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A new method of modeling of the current signal induced by charged particle in silicon detectors is

presented. The approach is based on the Ramo–Shockley theorem for which the charge carrier

velocities are determined by taking into account not only the external electric field generated by the

electrodes but also the Coulomb interaction between the electron and hole clouds as well as their

diffusion.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

It is obvious that identification of particles and fragments
produced in nuclear reactions is crucial for any experimental or
technical work in nuclear physics. Among different ways of
identifying charged particles the classical DE�E telescope method
remains still the flagship. Recently, an alternative method based
on the pulse shape discrimination (PSD) technique applied for
silicon detectors is being developed and is increasingly drawing
attention. Recent results demonstrate that the method can offer
charge and isotopic identification comparable to that obtained
with the classical DE�E method. The main advantage of the PSD
method comes from the fact that it requires only one electronic
channel for detection and identification. It is thus an important
point for designing and constructing multi-detector systems.

A significant difference between the DE�E and the PSD
techniques results from the fact that the former is governed
basically by the energy loss process (Bragg curve), while the latter
is primarily related to the plasma delay effect (PDE) [1–8]. In
silicon detectors, this effect manifests itself with shortening of the
pulse rise time with decreasing Z for low and intermediate mass
fragments, for which the generated charge is practically comple-
tely collected by the detector electrodes. The experimental data
demonstrate that the PDE concerns particles with small Z, for
which the pulse height defect (PHD) is still of little importance.

For better understanding of the identification idea associated
with PSD technique, and for its future development, it is crucial
to have at ones command a perfect simulation of the time
ll rights reserved.
dependence of the experimental signal produced by an ion with
a given charge, Z, atomic mass, A, and energy, E. The main goal of
such a simulation is to describe the extraction and collection of
the generated charge carriers moving in the external electric field
distorted due to the presence of a highly ionized track and due to
the diffusion process of the carriers.

As presented in Ref. [9], an approach in which the distortion of
the electric field caused by the generated carriers is neglected and
is able to correctly describe the current signals for light charged
particles (LCP), e.g. protons. However, this simplified approach
completely fails in the case of heavy ions (HI) for which the
collection time of the generated carriers gets longer ðtHI 4tLCPÞ.
Historically, this difference, associated to a slower carrier collec-
tion for HI, was quantified as a plasma delay (PD) effect. Since this
effect influences the current signal rise-time, it appears to be
crucial for the PSD technique.

An attempt to describe phenomenologically the delayed
carrier collection time in silicon detectors has been recently
proposed in Ref. [11]. The proposed description took into account
the polarization of the electron–hole pairs generated by the HI
and connected it to the relative dielectric permittivity. Another
important assumption in cited paper was that the dissociation of
pairs in time occurred with a constant probability and the
modified electric field, inside and outside of the ion range, was
given by the Maxwell equation for the electric field in the
inhomogeneous medium. With these assumptions, the model
was indeed able to describe the experimental pulse shapes quite
accurately.

The presented way of modeling of a current pulse is quasi-
microscopic and in some respect similar to that shown in Ref.
[10]. One of the common features is a concept of clusters used
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instead of individual electrons and holes. In order to describe the
motion of the center of mass of the cluster, we also take into
account the mutual interactions among charge clouds (clusters).
However, in contrast to Ref. [10], our approach does not limit the
evolution of the cluster variance to the diffusion process alone,
but also takes into account the drift in the electric field. Another
important difference is related to the number of clusters con-
sidered and to the assumption of their shape. In our approach we
are not limited to a finite number of clusters and we assume a
continuous distribution of clusters of a Gaussian shape. Assuming
the Gaussian shapes of the clusters we let the diffusion process to
determine their nature.

On the other hand, an infinite number of clusters means that
we are considering a continuous distribution of charge (which is
not quantized). So we can say that in our approach, we describe
the evolution of the distribution of charge density using a super-
position of the Gauss functions.

In summary one can say, the main assumptions of the
presented model are the following:
i.
 Propagation of the electric charges (electrons, holes) generated
in the detector is represented by evolution of the Gaussian
clouds for which the centroids and variances are treated as
independent variables.
ii.
 Position of the centroid of each Gaussian is governed by the
drift process, while its variance undergoes both diffusion and
the drift process.

The first results of the model calculations indicate some attractive
forces effects between the holes and electrons, in a region similar
to that predicted by the phenomenological model of Ref. [11]. In
this region also the electric field shows similar behavior to that
presented in Ref. [11].

