
Introduction to Geant4

Takashi Sasaki
Professor

Inter University Research Cooperation

High Energy Accelerator Research Organization
(KEK)

Very basic of Geant4

• Geant4 is not Geant version 4, but Geant4 is
our brand name
– Geant4.5.1 stands for Geant4 version 5.1, not

Geant version 4.5.1
– Except G, other letters should be in smaller case

• c.f. GEANT3 (all in upper case letters)
• Originally GEANT stands for GEometry ANd Tracking

– Named by Rune Brun

The design principles

• Ease of obtaining correct results rather then ease of
starting up
– Geant4 is not a mighty black box, but the toolkit
– Even though learning curve might be slow, you have less

chance to use Geant4 as not expected

• Generalize everything for extendablity
• We expect two levels of users

– Application developer
• We support these people

– End users
• Application developers should support them

Why we started Geant4?

• GEANT3 was not sufficient for SSC/LHC
– No design document

• Almost no chance to make an enhancement in users
side

• Long term maintenance is necessary

– Only two or three people in the world could
enhance physics processes or geometry
description (e.g. new solids)

• Still there are many requirements

• GEANT3 was the unique solution to describe
very complicated geometry

Who made Geant4?

• Geant4 collaboration
– Very international

• Still there is a weight in Europe

– GEANT3 developers and users joined the project
• GEANT3 was frozen after Geant4 started

– The collaboration always welcomes people who
wants to contribute for Geant4

• You can be a developer anytime if you have interests

What is MC, anyway?

• Monte Carlo is the method to predict something by
interpolate/extrapolate known
facts/theories/measurements
– We cannot predict anything what we do not know well
– May of physics processes are model dependent because

no theoretical predictions are given

• The results are not guaranteed and users should
validate their results
– Most of physics processes in Geant4 are well validated

• Applicable ranges are different for each processes
• Still there are infinite combinations of them

Pre-Geant4 history
• Prof. Watase invited a professor from US to KEK and we learned a

lot about Object Oriented Technology in 1991 and 1992
• Katsuya Amako and myself started the activity to develop a new

simulation software based on Object Oriented Technology in 1992
– Takaiwa and Kanzaki were together with us at that time

• We have presented our achievement at CHEP94 and Rune Brun
approached us

• CERN and us are agreed to start over the new project as Geant4
• Makoto Asai, the current spoke person of Geant4, insisted that

GEANT3 is enough and he refused to join us at the first time
– He soon learned that how new technologies are powerful
– It was rather nightmare to integrate the FORTRAN program parts

developed by distributed people, but we did not have any major
problem when we made a prototype of Geant4

– OO helped us to save our time

Geant4 v9.3p02

Introduction to Geant4

These slides are provided by
Makoto Asai (SLAC)

Contents

• General introduction and brief
history

• Highlights of user applications

• Geant4 license

• Geant4 kernel

– Basic concepts and kernel
structure

– User classes

Makoto Asai, SLAC(c)

Geant4 v9.3p02

General introduction
and brief history

What is Geant4?
• Geant4 is the successor of GEANT3, the world-standard toolkit for HEP detector

simulation.

• Geant4 is one of the first successful attempt to re-design a major package of HEP

software for the next generation of experiments using an Object-Oriented

environment.

• A variety of requirements have also taken into account from heavy ion physics,

CP violation physics, cosmic ray physics, astrophysics, space science and

medical applications.

• In order to meet such requirements, a large degree of functionality and flexibility

are provided.

• G4 is not only for HEP but goes well beyond that.

Makoto Asai, SLAC(c)

Flexibility of Geant4

• In order to meet wide variety of requirements from various application fields, a

large degree of functionality and flexibility are provided.

• Geant4 has many types of geometrical descriptions to describe most

complicated and realistic geometries

– CSG, BREP and Boolean solids

– Placement, replica, divided, parameterized, reflected and grouped

– XML interface

• Everything is open to the user

– Choice of physics processes/models

– Choice of GUI/Visualization/persistency/histogramming technologies

Makoto Asai, SLAC(c)

Physics in Geant4
• It is rather unrealistic to develop a uniform physics model to cover wide variety of

particles and/or wide energy range.

• Much wider coverage of physics comes from mixture of theory-driven,
parameterized, and empirical formulae. Thanks to polymorphism mechanism,
both cross-sections and models (final state generation) can be combined in
arbitrary manners into one particular process.

