarray(im)
# random_noise() method will convert image in [0, 255] to [0, 1.0],
# inherently it use np.random.normal() to create normal distribution
# and adds the generated noised back to image
noise_img = random_noise(im_arr, mode='gaussian', var=0.05**2)
noise_img = (255*noise_img).astype(np.uint8)
img = Image.fromarray(noise_img)
img.show()
There is also a package called imgaug which are dedicated to augment images in various ways. It provides gaussian, poissan and salt&pepper noise augmenter. Here is how you can use it to add noise to image:
from PIL import Image
import numpy as np
from imgaug import augmenters as iaa
def main():
im = Image.open("bg_img.jpg")
im_arr = np.asarray(im)
# gaussian noise
# aug = iaa.AdditiveGaussianNoise(loc=0, scale=0.1*255)
# poisson noise
# aug = iaa.AdditivePoissonNoise(lam=10.0, per_channel=True)
# salt and pepper noise
aug = iaa.SaltAndPepper(p=0.05)
im_arr = aug.augment_image(im_arr)
im = Image.fromarray(im_arr).convert('RGB')
im.show()
if __name__ == "__main__":
main()
Simple Function to add Gaussian, Saltpepper speckle and poisson noise to an image
Parameters

image : ndarray
Input image data. Will be converted to float.
mode : str
One of the following strings, selecting the type of noise to add:
'gauss' Gaussiandistributed additive noise.
'poisson' Poissondistributed noise generated from the data.
's&p' Replaces random pixels with 0 or 1.
'speckle' Multiplicative noise using out = image + n*image,where
n,is uniform noise with specified mean & variance.
import numpy as np
import os
import cv2
def noisy(noise_typ,image):
if noise_typ == "gauss":
row,col,ch= image.shape
mean = 0
#var = 0.1
#sigma = var**0.5
gauss = np.random.normal(mean,1,(row,col,ch))
gauss = gauss.reshape(row,col,ch)
noisy = image + gauss
return noisy
elif noise_typ == "s&p":
row,col,ch = image.shape
s_vs_p = 0.5
amount = 0.004
out = image
# Salt mode
num_salt = np.ceil(amount * image.size * s_vs_p)
coords = [np.random.randint(0, i  1, int(num_salt))
for i in image.shape]
out[coords] = 1
# Pepper mode
num_pepper = np.ceil(amount* image.size * (1.  s_vs_p))
coords = [np.random.randint(0, i  1, int(num_pepper))
for i in image.shape]
out[coords] = 0
return out
elif noise_typ == "poisson":
vals = len(np.unique(image))
vals = 2 ** np.ceil(np.log2(vals))
noisy = np.random.poisson(image * vals) / float(vals)
return noisy
elif noise_typ =="speckle":
row,col,ch = image.shape
gauss = np.random.randn(row,col,ch)
gauss = gauss.reshape(row,col,ch)
noisy = image + image * gauss
return noisy

When I use the gaussian type my image becomes all white. I'm doing something like that: image = cv2.imread(fn) noise_gauss = noisy("gauss", image) cv2.imshow("gauss", noise_gauss). It seems the generated noise is not of the same type and the addition causes some weird transformation– LxuOct 30 '15 at 18:50


2@Lxu I believe this is because the numpy array type turned to
float64
. Just writenoise_gauss = noise_gauss.astype('uint8')
before you pass it to thecv2.imshow
Nov 5 '17 at 5:20 
@Lux Make sure you scaled the image pixel values to 0 to 1 by divide the image by 255 Nov 11 at 0:51
"Salt & Pepper" noise can be added in a quite simple fashion using NumPy matrix operations.
def add_salt_and_pepper(gb, prob):
'''Adds "Salt & Pepper" noise to an image.
gb: should be onechannel image with pixels in [0, 1] range
prob: probability (threshold) that controls level of noise'''
rnd = np.random.rand(gb.shape[0], gb.shape[1])
noisy = gb.copy()
noisy[rnd < prob] = 0
noisy[rnd > 1  prob] = 1
return noisy
# Adding noise to the image
import cv2
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
img = cv2.imread('./fruit.png',0)
im = np.zeros(img.shape, np.uint8) # do not use original image it overwrites the image
mean = 0
sigma = 10
cv2.randn(im,mean,sigma) # create the random distribution
Fruit_Noise = cv2.add(img, im) # add the noise to the original image
plt.imshow(Fruit_Noise, cmap='gray')
The values of mean and sigma can be altered to bring about a specific change in noise like gaussian or peppersalt noise etc. You can use either randn or randu according to the need. Have a look at the documentation: https://docs.opencv.org/2.4/modules/core/doc/operations_on_arrays.html#cv2.randu