The detailed description of the new model is presented in the
following section. The preliminary results of the calculations and
comparison to the experimental data are presented in Section 3.
Conclusions and possible extensions of the model applicability
are given in Section 4.
2. Description of the model

A particle entering the silicon detector is assumed to degrade
its energy according to the Bragg curve which relates the
generated ionization B(x) to the particle position x. We assume
that the X-direction is perpendicular to the detector surface.
In order to describe the initial, local, density of the electrons
reðr,t¼ 0Þ and holes rhðr,t¼ 0Þ we assume that the ionization
is proportional to the energy loss at given position BðxÞ ¼

ð1=wÞðdE=dxÞðxÞ, where w¼3.62 eV is the energy for an electron–
hole pair production and ðdE=dxÞðxÞ is the energy loss at given
position (stopping power) [12]. Just after stopping of the imping-
ing ion, the carrier density can be described as

reðr,t¼ 0Þ ¼�rhðr,t¼ 0Þ ¼�

Z
Bðx0Þdðx�x0ÞdðyÞdðzÞ dx0 ð1Þ

where r¼ ½x,y,z�. This assumption states that for t¼0 the ioniza-
tion is localized along the X-axis only and disappears elsewhere.

In order to describe the time evolution of the generated
ionization we assume its distribution in the following form:

reðr,tÞ ¼

Z
Beðx

0,tÞGeðx�x0,y,z,tÞ dx0 ð2Þ

rhðr,tÞ ¼

Z
Bhðx

0,tÞGhðx�x0,y,z,tÞ dx0 ð3Þ
which is analog to Eq. (1) and we set

�Beðx,t¼ 0Þ ¼ Bhðx,t¼ 0Þ ¼ BðxÞ ð4Þ

Functions Ge and Gh are assumed to be Gaussians

Geðx�x0,y,z,tÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞ3
q

s3
e ðx,tÞ

exp �
ðx�x0Þ2þy2þz2

2s2
e ðx,tÞ

 !
ð5Þ

and

Ghðx�x0,y,z,tÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞ3
q

s3
hðx,tÞ

exp �
ðx�x0Þ2þy2þz2

2s2
hðx,tÞ

 !
: ð6Þ

If se-0 and sh-0 for t-0 then the functions Ge and Gh can be
regarded as representations of the d function, thus

Geðx�x0,y,z,t¼ 0Þ ¼ Ghðx�x0,y,z,t¼ 0Þ ¼ dðx�x0ÞdðyÞdðzÞ dx: ð7Þ

Now, the goal is to describe the time evolution of the functions Be,
Bh and Ge, Gh (for determination of Ge, Gh it is sufficient to derive
the time evolution of their variances s2

e and s2
h). In order to do

it we define the one-dimensional densities associated with the
variable x as

Zeðx,tÞ ¼

Z 1
�1

dy

Z 1
�1

dz reðr,tÞ ð8Þ

Zhðx,tÞ ¼

Z 1
�1

dy

Z 1
�1

dz rhðr,tÞ ð9Þ

and we divide the thickness of the detector dSi into N intervals
Dx¼ dSi=N. Let us assume that in the interval Dxi (i¼ 1,N)
the associated values of sei and shi do not change substantially
within the radius of a few sigma around Dxi, and that a linear
approximation can be used for the functions Beðx0,tÞ and Bhðx

0,tÞ
within Dxi

Beðx
0,tÞ ¼ peiðtÞx

0 þqeiðtÞ ð10Þ

Bhðx
0,tÞ ¼ phiðtÞx

0 þqhiðtÞ ð11Þ

where pei ¼ ðdBeðx¼ xi,tÞÞ=dx and qei ¼ Beðxi,tÞ�peixi, and analogi-
cally phi ¼ ðdBhðx¼ xi,tÞÞ=dx and qhi ¼ Bhðxi,tÞ�phixi, and xi means
the centroid of interval Dxi.

With the above assumption for x dependence, within an
interval Dxi one can approximate the densities

Zeðx,tÞI
Z 1
�1

dx0
Z 1
�1

dy

Z 1
�1

dzðpeiðtÞx
0 þqeiðtÞÞGeðx�x0,y,z,tÞ

¼ peiðtÞxþqeiðtÞ ð12Þ

Zhðx,tÞI
Z 1
�1

dx0
Z 1
�1

dy

Z 1
�1

dzðpeiðtÞx
0 þqeiðtÞÞGhðx�x0,y,z,tÞ

¼ phiðtÞxþqhiðtÞ ð13Þ

which means that, in practice, one can use the same coefficients
for linear expansion of both, the densities Ze, Zh and of the
functions Be, Bh.