• Geant4 offers

– EM processes

– Hadronic processes

– Photon/lepton-hadron processes

– Optical photon processes

– Decay processes

– Shower parameterization

– Event biasing techniques

– And you can plug-in more

Makoto Asai, SLAC(c)

Physics in Geant4

• Each cross-section table or physics model (final state generation) has its own

applicable energy range. Combining more than one tables / models, one physics

process can have enough coverage of energy range for wide variety of

simulation applications.

• Geant4 provides sets of alternative physics models so that the user can freely

choose appropriate models according to the type of his/her application.

– In other words, it is the user’s responsibility to choose reasonable set of

physics processes/models that fits to his/her needs.

– For example, some models are more accurate than others at a sacrifice of

speed.

Makoto Asai, SLAC(c)

Geant4 – Its history
• Dec ’94 - Project start

• Apr ’97 - First alpha release

• Jul ’98 - First beta release

• Dec ’98 - First Geant4 public release - version 1.0

• …

• Dec 19th, ’08 - Geant4 version 9.2 release

– Feb 19th, ’10 - Geant4 9.2-patch03 release

• Dec 18th, ’09 - Geant4 version 9.3 release

– Sep 24th, ’10 - Geant4 9.3-patch02 release

• Dec 17th, ‘10 – Geant4 9.4 release

• Dec ,11 – Geant4 9.5 release

• We currently provide one to three public releases every year.

– Beta releases are also available to the registered beta-testers.

Makoto Asai, SLAC(c)

Geant4 Collaboration

Makoto Asai, SLAC(c)

Collaborators also from non-
member institutions, including

Budker Inst. of Physics
IHEP Protvino

MEPHI Moscow
Pittsburg University

Lebedev

TRIUMF

J.W.Goethe
Universität

Makoto Asai, SLAC(c)

Makoto Asai, SLAC(c)

http://top25.sciencedirect.com/index.php?subject_area_id=21

Makoto Asai, SLAC(c)

http://www.in-cites.com/hotpapers/2004/november04-eng.html

http://www.in-cites.com/hotpapers/2005/jan05-eng.html

http://www.in-cites.com/hotpapers/2005/mar05-eng.html

http://www.in-cites.com/hotpapers/2005/may05-eng.html

http://www.in-cites.com/hotpapers/2005/july05-eng.html

Makoto Asai, SLAC(c)

Geant4 v9.3p02

Geant4 license

The Geant4 License

•Makes clear the user’s wide-
ranging freedom to use,
extend or redistribute Geant4,
even as part of some for-
profit venture.

•The license was released
along with the latest Geant4
release 8.1.

•Simple enough that you can
read and understand it.

In response to user requests for clarification of Geant4’s distribution policy,
the collaboration recently announced a new license.

•http://cern.ch/geant4/license/

Makoto Asai, SLAC(c)

The Geant4 License

Installation, use, reproduction, display, modification and redistribution of this software, with or without
modification, in source and binary forms, are permitted on a non- exclusive basis. Any exercise of rights by
you under this license is subject to the following conditions:

1. Redistributions of this software, in whole or in part, with or without modification, must reproduce the above
copyright notice and these license conditions in this software, the user documentation and any other materials
provided with the redistributed software.

2. The user documentation, if any, included with a redistribution, must include the following notice:
"This product includes software developed by Members of the Geant4 Collaboration (http://cern.ch/geant4)."

If that is where third-party acknowledgments normally appear, this acknowledgment must be reproduced in the
modified version of this software itself.

3. The names "Geant4” and “The Geant4 toolkit” may not be used to endorse or promote software, or products
derived therefrom, except with prior written permission by license@geant4.org. If this software is redistributed
in modified form, the name and reference of the modified version must be clearly distinguishable from that of
this software.

License has 8 points. The points are written clearly and simply.

1,2 and 3) Tell the world who the software came from, and don’t claim you are us.

Makoto Asai, SLAC(c)

The Geant4 License

4. You are under no obligation to provide anyone with any modifications of this software that you may develop,
including but not limited to bug fixes, patches, upgrades or other enhancements or derivatives of the features,
functionality or performance of this software. However, if you publish or distribute your modifications without
contemporaneously requiring users to enter into a separate written license agreement, then you are deemed to
have granted all Members and all Copyright Holders of the Geant4 Collaboration a license to your
modifications, including modifications protected by any patent owned by you, under the conditions of this
license.