Your code really does the job, but only in one channel. You need mean/sigma to be a tuple of values like: sigma = (10, 10, 10)– ErsainFeb 9 '20 at 7:41
http://scikitimage.org/docs/dev/api/skimage.util.html#skimage.util.random_noise
skimage.util.random_noise(image, mode='gaussian', seed=None, clip=True, **kwargs)

Actually it is bad style to have most of the question in an URL (that might vanish), so please do not repeat that for the answer! Try to write the essential solution in the input box, and use code formatting to, well, format code.– U. WindlMar 15 '19 at 0:49
I made some change of @Shubham Pachori 's code. When reading a image into numpy arrary, the default dtype is uint8, which can cause wrapping when adding noise onto the image.
import numpy as np
from PIL import Image
"""
image: read through PIL.Image.open('path')
sigma: variance of gaussian noise
factor: the bigger this value is, the more noisy is the poisson_noised image
##IMPORTANT: when reading a image into numpy arrary, the default dtype is uint8,
which can cause wrapping when adding noise onto the image.
E.g, example = np.array([128,240,255], dtype='uint8')
example + 50 = np.array([178,44,49], dtype='uint8')
Transfer np.array to dtype='int16' can solve this problem.
"""
def gaussian_noise(image, sigma):
img = np.array(image)
noise = np.random.randn(img.shape[0], img.shape[1], img.shape[2])
img = img.astype('int16')
img_noise = img + noise * sigma
img_noise = np.clip(img_noise, 0, 255)
img_noise = img_noise.astype('uint8')
return Image.fromarray(img_noise)
def poisson_noise(image, factor):
factor = 1 / factor
img = np.array(image)
img = img.astype('int16')
img_noise = np.random.poisson(img * factor) / float(factor)
np.clip(img_noise, 0, 255, img_noise)
img_noise = img_noise.astype('uint8')
return Image.fromarray(img_noise)
#Adding noise
[m,n]=img.shape
saltpepper_noise=zeros((m, n));
saltpepper_noise=rand(m,n); #creates a uniform random variable from 0 to 1
for i in range(0,m):
for j in range(0,n):
if saltpepper_noise[i,j]<=0.5:
saltpepper_noise[i,j]=0
else:
saltpepper_noise[i,j]=255
although there is no builtin functions like in matlab "imnoise(image,noiseType,NoiseLevel)" but we can easily add required amount random valued impulse noise or salt and pepper into an image manually. 1. to add random valued impulse noise.
import random as r
def addRvinGray(image,n): # add random valued impulse noise in grayscale
'''parameters:
image: type=numpy array. input image in which you want add noise.
n: noise level (in percentage)'''
k=0 # counter variable
ih=image.shape[0]
iw=image.shape[1]
noisypixels=(ih*iw*n)/100 # here we calculate the number of pixels to be altered.
for i in range(ih*iw):
if k<noisypixels:
image[r.randrange(0,ih)][r.randrange(0,iw)]=r.randrange(0,256) #access random pixel in the image gives random intensity (0255)
k+=1
else:
break
return image
 to add salt and pepper noise
def addSaltGray(image,n): #add salt&pepper noise in grayscale image
k=0
salt=True
ih=image.shape[0]
iw=image.shape[1]
noisypixels=(ih*iw*n)/100
for i in range(ih*iw):
if k<noisypixels: #keep track of noise level
if salt==True:
image[r.randrange(0,ih)][r.randrange(0,iw)]=255
salt=False
else:
image[r.randrange(0,ih)][r.randrange(0,iw)]=0
salt=True
k+=1
else:
break
return image
''' Note: for color images: first split image in to three or four channels depending on the input image using opencv function: (B, G, R) = cv2.split(image)
(B, G, R, A) = cv2.split(image)
after spliting perform the same operations on all channels. at the end merge all the channels: merged = cv2.merge([B, G, R]) return merged''' I hope this will help someone.