We introduce also the xe0ðtÞ and xeN(t) coordinates, which
denote the beginning and end of the Beðx,tÞ distributions for
electrons. Similar coordinates xh0ðtÞ and xhN(t) are introduced for
holes (see right-upper panel in Fig. 2).

2.1. Electric field determination

In order to determine the drift velocity associated with the
centers of Gaussians Ge, Gh we have to calculate the respective
effective electric field acting on the carriers described by above
distributions. Such a field is determined by a static voltage
applied to the detector electrodes and by the Coulomb interaction
between the Gaussian charge clouds. The detector static field at



Fig. 1. Allowing the charge induced by plasma in the detector electrodes. In the

present approximation we consider only the nearest mirror reflections. So the

influence of the charge induced in an electrode positioned at 0 on the detector

electric field acts as a part of the Gaussian localized in position �x with the reverse

charge and with the same variance. Similarly, the charge induced in the second

electrode is represented by a respective Gaussian localized in a symmetric point at

2dSi�x.
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position x, considered from the rear side of the detector (order
n�p from the point of view of the particle entering the detector,
see e.g. Ref. [11]), is given as

EstatðxÞ ¼
2Vdx

d2
Si

þ
V�Vd

dSi
ð14Þ

where the bias voltage V is assumed to be higher than the
depletion voltage Vd which for the bulk concentration of donors
ND and permittivity e¼ ere0 reads as

Vd ¼
q0NDd2

2ere0
ð15Þ

where q0 is the electron charge.
In order to find the modification of the electric field caused by

the generated plasma, let us consider two Gaussians describing
the distribution of the charges Z1, Z2, centered at a relative
distance r12 ¼ 9r01�r029 and characterized by variances s2

1, s2
2,

respectively. The mutual interaction potential of the clouds can
then be expressed in the form which can be often found in
quantum molecular dynamics calculations (see e.g. Ref. [13])

vðr01, r02, s1, s2Þ ¼
e2Z1Z2

ð2ps1s2Þ
3

ZZ exp
�ðr1�r01Þ

2

2s2
1

 !
exp

�ðr2�r02Þ
2

2s2
2

 !

9r1�r29
d3r1 d3r2

¼ e2Z1Z2

erf
r12ffiffiffi
2
p

s

� �
r12

ð16Þ

where s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1þs2
2

q
and in our consideration we take e2 ¼ 1:44�

10�3 eV mm in order to get the electrical field in V=mm.
Let us now assume that the intervals Dxi are small enough to

enable the linear approximation for the charge densities re, rh

and the functions Be, Bh with the use of the coefficients p and q.
For simplicity, we introduce variables p, q in lieu of the pei(t), phi(t)
and qei(t), qhiðtÞ. If we denote the endpoints of the Dxi interval
by c and d then for a Gaussian centered at a point a and
representing the charge Za, its interaction with the charge located
in the interval Dxi ¼ ðc, dÞ given by Eqs. (12) and (13), can be
formulated as

VCða,c,d,p,q,sa,siÞ ¼
e2

e Za

Z d

c
dxðpxþqÞ

erf
9x�a9ffiffiffi

2
p

ss

� �
9x�a9

ð17Þ

where the sa and si above denote the standard deviations of the
Gaussian describing the charge Za and of the Gaussian from the

interval Dxi, respectively, and ss ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

aþs2
i

q
.

The above form allows us to describe the respective effective
electric field Ex acting on the Gaussian located at a point a as

Exða,c,d,p,q,sa,siÞ ¼�
1

Za

@VC

@a
¼�

e2

e

Z d

c
dxðpxþqÞ

@

@a

erf
9x�a9ffiffiffi

2
p

ss

� �
9x�a9

:

ð18Þ

Since @=@a¼�@=@x, the above formula can be expressed as

Exða,c,d,p,q,sa,siÞ ¼
e2

e

Z d

c
dxðpxþqÞ

@

@x

erf
9x�a9ffiffiffi

2
p

ss

� �
9x�a9

¼
e2

e
q

erf
9d�a9ffiffiffi

2
p

ss

� �
9d�a9

�

erf
9c�a9ffiffiffi

2
p

ss

� �
9c�a9

0
BBB@

1
CCCAþe2

e
p

Z d

c
dx x

@

@x

erf
9x�a9ffiffiffi

2
p

ss

� �
9x�a9

:

ð19Þ
After integrating by parts one obtains

Ex ¼
e2

e q

erf
9d�a9ffiffiffi

2
p

ss

� �
9d�a9

�

erf
9c�a9ffiffiffi

2
p

ss

� �
9c�a9

0
BBB@

1
CCCA

þ
e2

e d

erf
9d�a9ffiffiffi

2
p

ss

� �
9d�a9

�c

erf
9c�a9ffiffiffi

2
p

ss

� �
9c�a9

0
BBB@

1
CCCAþ�e2

e p

Z d

c
dx

erf
9x�a9ffiffiffi

2
p

ss

� �
9x�a9

:

ð20Þ

The last integral can be easily evaluated by expanding the error
function.