5. You may not include this software in whole or in part in any patent or patent application in respect of any
modification of this software developed by you.

4) If you choose to give it away free to everyone, we can have it for free too.

5) You can’t patent the parts we did.

Makoto Asai, SLAC(c)

The Geant4 License

6. DISCLAIMER
THIS SOFTWARE IS PROVIDED BY THE MEMBERS AND COPYRIGHT HOLDERS OF THE GEANT4
COLLABORATION AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY, OF
SATISFACTORY QUALITY, AND FITNESS FOR A PARTICULAR PURPOSE OR USE ARE
DISCLAIMED. THE MEMBERS OF THE GEANT4 COLLABORATION AND CONTRIBUTORS MAKE
NO REPRESENTATION THAT THE SOFTWARE AND MODIFICATIONS THEREOF, WILL NOT
INFRINGE ANY PATENT, COPYRIGHT, TRADE SECRET OR OTHER PROPRIETARY RIGHT.

7. LIMITATION OF LIABILITY
THE MEMBERS AND COPYRIGHT HOLDERS OF THE GEANT4 COLLABORATION AND
CONTRIBUTORS SHALL HAVE NO LIABILITY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
CONSEQUENTIAL, EXEMPLARY, OR PUNITIVE DAMAGES OF ANY CHARACTER INCLUDING,
WITHOUT LIMITATION, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, LOSS OF USE,
DATA OR PROFITS, OR BUSINESS INTERRUPTION, HOWEVER CAUSED AND ON ANY THEORY
OF CONTRACT, WARRANTY, TORT (INCLUDING NEGLIGENCE), PRODUCT LIABILITY OR
OTHERWISE, ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

8. This license shall terminate with immediate effect and without notice if you fail to comply with any of the
terms of this license, or if you institute litigation against any Member or Copyright Holder of the Geant4
Collaboration with regard to this software.

We don’t claim that it works, and we’re not responsible if it doesn’t.

Makoto Asai, SLAC(c)

Geant4 v9.3p02

Basic concepts
and kernel structure

Terminology (jargons)

• Run, event, track, step, step point
• Track trajectory, step trajectory point
• Process

– At rest, along step, post step
• Cut = production threshold
• Sensitive detector, score, hit, hits collection,

– Run: Events correspond to the same beam fill
– Event: a collision or overlapped collisions some time

Makoto Asai, SLAC(c)

Run in Geant4
• As an analogy of the real experiment, a run of Geant4 starts with “Beam On”.

• Within a run, the user cannot change

– detector setup

– settings of physics processes

• Conceptually, a run is a collection of events which share the same detector
and physics conditions.

– A run consists of one event loop.

• At the beginning of a run, geometry is optimized for navigation and cross-
section tables are calculated according to materials appear in the geometry
and the cut-off values defined.

• G4RunManager class manages processing a run, a run is represented by
G4Run class or a user-defined class derived from G4Run.

– A run class may have a summary results of the run.

• G4UserRunAction is the optional user hook.

Makoto Asai, SLAC(c)

Event in Geant4
• An event is the basic unit of simulation in Geant4.

• At beginning of processing, primary tracks are generated. These primary tracks

are pushed into a stack.

• A track is popped up from the stack one by one and “tracked”. Resulting

secondary tracks are pushed into the stack.

– This “tracking” lasts as long as the stack has a track.

• When the stack becomes empty, processing of one event is over.

• G4Event class represents an event. It has following objects at the end of its

(successful) processing.

– List of primary vertices and particles (as input)

– Hits and Trajectory collections (as output)

• G4EventManager class manages processing an event. G4UserEventAction is

the optional user hook.

Makoto Asai, SLAC(c)

Track in Geant4
• Track is a snapshot of a particle.

– It has physical quantities of current instance only. It does not record
previous quantities.

– Step is a “delta” information to a track. Track is not a collection of
steps. Instead, a track is being updated by steps.

• Track object is deleted when
– it goes out of the world volume,
– it disappears (by e.g. decay, inelastic scattering),
– it goes down to zero kinetic energy and no “AtRest” additional

process is required, or
– the user decides to kill it artificially.

• No track object persists at the end of event.
– For the record of tracks, use trajectory class objects.

• G4TrackingManager manages processing a track, a track is represented
by G4Track class.