The total effective electric field modified due to the presence of
plasma can be obtained by summing up contributions of charges
located in all intervals ðci,diÞ and of their mirror charges induced
in the detector electrodes (see Fig. 1).

In order to determine the time evolution of the charge
distribution one has to know, in addition, the generalized force
associated with the sa variable. Similarly as for the effective
electric field, the net value of the force acting in the sa direction
can be obtained by summing over all ingredients associated with
the charge distribution. This leads to the following expression for
the interaction with the charge located in the Dxi interval:

Fsa ,a,cd ¼�
@VC

@sa
¼�

e2

e Za

Z d

c
dx pxþqð Þ

@

@sa

erf
9x�a9ffiffiffi

2
p

ss

� �
9x�a9

¼�Za
e2psaffiffiffiffi
p
2

r
ess

exp �
ða�dÞ2

2s2
s

 !
� exp �

ða�cÞ2

2s2
s

 ! !

þZa
e2saðapþqÞ

es2
s

erf
ða�dÞffiffiffi

2
p

ss

� �
�erf

ða�cÞffiffiffi
2
p

ss

� �� �
: ð21Þ

Now we are in a position to calculate the time evolution of the
charge generated in the detector. This process is determined by
the drift and by the diffusion of the interacting clouds of electrons
and holes. We will consider the evolution of the centroids and of
the variances of Gaussians representing a fraction of the charge
distribution located in the middle of the intervals Dxi and at the
start- and end-points of the distributions of electrons and holes
(points xe0ðtÞ, xeN(t) and xh0ðtÞ, xhN(t)) .

2.2. Evolution of the function B

In the present subsection we will describe the numerical
method used to determine the time evolution of the ionization
clouds. In the following we assume that the evolution of the
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functions Be, Bh is determined by the time evolutions of the
coefficients pei, qei and phi, qhi. In order to find how the expansion
coefficients pei, qei and phi , qhi propagate in time, we have to
investigate the time evolution of the functions Zeðx,tÞ and Zhðx,tÞ
when the drift velocity of electrons and holes at the point x are,
respectively, vxeðx,tÞ and vxhðx,tÞ.

Below we consider the formulas for electrons only, keeping in
mind that the formulas for holes are analogical.

As we will show later

@

@t
Zeðx,tÞ ¼�

@

@x
ðZeðx,tÞvxeðx,tÞÞ ð22Þ

thus, the differential dZeðx,tÞ can be written as

dZeðx,tÞ ¼ � vxeiðx,tÞ
@

@x
Zeðx,tÞþZeðx,tÞ

@

@x
vxeðx,tÞ

� �
dt: ð23Þ

If the xi denotes the center of the interval Dxi and qei and pei are
the coefficients of linear expansion

Zeðx,tÞ ¼ peiðtÞðx�xiÞþqei ð24Þ

and, if one denotes the average velocity and the average linear
density associated with the interval Dxi by vxei(t) and ZxeiðtÞ,
respectively, then

dZeiðtÞ ¼�ðvxeiðtÞpeiðtÞþZeiðtÞjxeiðtÞÞ dt: ð25Þ

Here, jxeiðtÞ is the differential coefficient of vxeiðx,tÞ at the point xi.
As one can see, in order to calculate the above increment, we have
to trace the time dependent tables of ZeiðtÞ, vxei(t). The tables of
pei(t), qei(t) and jxeiðtÞ are obtained by fitting the smooth curves to
the distributions ZeiðtÞ, vxei(t) in every time step. For t¼0 the
Zeiðt¼ 0Þ is given by the Bragg curve. In order to make use of the
formula (25) we need to construct the respective tables for
velocities. Knowing the effective electric field for electrons in
the x direction, Exei, one can assume that the respective average
velocity of the center of Gaussian located at a point xi is
proportional to the strength of the field

vxei ¼ mxeExei ð26Þ

where mxe and mxh are the electron and hole mobilities,
respectively.

Knowing the drift velocity, one can calculate the evolution of
the charge deposited in every interval Dxi including the edge
intervals with variable ends xe0ðtÞ, xeN(t) and xh0ðtÞ, xhN(t).