• G4UserTrackingAction is the optional user hook.

Makoto Asai, SLAC(c)

Step in Geant4
• Step has two points and also “delta” information of a particle (energy loss on the

step, time-of-flight spent by the step, etc.).

• Each point knows the volume (and material). In case a step is limited by a
volume boundary, the end point physically stands on the boundary, and it
logically belongs to the next volume.

– Because one step knows materials of two volumes, boundary processes
such as transition radiation or refraction could be simulated.

• G4SteppingManager class manages processing a step, a step is represented
by G4Step class.

• G4UserSteppingAction is the optional user hook.

Makoto Asai, SLAC(c)
Pre-step point

Post-step point

Step

Boundary

Trajectory and trajectory point
• Track does not keep its trace. No track object persists at the end of event.

• G4Trajectory is the class which copies some of G4Track information.
G4TrajectoryPoint is the class which copies some of G4Step information.

– G4Trajectory has a vector of G4TrajectoryPoint.

– At the end of event processing, G4Event has a collection of G4Trajectory
objects.

• /tracking/storeTrajectory must be set to 1.

• Keep in mind the distinction.

– G4Track G4Trajectory, G4Step G4TrajectoryPoint

• Given G4Trajectory and G4TrajectoryPoint objects persist till the end of an event,
you should be careful not to store too many trajectories.

– E.g. avoid for high energy EM shower tracks.

• G4Trajectory and G4TrajectoryPoint store only the minimum information.

– You can create your own trajectory / trajectory point classes to store information
you need. G4VTrajectory and G4VTrajectoryPoint are base classes.

Makoto Asai, SLAC(c)

Particle in Geant4
• A particle in Geant4 is represented by three layers of classes.

• G4Track

– Position, geometrical information, etc.

– This is a class representing a particle to be tracked.

• G4DynamicParticle

– "Dynamic" physical properties of a particle, such as momentum, energy, spin,
etc.

– Each G4Track object has its own and unique G4DynamicParticle object.

– This is a class representing an individual particle.

• G4ParticleDefinition

– "Static" properties of a particle, such as charge, mass, life time, decay
channels, etc.

– G4ProcessManager which describes processes involving to the particle

– All G4DynamicParticle objects of same kind of particle share the same
G4ParticleDefinition.

Makoto Asai, SLAC(c)

Tracking and processes

• Geant4 tracking is general.

– It is independent to

• the particle type

• the physics processes involving to a particle

– It gives the chance to all processes

• To contribute to determining the step length

• To contribute any possible changes in physical quantities of the track

• To generate secondary particles

• To suggest changes in the state of the track

– e.g. to suspend, postpone or kill it.

Makoto Asai, SLAC(c)

Processes in Geant4
• In Geant4, particle transportation is a process as well, by which a particle interacts with

geometrical volume boundaries and field of any kind.

– Because of this, shower parameterization process can take over from the ordinary
transportation without modifying the transportation process.

• Each particle has its own list of applicable processes. At each step, all processes listed
are invoked to get proposed physical interaction lengths.

• The process which requires the shortest interaction length (in space-time) limits the step.

• Each process has one or combination of the following natures.

– AtRest

• e.g. muon decay at rest

– AlongStep (a.k.a. continuous process)

• e.g. Celenkov process

– PostStep (a.k.a. discrete process)

• e.g. decay on the fly

Makoto Asai, SLAC(c)

Track status
• At the end of each step, according to the processes involved, the state of a track

may be changed.
– The user can also change the status in UserSteppingAction.
– Statuses shown in green are artificial, i.e. Geant4 kernel won’t set them, but

the user can set.
• fAlive

– Continue the tracking.
• fStopButAlive

– The track has come to zero kinetic energy, but still AtRest process to occur.
• fStopAndKill

– The track has lost its identity because it has decayed, interacted or gone
beyond the world boundary.

– Secondaries will be pushed to the stack.
• fKillTrackAndSecondaries

– Kill the current track and also associated secondaries.
• fSuspend

– Suspend processing of the current track and push it and its secondaries to
the stack.

• fPostponeToNextEvent
– Postpone processing of the current track to the next event.
– Secondaries are still being processed within the current event.

Makoto Asai, SLAC(c)

Step status
• Step status is attached to G4StepPoint to indicate why that particular step was

determined.
– Use “PostStepPoint” to get the status of this step.
– “PreStepPoint” has the status of the previous step.

• fWorldBoundary

– Step reached the world boundary
• fGeomBoundary

– Step is limited by a volume boundary except the world
• fAtRestDoItProc, fAlongStepDoItProc, fPostStepDoItProc

– Step is limited by a AtRest, AlongStep or PostStep process
• fUserDefinedLimit

– Step is limited by the user Step limit
• fExclusivelyForcedProc

– Step is limited by an exclusively forced (e.g. shower parameterization)
process

• fUndefined
– Step not defined yet

• If you want to identify the first step in a volume, pick fGeomBoudary status in

PreStepPoint.
• If you want to identify a step getting out of a volume, pick fGeomBoundary status

in PostStepPoint Makoto Asai, SLAC(c)

Step
PreStepPoint PostStepPoint

Cuts in Geant4
• A Cut in Geant4 is a production threshold.

– Not tracking cut, which does not exist in Geant4 as default.

• All tracks are traced down to zero kinetic energy.

– It is applied only for physics processes that have infrared divergence

• Much detail will be given at later talks on physics.

Makoto Asai, SLAC(c)

Extract useful information

• Given geometry, physics and primary track generation, Geant4 does proper
physics simulation “silently”.

– You have to add a bit of code to extract information useful to you.

• There are two ways:

– Use user hooks (G4UserTrackingAction, G4UserSteppingAction, etc.)

• You have an access to almost all information

• Straight-forward, but do-it-yourself

– Use Geant4 scoring functionality

• Assign G4VSensitiveDetector to a volume

• Hits collection is automatically stored in G4Event object, and
automatically accumulated if user-defined Run object is used.

• Use user hooks (G4UserEventAction, G4UserRunAction) to get event /
run summary

Makoto Asai, SLAC(c)

Unit system

• Internal unit system used in Geant4 is completely hidden not only from user’s

code but also from Geant4 source code implementation.

• Each hard-coded number must be multiplied by its proper unit.

radius = 10.0 * cm;

kineticE = 1.0 * GeV;

• To get a number, it must be divided by a proper unit.

G4cout << eDep / MeV << “ [MeV]” << G4endl;

• Most of commonly used units are provided and user can add his/her own units.

• By this unit system, source code becomes more readable and importing /

exporting physical quantities becomes straightforward.

– For particular application, user can change the internal unit to suitable

alternative unit without affecting to the result.

Makoto Asai, SLAC(c)

G4cout, G4cerr
• G4cout and G4cerr are ostream objects defined by Geant4.

– G4endl is also provided.

G4cout << ”Hello Geant4!” << G4endl;

• Some GUIs are buffering output streams so that they display print-outs on another

window or provide storing / editing functionality.

– The user should not use std::cout, etc.

• The user should not use std::cin for input. Use user-defined commands provided

by intercoms category in Geant4.

– Ordinary file I/O is OK.

Makoto Asai, SLAC(c)

Geant4 kernel

Makoto Asai, SLAC(c)

 Geant4 consists of 17 categories.

 Independently developed and

maintained by WG(s) responsible to each

category.

 Interfaces between categories (e.g. top

level design) are maintained by the

global architecture WG.

 Geant4 Kernel

 Handles run, event, track, step, hit,

trajectory.

 Provides frameworks of geometrical

representation and physics processes.

Geant4

Readout Visuali
zation

Persis
tency

Run

Event

Inter
faces

Tracking

Digits +
Hits

Processes

Track

Geometry Particle

Graphic
_reps

Material

Intercoms

Global

Geant4 as a state machine
• Geant4 has six application states.

– G4State_PreInit
• Material, Geometry, Particle and/or

Physics Process need to be
initialized/defined

– G4State_Idle
• Ready to start a run

– G4State_GeomClosed
• Geometry is optimized and ready to

process an event
– G4State_EventProc

• An event is processing
– G4State_Quit

• (Normal) termination
– G4State_Abort

• A fatal exception occurred and program
is aborting

Makoto Asai, SLAC(c)

PreInit

Idle

EventProc

GeomClosed

Quit

Abort

initialize

beamOn exit

R
u
n

(
e
v
e
n
t

l
o
o
p
)

Geant4 v9.3p02

User classes

Users of Gean4
• Toolkit provides-> Geant4 developers
• Application Developers

– “users” of Geant4
• Develop an application in their problem domain
• Deep knowledge in the problem domain and physics related

• Application Users
– Often, not necessary to know about the detail of Geant4

Makoto Asai, SLAC(c)

To use Geant4, you have to…
• Geant4 is a toolkit. You have to build an application.
• To make an application, you have to

– Define your geometrical setup
• Material, volume

– Define physics to get involved
• Particles, physics processes/models
• Production thresholds

– Define how an event starts
• Primary track generation

– Extract information useful to you
• You may also want to

– Visualize geometry, trajectories and physics output
– Utilize (Graphical) User Interface
– Define your own UI commands
– etc.