2.3. Charge propagation in the perpendicular direction

The diffusion and transport processes in the electric field
influence also the widths of the charge distributions located in
every Dxi interval. Extending the above reasoning we can assume
that the velocity, vsei, describing the rate of the standard devia-
tion expansion in perpendicular direction has three components

vsei ¼ vE
seiþvD

seiþvT
sei: ð27Þ

The first term, vE
sei, results from the field described by Eq. (21).

In analogy to the charge drift in x direction, one can assume that
this component is proportional to the field acting on the charge Za

associated with the Gaussian with a standard deviation sa

Esei ¼
Fsa

Za
ð28Þ

where Fsa is the net force given by interaction (21). Thus, the
respective velocity can be expressed as

vE
sei ¼ mseEsei ð29Þ

where the mse parameter is the only free parameter of the model.
It seems, however, that it can be determined theoretically in the
future. A similar parameter for description of the hole propaga-
tion can be calculated assuming the following proportion:

mse

msh

¼
mxe

mxh

: ð30Þ

The velocity vD
sei follows from the solution of the second Fick’s law

for diffusions of Gaussian density distributions

vD
sei ¼

@sei

@t
jvE

sei
¼ 0,vT

sei
¼ 0 ¼

De

sei
ð31Þ

where De is the diffusion coefficient for electrons.
Another process which affects, on an average, the widths of the

respective Gaussian distributions used to describe the charge
located in the interval Dxi, is related to the transport of the
carriers. In order to describe this process we consider an increase
of the variance, s2, of the Gaussian distribution of the charge of
Z particles contained in an interval Dx, with linear density
ZðxÞ ¼ Z=Dx. Let the

P
r2

i denote the sum of squares of deviations
of particle positions from the average. In this consideration we
neglect the influence of the diffusion and of mutual interactions of
clouds on the propagation of the variance.

The change of s2 �
P

r2
i =Z, resulting from the flow of particles

into and out of the cell Dx (with the net value of dZ) is, in general,
equal to

ds2 ¼
dð
P

r2
i Þ

Z
�
s2ðxÞ dZ

Z
: ð32Þ

As one can see, in order to find the increment ds2 we have to find
the increments dZ and dð

P
r2

i Þ.
Let us begin with the description of dð

P
r2

i Þ. If the accretion of
particles in an interval Dx across the points x1 ¼ x�Dx=2 and
x2 ¼ xþDx=2 is denoted by dZ1 and dZ2, respectively, and the
variances at these points are denoted by s2

1 ¼ s2ðx�Dx=2) and
s2

2 ¼ s2ðxþDx=2), respectively, then the increment of the sumP
r2

i can be determined as

d
X

r2
i

� �
¼ s2

1 dZ1�s2
2 dZ1: ð33Þ

Denoting the velocities of particles at points x1 and x2 by
vðx�Dx=2Þ and vðxþDx=2Þ, respectively, the accretions dZ1 and
dZ2 can be determined as

dZ1 ¼ Zðx�Dx=2Þvðx�Dx=2Þ dt ð34Þ

dZ2 ¼ ZðxþDx=2ÞvðxþDx=2Þ dt: ð35Þ

Now one can calculate the increment dð
P

r2
i Þ as

d
X

r2
i

� �
¼�dt �Dx

�
s2ðxþDx=2ÞZðxþDx=2ÞvðxþDx=2Þ�s2ðx�Dx=2ÞZðx�Dx=2Þvðx�Dx=2Þ

Dx

� �
:

ð36Þ

The expression in square brackets tends to the partial derivate
ð@ðs2ðxÞZðxÞvðxÞÞÞ=@x for Dx-0.

Similarly, the increment dZ ¼ dZ1�dZ2 can be written as

dZ ¼�Dx
ZðxþDx=2ÞvðxþDx=2Þ�Zðx�Dx=2Þvðx�Dx=2Þ

Dx

� �
dt ð37Þ

and again, in the limit of Dx-0 the expression in square brackets
approaches to ð@ðZðxÞvðxÞÞÞ=@x, which has already been used in Ref.
(22).