Makoto Asai, SLAC(c)

User classes
• main()

– Geant4 does not provide main().
• Initialization classes

– Use G4RunManager::SetUserInitialization() to define.
– Invoked at the initialization

• G4VUserDetectorConstruction
• G4VUserPhysicsList

• Action classes
– Use G4RunManager::SetUserAction() to define.
– Invoked during an event loop

• G4VUserPrimaryGeneratorAction
• G4UserRunAction
• G4UserEventAction
• G4UserStackingAction
• G4UserTrackingAction
• G4UserSteppingAction

Makoto Asai, SLAC(c)

Note : classes written in red are mandatory.

The main program

• Geant4 does not provide the main().

• In your main(), you have to

– Construct G4RunManager (or your derived class)

– Set user mandatory classes to RunManager

• G4VUserDetectorConstruction

• G4VUserPhysicsList

• G4VUserPrimaryGeneratorAction

• You can define VisManager, (G)UI session, optional user action classes,

and/or your persistency manager in your main().

Makoto Asai, SLAC(c)

Describe your detector

• Derive your own concrete class from G4VUserDetectorConstruction

abstract base class.

• In the virtual method Construct(),

– Instantiate all necessary materials

– Instantiate volumes of your detector geometry

– Instantiate your sensitive detector classes and set them to the

corresponding logical volumes

• Optionally you can define

– Regions for any part of your detector

– Visualization attributes (color, visibility, etc.) of your detector

elements

Makoto Asai, SLAC(c)

Select physics processes

• Geant4 does not have any default particles or processes.

– Even for the particle transportation, you have to define it explicitly.

• Derive your own concrete class from G4VUserPhysicsList abstract

base class.

– Define all necessary particles

– Define all necessary processes and assign them to proper particles

– Define cut-off ranges applied to the world (and each region)

• Geant4 provides lots of utility classes/methods and examples.

– "Educated guess" physics lists for defining hadronic processes for

various use-cases.

Makoto Asai, SLAC(c)

Generate primary event

• Derive your concrete class from G4VUserPrimaryGeneratorAction abstract

base class.

• Pass a G4Event object to one or more primary generator concrete class objects

which generate primary vertices and primary particles.

• Geant4 provides several generators in addition to the

G4VPrimaryParticlegenerator base class.

– G4ParticleGun

– G4HEPEvtInterface, G4HepMCInterface

• Interface to /hepevt/ common block or HepMC class

– G4GeneralParticleSource

• Define radioactivity

Makoto Asai, SLAC(c)

Optional user action classes
• All user action classes, methods of which are invoked during “Beam On”, must

be constructed in the user’s main() and must be set to the RunManager.
• G4UserRunAction

– G4Run* GenerateRun()
• Instantiate user-customized run object

– void BeginOfRunAction(const G4Run*)
• Define histograms

– void EndOfRunAction(const G4Run*)
• Analyze the run
• Store histograms

• G4UserEventAction
– void BeginOfEventAction(const G4Event*)

• Event selection
– void EndOfEventAction(const G4Event*)

• Output event information

Makoto Asai, SLAC(c)

Optional user action classes
• G4UserStackingAction

– void PrepareNewEvent()

• Reset priority control

– G4ClassificationOfNewTrack ClassifyNewTrack(const G4Track*)

• Invoked every time a new track is pushed

• Classify a new track -- priority control

– Urgent, Waiting, PostponeToNextEvent, Kill

– void NewStage()

• Invoked when the Urgent stack becomes empty

• Change the classification criteria

• Event filtering (Event abortion)

Makoto Asai, SLAC(c)

Optional user action classes
• G4UserTrackingAction

– void PreUserTrackingAction(const G4Track*)

• Decide trajectory should be stored or not

• Create user-defined trajectory

– void PostUserTrackingAction(const G4Track*)

• Delete unnecessary trajectory

• G4UserSteppingAction

– void UserSteppingAction(const G4Step*)

• Kill / suspend / postpone the track

• Draw the step (for a track not to be stored as a trajectory)

Makoto Asai, SLAC(c)

– PostStep actions:

• For describing point-like (inter)actions, like decay in flight, hard
radiation…

G4VProcess: 3 kind of actions (1/2)

• Abstract class defining the common interface of all
processes in Geant4:
– Used by all « physics » processes
– but is also used by the transportation, etc…
– Defined in source/processes/management

• Define three kinds of actions:

– AlongStep actions:

• To describe continuous (inter)actions,
 occuring along the path of the particle,
 like ionisation;

– AtRest actions:
• Decay, e+ annihilation …

AlongStep

PostStep

+
- + +

+
+

-
- - -

Marc Verderi - Ecole Polytechnique - LLR 55

G4VProcess: 3 kind of actions (2/2)

• A process can implement any combination of the three
AtRest, AlongStep and PostStep actions:
– eg: decay = AtRest + PostStep

• Each action defines two methods:
– GetPhysicalInteractionLength():

• Used to limit the step:
– either because the process « triggers » an interaction, a decay
– or any other reasons, like fraction of energy loss, geometry

boundary, user’s limit …

– DoIt():
• Implements the actual action to be applied on the track;
• And the related production of secondaries.

Marc Verderi - Ecole Polytechnique - LLR 56

How the Stepping handles processes

• The stepping treats processes generically:
– The stepping does not know(*) what processes it is handling;

• The stepping makes the processes to:
– Cooperate for AlongStep actions;
– Compete for PostStep and AtRest actions;

• Beyond this, for completeness, particular treatments are also possible on
process request, which can ask to be
– forced:

• PostStepDoIt() action applied anyway;
– e.g. transportation to update G4Track geom. info

– conditionallyForced:
• PostStepDoIt() applied if AlongStep has limited the step;

– etc …

(*) almost: some exception
for transportation

Marc Verderi - Ecole Polytechnique - LLR 57

G4VUserDetectorConstruction

Geometry I - M.Asai (SLAC) 58

Construct() should return the pointer of the world physical
volume. The world physical volume represents all of your
geometry setup.

Your detector construction

#ifndef MyDetctorConstruction_h
#define MyDetctorConstruction_h 1
#include “G4VUserDetectorConstruction.hh”
class MyDetctorConstruction
 : public G4VUserDetectorConstruction
{
 public:
 G4VUserDetectorConstruction();
 virtual ~G4VUserDetectorConstruction();
 virtual G4VPhysicalVolume* Construct();
 public:
 // set/get methods if needed
 private:
 // granular private methods if needed
 // data members if needed
};
#endif

Geometry I - M.Asai (SLAC) 59

Describe your detector
• Derive your own concrete class from G4VUserDetectorConstruction abstract

base class.

• Implement the method Construct()

1) Construct all necessary materials

2) Define shapes/solids

3) Define logical volumes

4) Place volumes of your detector geometry

5) Associate (magnetic) field to geometry (optional)

6) Instantiate sensitive detectors / scorers and set them to corresponding
volumes (optional)

7) Define visualization attributes for the detector elements (optional)

8) Define regions (optional)

• Set your construction class to G4RunManager

• It is suggested to modularize Construct() method w.r.t. each component or sub-
detector for easier maintenance of your code.

Geometry I - M.Asai (SLAC) 60

Select physics processes

• Geant4 does not have any default particles or processes.

– Even for the particle transportation, you have to define it explicitly.

• Derive your own concrete class from G4VUserPhysicsList abstract

base class.

– Define all necessary particles

– Define all necessary processes and assign them to proper particles

– Define cut-off ranges applied to the world (and each region)

• Geant4 provides lots of utility classes/methods and examples.

– "Educated guess" physics lists for defining hadronic processes for

various use-cases.

Makoto Asai, SLAC(c)

Generate primary event

• Derive your concrete class from G4VUserPrimaryGeneratorAction abstract

base class.

• Pass a G4Event object to one or more primary generator concrete class objects

which generate primary vertices and primary particles.

• Geant4 provides several generators in addition to the

G4VPrimaryParticlegenerator base class.