Taking the above into account, setting Z ¼ ZðxÞDx and taking
the Dx-0 limit, Eq. (32) can be transformed into

ds2ðxÞ ¼
�@ðs2ðxÞZðxÞvðxÞÞ

@x
þ
s2ðxÞ@ðZðxÞvðxÞÞ

@x

� �
dt

ZðxÞ

¼
�vðxÞ@ðs2ðxÞÞ

@x
dt ð38Þ



Table 1
Model Parameters

Feature Symbol Value Remarks

Energy per e–h pair creation w
3.6

eV

pair

� �
Material constant

Silicon dielectric, permittivity er 11.7 Material constant

Electrons mobility mxe
135

mm2

Vns

� �
Material constant

Holes mobility mxh
47.5

mm2

Vns

� �
Material constant

Electrons variance mobility mse
2

mm2

Vns

� �
Free parameter

Holes variance mobility msh msh ¼ mse

mxh Model assumption
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what gives

@s2

@t
¼�v

@s2

@x
)

@s
@t
¼�v

@s
@x
: ð39Þ

Finally for vE
sei ¼ 0 and vD

sei ¼ 0 one can write

vT
sei ¼

@sei

@t

				
vE
sei
¼ 0,vD

sei
¼ 0

¼�vxei
@sei

@x
: ð40Þ

In order to use the above formula we trace the changes of
the vector of sei values as a function of the position index, i.
Knowledge of velocities vE

sei, vD
sei and vT

sei allows to calculate the
propagation of the width of the distribution of electrons. The
formulas for holes are analogical.
mxe

Diffusion coefficient for electrons De
3.49

mm2

ns

� �
Material constant

Diffusion coefficient for holes Dh
1.228

mm2

ns

� �
Material constant
3. First prediction of the model and comparison with the

experimental data

For the first comparison of the model prediction with the
experimental data we choose the data for 12C ion which have
already been used in Ref. [11]. This gives also the opportunity to
compare the present model predictions with those obtained in a
more phenomenological approach. For the measurement the
neutron transmutation doped (n-TD) silicon detector [14] was
used. This n-type bulk and extremely thin p-type zone has a
thickness dSi ¼ 310 mm (resistivity 2:5 kO cm; depletion bias
128 V and operation bias 190 V). The energy measurement was
performed using the charge output, while the current pulses were
measured using the current output of the same preamplifier,
described in Ref. [9] (for acquisition large bandwidth digital
oscilloscope with sensitivity 5 mV/div for incident energy
80 MeV). This paper presents also in detail the experimental
setup and conditions used for the 12C ions (and LCP).

Before describing the induced current pulse, we focus first on
the propagation of the electric field and the propagation of the
electron and hole densities in parallel and perpendicular direc-
tions. The evolution of these observables is important for under-
standing the mechanism of the plasma delay process. In the
following, we consider an 12C ion impinging on the n-type rear
side of the silicon detector. This, so called ‘‘rear-mount’’, gives
quite different shapes as compared to the ‘‘standard mount’’,
and these pulse shapes are much better suited for the PSD
technique [9].

For actual calculations it is necessary to set some physical
coefficients describing the electric field propagation, as well as
coefficients describing the drift and diffusion process in silicon. In
Table 1 we collect values of these parameters:

It should be emphasized that the adoption of a fixed value of
mobility represents a significant approximation. In general, the
electron and holes mobilities depend on the donor and acceptor
concentrations, impurity concentrations, defect concentration and
electron and hole concentrations. It also depends on the tempera-
ture and electric field , and usually is determined empirically.

For small values of the electric field (under 1 kV/cm at
temperature 300 K) mobility remains approximately constant.
With increasing field value it tends to saturation and reaches
maximum value depending on the doping values [15]. In our case
the electric field reaches the value of 6 kV/cm, which suggests
that in the future the mobility needs to be more precisely
determined as a field strength function (and other parameters).
It will be done in the forthcoming paper.

As already mentioned, the electric field propagation results
from the static detector bias and from the generated charge
density propagation. At the starting point, when the generated
electrons and holes are almost exactly at the same positions, the
electric field is still equal to the external one (14). This field, for
t¼0, is denoted in Fig. 2 by a dotted line. After this initial
moment the static field causes the shift of the electron and hole
distributions and therefore in the next moment some of the
carriers are moved outside of the overlap region. Next, the
variance of the Gaussian partial density distribution associated
with these carriers begins to grow, due to the non-compensated
electric field in perpendicular direction. This effect, which is
displayed in Fig. 3, causes breaking of the initial bonds between
the electrons and holes. As a result, the considered electrons and
holes start leaking slowly from the overlap region and begin
moving in opposite directions. At the same time, the increasing
shift between electrons and holes leads to significant reduction
of the electric field in the interaction region. This scenario is well
associated with the postulates of the phenomenological model of
Ref. [11].