– G4ParticleGun

– G4HEPEvtInterface, G4HepMCInterface

• Interface to /hepevt/ common block or HepMC class

– G4GeneralParticleSource

• Define radioactivity

Makoto Asai, SLAC(c)

Optional user action classes
• All user action classes, methods of which are invoked during “Beam On”, must

be constructed in the user’s main() and must be set to the RunManager.
• G4UserRunAction

– G4Run* GenerateRun()
• Instantiate user-customized run object

– void BeginOfRunAction(const G4Run*)
• Define histograms

– void EndOfRunAction(const G4Run*)
• Analyze the run
• Store histograms

• G4UserEventAction
– void BeginOfEventAction(const G4Event*)

• Event selection
– void EndOfEventAction(const G4Event*)

• Output event information

Makoto Asai, SLAC(c)

Optional user action classes
• G4UserStackingAction

– void PrepareNewEvent()

• Reset priority control

– G4ClassificationOfNewTrack ClassifyNewTrack(const G4Track*)

• Invoked every time a new track is pushed

• Classify a new track -- priority control

– Urgent, Waiting, PostponeToNextEvent, Kill

– void NewStage()

• Invoked when the Urgent stack becomes empty

• Change the classification criteria

• Event filtering (Event abortion)

Makoto Asai, SLAC(c)

Optional user action classes
• G4UserTrackingAction

– void PreUserTrackingAction(const G4Track*)

• Decide trajectory should be stored or not

• Create user-defined trajectory

– void PostUserTrackingAction(const G4Track*)

• Delete unnecessary trajectory

• G4UserSteppingAction

– void UserSteppingAction(const G4Step*)

• Kill / suspend / postpone the track

• Draw the step (for a track not to be stored as a trajectory)

Makoto Asai, SLAC(c)

Let me remind you…
• Define material and geometry

 G4VUserDetectorConstruction

Material and Geometry lectures

• Select appropriate particles and processes and define production threshold(s)

 G4VUserPhysicsList

Physics lectures

• Define the way of primary particle generation

 G4VUserPrimaryGeneratorAction

Primary particle lecture

• Define the way to extract useful information from Geant4

 G4UserSteppingAction, G4UserTrackingAction, etc.

 G4VUserDetectorConstruction, G4UserEventAction, G4Run, G4UserRunAction

 G4SensitiveDetector, G4VHit, G4VHitsCollection

Scoring lectures

Makoto Asai, SLAC(c)

Geant4 space users workshop and
training course 2011

• Tsukuba, Japan
• December 7-9: Space users workshop
• December 12-14:Training course

– 3days lectures and private discussion with
developers in parallel

• http://geant4.kek.jp/G4SUW2011/

	Introduction to Geant4
	Very basic of Geant4
	The design principles
	Why we started Geant4?
	Who made Geant4?
	What is MC, anyway?
	Pre-Geant4 history
	Introduction to Geant4�
	Contents
	General introduction �and brief history
	What is Geant4?
	Flexibility of Geant4
	Physics in Geant4
	Physics in Geant4
	Geant4 – Its history
	Geant4 Collaboration
	スライド番号 17
	スライド番号 18
	スライド番号 19
	スライド番号 20
	Geant4 license
	スライド番号 22
	スライド番号 23
	スライド番号 24
	スライド番号 25
	Basic concepts�and kernel structure
	Terminology (jargons)
	Run in Geant4
	Event in Geant4
	Track in Geant4
	Step in Geant4
	Trajectory and trajectory point
	Particle in Geant4
	Tracking and processes
	Processes in Geant4
	Track status
	Step status
	Cuts in Geant4
	Extract useful information
	Unit system
	G4cout, G4cerr
	Geant4 kernel
	Geant4 as a state machine
	User classes
	Users of Gean4
	To use Geant4, you have to…
	User classes
	The main program
	Describe your detector
	Select physics processes
	Generate primary event
	Optional user action classes
	Optional user action classes
	Optional user action classes
	G4VProcess: 3 kind of actions (1/2)
	G4VProcess: 3 kind of actions (2/2)
	How the Stepping handles processes
	G4VUserDetectorConstruction
	Your detector construction
	Describe your detector
	Select physics processes
	Generate primary event
	Optional user action classes
	Optional user action classes
	Optional user action classes
	Let me remind you…
	Geant4 space users workshop and training course 2011