The evolution of the charge density, the effective electric field
and the variances of the Gaussian partial densities are presented
in Figs. 2–5 in which the dashed blue lines represent the
dependences for the electrons while the dotted red ones repre-
sent the holes. Fig. 2 shows the evolution of the linear electron
and hole densities. One can see that, during the first 20–30 ns, the
electrons and holes remain bound in the region close to the
detector surface. After that time, one can observe the electric field
restitution practically in the whole detector area. The time
behavior of the electric field is presented in Fig. 3. In order to
save the calculation time, the field is calculated only at points
where the density of the particles is not equal to zero. Fig. 4
presents the evolution of the width of the charge distributions.
We can notice that in the overlap region the effective electric field
is reduced to very low value. As one can see, the evolutions of the
electric field and of the charge densities (in parallel and perpen-
dicular directions) are strongly correlated.

Up to now, the mutual Coulomb interactions between the
charge clouds have been taken into account. In order to see the
importance of these mutual interactions, they have been
neglected in the charge density evolutions presented in Fig 5. As
one can see, in this case (no field screening by the charge clouds),
the collection time becomes about three times shorter.

Knowledge of the charge propagation, by using of the Ramo–
Shockley theorem [16–18], allowed as to determine the current
pulse time dependence. Speed of all charges Qi which can impact
on the induced charge in detector electrodes is required. Accord-
ing to Ramo–Shockle’y theorem thesis, the partial current
induced by moving, electrical charge Qi in the kth electrode is
equal to

ikðQi,vi,wkÞ ¼Qivi �wk ð41Þ



Fig. 2. Propagation of the linear density of the electrons Ze (dashed blue lines) and the holes Zh (dotted red lines) due to the ionization induced by 80 MeV 12C ion entering

the Si detector from the rear side. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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where vector vi is the velocity of charge Qi, and wk is a vector
(weighting field - space constant) which is defined as electrical
field in following conditions:
1.
 All electrical charges are removed from the detector space.

2.
 Potential of kth electrode is set to 1 V and for all other

electrodes the potentials are set to zero.

The total induced current is the sum of all currents involved.
In order to obtain a rough estimate of the pulse shape, we

describe the partial current associated with the Gaussian cloud in
approximate way. For simplification, using Ramo–Shockley theo-
rem, we replace the Gaussian charge distribution by a point-like
one. Such an approach neglects effects associated with the charge
diffuseness, particularly for clouds moving closely to the detector
electrodes.

The result of such a calculation is presented in Fig. 6. The total
current pulse is denoted by black solid line while the electron and
hole contributions are represented by the dashed blue and dotted
red ones, respectively.

For comparison of the calculated pulse with the experimental
one the primary pulses from Fig. 6. have been corrected (see
Ref. [3]) for the preamplifier’s response. The results are shown in
Fig. 7. We have to stress that in the present calculations we did
not search for the best value of the mse parameter. We also did not
consider some quite complicated factors, specified below, which
could affect the obtained results and which will be a subject of the
forthcoming paper:
(i)
 precision of the Energy-Range tables (average accuracy of
about 10%, see Ref. [12]),
(ii)
 diffuseness of the Gaussian clouds and its presence in the
application of the Ramo–Shockley theorem,
(iii)
 dead layers of the detector (in the present case, at low field
region, it might be an n�nþ contact) and their effect on the
converted to the charge energy (as one can see in Fig. 8, for
80 MeV 12C the collection time is very sensitive on the ion
energy),
(iv)
 accuracy of the active detector thickness and of the electric
field determination,
(v)
 accuracy of the preamplifier response description.
According to significant impact of v point on the results,
below we will develop a bit more about it. The charge sensitive
preamplifier, as a FRONT-END electronic system, is directly
coupled to the detector, and participates in the signal reception.
Therefore, the resulting pulse is under strong influence of the
preamplifier parameters, particulary the cutoff frequency o0

(frequency at which the op amp gain is equal to 1, also known
as a unity gain frequency). These parameters are mainly deter-
mined by the parameters of transistors, but they also depend on
the geometry of an electronic circuit (assembly capacitance). The
response of the preamplifier electronics to the input current
pulse (e.g. resulting from the presented calculations) can be
simulated using a dedicated software (for instance, the one
mentioned in Ref. [9]). However, due to the fundamental
importance of the pulse rise time for the particle identification
procedure, we would like to briefly discuss the conditions that
determine the rise time.

The amplifier with closed feedback loop, amplifying a voltage
signal, has the upper bandwidth frequencies given by a well-known



Fig. 3. The effective electric field strength inside the silicon detector at different moments in time, due to the ionization induced by 80 MeV 12C ion penetrating the

detector from the rear side. The solid line gives the undisturbed electric field for t¼0. The field is calculated only at points with coordinate x where the density of electrons

(dashed blue line) and holes (dotted red line) is not equal to zero. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

Fig. 4. Time evolution of the width of the charge distribution which determines

the charge propagation in the perpendicular direction. Standard deviations for

electrons are represented by the dashed blue line and variances for the holes by

the dotted red one. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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formula

oC ¼
o0

Ku
ð42Þ

where Ku is the gain of the amplifier. It is so because, for operational
amplifier, the gain–bandwidth product KuoC is nearly independent
of the gain Ku at which it is measured. Knowing the upper
frequency of this band we can determine the intrinsic preamplifier
rise time as

tpreamp ¼
1

oC
: ð43Þ

For the harmonics signals, the gain Ku can be calculated as
follows:

Ku ¼ 1þ
Zf

Zin
C

CD

Cf
, CDbCf ð44Þ

where Zf is the feedback impedance (in our case it is the impedance
of a small capacity Cf (�1 pF)) and Zin is the impedance connected
to the amplifier input (here it is approximately determined by the
detector capacity CD , we skip the small pre-amp input capacitance
and high resistance of the input, see Fig. 9). Now, the intrinsic
preamplifier rise time is given by the formula

tpreampC
CD

o0Cf
ð45Þ

In the present approximate one can see that the preamplifier
rise time is proportional to the detector capacitance. This is so
because the increase of the detector capacity increases the voltage



Fig. 5. Same as Fig. 2, but neglecting the mutual Coulomb interactions between the carrier clouds. Significant difference in the charge collection time can be observed as

compared to the complete case (see Fig. 2). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Model prediction of the current signal induced by an 80 MeV 12C ion

penetrating the silicon detector from the rear side. The predictions are not

corrected for the preamplifier response. The solid, black line represents the total

signal, the dashed blue line presents the electron contribution while the dotted

red one the hole contribution. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

Fig. 7. Same as Fig. 6 but the respective lines have been corrected for the

preamplifier’s response.
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gain what consequently reduces the bandwidth. The behavior of
the rise time, presented in Ref. [19] in Fig. 2 is qualitatively
consistent with that described above. In the case of high value
of the capacitance CD the total pulse rise time can be determined
by tpreamp. In the case we studied the preamplifier rise time seems
to be a bit longer than 5 ns.

In order to demonstrate that the present model is able to
describe correctly the plasma delay effect. In Fig. 8, we present
the correlation between the collection time and the energy loss
for 10B, 12C, and 14N ions. We use the collection time rather than
the experimentally preferred rise time, noting that these two
observables are strongly correlated. Fig. 8 shows that the model
can reproduce the experimental trends, especially the character-
istic ‘‘back-bending’’ of identification curves at low energies.



Fig. 8. Model prediction for correlations: energy vs collection time.

Fig. 9. Influence of the feedback capacitance and detector capacitance on the

preamplifier rise time. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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4. Conclusions

We have proposed a description of the evolution of charge
density and of the effective electric field by taking into account
the mutual Coulomb interactions between the charge carrier
distributions. According to the present approach the plasma
delay effect is associated with the propagation of the carriers
in both directions, perpendicular and parallel to the primary
ionization path.
The duration of the obtained pulse for the 80 MeV 12C ion,
corresponds quite well to the one obtained in the physical
measurement. Also the shape of the energy-collection time
correlation and its element dependence are quite well reproduced
by the model. Nevertheless, the model still needs to be confronted
with a broader collection of the experimental data obtained for
detectors of various thicknesses and biased by various voltages.

Once tested on a broader collection of the experimental pulse
shapes, the model will enable the theoretical search for the best
identification method based on the pulse shape analysis. It will
also enable the study of the dependence of the identification
quality on the detector thickness and maybe on some special
construction of the detector with non-linear electric field
(obtained by the heterogeneity of doping) for regions with poor
resolution (small ion energy, see Fig. 8). The presented approach
should be also suitable for testing the temperature dependence
(via the respective dependence of the diffusion coefficients).

In order to draw some more quantitative conclusions from the
comparison of the model with the experimental data one has to
estimate the uncertainties related to various possible ingredients,
mentioned in the previous paragraph. Also we have to make
an attempt to constrain the single free parameter mse from the
respective classical consideration.

The actual model calculation is quite time consuming. For
standard processor the calculation of one pulse associated with
the 80 MeV 12C ion, takes about 5 h of CPU, thus some code
optimization is still needed.
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